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ON A HÖLDER CONSTANT IN THE THEORY OF

QUASICONFORMAL MAPPINGS

ISTVÁN PRAUSE

Dedicated to the memory of F. W. Gehring

Abstract. A K-quasiconformal selfmap of the unit disk with identity
boundary values satisfies the Hölder estimate |f(z)−f(w)| ≤ 41−1/K |z−

w|1/K . The constant 41−
1

K is sharp.

1. Introduction

A classical result in the theory of quasiconformal mappings, known as

Mori’s theorem is the following. If f : D → D = f(D), f(0) = 0 is K-

quasiconformal map of the unit disk D = B(0, 1) then

|f(z)− f(w)| ≤ 16|z − w|1/K z, w ∈ D. (1.1)

See for instance [4, 1, 3]. Here the constant 16 is optimal as an absolute

constant, however it has been conjectured in [3, p. 68] that 16 could be

replaced by 161−1/K if we allow dependence onK. We refer to the texts [1, 3,

2] for different definitions and basic properties of quasiconformal mappings.

The purpose of this note is to point out the following sharp counterpart

of (1.1). Below, we require identity boundary values, in which case the

requirement f(0) = 0 may be omitted.

Theorem 1.1. Let f : D → D be a K-quasiconformal mapping with (bound-

ary extension) f(z) = z for |z| = 1. Then for every z, w ∈ D we have

|f(z)− f(w)| ≤ 41−1/K |z −w|1/K . (1.2)

Moreover, 41−1/K cannot be replaced by any smaller number depending only

on K.
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2 I. PRAUSE

A theorem of this type in R
n, n > 2 has recently appeared in [6]. Their

constant for n = 2 gives the non-optimal value

41−1/K · 21−1/KK
1

2K

(

K

K − 1

)

1−1/K
2

.

Remark 1.2. As it will be clear from the proof, the same bound holds for

any K-quasiconformal principal mapping conformal outside the unit disk.

2. Proof

Proof. Let us extend f identically outside the unit disk. This way f becomes

a global quasiconformal map of the complex plane with Beltrami coefficient

µ, where ‖µ‖∞ ≤ K−1
K+1

. We embed f in a holomorphic flow of solutions

{fλ}λ∈D as follows. For λ ∈ D we solve the uniformly elliptic Beltrami

equation

fλ
z̄ = λµ ·

K + 1

K − 1
fλ
z , (2.1)

under the normalization of the so-called principal solution. As µ vanishes

outside the unit disk, fλ will be conformal outside D and we require the

asymptotics f(z) = z+ o(1) as z → ∞. According to a classical Koebe-type

distortion theorem [5, Theorem 1.4]

|fλ(z)| < 2, for |z| < 1. (2.2)

Fix any two distinct points z, w ∈ D and consider the function

u(λ) = log
|fλ(z)− fλ(w)|

4
.

In view of holomorphic dependence and injectivity of the flow {fλ} [2, The-

orem 5.7.3] u is a harmonic function. Moreover, u is negative by (2.2). An

application of Harnack’s inequality then gives

u

(

K − 1

K + 1

)

≤
1

K
u(0).

Observe that for λ = (K − 1)/(K + 1) the solution of (2.1) is the original

mapping f and for λ = 0 the solution is the identity map. Thus after

exponentiating the previous inequality yields

|f(z)− f(w)|

4
≤

(

|z − w|

4

)1/K

,

as stated in the Theorem.
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It remains to show sharpness of the constant 41−1/K . The examples will

be based on quasiconformal deformation of ellipses. Let R > 1 and denote

by ER the ellipse given by

|z − 2|+ |z + 2| < 2 (R + 1/R).

For any K > 1 there is a K-quasiconformal mapping g : ER → ER1/K (onto)

which fixes the foci g(±2) = ±2 and have affine boundary values.

Indeed, it is easy to construct such a mapping explicitly. The conformal

mapping φ(z) = z + 1/z maps the annulus AR = {z : 1 < |z| < R} onto

ER \ [−2, 2] and extends as an affine map to {z : |z| > R}. Now the desired

map is given by g = φ◦ρ◦φ−1, where ρ(z) = z|z|1/K−1 is aK-quasiconformal

radial stretching. Note that g extends over the slit [−2, 2] and thus we have

the required K-quasiconformal map g : ER → ER1/K .

Let αR be an affine map from D onto ER. Consider now the map f :=

α−1

R1/K ◦ g ◦ αR. This is a K · (1 + ε)2-quasiconformal selfmap of the unit

disk with identity boundary values (possibly, after a rotation) where ε =

ε(R1/K) → 0 as R → ∞. Furthermore, f maps a segment of length ∼ 4
R to

a segment of length ∼ 4
R1/K as R → ∞. Indeed, the segment α−1

R ([−2, 2])

is mapped onto α−1

R1/K ([−2, 2]). This shows that the constant 41−1/K is best

possible in (1.2). �
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