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This semester I hope to cover the following topics:

• Review of conformal mappings

• Extremal length and conformal modulus, log capacity, harmonic measure

• Definitions of quasiconformal mappings; geometric and analytic

• Basic properties

• Quasisymmetric maps and boundary extension

• The measurable Riemann mapping theorem

• Removable sets

• Conformal welding

• David maps

• Astala’s theorems on area and dimension distortion

• Quasiconformal maps on metric spaces

• Conformal dimension



Logarithmic Capacity



Measures and capacities both measure the size of sets. Measures are countably

additive; capacities need not be.

Many capacities are associated to a function that blows up at the origin, such

as log 1/|z| or |z|−α.

Many natural problems in analysis have answers given in terms of capacities. For

example, a Brownian motion in the plane hits a set E with positive probability

iff the set has positive log capacity.



Hausdorff content: given as set E, let {Dj} = {D(xj, rj)}, be a covering

of E by disks and define the α-Hausdorff content

Hα
∞(E) inf

∑
j

rαj ,

where the infimum is over all coverings of E.

Power rα may be replaced by any increasing function φ(r).



Hausdorff measure: content is not a measure, but can be made into a

measure by requiring covering disks to be small. We define

Hα(E) = lim
δ↘0

inf
∑
j

rαj ,

where the infimum is over all coverings with sup rj ≤ δ.

When α = 1 this gives (a multiple of) Lebesgue measure on R.

When α = 2 this gives (a multiple of) Lebesgue measure on R2.



Hausdorff dimension: dim(E) = inf{α : Hα(E) = 0}.

Standard Cantor set has dimension log 2/ log 3.

Von Koch Snowflake has dimension log 4/ log 3.

There are other dimensions: Minkowski, packing, Assouad,...



Lemma 3.1 (Frostman’s Lemma). Let ϕ be a gauge function. Let K ⊂ Rd

be a compact set with positive Hausdorff content, Hϕ
∞(K) > 0. Then there

is a positive Borel measure µ on K satisfying

(3.6) µ(B) ≤ Cdϕ(|B|),
for all balls B and

µ(K) ≥ Hϕ
∞(K).

Here Cd is a positive constant depending only on d.

For proof, see Chapter 3 of text by Bishop and Peres.



Let X be a Polish topological space (compatible complete, separable metric).

If Y is Polish, then a subset E ⊂ Y is called analytic if there exists a Polish

space X and a continuous map f : X → Y such that E = f (X).

Analytic sets are also called Suslin sets in honor of Mikhail Yakovlevich Suslin.

The analytic subsets of Y are often denoted by A(Y ) or Σ1
1(Y ).

In any uncountable Polish space there exist analytic sets which are not Borel sets.

For example see “Conformal removability is hard” by C. Bishop, or textbook by

Bruckner, Bruckner and Thomson.



Lemma 3.2. If X is Polish, then every Borel set E ⊂ X is analytic.

For a proof see Appendix B of text by Bishop and Peres.

Lebesgue famously (falsely) claimed continuous images of Borel sets are Borel.

Every analytic set is Lebesgue measurable.



A set function Ψ defined on all subsets of X is called a Choquet capacity if

(a) Ψ(E1) ≤ Ψ(E2) whenever E1 ⊂ E2;

(b) Ψ(E) = inf
O⊃Eopen

Ψ(O) for all E ⊂ X ;

(c) for all increasing sequences {En : n ∈ N} of sets in X ,

Ψ
( ∞⋃
n=1

En

)
= lim

n→∞
Ψ(En).

Given Ψ we can define a set function Ψ∗ on all sets E ⊂ X by

Ψ∗(E) = sup
F⊂Ecompact

Ψ(F ).

A set E is called capacitable if Ψ(E) = Ψ∗(E).



Theorem 3.3 (Choquet Capacitability Theorem). If Ψ is a Choquet capacity

on a compact metric space X, then all analytic subsets of X are capacitable.

For proof see Appendix B of text by Bishop and Peres.

later we will prove compact sets are capacitable.



Suppose µ ≥ 0 is a finite Borel measure on C. Define its potential function as

Uµ(z) =

∫
log

2

|z − w|
dµ(w), z ∈ C.

and its energy integral by

I(µ) =

∫∫
log

2

|z − w|
dµ(z)dµ(w) =

∫
Uµ(z)dµ(z).

We put the “2” in the numerator so that the integrand is non-negative when

z, w ∈ T, however, this is a non-standard usage.

Measures energy needed to assemble particles with repelling force log.



Suppose E is Borel and µ is a positive measure that has its closed support inside

E. We say µ is admissible for E if Uµ ≤ 1 on E and we define the logarithmic

capacity of E as

cap(E) = sup{‖µ‖ : µ is admissible for E}
and we write µ ∈ A(E).

Alternatively, the capacity of E is the infimum of supUµ over all probability

measures supported on E.

We define the outer capacity (or exterior capacity) as

cap∗(E) = inf{cap(V ) : E ⊂ V, V open}.

We say that a set E is capacitable if cap(E) = cap∗(E).



The logarithmic kernel can be replaced by other functions, e.g., |z − w|−α, and

there is a different capacity associated to each one.

To be precise, we should denote logarithmic capacity as caplog or logcap, but

to simplify notation we simply use “cap” and will often refer to logarithmic

capacity as just “capacity”. Since we do not use any other capacities in these

notes, this abuse should not cause confusion.



WARNING: The logarithmic capacity that we have defined is NOT the same

as is used in other texts such as Garnett and Marshall’s book but it is related

to what they call the Robin’s constant of E, denoted γ(E).

The exact relationship is γ(E) = 1
cap(E) − log 2. Garnett and Marshall define

the logarithmic capacity of E as exp(−γ(E)).

The reason for doing this is that the logarithmic kernel log 1
|z−w| takes both

positive and negative values in the plane, so the potential functions for general

measures and the Robin’s constant for general sets need not be non-negative.

Exponentiating takes care of this. Since we are only interested in computing the

capacity of subsets of the circle, taking the extra “2” in the logarithm gave us a

non-negative kernel on the unit circle, and we defined a corresponding capacity

in the usual way.



Sets of zero logarithmic capacity must be very small, indeed the following com-

putations will show that they must have dimension zero.

Corollary 3.4. If E has positive Hausdorff dimension, then it has positive

logarithmic capacity.

Proof. By Frostman’s Lemma, if E has positive dimension then there is a mea-

sure µ supported on E such that µ(D(x, r)) ≤ Crα for all x and some C <∞
and α > 0.



We claim µ has bounded potential. Break the integral over the plane into dyadic

annuli An = {2−n−1 < |z| ≤ 2−n}.

Uµ(z) =

∫
R2

log
dµ(w)

|z − w|

=
∑
n

∫
An

log
dµ(w)

|z − w|

≤
∑
n

2−nα log 2−(n+1)α

= log 2
∑
n

2−nα(n + 1)α

= Cα.

Since Uµ is bounded above by Cα, the log capacity of E is bounded below by

‖µ‖/Cα = Hα
∞(E)/Cα > 0. �



Lemma 3.5. Uµ is lower semi-continuous, i.e.,

lim inf
z→z0

Uµ(z) ≥ Uµ(z0).

Proof. Fatou’s lemma. �



Recall that µn → µ weak-* if
∫
fdµn →

∫
fdµ for every continuous function

f of compact support.

Lemma 3.6. If {µn} are positive measures and µn → µ weak*, then

lim infnUµn(z) ≥ Uµ(z).



Proof. If we replace ϕ = log 2
|z−w| by the continuous kernel ϕr = max(r, ϕ) in

the definition of U to get U r, then weak convergence implies

lim
n
U r
µn

(z)→ U r
µ(z).

So for any ε > 0 we can choose N so that n > N implies

U r
µn

(z) ≥ U r
µ(z)− ε.

As r → ∞, we have U r
µn
↗ Uµn, by the monotone convergence theorem (since

the truncated kernels get larger). So for r large enough and n > N we have

Uµn(z) ≥ U r
µn

(z) ≥ Uµn(z)− ε ≥ Uµ(z)− 2ε.

Taking ε to zero proves the result. �



Lemma 3.7. If µn → µ weak-∗, then lim infn I(µn) ≥ I(µ).

Corollary 3.8. A probability measure minimizing the energy integral exists.

Proof. The proof is almost the same as for the previous lemma, except that we

have to know that if {µn} converges weak-∗, then so does the product measure

µn × µn.

However, weak convergence of {µn} implies convergence of integrals of the form

∫∫
f (x)g(y)dµn(x)dµn(y).



The Stone-Weierstrass theorem implies that the finite sums of such product

functions are dense in all continuous function on the product space.

Since weak-∗ convergent sequences are bounded, the product measures µn×µn
also have uniformly bounded masses, and hence convergence on a dense set of

continuous functions of compact support implies convergence on all continuous

functions of compact support. �



Lemma 3.9. Compact sets are capacitable.

Proof. Since cap(E) ≤ cap∗(E) is obvious, we only have to prove the converse.

Set Un = {z : dist(z, E) < 1/n} and choose a measure µn supported in Un with

‖µn‖ ≥ cap(Un)− 1/n. Let µ be a weak accumulation point of {µn} and note

Uµ(z) =

∫
log

2

|z − w|
dµ(w) ≤

∫
log

2

|z − w|
dµn(w) ≤ 1

so µ is admissible in the definition of cap(E). Thus

cap(E) ≥ lim sup ‖µn‖ = lim cap(Un) = lim cap(Un) = cap∗(E) �.

Borel sets and even analytic sets are also capacitable.



It is clear from the definitions that logarithmic capacity is monotone

E ⊂ F ⇒ cap(E) ≤ cap(F ).(3.7)

and satisfies the regularity condition

cap(E) = sup{cap(K) : K ⊂ E,K compact}.(3.8)



Lemma 3.10 (Sub-additive). For any sets {En},
cap(∪En) ≤

∑
cap(En).(3.9)

Proof. We can write any µ =
∑
µn as a sum of mutually singular measures so

that µn gives full mass to En.

Restrict each µn to a compact subset Kn of En so that µn(Kn) ≥ (1− ε)µ(En).

These restrictions are admissible for each En and hence∑
cap(En) ≥

∑
µn(Kn) ≥ (1− ε)

∑
µn(En) = (1− ε)‖µ‖.

Taking ε→ 0 proves the result. �



Corollary 3.11. A countable union of zero capacity sets has zero capacity.

Corollary 3.12. Outer capacity is also sub-additive.

Proof. Given a sequence of sets {En}, choose open sets Vn ⊃ En so that

cap(Vn) ≤ cap∗(En) + ε2−n.

By the sub-additivity of capacity

cap∗(∪En) ≤ cap(∪Vn) ≤
∑

cap(Vn) ≤ ε +
∑

cap∗(En).

Taking ε→ 0 proves the result. �



Lemma 3.13. If µ has bounded potential, then cap(E) = 0⇒ µ(E) = 0.

Proof. If µ(E) > 0 then µ restricted to E also has bounded potential function

and proves that E has positive capacity. �



Lemma 3.14. If E is compact has positive capacity, then there exists an

admissible µ that attains the maximum mass in the definition of capacity

and Uµ(z) = 1 everywhere on E, except possible a set of capacity zero.



Proof. Let µn be a sequence of probability measures on E so that ‖µn‖ → R

where R = inf I(µ) over all probability measures supported on E.

This is finite since E has positive capacity.

By the Banach-Alaoglu theorem there is a weak-∗ convergent subsequence with

limit µ, and by Lemma 3.7,

I(µ) ≤ lim inf
n

I(µn) = R.



We claim that Uµ ≥ R except possibly on a set of zero capacity.

Otherwise let T ⊂ E be a set of positive capacity on which Uµ < 1− ε and let

σ be a non-zero, positive measure on T which potential bounded by 1. Define

µt = (1− t)µ + tσ.

This is a measure on E so that

I(µt) ≤
∫

log
1

|z − w|
((1− t)dµ + tdσ)((1− t)dµ + tdσ)

≤ (1− t)2I(µ) + 2t

∫
Uµdσ + t2I(σ)

≤ I(µ)− 2tI(µ) + 2t

∫
Uµdσ + O(t2)

≤ I(µ)− 2tI(µ) + 2t(1− ε)‖σ‖ + O(t2)

< I(µ),

if t > 0 is small enough. This contradicts minimality of µ, proving the claim.



Next we show that Uµ ≤ 1 everywhere on the closed support of µ.

By previous step, Uµ ≥ 1 except on capacity zero (hence µ-measure zero).

If there is a point z in the support of µ such that Uµ(z) > 1, then by lower

semi-continuity of potentials, Uµ is > 1 + ε on some neighborhood of z and this

neighborhood has positive µ measure (since z is in the support of µ) and thus

I(µ) =
∫
Uµdµ > ‖µ‖, a contradiction.

Finally, let σ = µ/R. Then the potential function of σ is bounded by 1 every-

where, so σ is admissible for E and hence ‖σ‖ ≤ cap(E).



If ν is any other admissible measure for E, then ν({z ∈ E : σ(z) < 1}) = 0 by

Lemma 3.13. Hence

‖ν‖ =

∫
1dν =

∫
Uσdν =

∫
Uνdσ ≤

∫
1dσ = ‖σ‖,

and thus ‖σ‖ ≥ cap(E).

Thus cap(E) = ‖σ‖ = ‖µ/R‖ = 1/R. Hence R = 1/cap(E) is the Robin’s

constant of E. Since ‖σ‖ ≥ I(σ) = I(µ)/R2 = 1/R �



Pfluger’s Theorem



Pfluger’s theorem connects logarithmic capacity and extremal length.

Suppose K ⊂ D is a compact connected set with smooth boundary with 0 in

the interior of K. Let K∗ be the reflection of K across T.

For any E ⊂ T that is a finite union of closed intervals, let Ω be the connected

component of C \ (E ∪K ∪K∗) that has E on its boundary.



Let h(z) be the harmonic function in Ω with boundary values 0 on K and K∗

and boundary value 1 on E.

All boundary points are regular for the Dirichlet problem (since all boundary

components are non-degenerate continua). Hence h extends continuously to the

boundary with the correct boundary values.

h is symmetric with respect to T, so its normal derivative on T \ E is 0.

Let D(h) =
∫
D\K |∇h|

2dxdy.

Let ΓE denote the paths in D \K that connect K to E.



Lemma 2.15. With notation as above, M(ΓE) = D(h).

Proof. Clearly |∇h| is an admissible metric for ΓE, so

M(ΓE) ≤ D(h) ≡
∫
D\K
|∇h|2dxdy.

Thus we need only show the other direction.



Green’s theorem states that

∫∫
Ω

u∆v − v∆udxdy =

∫
∂Ω

u
∂v

∂n
− v∂u

∂n
ds.(2.10)

Using this and the fact that h = 1 on E, we have

∫
∂K

∂h

∂n
ds = −

∫
T

∂h

∂n
ds = −

∫
E

∂h

∂n
ds = −

∫
E

h
∂h

∂n
ds.



Continuing,

∫
∂K

∂h

∂n
ds = −1

2

∫
E

∂(h2)

∂n
ds

=
1

2

∫
T\E

∂(h2)

∂n
ds +

1

2

∫
∂K

∂(h2)

∂n
ds +

1

2

∫
D\K

∆(h2)dxdy.

The first term is zero because h has normal derivative zero on T \E, and hence

the same is true for h2.

The second term is zero because h is zero on K and so ∂
∂nh

2 = 2h∂h∂n = 0.



To evaluate the third term, we use the identity

∆(h2) = 2hx · hx + 2h · hxx + 2hy · hy + 2h · hyy
= 2h∆h + 2∇h · ∇h
= 2h · 0 + 2|∇h|2

= 2|∇h|2,
to deduce

1

2

∫
D\K

∆(h2)dxdy =

∫
D\K
|∇h|2dxdy.

Therefore, ∫
∂K

∂h

∂n
ds =

∫
D\K
|∇h|2dxdy.



Thus the tangential derivative of h’s harmonic conjugate has integral D(h)

around ∂K and therefore 2πh/D(h) is the real part of a holomorphic function

g on D \K.

Then f = exp(g) maps D \K into the annulus

A = {z : 1 < |z| < exp(2π/D(h))}

with the components ofE mapping to arcs of the outer circle and the components

of T \ E mapping to radial slits.

The path family ΓE maps to the path family connecting the inner and outer

circles without hitting the radial slits, and our earlier computations show the

modulus of this family is D(h). �



Theorem 2.16 (Pfluger’s theorem). If K ⊂ D is a compact connected set

with smooth boundary with 0 in the interior of K. Then there are constants

C1, C2 so that following holds. For any E ⊂ T that is a finite union of closed

intervals,
1

cap(E)
+ C1 ≤ πλ(ΓE) ≤ 1

cap(E)
+ C2,

where ΓE is the path family connecting K to E. The constants C1, C2 can

be chosen to depend only on 0 < r < R < 1 if ∂K ⊂ {r ≤ |z| ≤ R}.

Later we will extend this to compact sets E ⊂ T.



Proof. Using Lemma 2.15, we only have to relate D(h) to the logarithmic ca-

pacity of E.

Let µ be the equilibrium probability measure for E. We know in general that

Uµ = γ where γ = 1/cap(E) almost everywhere on E (since sets of zero capacity

have zero measure) and is continuous off E, but since Uµ is harmonic in D and

equals the Poisson integral of its boundary values, we can deduce Uµ = γ

everywhere on E.



Let v(z) = 1
2(Uµ(z) + Uµ(1/z). Then since ∂K has positive distance from 0,

there are constants C1, C2 so that

v + C1 ≤ 0, v + C2 ≥ 0,

on ∂K. Note that C1 ≥ −γ by the maximum principle and C2 ≥ 0 trivially.

Moreover, since µ is a probability measure supported on the unit circle, given

0 < r < R < 1, Uµ is uniformly bounded on both the annulus {r ≤ |z| ≤ R}
and its reflection across the unit circle, since these both have bounded, but

positive distance from the unit circle.

This proves that C1, C2 can be chosen to depend on only these numbers, as

claimed in the final statement of the theorem.



The following inequalities are easy to check on K, K∗ and E,

v(z) + C1

γ + C1
≤ h(z) ≤ v(z) + C2

γ + C2
.

and hence hold on Ω by the maximum principle.

Since we have equality on E, we also get

∂

∂n

(
v(z) + C1

γ + C1

)
≤ ∂h

∂n
≤ ∂

∂n

(
v(z) + C2

γ + C2

)
for z ∈ E.



When we integrate over E, the middle term is −D(h) (we computed this above)

and by Green’s theorem

−
∫
E

∂

∂n

v(z) + C1

γ + C1
ds =

1

γ + C1

∫
D

∆(v)dxdy =
π

γ + C1

because v is harmonic except for a 1
2 log 1

|z| pole at the origin.



A similar computation holds for the other term and hence
π

γ + C1
≤ D(h) = M(ΓE) ≤ π

γ + C2
,

since D(h) =
∫
E
∂h
∂nds.

Hence

γ + C1 ≤ πλ(ΓE) ≤ γ + C2.

This completes the proof of Pfluger’s theorem for finite unions of intervals. �



To extend Pfluger’s theorem to all compact subsets of T. First we need a

continuity property of extremal length.

Recall that an extended real-valued function is lower semi-continuous if all sets

of the form {f > α} are open.

Lemma 2.17. Suppose E ∩ T is compact, K ⊂ D is compact, connected

and contains the origin, and ΓE is the path family connecting K and E

in D \ K. Fix an admissible metric ρ for ΓE and for each z ∈ T, define

f (z) = inf
∫
γ ρds where the infimum is over all paths in ΓE that connect K

to z. Then f is lower semi-continuous.



Proof. Suppose z0 ∈ T and use Cauchy-Schwarz to get

∫ 2−n

2−n−1

(∫
|z−z0|=r

ρds

)2

dr ≤
∫ 2−n

2−n−1

(∫
|z−z0|=r

ρ2ds

)
dr

(∫
|z−z0|=r

1ds

)
dr

≤
∫ 2−n

2−n−1
r

∫ 2π

0

ρ2rdθdr

≤ π2−n
∫

2−n−1<|z−z0|<2−n
ρ2dxdy

= o(2−n).

Thus there are circular cross-cuts {γn} ⊂ {z : 2−n−1 < |z − z0| < 2−n} of D
centered at z0 and with ρ-length εn tending to 0. By taking a subsequence we

may assume
∑
εn <∞.



Now choose zn → z0, with zn separated from 0 by γn, and so that

f (zn)→ α ≡ lim inf
z→z0

f (z).

We claim there is a path from K to z0 whose ρ-length is ≤ α + ε.

Let cn be the infimum of ρ-lengths of paths connecting γn and γn+1.

By considering a path connecting K to zn, we see that
∑n

1 ck ≤ f (zn), for all

n and hence
∑∞

1 cn ≤ α.



Next choose ε > 0 and n so that we can connect K to zn (and hence to γn) by

a path of ρ-length less than α + ε.

We can then connect γn to z0 by a infinite concatenation of arcs of γk, k > n

and paths connecting γk to γk+1 that have total length
∑∞

n (εn + cn) = o(1).

Thus K is connected to z0 by a path of ρ-length as close to α as we wish. �



Corollary 2.17. Suppose E ⊂ T is compact and ε > 0. Then there is a

finite collection of closed intervals F so that E ⊂ F and

λ(ΓE) ≤ λ(ΓF ) + ε,

where the path families are defined as above.



Proof. Choose an admissible ρ so that
∫
ρ2dxdy ≤M(ΓE) + ε. Set

r = (
M(ΓE) + ε

M(ΓE) + 2ε
)1/2 < 1.

By Lemma 2.17, V = {z ∈ T : f (z) > r} is open, and therefore we can choose

a set F of the desired form inside V . Then ρ/r is admissible for ΓF , so

M(ΓF ) ≤
∫

(
ρ

r
)2dxdy =

M(ΓE) + 2ε

M(ΓE) + ε

∫
ρ2dxdy ≤M(ΓE) + 2ε.

Thus an inequality in the opposite direction holds for extremal length. �



Corollary 2.18. Pfluger’s theorem holds for all compact sets in T.

Proof. Suppose E is compact. Using Corollary 2.17 and Lemma 3.9 we can

choose nested sets En ↘ E that are finite unions of closed intervals and satisfy

λ(FEn)→ λ(FE),

and

cap(En)→ cap(E).

Thus the inequalities in Pfluger’s theorem extend to E. �



Gehring, Hayman and Carathéodory



The boundary of a simply connected domain need not be a Jordan curve, nor

even locally connected, and such examples arise naturally in complex dynamics

as the Fatou components of various polynomials and entire functions.

If the boundary is locally connected, then the conformal map from the disk

extends continuously to the boundary.

Even for general simply connected domains, the boundary values exist in some

sense at most points. We will make this precise.



Lemma 2.19. Suppose Q is a quadrilateral with opposite pairs of sides

E,F and C,D. Assume

(1) E and F can be connected in Q by a curve σ of diameter ≤ ε,

(2) any curve connecting C and D in Q has diameter at least 1.

Then the modulus of the path family connecting E and F in Q is larger

than M(ε) where M(ε)→∞ as ε→ 0.

E

F

C

D



Proof. Define a metric on Q by ρ(z) = 1
2|z − a|

−1/ log(1/2ε) for ε < |z − a| <
1/2. Any curve γ connecting C and D must cross σ and since γ has diameter

≥ 1 it must leave the annulus where ρ is non-zero.

This shows that the modulus of the path family in Q separating E and F is

small, hence the modulus of the family connecting them is large. �

E

F

C

D



The following fundamental fact says that hyperbolic geodesics are almost the

same as Euclidean geodesics.

Theorem 2.20 (Gehring-Hayman inequality). There is an absolute constant

C < ∞ to that the following holds. Suppose Ω ⊂ C is hyperbolic and

simply connected. Given two points in Ω, let γ be the hyperbolic geodesic

connecting these two points and let σ be any other curve in Ω connecting

them. Then len(γ) ≤ Clen(σ).



Proof. Let f : D → Ω be conformal, normalized so that γ is the image of

I = [0, r] ⊂ D for some 0 < r < 1. Without loss of generality we may assume

r = rN1− 2−N for some N . Let

Qn = {z ∈ D : 2−n−1 < |z − 1| < 2−n},
γn = {z ∈ D : |z − 1| = 2−n},

zn = γn ∩ [0, 1).

Let Q′n ⊂ Qn be the sub-quadrilateral of points with | arg(1− z)| < π/6. Each

Q′n has bounded hyperbolic diameter and, by Koebe’s theorem, its image is

bounded by four arcs of diameter ' dn and opposite sides are ' dn apart.



In particular, this means that any curve in f (Qn) separating f (γn) and f (γn+1)

must cross f (Q′n) and hence has diameter & dn. Since Qn has bounded mod-

ulus, so does f (Qn) and so Lemma 2.19 says that the shortest curve in f (Qn)

connecting γn and γn+1 has length `n ' dn.

Thus any curve γ in Q connecting γn and γn+1 has length at least `n, and so

`(γ) = O(
∑

dn) = O(
∑

`n) ≤ O(`(σ)). �



If f : D→ Ω is conformal define

a(r) = area(Ω \ f (r · D).

If Ω has finite area (e.g., if it is bounded), then clearly a(r)↘ 0 as r ↗ 1.

Lemma 2.21. There is a C < ∞ so that the following holds. Suppose

f : D → Ω and 1
2 ≤ r < 1. Let E(δ, r) = {x ∈ T : |f (sx) − f (rx)| ≥

δ for some r < s < 1}. Then the extremal length of the path family P
connecting D(0, r) to E is bounded below by δ2/Ca(r).



Proof. Let z = f (sx) and suppose w ∈ f (D(0, r)). By the Gehring-Hayman

estimate, the length of any curve from w to z is at least 1/C times the length

of the hyperbolic geodesic γ between them.

But this geodesic has a segment γ0 that lies within a uniformly bounded distance

of the geodesic γ1 from f (rx) to z. By the Koebe theorem γ0 and γ1 have

comparable Euclidean lengths, and clearly the length of γ1 is at least δ.

Thus the length of any path from f (D(0, r)) to f (sx) is at least δ/C. Now let

ρ = C/δ in Ω \ f (D(0, r)) and 0 elsewhere. Then ρ is admissible for f (P) and∫∫
ρ2dxdy is bounded by C2a(r)/δ2.

Thus λ(P) ≥ δ2

C2a(r)
. �



Lemma 2.22. Suppose f : D→ Ω is conformal, and for R ≥ 1,

ER = {x ∈ T : |f (x)− f (0)| ≥ R dist(f (0), ∂Ω)}.
Then ER has capacity O(1/ logR) if R is large enough.



Proof. Assume f (0) = 0 and dist(0, ∂Ω) = 1 and let ρ(z) = |z|−1/ logR for

z ∈ Ω ∩ {1 < |z| < R}. Then ρ is admissible for the path family Γ connecting

D(0, 1/2) to ∂Ω \D(0, R) and
∫∫

ρ2dxdy ≤ 2π/ logR.

By definitionM(Γ) ≤ 2π/ logR and λ(Γ) ≥ (logR)/2π. By the Koebe theorem

f−1(D(0, 1/2)) is contained in a compact subset of D, independent of Ω.

By Pfluger’s theorem (Theorem 2.16),

cap(Er) ≤
2

−2C2 + logR
.

�



Corollary 2.23. If f : D→ Ω is conformal, then f has radial limits except

on a set of zero capacity (and hence has finite radial limits a.e. on T).

Proof. Let Er,δ ⊂ T be the set of x ∈ T so that diam(f (rx, x)) > δ, and let

Eδ = ∩0<r<1Er,δ.

If f does not have a radial limit at x ∈ T, then x ∈ Eδ for some δ > 0, and

this has zero capacity by Lemma 2.21.

Taking the union over a sequence of δ’s tending to zero proves the result. The

set where f has a radial limit∞ has zero capacity by Lemma 2.22, so we deduce

f has finite radial limits except on zero capacity. �



Combining the last two results proves

Corollary 2.24. Given ε > 0 there is a C <∞ so that the following holds.

If f : D → Ω is conformal, z ∈ D and I ⊂ T is an arc that satisfies

|I| ≥ ε(1− |z|) and dist(z, I) ≤ 1
ε(1− |z|), then I contains a point w where

f has a radial limit and |f (w)− f (z)| ≤ Cdist(f (z), ∂Ω).



Theorem 2.25 (Carathéodory). Suppose that f : D→ Ω is conformal, and

that ∂Ω is compact and locally path connected (for every ε > 0 there is a

δ > 0 so that any two points of ∂Ω that are within distance δ of each other

can be connected by a path in ∂Ω of diameter at most ε). Then f extends

continuously to the boundary of D.

Lasse Rempe has pointed out this is actually due to Carathéodory’s student

Marie Torhorst. See Rempe’s article On prime ends and local connectivity.

https://arxiv.org/pdf/math/0309022


Proof. Suppose η > 0 is small. Since ∂Ω is compact Ω \ f ({|z| < 1 − 1
n}) has

finite area that tends to zero as n ↗ ∞. Thus if n is sufficiently large, this

region contains no disk of radius η.

Choose {zj} to be n equally spaced points on the unit circle and using Lemma

2.24 choose interlaced points {wj} so that f has a radial limit f (wj) at wj and

this limit satisfies |f (wj)− f (rwj)| ≤ Cη where r = 1− 1/n. Then

|f (wj)− f (wj+1)| ≤ |f (wj)− f (rwj)|
+|f (rwj)− f (rwj+1)|

+|f (rwj+1)− f (wj+1)|
≤ Cδ.

The center term is bounded by Koebe’s theorem and the others by definition.



Fix ε > 0 and choose δ > 0 as in the definition of locally connected.

Thus if η is so small that Cη < δ, then the shorter arc of ∂Ω with endpoints

f (wj) and f (wj+1) can be connected in ∂Ω by a curve of diameter at most ε.

Thus the image under f of the Carleson square with base Ij (the arc between

wj and wj+1) has diameter at most Cη + ε. This implies f has a continuous

extension to the boundary. �



Uniform convergence on compact subsets of D does not imply uniform conver-

gence on the boundary.



However, it is true that the conformal boundary values will converge if the image

domains have some parameterizations that converge.

In other words, if a sequence of simply connected domains have boundaries

with continuous parameterizations that converge uniformly to the continuous

parameterization of the limiting domain, then we also get uniform convergence

for the conformal parameterizations of the boundaries.

This is analogous to Carathédory’s theorem: if a domain boundary has any

continuous parameterization, then the conformal parameterization is also con-

tinuous.



Lemma 2.26. Suppose {fn} are conformal maps of D→ Ωn that converge

uniformly on compact subsets of D to a conformal map f : D→ Ω. Suppose

that the boundary of each Ωn is the homeomorphic image ∂Ωn = σn(T) and

that {σn} converges uniformly on T to a homeomorphism σ : T → ∂Ω.

Then fn → f uniformly on the D.



Proof. Fix ε > 0 and choose n so large that if we divide T into n equal sized

intervals {Jj}n1 , then σ maps each of them to a set Ij of diameter at most ε/2.

Let Ikj = fk(Jj). Because σk → σ uniformly, the sets Ij all have diameter at

most ε, if k is large enough.

Next choose η > 0 so small that if k,m > 1/η and σm(Jj) and σk(Ji) contain

points at most distance Cη apart, then Ji and Jk are the same or adjacent to

each other.

We can do this because of the uniform convergence and the fact that σ is 1-to-1.

By passing to the limit the same property holds if we replace σm by σ.



Next choose m so large that f (D) \ f ({|z| < 1 − 1
m}) is contained in an η-

neighborhood of ∂Ω.

Choose m points {zj} equally spaced on the circle |z| = 1− 1
m,and let Km

j ⊂ T
be the arc centered at zj/|zj| of length 4π/m. Fix a small number δ > 0 (δ will

be determined below, depending only on η).

By Lemma 2.22 choose a point wj ∈ Km
j so that |wj − zj| ≤ 2/m and

|f (wj)− f (wj(1−
1

m
))| ≤ Cδ.



Similarly, choose points wk
j ∈ Km

j so that

|fk(wk
j )− fk(zj)| ≤ 2Cδ.

This is possible since fk → f uniformly on the compact set {|z| ≤ 1− 1
m} and

thus ∂fk(D) is contained in a 2δ-neighborhood of ∂Ω for k large enough and

∂Ωk is contained in a δ-neighborhood of ∂Ω because of the uniform convergence

of the parameterizations.



By taking m larger, if necessary, we can also arrange that each Ij contains at

least one of the points f (zm/|zm|).

Thus each f (Km
j ) is mapped into the union of at most 2 of the Ij and hence its

image has diameter at most 2ε.

Also, the points f (wk
p) and f (wk

p+1) are at most Cδ apart, so belong to the same

or adjacent sets Ij. Thus fk(Kp) is a union of at most 4 such adjacent sets and

hence has diameter O(ε).

For each wk
p there is an arc Jj so that fk(w

k
p) ⊂ σk(Jj). Similarly, there is an

arc Ji so that f (wp) ∈ Ii = σ(Ji).



Since fk → f uniformly on the finite set {zn}, we have, for k sufficiently large

|fk(wk
n)− f (wn)| ≤ |fk(wk

n)− fk(zn)|
+|fk(zn)− f (zn)|

+|f (zn)− f (wn)|
≤ (2C + 1 + C)δ.

This is less than η if δ is small enough. Since Ii and Ij each have diameter at

most ε, there union has diameter < 2ε and the union

of the intervals adjacent to these is at most 4ε. Similarly for Iki and Jkj . Thus

fk(Kp) and f (Kp) are contained in O(ε)-neighborhoods of each other.

Thus fk → f uniformly on T. By the maximum principle, this implies uniform

convergence on the closed disk, as desired. �



Corollary 2.27. If {fn} are homeomorphisms that converge uniformly to

a homeomorphism f then M(fn(Q))→M(f (Q))

Proof. If v is a vertex of Q and vn → v are vertices of Qn, then the uniform

convergence of fn : D → Qn to f : D → Qn (the normalized conformal maps)

implies that preimages of vn under fn must converge to the preimage of v under

f . Since this holds for all four vertices and modulus on D is a continuous function

of the four vertices, this proves the corollary. �



Harmonic measure



Suppose Ω is a planar Jordan domain bounded, z ∈ Ω, and E ⊂ ∂Ω is Borel.

Suppose f : D→ Ω is conformal and f (0) = z (use Riemann mapping theorem).

By Carathéodory’s theorem, f extends continuously (even homeomorphically)

to the boundary, so f−1(E) ⊂ T is also Borel. We define “the harmonic measure

of the set E for the domain Ω, with respect to the point z” as

ω(z, E,Ω) = |E|/2π,

where |E| denotes the Lebesgue 1-dimensional measure of E.



This depends on the choice of the Riemann map f , but any two maps, both

sending 0 to z, will differ only by a pre-composition with a rotation.

Thus the two possible pre-images of E differ by a rotation and hence have the

same Lebesgue measure. If we fix E and Ω, then ω(z, E,Ω) is a harmonic

function of z, giving rise the name “harmonic measure”.

Since we always have 0 ≤ ω(z, E,Ω) ≤ 1, we can deduce that if E has harmonic

measure with respect to one point z in Ω then it has zero harmonic measure

with respect to all points.



There are several alternate definitions:

• Hitting distribution of Brownian motion.

• Normal derivative of Green’s function (need smooth boundary).

• Solution of Dirichlet problem.

• Measure minimizing log-energy (for base point ∞).



If ∂Ω is merely locally connected, then Carathéodory’s theorem still implies that

the Riemann map f has a continuous extension to the boundary, so the same

definition of harmonic measure works.

We can define harmonic measure for general simply connected domains, by tak-

ing an increasing union of domains with Jordan boundaries, but we will postpone

this discussion until later, as we will postpone the discussion of harmonic mea-

sure on multiply connected domains (defined via covering maps).

For the moment, Jordan domains and locally connected sets will provide suffi-

ciently many interesting examples.



We want estimate harmonic measure in terms of extremal length. We have

already seen how to relate extremal length to logarithmic capacity, and the

following relates the latter to harmonic measure:

Lemma 2.28. For any compact E ⊂ T,

cap(E) ≥ 1

1 + log 2 + π + log 1
|E|
.

If E ⊂ T has positive Lebesgue measure, then it has positive capacity. So,

if E ⊂ T is an arc, then

cap(E) ≤ 1

log 4 + log 1
|E|
.

For arcs of small measure, the two bounds are comparable.



Proof. Let µ be Lebesgue measure restricted to E and let x ∈ E. Let I be the

arc centered at x and with length |E|. If y ∈ T and t is the arclength distance

between x and y, then 2
πt ≤ |x− y| ≤ t, so

Uµ(x) =

∫
E

log
2

|x− y|
dy ≤

∫
I

log
1

|x− y|
dy

≤ 2

∫ |E|/2
0

log
πdt

2t
= |E| log

2

|E|
+ π|E|

Thus the log-capacity of E is at least

‖µ‖/ supUµ ≤ |E|/|E| log
2

|E|
+ π|E| = 1

π + log 2 + log 1/|E|



If E is an arc, then the center x of the arc is at most distance |E|/2 from any

other point of the arc, and so

Uµ(x) ≥ log
2

|E|/2
= log

4

|E|
= log

1

|E|
+ log 4,

for any probability measure supported onE. This gives the desired estimate. �



The following is the fundamental estimate for harmonic measure, from which all

other estimates flow (at least, all the ones that we will use).

Theorem 2.29. Suppose Ω is a Jordan domain, z0 ∈ Ω with dist(z0, ∂Ω) ≥
1 and E ⊂ ∂Ω. Let Γ be the family of curves in Ω which connects D(z0, 1/2)

to E. Then

ω(z0, E,Ω) ≤ C exp(−πλ(Γ)).

If E ⊂ ∂Ω is an arc then the two sides are comparable.



Proof. Let f : D → Ω be conformal. By Koebe’s 1
4-theorem (Theorem 2.11),

the disk D(z, 1
2) in Ω maps to a smooth region K in the unit disk that contains

the origin, and ∂K is uniformly bounded away from both the origin and the

unit circle.

Thus by Pfluger’s theorem applied to the curve family ΓX connecting K and

the compact set X = f−1(E),

1

cap(X)
+ C1(K) ≤ πλ(ΓX) ≤ 1

cap(X)
+ C2(K),

for constants C1, C2 that are bounded independent of all our choices.



By Lemma 2.28 the right-hand side of

1 + log 4 + log
1

|X|
+ C1(K) ≤ πλ(ΓX) ≤ 1 + log 2 + log

1

|X|
+ C2(K).

holds in general, and the left-hand side also holds if X is an interval.

Multiply by −1 and exponentiate to get

|X|
2e1+π+C2

≤ exp(−πλ(ΓX)) ≤ |X|
4eC1

under the same assumptions. Now use ω(z, E,Ω) = ω(0, X,D) = |X|/2π to

deduce the result. �



Corollary 2.30 (Ahlfors distortion theorem). Suppose Ω is a Jordan domain,

z0 ∈ Ω with dist(z0, ∂Ω) ≥ 1 and x ∈ ∂Ω. For each 0 < t < 1 let `(t) be the

length of Ω ∩ {|w − x| = t}. Then there is an absolute C <∞, so that

ω(z0, D(x, r),Ω) ≤ C exp(−π
∫ 1

r

dt

`(t)
).



Proof. Let K be the disk of radius 1/2 around z0 and let Γ be the family of

curves in Ω which connects D(x, r) ∩ ∂Ω to K.

Define a metric ρ by ρ(z) = 1/`(t) if z ∈ Ct = {z ∈ Ω : |x− z| = t} and `(t)

is the length of Ct.

Any curve γ ∈ Γ has ρ-length at least

L =

∫ 1/2

r

dt

`(t)
,

and

A =

∫∫
Ω

ρ2dxdy ≥
∫ 1/2

r

∫
Cr∩Ω

`(z)−2rdrdθ =

∫
`(z)−1dr = L.

Therefore λ(Γ) ≥ A/L2 = 1/L, and this proves the result. �



Corollary 2.31 (Beurling’s estimate). There is a C < ∞ so that if Ω is

simply connected, z ∈ Ω and d = dist(z, ∂Ω) then for any 0 < r < 1 and

any x ∈ ∂Ω,

ω(z,D(x, rd),Ω) ≤ Cr1/2

Proof. Apply Corollary 2.30 at x and use θ(t) ≤ 2πt to get

exp

(
−π
∫ d

rd

dt

θ(t)t

)
≤ C exp

(
−1

2
log r

)
≤ C
√
r.

�



Corollary 2.32. There is an R <∞ so that for any Ω is a Jordan domain

and any z ∈ Ω

ω(z, ∂Ω \D(z,R · dist(z, ∂Ω),Ω) ≤ 1/2.

Proof. Rescale so z = 1 and dist(z, ∂Ω) = 1. Then apply w → 1/w which fixes

z and maps ∂Ω \ D(z,R) into D(0, 1/R − 1). Then Lemma 2.31 implies the

result holds if R ≥ 4C2 + 1 (and C is as in Lemma 2.31). �



Corollary 2.33. For any Jordan domain and any ε > 0,

ω(z, ∂Ω ∩D(z, (1 + ε)dist(z, ∂Ω)),Ω) > Cε,

for some fixed C > 0.

Proof. Renormalize so z = 0 and 1 is a closest point of ∂Ω to z. By Corollary

2.32, the set E = ∂Ω∩D(0, 1 + ε) has harmonic measure at least 1/2 from the

point 1−ε/R. Since ω(z, E,Ω) is a positive, harmonic function on D, Harnack’s

inequality says it is larger than Cε/R at the origin. �



This is a weak version of the Beurling projection theorem which says that the

sharp lower bound is given by the slit disk D(0, 1 + ε) \ [1, 1 + ε).

The harmonic measure of the slit in this case can be computed as an explicit

function of ε because this domain can be mapped to the disk by sequence of

elementary functions.



Theorem 2.34. Suppose Ω is a Jordan domain and E ⊂ ∂Ω has zero
1
2-Hausdorff measure. Then E has zero harmonic measure in Ω.

Proof. Since dilations do not change dimension or harmonic measure, we can

rescale so that Ω contains a unit disk centered at some point z. It suffices to

show E has harmonic measure zero with respect to z.

The hypothesis means that for any ε > 0, the set E can be covered by open

disks {D(xj, rj)} that satisfy
∑

j r
1/2
j ≤ ε. By Beurling’s estimate, this implies

ω(z, E,Ω) ≤
∑
j

ω(z,Dj,Ω) ≤ O(
∑
j

r
1/2
j ) = O(ε).

�



This result was not improved until Lennart Carleson showed in a tour de force

that the 1
2 could be replaced by some α > 1

2 in

That result was not improved until Makarov showed it holds for all α < 1.

Even though we have not defined harmonic measure for multiply connected

domains, it is clear that no analog is possible in that case: if the boundary of Ω

is a Cantor set of dimension α, then it must have full harmonic measure, even

if α is small.



A famous result of Peter Jones and Tom Wolff says that harmonic measures

gives full mass to a set of dimension at most 1 for any planar domain.

One might think that this holds for domain in Rn with bound n− 1, but Wolff

found a counterexample (Wolff snowflakes).

Currently active area of research in higher dimensions.



We recall a result from real analysis.

Theorem 2.35 (Vitali Covering Lemma). Suppose E ⊂ Rd is a measurable

set and B = {Bj} ⊂ Rd is a collection of balls so that each point of E is

contained in elements of B of arbitrarily small diameter. Then there is a

subcollection C ⊂ B so that E \ ∪B∈CB has zero d-measure.

For a proof see Folland’s textbook.



Corollary 2.36. If Ω is Jordan domain, then harmonic measure is singular

to area measure.

Proof. By the Lebesgue density theorem, at Lebesgue almost every point z of a

set E of positive area, all small enough disks satisfy

area(E ∩D(z, r)) ≥ (1− ε)area(D(z, r)), for all .

In particular we must have θ(t) ≤ ε
t (angle measure of Ω ∩ {|w− z| = t}) on a

set z of measure at least r/4 in [r/2, r].



Thus by the Ahlfors distortion theorem

ω(D(z, r02−n) ≤ C exp

(
−π
∫ r0

2−nr0

dt

εt

)
≤ C2−πn/ε.

This is much less than (2−nr0) if n is large. Thus almost every point of ∂Ω can

be covered by arbitrarily small disks so that ω(D(zj, rj)) = o(r2
j ).

Use Vitali’s theorem to take a disjoint cover of a set of full harmonic measure,

and we deduce that harmonic measure gives full mass to set of zero area. �



Corollary 2.37. There is an ε > 0 so that harmonic measure on a planar

Jordan domain always gives full measure to a set of Hausdorff dimension

at most 2− ε.

Proof. Fix a large integer b and consider the b-adic squares in the plane. Take

one such square Q that intersects ∂Ω and consider its b2 children squares.

We claim that if b is large enough, then at least one of them has harmonic

measure that is less than (2b2)−1 times the harmonic measure of Q.

If there is a subsquare that misses ∂Ω, then its harmonic measure is zero, and

the claim is true. Therefore we may assume every subsquare hits ∂Ω.



SupposeQ has side length 1 and define a finite sequence of squares Sk, concentric

with Q and with side lengths 1
b ,

3
b ,

6
b , . . . , 1. If z ∈ ∂Sk, then dist(z, ∂Ω) ≤

√
2/b

and dist(z, Sk−1) > 3/b, so by Corollary 2.33 ,

max
z∈∂Sk

ω(z, ∂Ω ∩ Sk−1,Ω \ Sk−1) < 1− δ,

for some uniform δ > 0 (independent of k and b).

By the maximum principle and induction,

ω(S1) ≤ (1− δ)b/3,
and this is less than 1/(2b2) if b is large enough. This prove the claim, that ω

deviates from the uniform distribution on the sub-squares by a fixed amount.



The rest is standard.

The deviation from uniformity implies that the entropy

h(µ) = −
b2∑
k=1

ω(Qj) logb ω(Qj),

is strictly less than 2, the maximum that occurs when every square has equal

measure.

By the strong law of large numbers and Billingsley’s lemma, ω has dimension

strictly less than 2, with a bound that depends on b, but not on Ω. �



Theorem 2.38 (Strong Law of Large Numbers). Let (X, dν) be a proba-

bility space and {fn}, n = 1, 2 . . . a sequence of orthogonal functions in

L2(X, dν). Suppose E(f 2
n) =

∫
|fn|2 dν ≤ 1, for all n. Then

1

n
Sn =

1

n

n∑
k=1

fk → 0,

a.e. (with respect to ν) as n→∞.

Lemma 2.39 (Billingsley’s Lemma). Let A ⊂ [0, 1] be Borel and let µ be a

finite Borel measure on [0, 1]. Suppose µ(A) > 0. If

α1 ≤ lim inf
n→∞

log µ(In(x))

log |In(x)|
≤ β1,(2.11)

for all x ∈ A, then α1 ≤ dim(A) ≤ β1.

Both these are proven in Chapter 1 of the text by Bishop and Peres.



Jean Bourgain proved this holds for general domains in higher dimensions, with

a δ that depends only on the dimension. We shall see later that the bound

dim(ω) ≤ 1 holds in the plane.

Some small gaps in his proof were noticed and filled by Badger and Genschaw in

Lower bounds on Bourgain’s constant for harmonic measure. In R3, they show

that harmonic measure has dimension at most

2.999999999999999

It is conjectured that the upper bound is 2.5 = (n− 1) + (n− 1)/(n− 1).

https://arxiv.org/pdf/2205.15101





