MAT 211: Linear Algebra Practice Midterm 2

Stony Brook University Spring 2019 Dzmitry Dudko

A few remarks:

Theorem. Let A be an $n \times n$ matrix. The following statements are equivalent:

- 1. A is invertible.
- 2. $Ax = b$ has a unique solution for every vector $b \in \mathbb{R}^n$.
- 3. $Ax = 0$ has only the trivial solution.
- 4. rank $(A) = n$.
- 5. det($A \neq 0$.
- 6. 0 is not an eigenvalue of A.

Recall that

$$
rank(A) = dim col(A) = dim row(A) = n - dim null(A).
$$

If A is an $n \times n$ matrix, then rank $(A) = n$ if and only if the row vectors of A form a basis for \mathbb{R}^n , or, equivalently, the column vectors of A form a basis for \mathbb{R}^n . More details in [Syllabus,](http://www.math.stonybrook.edu/~ddudko/mat211-spr19/March14lecture.pdf) [March 14 Lecture.](http://www.math.stonybrook.edu/~ddudko/mat211-spr19/March14lecture.pdf)

Remember that

$$
\begin{bmatrix} 1 & 0 & 0 & 0 \ 1 & 1 & 1 & 0 \ 1 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{R_2 - R_1} \begin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 1 & 0 \ 0 & 1 & 1 & 0 \end{bmatrix}
$$

is a composition of elementary row operations, because we may rewrite:

$$
\begin{bmatrix} 1 & 0 & 0 & 0 \ 1 & 1 & 1 & 0 \ 1 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{R_2 - R_1} \begin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 1 & 0 \ 1 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{R_3 - R_1} \begin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 1 & 0 \ 0 & 1 & 1 & 0 \end{bmatrix},
$$

but

$$
\begin{bmatrix} 1 & 0 & 0 & 0 \ 1 & 1 & 1 & 0 \ 1 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{R_3 - R_2} \begin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
$$

is not a composition of elementary row operations; this is not allowed in the elimination method.

Problem 1. Solve the following system of linear equations

$$
\begin{bmatrix} 1 & 1 & 1 & 1 & 4 \ 1 & 2 & 3 & 4 & 10 \ 1 & 3 & 6 & 10 & 20 \ 1 & 4 & 10 & 20 & 35 \end{bmatrix}.
$$

Answer: $\sqrt{ }$ 1 1 1 1 1 $\Bigg\}$

.

 \Box

 \Box

Solution. Using the elimination method:

$$
\begin{bmatrix} 1 & 1 & 1 & 1 & 4 \ 1 & 2 & 3 & 4 & 10 \ 1 & 3 & 6 & 10 & 20 \ 1 & 4 & 10 & 20 & 35 \end{bmatrix} \xrightarrow{R_3 - R_1} \begin{bmatrix} 1 & 1 & 1 & 1 & 4 \ 0 & 1 & 2 & 3 & 6 \ 0 & 2 & 5 & 9 & 16 \ 0 & 3 & 9 & 19 & 31 \end{bmatrix} \xrightarrow{R_3 - 2R_2} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 4 \ 6 & 1 & 2 & 3 & 6 \ 0 & 0 & 1 & 3 & 4 \ 0 & 0 & 3 & 10 & 13 \end{bmatrix}
$$

$$
R_4 - 3R_3 \begin{bmatrix} 1 & 1 & 1 & 1 & 4 \ 0 & 1 & 2 & 3 & 6 \ 0 & 0 & 1 & 3 & 4 \ 0 & 0 & 0 & 1 & 1 \ \end{bmatrix} \xrightarrow{R_2 - 3R_4} \begin{bmatrix} 1 & 1 & 1 & 0 & 3 \ 0 & 1 & 2 & 0 & 3 \ 0 & 0 & 1 & 0 & 1 \ 0 & 0 & 0 & 1 & 1 \ \end{bmatrix} \xrightarrow{R_1 - R_3} \begin{bmatrix} 1 & 1 & 0 & 0 & 3 \ 0 & 1 & 2 & 0 & 3 \ 0 & 0 & 0 & 1 & 1 \ 0 & 0 & 0 & 1 & 1 \ \end{bmatrix} \xrightarrow{R_2 - 2R_3}
$$

$$
\begin{bmatrix} 1 & 1 & 0 & 0 & 2 \ 0 & 1 & 0 & 0 & 1 & 1 \ 0 & 0 & 1 & 0 & 1 & 1 \ 0 & 0 & 0 & 1 & 1 & 1 \ \end{bmatrix} \xrightarrow{R_1 - R_2} \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \ 0 & 1 & 0 & 0 & 1 & 1 \ 0 & 0 & 0 & 1 & 1 & 1 \ \end{bmatrix}.
$$

Problem 2. Give bases for $row(A), col(A), null(A)$, where

1)
$$
A = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 1 & -1 & -1 \end{bmatrix}
$$
,
\n2) $A = \begin{bmatrix} 2 & -4 & 0 & 2 & 1 \\ -1 & 2 & 1 & 2 & 3 \\ 1 & -2 & 1 & 4 & 4 \end{bmatrix}$.

Solution. Using elementary row operations:

1)
$$
\begin{bmatrix} 1 & 1 & 0 & 1 \ 0 & 1 & -1 & 1 \ 0 & 1 & -1 & -1 \end{bmatrix} \xrightarrow{R_3 - R_2} \begin{bmatrix} 1 & 1 & 0 & 1 \ 0 & 1 & -1 & 1 \ 0 & 0 & 0 & -2 \end{bmatrix} \xrightarrow{R_3/(-2)} \begin{bmatrix} 1 & 1 & 0 & 1 \ 0 & 1 & -1 & 1 \ 0 & 0 & 0 & 1 \end{bmatrix}
$$

$$
\begin{array}{c}\nR_1 - R_2 \\
\longrightarrow \begin{bmatrix}\n1 & 0 & 1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 0 & 0 & 1\n\end{bmatrix}\n\xrightarrow{R_2 - R_3}\n\begin{bmatrix}\n1 & 0 & 1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1\n\end{bmatrix}.\n\end{array}
$$

Therefore,

•
$$
\begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}
$$
, $\begin{bmatrix} 0 & 1 & -1 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$ is a basis for row(*A*).
\n• $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$ is a basis for col $\begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 1 & -1 & -1 \end{bmatrix}$
\n(because $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ is a basis for col $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$); and
\n• $\begin{bmatrix} -1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$ is a basis for null(*A*).

The rank of A is 3.

2)
$$
\begin{bmatrix} 2 & -4 & 0 & 2 & 1 \ -1 & 2 & 1 & 2 & 3 \ 1 & -2 & 1 & 4 & 4 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_3} \begin{bmatrix} 1 & -2 & 1 & 4 & 4 \ -1 & 2 & 1 & 2 & 3 \ 2 & -4 & 0 & 2 & 1 \end{bmatrix} \xrightarrow{R_2 + R_1} \begin{bmatrix} R_3 - 2R_1 \ -1 & 2 & 1 & 2 & 3 \ 2 & -4 & 0 & 2 & 1 \end{bmatrix} \xrightarrow{R_3 - 2R_1} \begin{bmatrix} 1 & -2 & 1 & 4 & 4 \ 0 & 0 & 2 & 6 & 7 \ 0 & 0 & -2 & -6 & -7 \end{bmatrix} \xrightarrow{R_3 + R_2} \begin{bmatrix} 1 & -2 & 1 & 4 & 4 \ 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_2/2} \begin{bmatrix} 1 & -2 & 0 & 1 & 1/2 \ 0 & 0 & 1 & 3 & 7/2 \ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.
$$

Therefore,

•
$$
\begin{bmatrix} 1 & -2 & 0 & 1 & 1/2 \end{bmatrix}
$$
, $\begin{bmatrix} 0 & 0 & 1 & 3 & 7/2 \end{bmatrix}$ is a basis for row(*A*);
\n• $\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ is a basis for col $\begin{bmatrix} 2 & -4 & 0 & 2 & 1 \\ -1 & 2 & 1 & 2 & 3 \\ 1 & -2 & 1 & 4 & 4 \end{bmatrix}$
\n(because $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ is a basis for col $\begin{bmatrix} 1 & -2 & 0 & 1 & 1/2 \\ 0 & 0 & 1 & 3 & 7/2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$);
\n• $\begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -1 \\ -3 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -1/2 \\ 0 \\ -7/2 \\ 0 \end{bmatrix}$ is a basis for null(*A*).

Problem 3. Find all possible values of $rank(A)$ as a varies

$$
A = \begin{bmatrix} 1 & 2 & a \\ -2 & 4a & 2 \\ a & -2 & 1 \end{bmatrix}.
$$

Answer. • if $a = -1$, then rank $(A) = 1$;

- if $a = 2$, then rank $(A) = 2$;
- otherwise rank $(A) = 3$.

Solution. Using the elimination method, we obtain:

$$
A = \begin{bmatrix} 1 & 2 & a \\ -2 & 4a & 2 \\ a & -2 & 1 \end{bmatrix} \xrightarrow{R_2 + 2R_1} \begin{bmatrix} 1 & 2 & a \\ 0 & 4a + 4 & 2 + 2a \\ 0 & -2 - 2a & 1 - a^2 \end{bmatrix} = B
$$

Let us consider two cases.

Case 1: $a = -1$. Then the matrix B is equal to

$$
\begin{bmatrix} 1 & 2 & a \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.
$$

Therefore, B (and hence A) has rank 1.

Case 2: $a \neq -1$. Then we divide the second and the third rows of B by $4a + 4$ and $-2 - 2a$ respectively:

$$
\begin{bmatrix} 1 & 2 & a \ 0 & 4a+4 & 2+2a \ 0 & -2-2a & 1-a^2 \end{bmatrix} \xrightarrow{R_2/(4a+4)} \begin{bmatrix} 1 & 2 & a \ 0 & 1 & 1/2 \ 0 & 1 & \frac{(1-a)(1+a)}{-2-2a} \end{bmatrix} = \begin{bmatrix} 1 & 2 & a \ 0 & 1 & 1/2 \ 0 & 1 & \frac{a-1}{2} \end{bmatrix} \xrightarrow{R_3 - R_2} \begin{bmatrix} 1 & 2 & a \ 0 & 1 & 1/2 \ 0 & 0 & \frac{a-2}{2} \end{bmatrix} = C.
$$

Let us again consider two cases.

Case 2a: $a = 2$. Then

$$
\begin{bmatrix} 1 & 2 & a \\ 0 & 1 & 1/2 \\ 0 & 0 & \frac{a-2}{2} \end{bmatrix} = \begin{bmatrix} 1 & 2 & a \\ 0 & 1 & 1/2 \\ 0 & 0 & 0 \end{bmatrix}
$$

 \Box

has rank 2.

Case 2b: $a \neq 2$. Then

$$
\begin{bmatrix} 1 & 2 & a \\ 0 & 1 & 1/2 \\ 0 & 0 & \frac{a-2}{2} \end{bmatrix} \xrightarrow{R_3/\frac{a-2}{2}} \begin{bmatrix} 1 & 2 & a \\ 0 & 1 & 1/2 \\ 0 & 0 & 1 \end{bmatrix}.
$$

The last matrix has rank 3.

Problem 4. Find all 2×2 matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ such that $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$

Answer: c and d are any numbers, while $b = c$ and $a = c/2$. In other words, all matrices have the form

$$
\begin{bmatrix} c/2 & c \\ c & d \end{bmatrix}.
$$

 \Box

 \Box

Solution. Evaluating the products, we obtain:

$$
\begin{bmatrix} a & 2a \\ c & 2c \end{bmatrix} = \begin{bmatrix} a & b \\ 2a & 2b \end{bmatrix}.
$$

We need to solve the system of linear equations:

$$
\begin{array}{rcl}\na & = a \\
c & = 2a \\
2a & = b \\
2c & = 2b\n\end{array}
$$

 $0 = 0$

or:

or:

$$
\begin{aligned}\n-2a + c &= 0 \\
2a - b &= 0 \\
-2b + 2c &= 0\n\end{aligned}
$$
\n
\n
$$
\begin{aligned}\n0 & 0 & 0 & 0 & 0 \\
-2 & 0 & 1 & 0 & 0 \\
2 & -1 & 0 & 0 & 0 \\
0 & -2 & 2 & 0 & 0\n\end{aligned}
$$

 \lceil $\overline{1}$ $\overline{1}$ $\overline{1}$

Solving the system, we obtain that c, d can be taken to be any numbers, and $b = c$, $a =$ $c/2$. \Box

0

.

 $0 \t -2 \t 2 \t 0$

Problem 5. Find a basis for the minimal subspace in \mathbb{R}^4 containing the points $(1, -1, 0, 0)$, $(0, 1, 0, -1), (0, 0, -1, 1), (-1, 0, 1, 0).$

Answer:
$$
\begin{bmatrix} 1 & -1 & 0 & 0 \end{bmatrix}
$$
, $\begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & -1 & 1 \end{bmatrix}$.

Solution. We need to find a basis for

 $\text{span}([1 \ -1 \ 0 \ 0], [0 \ 1 \ 0 \ -1], [0 \ 0 \ -1 \ 1], [-1 \ 0 \ 1 \ 0]) = \text{row}$ $\sqrt{ }$ 1 −1 0 0 0 1 0 −1 0 0 −1 1 −1 0 1 0 1 \parallel .

Using the elimination method:

$$
\begin{bmatrix} 1 & -1 & 0 & 0 \ 0 & 1 & 0 & -1 \ 0 & 0 & -1 & 1 \ -1 & 0 & 1 & 0 \end{bmatrix} \xrightarrow{R_4 + R_1} \begin{bmatrix} 1 & -1 & 0 & 0 \ 0 & 1 & 0 & -1 \ 0 & 0 & -1 & 1 \ 0 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{R_4 + R_2} \begin{bmatrix} 1 & -1 & 0 & 0 \ 0 & 1 & 0 & -1 \ 0 & 0 & -1 & 1 \ 0 & 0 & 1 & -1 \end{bmatrix}
$$

$$
\xrightarrow{R_4 + R_3} \begin{bmatrix} 1 & -1 & 0 & 0 \ 0 & 1 & 0 & -1 \ 0 & 0 & 0 & -1 & 1 \ 0 & 0 & 0 & 0 \end{bmatrix}.
$$

Therefore, $\begin{bmatrix} 1 & -1 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & -1 & 1 \end{bmatrix}$ is a basis.

Problem 6. Find a basis for the minimal subspace in \mathbb{R}^3 containing the point $(0,1,1)$ and the line

$$
\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.
$$

Answer: any basis of \mathbb{R}^3 . For example:

\n- \n
$$
\begin{bmatrix}\n 0 \\
 1 \\
 1\n \end{bmatrix},\n \begin{bmatrix}\n 1 \\
 0 \\
 1\n \end{bmatrix},\n \begin{bmatrix}\n 1 \\
 1 \\
 0\n \end{bmatrix};\n \text{or}
$$
\n
\n- \n
$$
\begin{bmatrix}\n 1 \\
 0 \\
 0\n \end{bmatrix},\n \begin{bmatrix}\n 0 \\
 1 \\
 0\n \end{bmatrix},\n \begin{bmatrix}\n 0 \\
 0 \\
 1\n \end{bmatrix}
$$
\n
\n

 \Box

 \Box

 $\sqrt{ }$ $\overline{0}$ 1 $\sqrt{ }$ 1 1 $\sqrt{ }$ 1 1 Solution. The subspace is equal to the span of 1 \vert , $\overline{0}$ \vert , 1 \vert – these are linearly indepen- $\overline{1}$ $\overline{1}$ $\overline{1}$ 1 1 $\overline{0}$ \Box dent vectors.

Problem 7. Let u, v be a basis for \mathbb{R}^2 . Show that

1) $u + v, u + v$ is not a basis for \mathbb{R}^2 ;

- 2) $u + v, v$ is a basis for \mathbb{R}^2 ;
- 3) $u + v, u v$ is a basis for \mathbb{R}^2 .
- Solution: 1) Since $(u + v) 1(u + v) = 0$, the vectors $u + v$, $u + v$ are linearly dependent; thus they do not form a basis.
	- 2) Let us show that $u + v$, v are linearly independent. Suppose

$$
c_1(u + v) + c_2 v = 0.
$$

Then

$$
c_1u + (c_1 + c_2)v = 0.
$$

Since u and v are linearly independent, we obtain that $c_1 = 0$ and $c_1 + c_2 = 0$. This implies that $c_1 = c_2 = 0$, which shows that u, v are linearly independent.

3) Let us show that $u + v$, $u - v$ are linearly independent. Suppose

$$
c_1(u + v) + c_2(u - v) = 0.
$$

Then

$$
(c_1 + c_2)u + (c_1 - c_2)v = 0.
$$

Since u and v are linearly independent, we obtain

$$
c_1 + c_2 = 0
$$

$$
c_1 - c_2 = 0.
$$

Solving the last system of linear equations, we obtain $c_1 = c_2 = 0$.

Remark: vectors u, v are linearly independent if and only if $u + cv$, v are linearly independent for every c (the same argument as in 2). Similarly, u, v, w are linearly independent if and only if $u + cv, v, w$ are linearly independent for every c; and so on. \Box

Problem 8. Are the following transformations linear?

1)
$$
T\begin{bmatrix} x \\ y \end{bmatrix} = x \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 7 \begin{bmatrix} x - y \\ 3 \end{bmatrix},
$$

\n2) $K\begin{bmatrix} x \\ y \end{bmatrix} = x \begin{bmatrix} 1 \\ 2 + y \end{bmatrix} + \begin{bmatrix} y \\ x \end{bmatrix},$
\n3) $S\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ |x| \end{bmatrix}.$

Answer: 1) no, 2) no, 3) no.

Solution. 1)
$$
T\begin{bmatrix}0\\0\end{bmatrix} = \begin{bmatrix}0\\21\end{bmatrix} \neq \begin{bmatrix}0\\0\end{bmatrix}
$$
, hence *T* is not a linear transformation. (If *T* was a

linear transformation, then we would have $T\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\overline{0}$ $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\overline{0}$.) \Box

2)
$$
K\begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 10 \end{bmatrix} \neq 2K\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \end{bmatrix}.
$$

\n3) $S\begin{bmatrix} 1 \\ 0 \end{bmatrix} + S\begin{bmatrix} -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$ (If S was a linear transformation, then we would have $S\begin{bmatrix} 1 \\ 0 \end{bmatrix} + S\begin{bmatrix} -1 \\ 0 \end{bmatrix} = S\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$

An example of a linear transformation:

$$
N\begin{bmatrix} x \\ y \end{bmatrix} = x \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 7 \begin{bmatrix} x - y \\ y \end{bmatrix}
$$

$$
N\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 8 & -7 \\ 2 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}
$$

(the standard form).

because

Problem 9. Let F be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 such that F reflects a vector in the x -axis. Compute the standard matrix of F .

Solution. Reflecting a vector in the x-axis means negating the y and z -coordinates. So

$$
F\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ -y \\ -z \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}.
$$

 \Box

 \Box

Problem 10. Compute the determinant of

$$
A = \begin{bmatrix} 1 & -1 & 0 & 3 \\ 2 & 5 & 2 & 6 \\ 0 & 1 & 0 & 0 \\ 1 & 4 & 2 & 1 \end{bmatrix}.
$$

Answer: 4.

Solution 1. Expanding along the second row, and then along the first row we obtain:

$$
det(A) = \begin{vmatrix} 1 & -1 & 0 & 3 \\ 2 & 5 & 2 & 6 \\ 0 & 1 & 0 & 0 \\ 1 & 4 & 2 & 1 \end{vmatrix} = -1 \begin{vmatrix} 1 & 0 & 3 \\ 2 & 2 & 6 \\ 1 & 2 & 1 \end{vmatrix} = -1 \begin{vmatrix} 2 & 6 \\ 2 & 1 \end{vmatrix} - 3 \begin{vmatrix} 2 & 2 \\ 1 & 2 \end{vmatrix} =
$$

-(2-12) - 3(4-2) = 10 - 6 = 4

8

Solution 2. Using the elimination method:

$$
det(A) = \begin{vmatrix} 1 & -1 & 0 & 3 \\ 2 & 5 & 2 & 6 \\ 0 & 1 & 0 & 0 \\ 1 & 4 & 2 & 1 \end{vmatrix} \xrightarrow{R_2 - 2R_1} \begin{vmatrix} 1 & -1 & 0 & 3 \\ 0 & 7 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 5 & 2 & -2 \end{vmatrix} \xrightarrow{R_2 - 7R_3}
$$

\n
$$
det(A) = \begin{vmatrix} 1 & -1 & 0 & 3 \\ 2 & 5 & 2 & 6 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 \end{vmatrix} \xrightarrow{R_4 - R_1} \begin{vmatrix} 1 & -1 & 0 & 3 \\ 0 & 7 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 5 & 2 & -2 \end{vmatrix} \xrightarrow{R_4 - 5R_3}
$$

\n
$$
det(A) = \begin{vmatrix} 1 & 0 & 0 & 3 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{vmatrix} \xrightarrow{R_2 + 2R_1} \begin{vmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{vmatrix} \xrightarrow{R_1 + 3R_4} \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{vmatrix} = 4.
$$

Problem 11. Is the matrix

$$
A = \begin{bmatrix} 2 & 3 & 0 \\ 1 & -2 & -1 \\ 2 & 0 & -1 \end{bmatrix}
$$

 \Box

invertible? If yes, compute the inverse of A.

Solution. We have:

$$
\begin{bmatrix} 2 & 3 & 0 & 1 & 0 & 0 \ 1 & -2 & -1 & 0 & 1 & 0 \ 2 & 0 & -1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} 1 & -2 & -1 & 0 & 1 & 0 \ 2 & 3 & 0 & 1 & 0 & 0 \ 2 & 0 & -1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_3 - 2R_1}
$$

\n
$$
\begin{bmatrix} 1 & -2 & -1 & 0 & 1 & 0 \ 0 & 7 & 2 & 1 & -2 & 0 \ 0 & 4 & 1 & 0 & -2 & 1 \end{bmatrix} \xrightarrow{R_2 - 2R_3} \begin{bmatrix} 1 & -2 & -1 & 0 & 1 & 0 \ 0 & -1 & 0 & 1 & 2 & -2 \ 0 & 4 & 1 & 0 & -2 & 1 \end{bmatrix} \xrightarrow{-R_2}
$$

\n
$$
\begin{bmatrix} 1 & -2 & -1 & 0 & 1 & 0 \ 0 & 1 & 0 & -1 & -2 & 2 \ 0 & 4 & 1 & 0 & -2 & 1 \end{bmatrix} \xrightarrow{R_1 + 2R_2} \begin{bmatrix} 1 & 0 & -1 & -2 & -3 & 4 \ 0 & 1 & 0 & -1 & -2 & 2 \ 0 & 0 & 1 & 4 & 6 & -7 \end{bmatrix} \xrightarrow{R_1 + R_3} \begin{bmatrix} 1 & 0 & 0 & 2 & 3 & -3 \ 0 & 1 & 0 & -1 & -2 & 2 \ 0 & 0 & 1 & 4 & 6 & -7 \end{bmatrix} \xrightarrow{R_1 + R_3}
$$

\n
$$
\begin{bmatrix} 1 & 0 & 0 & 2 & 3 & -3 \ 0 & 1 & 0 & -1 & -2 & 2 \ 0 & 0 & 1 & 4 & 6 & -7 \end{bmatrix}.
$$

Therefore, $A^{-1} =$ \lceil $\overline{1}$ 2 3 −3 -1 -2 2 4 6 −7 1 $\vert \cdot$ The fact that \overrightarrow{A} is invertible also follows from $\det(A) = 1$.

Problem 12. Find all a such that the matrix

$$
A = \begin{bmatrix} a & 0 & 0 \\ 1 & a & 0 \\ 0 & 1 & a \end{bmatrix}
$$

is invertible.

Solution 1. Note that $\det(A) = a^3$. Therefore, A is invertible if and only if $a \neq 0$. \Box

Solution 2. If $a = 0$, then A is clearly not invertible. If $a \neq 0$, then

$$
\begin{bmatrix} a & 0 & 0 & 1 & 0 & 0 \ 1 & a & 0 & 0 & 1 & 0 \ 0 & 1 & a & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2/a} \begin{bmatrix} 1 & 0 & 0 & 1/a & 0 & 0 \ 1/a & 1 & 0 & 0 & 1/a & 0 \ 0 & 1/a & 1 & 0 & 0 & 1/a \end{bmatrix} \xrightarrow{R_2 - aR_1} \begin{bmatrix} 1 & 0 & 0 & 1/a & 0 & 0 \ 0 & 1 & a & 0 & 0 & 1/a \ 0 & 1 & 0 & -1/a^2 & 1/a & 0 \ 0 & 1/a & 1 & 0 & 0 & 1/a \end{bmatrix} \xrightarrow{R_3 - aR_2} \begin{bmatrix} 1 & 0 & 0 & 1/a & 0 & 0 \ 0 & 1 & 0 & -1/a^2 & 1/a & 0 \ 0 & 0 & 1 & 1/a^3 & -1/a^2 & 1/a \end{bmatrix},
$$

and $A^{-1} = \begin{bmatrix} 1/a & 0 & 0 & 0 \ -1/a^2 & 1/a & 0 & 0 \ 1/a^3 & -1/a^2 & 1/a & 0 \end{bmatrix}.$

 \Box