Therese, North 18, 2021

Q2. Criman
$$\lim_{x\to 3} f(x) = 4$$
, $\lim_{x\to 3} g(x) = 6$, $\lim_{x\to 3} h(x) = -2$

(a) $\lim_{x\to 3} \left(\int f(x) - 2 \cdot h(x) \right) = \lim_{x\to 3} \int f(x) - 2 \lim_{x\to 3} 2 \cdot h(x)$

$$= \int \lim_{x\to 3} f(x) - 2 \cdot \lim_{x\to 3} h(x)$$

$$= \int 4 - 2 \cdot (-2)$$

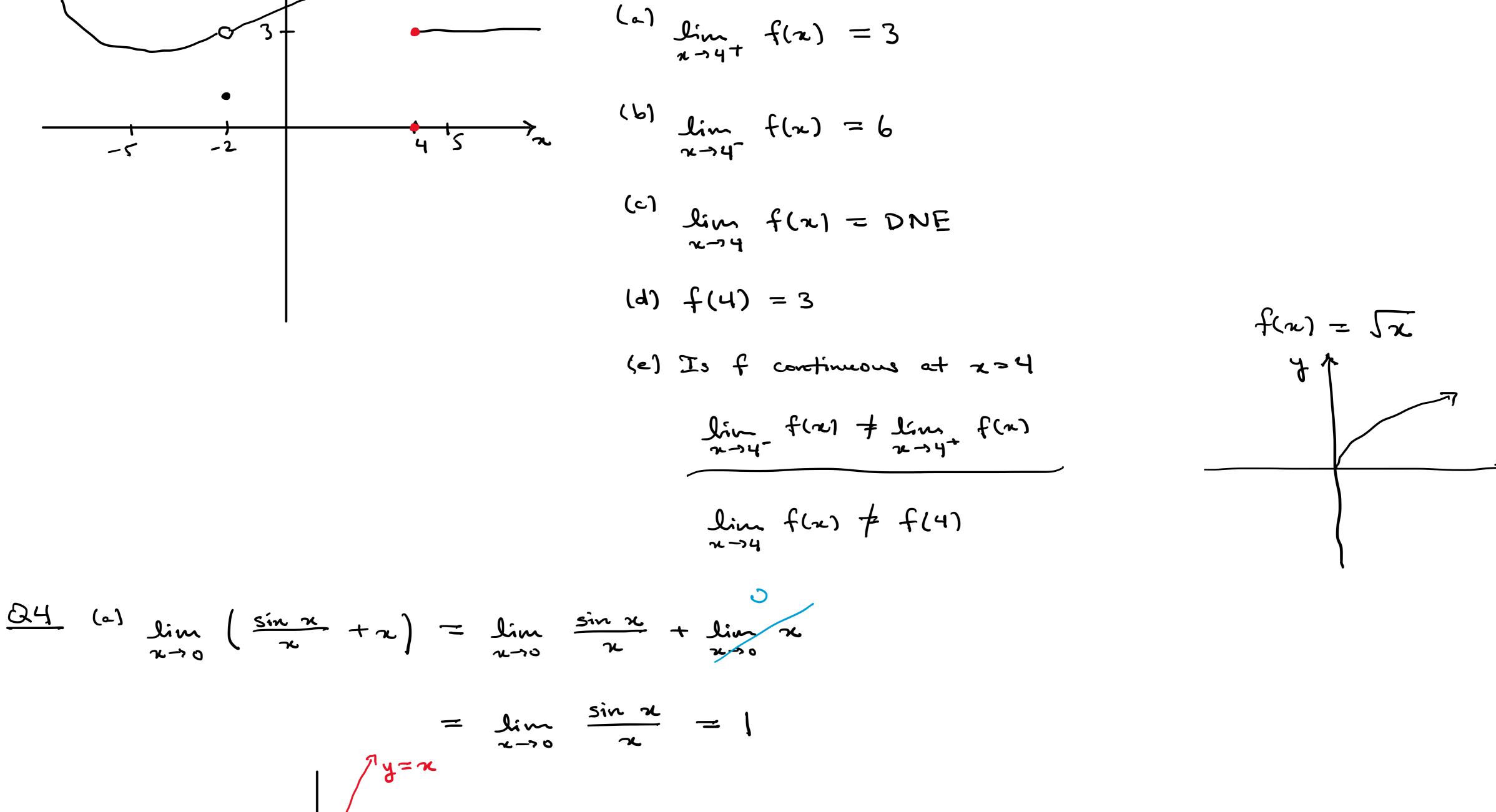
$$= 2 + 4 = 6$$
(b) $\lim_{x\to 3} \left[g(x) \cdot (3 + h(x)) \right] = \left(\lim_{x\to 3} g(x) \right) \cdot (3 + \lim_{x\to 3} h(x))$

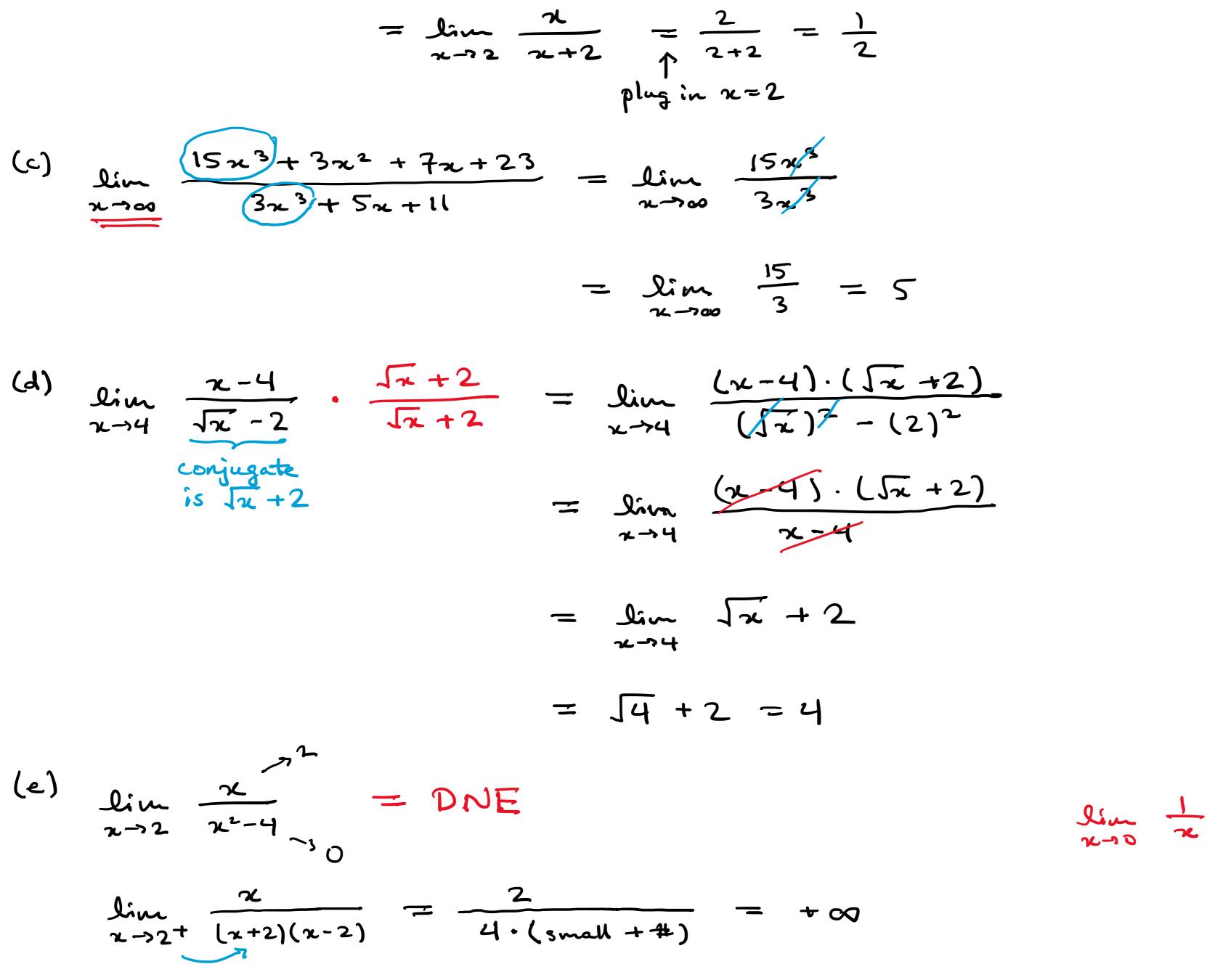
$$= 6 \cdot (3 + (-2))$$

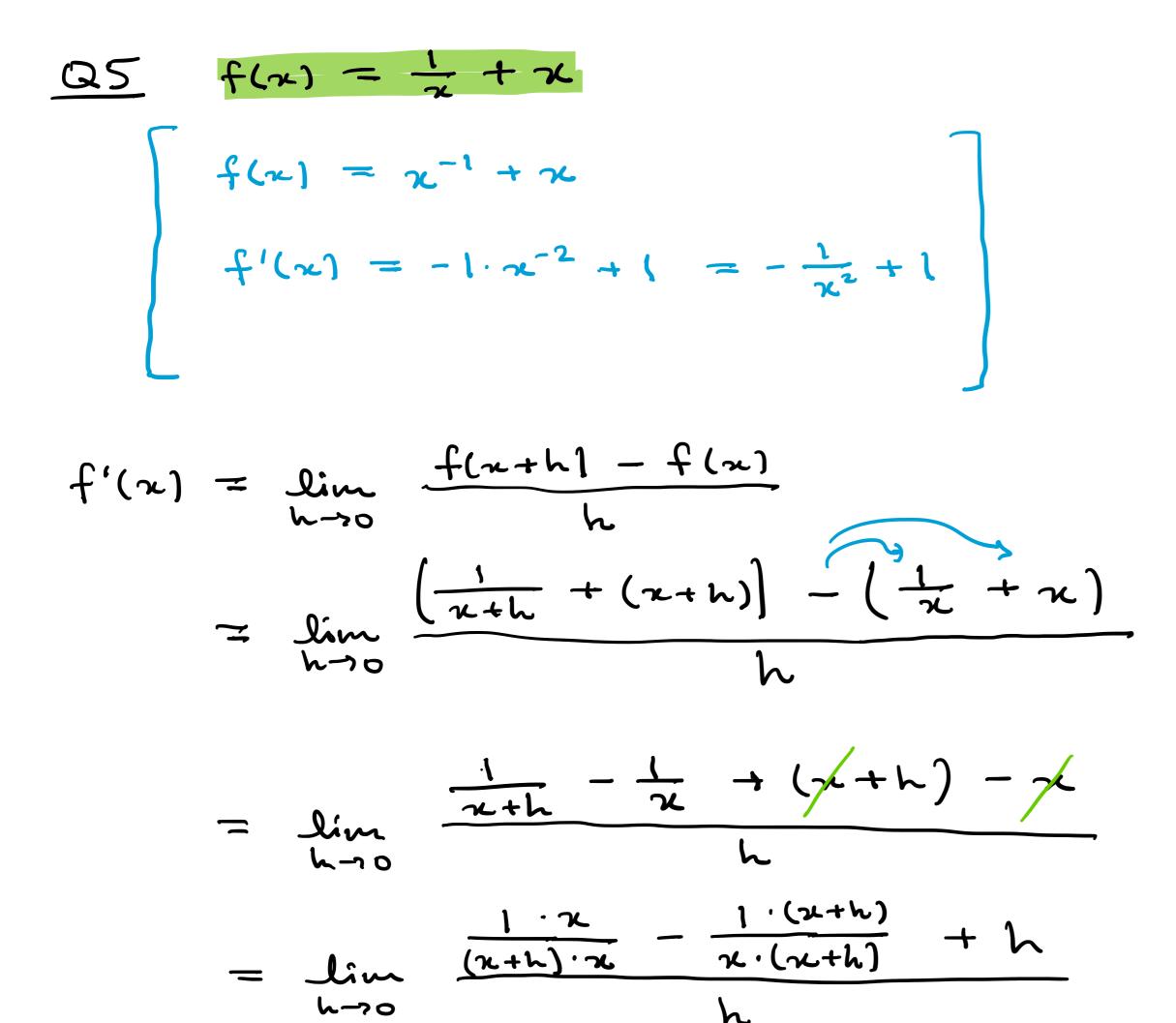
$$= 6$$

$$= 6 \cdot (3 + (-2))$$

$$= 6$$
(a) $\lim_{x \to 4^+} f(x) = 3$
(b) $\lim_{x \to 4^-} f(x) = 6$







 $f(x) = x \cdot (x^2 + 3)^3$

 $\lim_{x\to 2^{-}} \frac{x}{(x+2)(x-2)} = \frac{2}{4\cdot(\text{smoll}-*)}$

$$=\lim_{h\to 0}\frac{\chi-(\chi+h)}{\frac{\chi\cdot(\chi+h)}{h}}+1$$

$$=\lim_{h\to 0}\frac{-\frac{1}{\chi\cdot(\chi+h)}}{\frac{1}{\chi\cdot(\chi+h)}}+1$$

$$=\lim_{h\to 0}\frac{-1}{\chi\cdot(\chi+h)}+1$$

$$=\frac{-1}{\chi\cdot^2}+1$$

 $f(x) = 1 \cdot (x^2 + 3)^3 \rightarrow x \cdot 3 \cdot (x^2 + 3)^2 \cdot 2x$

 $= (x^2+3)^3 + 6x^2 \cdot (x^2+3)^2$

 $= (x^2+3)^2 \left[(x^2+3) + 6x^2 \right]$

 $\frac{d}{dx} \left((x^2 + 3)^3 \right) = 3 \cdot (x^2 + 3)^2 \cdot 2x$

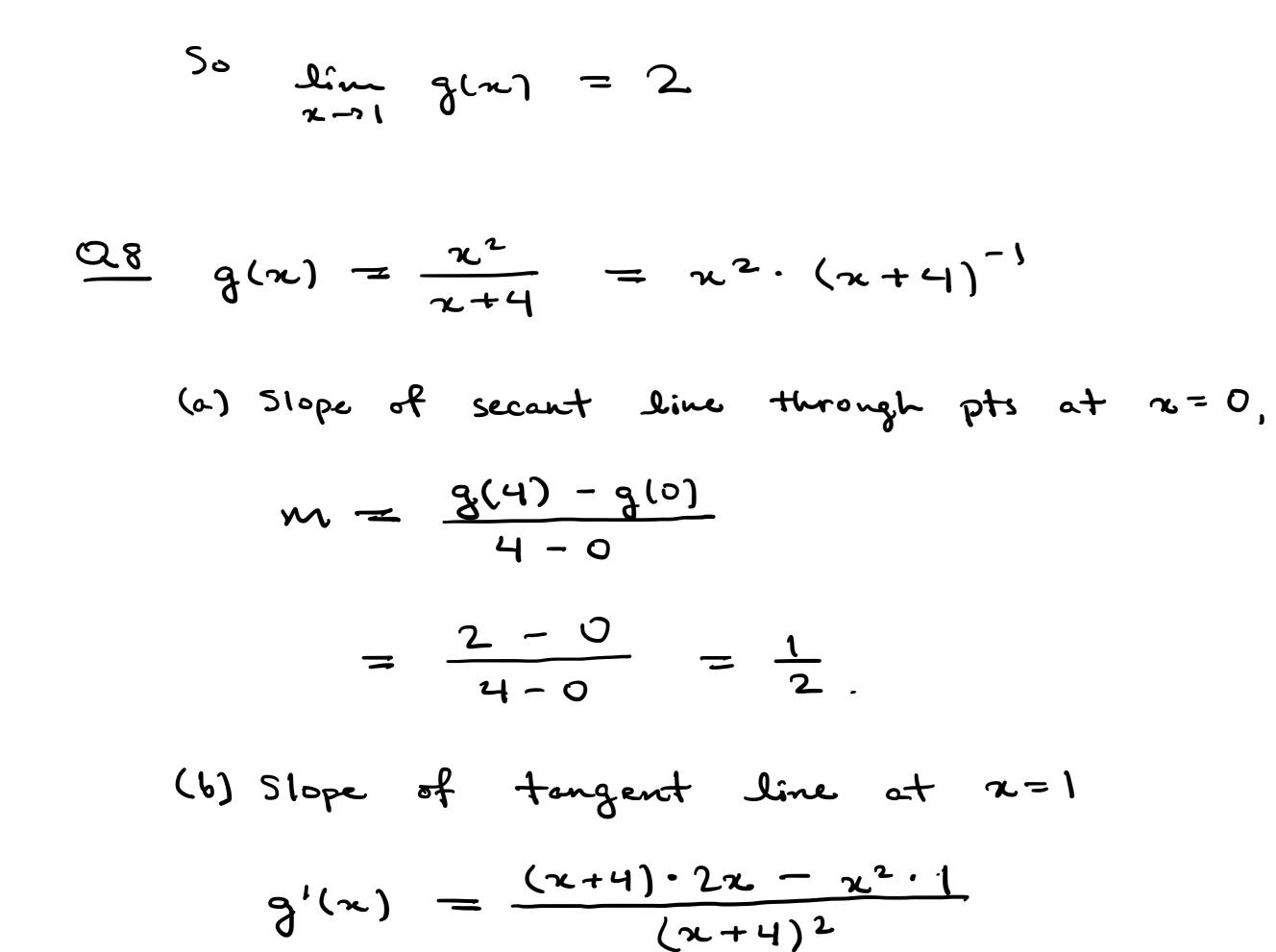
$$\frac{Q7}{-2x+4} \le g(x) \le (x-2)^2 + 1$$
Find $\lim_{x\to 1} g(x)$
Apply squeeze then: check
$$\lim_{x\to 1} -2x+4 = 2$$

$$\lim_{x\to 1} 2$$
If
$$2$$
So $\lim_{x\to 1} g(x) = 2$

$$g(x) = \frac{x^{2}}{x+4} = x^{2} \cdot (x+4)^{-1}$$
(a) Slope of secant line through pts at $x=0$, $x=4$

$$m = \frac{g(4) - g(0)}{4 - 0}$$

$$= \frac{2 - 0}{4 - 0} = \frac{1}{2}$$
(b) Slope of tangent line at $x=1$



 $9'(1) = \frac{5 \cdot 2 - 1}{5^2} = \frac{9}{25}$

Slope: m= = 9

 $y-y_1=m\cdot(\kappa-\kappa_1)$

 $y - \frac{1}{5} = \frac{9}{25} \cdot (\pi - 1)$

(c) Point: (1, g(1)) = (1, = (x, y))

 $y = \frac{9}{25} \cdot x - \frac{9}{25} + \frac{1}{5} = \frac{9}{25} x - \frac{4}{25}$