MAT 402

Homework V

Due April 23rd. 2019. Show all your work

(1) Let f be the polynomial $f(z)=z^{3}+3 z^{2}+4 z+1$. Show that f has a parabolic fixed point at -1 . Find a conjugation that takes the fixed point to the origin, and hence show that f has two attracting petals.
(2) Let f be the polynomial $f(z)=-z+z^{5}$. Show that f has a parabolic fixed point at the origin, and that f^{2} has a multiple fixed point at the origin. By calculating $f^{\circ 2}$, show that f has 4 attracting petals.
(3) Our goal in this exercise is to construct a transcendental entire function with a wandering domain. Consider first the transcendental entire function $g(z)=z-\lambda \sin (2 \pi z)$, where $\lambda>0$ is small. Show that if λ is sufficiently small, then g has attracting fixed points at the points $z_{n}=n$ for $n \in \mathbb{Z}$.

Now, for each $n \in \mathbb{Z}$, let U_{n} be the Fatou component containing z_{n}. (Explain why these must all be disjoint.) Let $f(z)=g(z)+1$. Show that, for each $n \in \mathbb{Z}, U_{n}$ is a Fatou component for f with the property that $f\left(U_{n}\right)=U_{n+1}$. Deduce that f has wandering Fatou components.

