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Abstract

S. Smirnov (2010) [10] proved recently that the Hausdorff dimension of any K-quasicircle is at most
1 + k2, where k = (K − 1)/(K + 1). In this paper we show that if Γ is such a quasicircle, then

H 1+k2(
B(x, r) ∩ Γ

)
� C(k)r1+k2

for all x ∈ C, r > 0,

where Hs stands for the s-Hausdorff measure. On a related note we derive a sharp weak-integrability of the
derivative of the Riemann map of a quasidisk.
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1. Introduction

A homeomorphism f : Ω → Ω ′ between planar domains is called K-quasiconformal if it
preserves orientation, belongs to the Sobolev class W

1,2
loc (Ω) and its directional derivatives satisfy

the distortion inequality

max
α

|∂αf |� K min
α

|∂αf | a.e. in Ω .

This estimate is equivalent to saying that f satisfies the Beltrami equation

∂̄f (z) = μ(z)∂f (z)

for almost all z ∈ C, where μ is the so-called Beltrami coefficient or dilatation, with ‖μ‖∞ �
k = (K − 1)/(K + 1).

Infinitesimally, quasiconformal mappings carry circles to ellipses with eccentricity uniformly
bounded by K . If K = 1 we recover conformal maps, while for K > 1 quasiconformal maps need
not be smooth, in fact, they may distort the Hausdorff dimension of sets. The higher integrability
result of Astala [1] provides precise estimates for this latter phenomenon. Very recently, these
distortion bounds have been established even for the corresponding Hausdorff measures [7,11].
In the present note we consider quasicircles and their relation to Hausdorff measures.

A K-quasicircle is the image of the unit circle under a K-quasiconformal homeomorphism
of the Riemann sphere Ĉ. Sometimes, it will be more convenient to specialize to quasilines,
these are images of the real line under a quasiconformal homeomorphism of the finite plane C.
For many different characterizations of quasicircles and quasidisks (domains bounded by qua-
sicircles), we refer the reader to [5]. Complex dynamics (Julia sets, limit sets of quasi-Fuchsian
groups) provide a rich source of examples of quasicircles with Hausdorff dimension greater
than one. Astala conjectured in [1] that 1 + k2 is the optimal bound on the dimension of K-
quasicircles, where k = (K − 1)/(K + 1). Smirnov [10] proved that indeed a K-quasicircle has
Hausdorff dimension at most 1 + k2. The question of sharpness is an open problem with impor-
tant connections to extremal behavior of harmonic measure [9]. Currently, the best known lower
bound appears to be the computer-aided estimate 1 + 0.69k2 of [3].

Our main result is the following strengthening of Smirnov’s theorem in terms of 1 + k2-
dimensional Hausdorff measure H 1+k2

.

Theorem 1.1. If Γ is a K-quasicircle in Ĉ, then

H 1+k2(
Γ ∩ B(z, r)

)
� C(K)r1+k2

for all z ∈ C and with k = K − 1

K + 1
.

To prove this result we use a well-known factorization to “conformal inside” and “conformal
outside” parts. The conformal inside part is taken care of by Smirnov’s work; we recall the
necessary estimates in Section 2. Section 3 handles the conformal outside part and we finally
put together the estimates in Section 4. Section 3 contains most of the novelties. Here we adopt
the technique of [7] and show the boundedness of the Beurling transform with respect to some
weights arising from a special packing condition. To implement the techniques in [7] to our
setting we have to overcome some difficulties. For instance, the arguments in [7] are well suited
to estimate quasiconformal distortion in terms of Hausdorff contents, while we need to obtain
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estimates in terms of Hausdorff measures. Also, the arguments involving the factorization of
quasiconformal maps and the use of packing conditions are much more delicate in our case.

In Section 5 of this paper we prove another related result which controls the expansion of the
Riemann map φ :D→ Ω onto a bounded K-quasidisk Ω . In particular, we obtain the following
precise integrability condition for the derivative:

φ′ ∈ weak-Lp(D), with p = 2(K2 + 1)

(K2 − 1)
.

This is a strengthening of a result from [9] to the critical exponent p above and it is optimal. See
Theorem 5.2 for the precise statement.

In the paper, as usual, the letter C denotes a constant that may change at different occurrences,
while constants with subscript, such as C1, retain their values. The notation A ≈ B means that
there is a constant C (often allowed to depend on the quasiconformality constant K) such that
1/C · A � B � C · A. The notation A � B means that there is a constant C (often allowed
to depend on the quasiconformality constant K) such that A � C · B . For instance, we shall
frequently use this notation in conjunction with the well-known quasisymmetry property (see
e.g. [2]) of quasiconformal maps. Also, as usual, if B denotes a ball, 2B denotes the ball with
the same center as B and twice the radius of B (and similarly for squares and other multiples).

2. Smirnov’s theorem on quasicircles

Before stating Smirnov’s theorem, let us introduce some definitions.

Definition 2.1. A quasiconformal mapping f : C → C is called principal if it is conformal out-
side some compact set K ⊂C and satisfies the normalization f (z) = z + O(1/z) at infinity.

Definition 2.2. A quasiconformal mapping f : C → C is called antisymmetric (with respect
to the real line) (or equivalently we say that it has antisymmetric dilatation μ) if its Beltrami
coefficient μ satisfies

μ(z) = −μ(z̄) for a.e. z ∈C.

The significance of this definition is that by making use of a symmetrization procedure
[10] shows that, any K-quasiline may be represented as the image of the real line under a K-
quasiconformal antisymmetric map. As one of the referees pointed out to us, this symmetrization
procedure (with respect to the unit circle) was in fact introduced by Kühnau in his work on qua-
siconformal reflections [6].

Now we state Smirnov’s bound on the dimension of quasicircles.

Theorem 2.3. (See [10].) The Hausdorff dimension of a 1+k
1−k

-quasicircle is at most 1 + k2, for
any k ∈ [0,1).

We shall need the following formulation. This is implicit in [10] and appears exactly as stated
in [2, Theorem 13.3.6].
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Theorem 2.4. Let f : C → C be a 1+k
1−k

-quasiconformal map, with 0 < k < 1. Suppose that f

has antisymmetric dilatation and that it is principal and conformal outside the unit disk. Let
Bj = B(zj , rj ), 1 � j � n, be a collection of pairwise disjoint disks contained in the unit disk
such that zj ∈R, so that f is conformal on each Bj . For 0 < t � 2, let t (k) be such that

1

t (k)
− 1

2
= 1 − k2

1 + k2

(
1

t
− 1

2

)
.

Then,

(
n∑

j=1

(∣∣f ′(zj )
∣∣rj )t (k)

) 1
t (k)

� 8

(
n∑

j=1

rt
j

) 1−k2

1+k2
1
t

.

As an easy corollary we give the special case t = 1 in a scale invariant form.

Corollary 2.5. Let f : C→C be a 1+k
1−k

-quasiconformal map, with 0 < k < 1, with antisymmetric
dilatation. Let Bj , 1 � j � n, be a collection of pairwise disjoint disks contained in a disk B .
Suppose that the disks Bj , B , are centered on the real line and that f is conformal on the
disks Bj . Then,

∑n
j=1 diam(f (Bj ))

1+k2

diam(f (B))1+k2 � C(k)

(∑n
j=1 diam(Bj )

diam(B)

)1−k2

.

In particular, notice that in the above situation,

n∑
j=1

diam
(
f (Bj )

)1+k2
� C(k)diam

(
f (B)

)1+k2
.

Proof. We factorize f = f2 ◦f1, where f1, f2 are both K-quasiconformal maps, with f1 princi-
pal and conformal on C \ 2B , and f2 is conformal on f1(2B). If we denote by μf the dilatation
of f , we assume that the one of f1 is μf1 = χ2Bμf . Let g(z) = az+b be the mapping that maps
the unit disk to 2B . The map h = g−1 ◦ f1 ◦ g with the collection of disks {g−1(Bj )} verifies the
assumptions of Theorem 2.4, and so specializing to t = 1 we obtain

n∑
j=1

diam
(
h
(
g−1(Bj )

))1+k2
� C(k)

(
n∑

j=1

diam
(
g−1(Bj )

))1−k2

.

Since diam(h(g−1(Bj ))) = diam(g−1(f1(Bj ))) = a−1 diam(f1(Bj )), we deduce

n∑
diam

(
f1(Bj )

)1+k2

� C(k)a2k2

(
n∑

diam(Bj )

)1−k2

.

j=1 j=1



I. Prause et al. / Advances in Mathematics 229 (2012) 1313–1328 1317
On the other hand, since f2 is conformal on f1(2B), by Koebe’s distortion theorem and qua-
sisymmetry,

diam(f2(f1(Bj )))

diam(f2(f1(2B)))
≈ diam(f1(Bj ))

diam(f1(2B))
.

Therefore,

n∑
j=1

diam
(
f (Bj )

)1+k2
�C(k)

(
n∑

j=1

diam(Bj )

)1−k2(
diam(f (2B))

diam(f1(2B))

)1+k2

a2k2
.

Recalling that a = diam(B) and taking into account that diam(f1(2B)) ≈ diam(2B) by Koebe’s
distortion theorem, the corollary follows. �
3. Estimates for the “conformal outside” map

3.1. Smooth and packed families of dyadic squares

Let us denote the family of dyadic squares by D. Let 0 < t < 2 be fixed. Let {Q}Q∈J be a
family of pairwise disjoint dyadic squares. Given τ � 1, we say that J is a τ -smooth family if

(a) If P,Q ∈ J are such that 2P ∩ 2Q �= ∅, then τ−1	(P ) � 	(Q) � τ	(P ).

(b)
∑

Q∈J χ2Q � τ.

Actually the condition (b) follows from (a) with a worse constant than τ , and the arguments
below would also work if we eliminated (b) from the previous definition. However, for the sake
of clarity and simplicity we prefer the definition above.

We say that J is α-packed if for any dyadic square R ∈ D which contains at least two squares
from J ,

∑
Q∈J : Q⊂R

	(Q)t � α	(R)t . (3.1)

At first sight, the fact that we ask (3.1) only for squares R which contain at least two squares
from J may seem strange. In fact, (3.1) holds with α = 1 for any square R which contains a
unique square Q. The advantage of the formulation above is that for α arbitrarily small, there
exist α-packed families J , which is not the case if we allow R to contain a unique square Q ∈ J .
This fact will play an important role below.

Recall that a quasisquare is the image of a square under a quasiconformal map. Given a
quasiconformal map f , we say that Q is a (dyadic) f -quasisquare if it is the image of a (dyadic)
square under f . If Q = f (P ) is an f -quasisquare, we denote aQ := f (aP ). If now {Q}Q∈J
is family of pairwise disjoint dyadic f -quasisquares, we say that it is τ -smooth and α-packed
if it verifies the properties above, replacing 	(P ), 	(Q), 	(R) by diam(Q), diam(P ), diam(R),
and (3.1) is required to hold for all dyadic f -quasisquares R containing at least two quasisquares
from J .
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3.2. Boundedness of the Beurling transform with respect to some weights

In the following, given a non-negative measurable function (i.e. a weight) ω and a subset
A ⊂C, we use the standard notation

ω(A) =
∫
A

ωdm.

Recall also that the Beurling transform of a function f :C→ C is given by

Sf (z) = −1

π
p.v.

∫
C

f (ξ)

(z − ξ)2
dm(ξ).

Proposition 3.1. Let 0 < t < 2. Let P = {Pi}Ni=1 be a finite τ -smooth α-packed family of pairwise

disjoint dyadic squares. Denote P = ⋃N
i=1 Pi and set

ω =
∑
P∈P

	(P )t−2χP .

Then, the Beurling transform is bounded in L2(ω). That is to say,

∥∥S(f χP )
∥∥

L2(ω)
�C1‖f ‖L2(ω) for all f ∈ L2(ω). (3.2)

The constant C1 only depends on t , τ , and α.

Proof. We will follow the arguments of [7] quite closely. By interpolation, it is enough to show
that ∫

G

∣∣S(χF )
∣∣ωdm� Cpω(F)1/pω(G)1/p′

for all F,G ⊂ P and 1 < p < ∞.

To prove this estimate, for f ∈ L1
loc(C), we split χPS(f χP ) into a local and a non-local part as

follows

χPS(f χP ) =
N∑

i=1

χP∩2Pi
S(f χPi ) +

N∑
i=1

χP \2Pi
S(f χPi ) =: Slocal(f ) + Snon(f ).

For the local part we will use the boundedness of S in Lp(C), the fact that ω is a constant times
Lebesgue measure on each Pi , and Hölder’s inequality:

∫
G

∣∣Slocal(χF )
∣∣ωdm�

∑
i

∫
2Pi∩G

∣∣S(χPi∩F )
∣∣w dm

� Cp

∑
|Pi ∩ F |1/p|2Pi ∩ G|1/p′

ω|Pi ,
i
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where |A| stands for the Lebesgue measure of A. Since ω ≈ ω|Pi on 2Pi ∩ P , because of the
property (a) in Section 3.1, using again Hölder’s inequality, we get

∫
G

∣∣Slocal(χF )
∣∣ωdm� Cp

∑
i

ω(Pi ∩ F)1/pω(2Pi ∩ G)1/p′

� Cp

(∑
i

ω(Pi ∩ F)

)1/p(∑
i

ω(2Pi ∩ G)

)1/p′

� Cω(F)1/pω(G)1/p′
,

where we used the property (b) of smooth families in the last inequality.
Consider now the non-local part. For any two squares P , Q, denote

D(P,Q) = dist(P,Q) + 	(P ) + 	(Q).

Since for all P,Q ∈P such that Q \ 2P �= ∅,

dist(P,Q \ 2P) ≈ D(P,Q),

for x ∈ P ∈P we have

∣∣Snonf (x)
∣∣� ∑

Q∈P : Q �=P

1

D(P,Q)2

∫
Q

|f |dm =: Tf (x).

We will show that ∫
G

∣∣T (χF )
∣∣ωdm � Cpω(F)1/pω(G)1/p′

. (3.3)

Let Mω be the following maximal operator:

Mωf (x) = sup
x∈Q

1

	(Q)t

∫
Q

|f |ωdm,

where the supremum is taken over all the squares containing x . Since ω(Q) � C	(Q)t for any
square Q (by the packing condition), it follows by standard arguments (using covering lemmas)
that Mω is bounded in Lp(ω), 1 < p � ∞, and from L1(ω) to L1,∞(ω). To prove (3.3), for a
fixed C1 > 2 we define

F ′ =
{

F if 8ω(F)� ω(G),

F ∩ {Mω(χG)� C1ω(G)/ω(F )} otherwise.

From the weak (1,1) inequality for Mω , we have ω(F ′) � ω(F)/2 if C1 is chosen big enough.
As in [7], to prove (3.3) it is enough to show that
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∫
G

(T χF ′)ωdm� C min
(
ω(F),ω(G)

)

(iterating this estimate, (3.3) follows). We have

∫
G

(T χF ′)ωdm =
∑
P∈P

∑
Q∈P : P �=Q

|F ′ ∩ Q|
D(P,Q)2 ω(G ∩ P)

=
∑
Q∈P

∣∣F ′ ∩ Q
∣∣ ∑
P∈P : P �=Q

1

D(P,Q)2
ω(G ∩ P).

Denote by Ak(Q) the family of squares P ∈P such that

2k	(Q) � D(P,Q) < 2k+1	(Q).

Then,

∑
P∈P : P �=Q

1

D(P,Q)2 ω(G ∩ P) � C
∑
k�0

1

	(2kQ)2

∑
P∈Ak(Q)

ω(G ∩ P)

� C
∑
k�0

1

	(2kQ)2 ω
(
G ∩ 2k+3Q

)
,

because the squares P ∈ Ak(Q) are contained 2k+3Q. By the packing condition (3.1), we have

ω
(
G ∩ 2k+3Q

)
� C	

(
2k+3Q

)t �C	
(
2kQ

)t
.

On the other hand, assuming Q ∩ F ′ �= ∅, by the definition of F ′,

ω
(
G ∩ 2k+3Q

)
� C	

(
2k+3Q

)t ω(G)

ω(F )
�C	

(
2kQ

)t ω(G)

ω(F )
.

So we get,

ω
(
G ∩ 2k+3Q

)
�C min

(
1,

ω(G)

ω(F)

)
	
(
2kQ

)t =: CA	
(
2kQ

)t
.

Therefore, since t − 2 < 0,

∫
G

(T χF ′)ωdm � CA
∑
Q∈P

∣∣F ′ ∩ Q
∣∣∑
k�0

	
(
2kQ

)t−2 � CA
∑
Q∈P

∣∣F ′ ∩ Q
∣∣	(Q)t−2

= CAω
(
F ′) � C min

(
ω(F),ω(G)

)
. �
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Remark 3.2. Given a K-quasiconformal map f : C → C, the proposition above also holds (by
the same proof) if we consider a family of dyadic f -quasisquares instead of dyadic squares, with

ω =
∑
P∈P

diam(P )t−2χP .

Then, the constant C1 in (3.2) depends on K , besides α, τ and t .

3.3. Distortion when f is conformal outside a family of quasisquares

Lemma 3.3. Let 0 < t < 2. Let {Q}Q∈J be a finite τ -smooth α-packed family of pairwise disjoint
dyadic g-quasisquares, where g is some K0-quasiconformal map with K0 � M0, α � 1. Denote
F = ⋃

Q∈J Q and let f : C → C be a principal K-quasiconformal map, conformal on C \ F .
There exists δ0 = δ0(t, τ,M0) > 1 such that if K � δ0, then

∑
Q∈J

diam
(
f (Q)

)t � C2

∑
Q∈J

diam(Q)t ,

with C2 depending on only on t , τ , M0.

The proof is analogous to the one in [7, Lemma 5.6], using the fact the Beurling transform is
bounded in L2(ω), by Proposition 3.1.

We wish to extend the preceding result to K-quasiconformal maps with K arbitrarily large. As
usual, we will do this by an appropriate factorization of f . First we need the following technical
result.

Lemma 3.4. Let 0 < t < 2. Let {Q}Q∈J be a finite τ -smooth α-packed family of pairwise disjoint
dyadic g-quasisquares, where g is some K0-quasiconformal map with K0 � M0, α � 1. Denote
F = ⋃

Q∈J Q and let f : C → C be a principal K-quasiconformal map, conformal on C \ F .
There exists δ0 = δ0(t, τ,M0) > 1 such that if K � δ0, then for any g-dyadic quasisquare R,

∑
Q∈J : Q⊂R

diam
(
f (Q)

)t � C3

∑
Q∈J : Q⊂3R diam(Q)t

diam(R)t
diam

(
f (R)

)t
,

with C3 = C3(t, τ,M0). In particular, the family of (f ◦g)-quasisquares {f (Q)}Q∈J is (9C3α)-
packed.

Proof. We factorize f = f2 ◦ f1, where f1, f2 are K-quasiconformal maps, with f1 conformal
in (C \ ⋃

Q∈J Q) ∪ (C \ 3R), and f2 is conformal on f1(3R). By Lemma 3.3, we have

∑
Q∈J : Q⊂3R

diam
(
f1(Q)

)t � C2

∑
Q∈J : Q⊂3R

diam(Q)t . (3.4)

By Koebe’s distortion theorem and quasisymmetry, since f2 is conformal in f1(3R), for every
Q ⊂ R,
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diam(f2(f1(Q)))

diam(f2(f1(3R)))
≈ diam(f1(Q))

diam(f1(3R))
.

Thus,

∑
Q∈J : Q⊂R

diam(f (Q))t

diam(f (3R))t
≈

∑
Q∈J : Q⊂R

diam(f1(Q))t

diam(f1(3R))t
.

The lemma follows from this estimate, (3.4), and the fact that diam(f1(3R)) ≈ diam(3R), since
f1 is principal and conformal on C \ 3R. �
Lemma 3.5. Let 0 < t < 2. Let {Q}Q∈J be a finite τ -smooth α-packed family of pairwise disjoint
dyadic g-quasisquares, where g is some K0-quasiconformal map with K0 � M0. Denote F =⋃

Q∈J Q and let f : C → C be a principal K-quasiconformal map conformal on C \ F with
K �M0. There exists δ1 > 0 small enough depending only on t, τ,M0 such that if α � δ1, then

∑
Q∈J

diam
(
f (Q)

)t � C4

∑
Q∈J

diam(Q)t ,

with C4 depending on only on t , α, τ , M0.

Proof. Notice that for any K ′-quasiconformal map h with K ′ � M0, the family {h(Q)}Q∈J is

τ ′-smooth, with τ ′ depending only on τ and M0. Let n be big enough so that M
1/n

0 � δ′
0, where

δ′
0 = δ0(t, τ

′,M0) (with δ0 from Lemma 3.3).
We factorize f = fn ◦ · · · ◦ f1 so that each fi is K1/n-quasiconformal on C, and moreover

fi is conformal in C \ ⋃
Q∈J fi−1 ◦ · · · ◦ f1(Q), for i � 1 (with f0 = id). Notice that for all i ,

the quasisquares fi ◦ · · · ◦ f1(Q) are τ ′-smooth (since fi ◦ · · · ◦ f1 is K ′
i -quasiconformal with

K ′
i � M0). Suppose that α is small enough so that

(
C′

3

)n
α � 1,

where C′
3 = 9C3(t, τ

′,M0). Then, Lemma 3.4 can be applied repeatedly to deduce that for each
i � n the family of quasisquares {fi ◦ · · · ◦ f1(Q)}Q∈J is (C′

3)
iα-packed, and thus 1-packed

(without loss of generality, we assume C′
3 � 1). As a consequence, Lemma 3.3 can also be

applied repeatedly to get

∑
Q∈J

diam
(
f (Q)

)t � C2

∑
Q∈J

diam
(
fn−1 ◦ · · · ◦ f1(Q)

)t � · · ·� Cn
2

∑
Q∈J

diam(Q)t . �

4. Gluing “conformal inside” and “conformal outside”

In the following lemma we make use of the conformal inside vs. outside decomposition.

Lemma 4.1. Let f : C → C be a 1+k
1−k

-quasiconformal map with antisymmetric dilatation. Let
{Q}Q∈J be a finite family of pairwise disjoint squares with equal side length centered on R,
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which are contained in another square R centered on R. Then,

∑
Q∈J

diam
(
f (Q)

)1+k2
� C(k)

(∑
Q∈J 	(Q)

	(R)

)1−k2

diam
(
f (R)

)1+k2
. (4.1)

Proof. First, let us make the assumption that f is principal. We are going to relax this assumption
at the end of the proof. Using quasisymmetry if necessary, we may assume that the squares
Q ∈ J belong to a dyadic lattice (a translation of the usual dyadic lattice, say). Take a small
constant 0 < α < 1 to be fixed below. We will prove (4.1) assuming that J is α-packed. The
general statement follows easily from this particular case: since the squares Q ∈ J have equal
side length and are centered on R, we can easily split J = J1 ∪ · · · ∪ Jm so that m ≈ 1/α and
each Ji is α-packed (recall that the constant α in the definition of α-packings only involves
squares R which contain at least two squares Q ∈ J ). Then we apply (4.1) to each family Ji

and we add the resulting estimates. This introduces an additional multiplicative constant m on
the right-hand side of (4.1). We note here that m ≈ 1/α and we will later choose α depending
only on K = 1+k

1−k
.

So assume that the squares Q ∈J are α-packed and denote V = ⋃
i Qi . Take a decomposition

f = f2 ◦f1, where f1, f2 are principal K-quasiconformal mappings. We require f1 to be confor-
mal in V and f2 outside f1(V ). Further, we suppose that the dilatation of f1 is μf1 = χC\V μf

so that μf1 is also antisymmetric.
By Corollary 2.5, for any square P centered on R,

∑
Q∈J : Q⊂P

diam
(
f1(Q)

)1+k2

� C(k)

(∑
Q∈J : Q⊂P 	(Q)

	(P )

)1−k2

diam
(
f1(P )

)1+k2

. (4.2)

In particular, the family of quasisquares {f1(Q)}Q∈J is C(k)α1−k2
-packed. It is also clear that

they form a τ -smooth family, with τ depending only on K . Therefore, if α has been chosen small
enough (depending only on K), from Lemma 3.5 we deduce that

∑
Q∈J

diam
(
f2

(
f1(Q)

))1+k2
� C

∑
Q∈J

diam
(
f1(Q)

)1+k2
,

and so by (4.2) with P = R,

∑
Q∈J

diam
(
f (Q)

)1+k2
� C(k)

(∑
Q∈J 	(Q)

	(R)

)1−k2

diam
(
f1(R)

)1+k2
.

Since f2 is principal and conformal outside f1(R), by Koebe’s distortion theorem we de-
duce diam(f (R)) ≈ diam(f1(R)), and thus (4.1) follows for a principal mapping. We reduce the
general case to this one. Suppose that f is not necessarily principal antisymmetric map. Take a
decomposition f = g2 ◦ g1, where g1 is principal antisymmetric K-quasiconformal map which
is conformal outside 3R and g2 is a K-quasiconformal map which is conformal on g1(3R). This
decomposition is analogous to the one used in Corollary 2.5 and again by Koebe’s distortion
theorem and quasisymmetry we have for every Q ∈ J
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diam(f (Q))

diam(f (3R))
≈ diam(g1(Q))

diam(g1(3R))
.

Now the lemma follows from (4.1) applied to the principal map g1. �
Theorem 4.2. Let f : C → C be an antisymmetric 1+k

1−k
-quasiconformal map. Then, for any

compact subset E ⊂R and any ball B ⊂C centered on R which contains E,

H 1+k2(
f (E)

)
� C(k)diam

(
f (B)

)1+k2
(

H 1(E)

diam(B)

)1−k2

.

Proof. Consider an arbitrary covering E ⊂ ⋃
i Ii for a finite number of pairwise different dyadic

intervals of length ε diam(B). Consider squares concentric with Ii with 	(Qi) = diam(Ii ). By
Lemma 4.1 and quasisymmetry we deduce that

∑
i

diam
(
f (Ii)

)1+k2
� C(k)

(∑
i diam(Ii )

	(B)

)1−k2

diam
(
f (B)

)1+k2
.

Because of the Hölder continuity of quasiconformal maps (see e.g. [2]), for each i , with a con-
stant C5 depending on k,

diam(f (Ii))

diam(f (B))
� C5

(
diam(Ii )

diam(B)

) 1−k
1+k = C5ε

1−k
1+k .

Therefore, with δ = C5ε
1−k
1+k

H 1+k2

δ

(
f (E)

)
�C(k)

(∑
i diam(Ii )

diam(B)

)1−k2

diam
(
f (B)

)1+k2
.

By the definition of length on R, we have
∑

i diam(Ii) � H 1(Uε(E) ∩ R), where Uε stands for
the ε-neighborhood, and we assume that Ii ∩ E �= ∅. Thus,

H 1+k2

δ

(
f (E)

)
� C(k)

(
H 1(Uε diam(B)(E) ∩R)

diam(B)

)1−k2

diam
(
f (B)

)1+k2

.

Letting ε → 0, the theorem follows. �
Now we are ready to prove Theorem 1.1 stated in the introduction.

Proof of Theorem 1.1. If Γ is a K-quasiline, then Γ = f (R) with some K-quasiconformal
map f :C →C. As we remarked in Section 2, we may further suppose that f is antisymmetric.
Our goal is to show

H 1+k2(
Γ ∩ B(z, r)

)
�C(k)r1+k2

for all z ∈C. (4.3)
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First of all, we may assume that z ∈ Γ . Indeed, if Γ ∩ B(z, r) = ∅ then there is nothing to prove.
Otherwise, we can find z0 ∈ Γ such that B(z, r) ⊂ B(z0,2r) and hence by replacing B(z, r) with
a twice larger disk we may assume that the center lies on Γ . Let us set E = f −1(B̄ ∩ Γ ) ⊂ R.
Using quasisymmetry we can easily find a disk B0 centered on R which contains E and such that
diamf (B0) ≈ r . We apply now Theorem 4.2 with E and B0 as above and find that (4.3) holds
true.

The case where Γ is a quasicircle in C can be reduced to the one of a quasiline. Indeed, with
the help of a Möbius transformation we may pass to a quasiline and see that (4.3) holds, for
instance, with r � diamΓ/10. For r > diamΓ/10 we just use (4.3) for a finite number of disks
of radius diamΓ/10. �
5. Boundary expansion of the Riemann map

The Riemann map φ : D → Ω onto a quasidisk is Hölder continuous up to the boundary, in
short, quasidisks are Hölder domains. For a map with a K-quasiconformal extension the sharp
Hölder exponent is 1 − k [8], where k = (K − 1)/(K + 1), as usual. Very recently, the following
counterpart was established in terms of the integrability of the derivative.

Theorem 5.1. (See [9, Corollary 3.9].) If φ :D→ C is a conformal map with K-quasiconformal
extension then

φ′ ∈ Lp(D) for all 2 � p <
2(K + 1)

K − 1
.

The upper bound for the exponent is the best possible.

In the next theorem we prove the weak-integrability of φ′ in the borderline case p = 2
k

=
2(K+1)
K−1 . In terms of area distortion for subsets of the unit disk, the exponent 1/K from Astala’s

theorem improves to 1 − k, just as the Hölder continuity exponent does.

Theorem 5.2. If φ : D → C is a conformal map with K-quasiconformal extension to C, then
φ′ ∈ weak-L2/k(D) with k = (K − 1)/(K + 1). More precisely,

∣∣{z ∈ D:
∣∣φ′(z)

∣∣ > ρ
}∣∣� C(K)

∣∣φ′(0)
∣∣2/k

ρ−2/k for any ρ > 0. (5.1)

In terms of area distortion, for any Borel set E ⊂D,

∣∣φ(E)
∣∣� C(K)

∣∣φ′(0)
∣∣2|E|1−k.

Remark 5.3. The power map z �→ z1−k maps conformally the upper half-plane to a sector do-
main of angle (1−k)π and admits a 1+k

1−k
-quasiconformal extension to C [4]. This example shows

that Theorem 5.2 is sharp up to the numerical value of the constant terms involved.

First we will prove the following lemma, as an application of the theorems of Smirnov and
Astala.
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Lemma 5.4. Let ψ :C→ C be a principal K-quasiconformal map which is conformal in C+ =
{z: Im z > 0} and outside D. Let Bj = B(zj , rj ), 1 � j � n, be a collection of pairwise disjoint
disks contained in the unit disk such that zj ∈ R. We set E = ⋃

Bj . Then we have the following
estimate for area expansion

∣∣ψ(E)
∣∣ � C(K)|E|1−k, (5.2)

with k = (K − 1)/(K + 1).

Proof. In order to deduce (5.2) it is sufficient to assume that ψ is conformal in E. Otherwise,
we use the usual decomposition to principal K-quasiconformal mappings ψ = ψ2 ◦ ψ1 where
ψ1 is conformal on E and ψ2 conformal outside ψ1(E). Now invoking the fact |ψ2(ψ1(E))| �
K|ψ1(E)| from [1] matters are reduced to ψ1. In the rest of the proof we assume that ψ is con-
formal in E and for notational convenience replace K by K2, that is, ψ assumed to be globally
K2-quasiconformal. The exponent 1 − k in (5.2) then takes the form

1 − K2 − 1

K2 + 1
= 2

K2 + 1
= 1

K
· 1 − k2

1 + k2 , (5.3)

where k = (K − 1)/(K + 1).
We use the symmetrization result of [10]: ψ can be written as a superposition ψ = f ◦ g

of a K-quasiconformal map g symmetric with respect to R followed by a K-quasiconformal
antisymmetric map f . Both of these maps are normalized to be principal. We observe that under
the conformality assumptions on ψ , the map g is conformal in the disks Bj and outside D while
f is conformal in the quasidisks g(Bj ) and outside g(D). In view of Koebe’s 1/4 theorem,

B̂j := B

(
g(zj ),

1

4

∣∣g′(zj )
∣∣rj

)
⊂ g(Bj ) and g(D) ⊂ B(0,2).

We apply Theorem 2.4 with t = 2 for the map f and disks B̂j ⊂ B(0,2),

n∑
j=1

(∣∣f ′(g(zj )
)∣∣∣∣g′(zj )

∣∣rj )2 � C

(
n∑

j=1

(∣∣g′(zj )
∣∣rj )2

) 1−k2

1+k2

.

As ψ ′(zj ) = f ′(g(zj ))g
′(zj ), we may write the previous inequality as the comparison of area

∣∣ψ(E)
∣∣ ≈

n∑
j=1

(∣∣ψ ′(zj )
∣∣rj )2 � C(K)

∣∣g(E)
∣∣ 1−k2

1+k2 .

For the map g we use the area distortion inequality

∣∣g(E)
∣∣ � C(K)|E| 1

K

from [1] and conclude the proof by (5.3). �
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Next, we sketch the reduction of Theorem 5.2 to Lemma 5.4.

Proof of Theorem 5.2. By our assumption φ(∞) = ∞ and we may also require φ(0) = 0.
Since φ(D) is a quasidisk |φ′(0)| ≈ |φ(1)|, so we may use the third normalization φ(1) = 1.
For an arc I ⊂ ∂D, consider the Carleson “square” with base I given by QI = {z: z/|z| ∈ I

and 1 − 	(I) � |z| � 1}. The top of QI is zI = (1 − 	(I))ζI where ζI is the center of I . We
are going to use the following property of a conformal map to quasidisk target: for any arc
I on ∂D we have |φ′(zI )| · diam I ≈ diamφ(I). Furthermore for the top half of the Carleson
square |φ′(z)| ≈ |φ′(zI )|. We are left to estimate the area of disjoint Carleson squares such that
|φ′(zI )| > ρ. We will only do this in a fixed sector S about −1. Let us transfer the situation
from the disk to the upper half-plane C+ = {Imz > 0}. We denote by T the following Möbius
transformation

T (z) = z − i

z + i
.

Then T (C+) = D and T (i) = 0, T (0) = −1 and T (∞) = 1. The conjugated map ψ = T −1 ◦
φ ◦ T is conformal in C+, globally K-quasiconformal and satisfies ψ(i) = i , ψ(−i) = −i and
ψ(∞) = ∞. We choose the inscribed disk Bj inside the image of QI under T −1 and its reflection
along R. Then diam(ψBj )� ρ diamBj because |φ′(zI )| > ρ. For the set E = ⋃

Bj we have

ρ2|E| ≈
n∑

j=1

(ρ diamBj )
2 �

n∑
j=1

(diamψBj )2 ≈ ∣∣ψ(E)
∣∣.

With an appropriate choice of the sector S, we may assume E ⊂ B(0,1/2) and apply Lemma 5.4
for the principal map ψ1 with dilatation χDμψ ,

∣∣ψ(E)
∣∣ � ∣∣ψ1(E)

∣∣� C(K)|E|1−k.

Combining the last two inequalities we obtain the desired estimate

∣∣{∣∣φ′∣∣ > ρ
}∣∣� ∣∣∣∣ ⋃

|φ′(zI )|>ρ

QI

∣∣∣∣ ≈ |E|� ρ− 2
k .

This proves the first part of the theorem.
In order to prove the second part, we proceed as follows. Consider now an arbitrary Borel set

E ⊂D,

∣∣φ(E)
∣∣ =

∫
E

∣∣φ′(z)
∣∣2

dm(z) = 2

∞∫
0

ρ
∣∣{z ∈ E:

∣∣φ′(z)
∣∣ > ρ

}∣∣dρ.

We split the integral to two parts at T = |E|−k/2. On the interval [0, T ] we use the trivial estimate
T |E| for the integrand and on [T ,∞] we use the weak-integrability (5.1). The claimed area
distortion inequality now follows

∣∣φ(E)
∣∣� 2|E|T 2 + C(K)T 2(1−1/k) � C(K)|E|1−k. �
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