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Abstract
We show that a homeomorphism of Euclidean space is quasiconformal if and only if at
each point there exists a sequence of uncentered open sets with bounded eccentricity
shrinking to that point whose images also have bounded eccentricity. This generalizes
the metric definition of quasiconformality of Gehring that uses balls instead. We also
study exceptional sets for this definition, in connection with sets that are negligible for
extremal distances. We introduce the class of CNED sets, generalizing the classical
notion of NED sets studied by Ahlfors–Beurling. A set A is CNED if the conformal
modulus of a curve family is not affected when one restricts to the subfamily inter-
secting the set A at countably many points. We show as our main theorem that CNED
sets are exceptional for the definition of quasiconformality.

Mathematics Subject Classification Primary 30C62 · 30C65; Secondary 31A15 ·
31B15

1 Introduction

1.1 A new definition of quasiconformality

We assume throughout that n ≥ 2. Let � ⊂ R
n be an open set and f : � → R

n be
a topological embedding, i.e., a homeomorphism onto its image, that is orientation-
preserving. We say that f is quasiconformal if f ∈ W 1,n

loc (�) and there exists K ≥ 1
such that
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‖Df (x)‖n ≤ K J f (x)

for a.e. x ∈ �. In this case, we say that f is K -quasiconformal. This is known as the
analytic definition of quasiconformality. In what follows all topological embeddings
are implicitly assumed to be orientation-preserving.

We define the metric distortion of f at a point x ∈ � by

H f (x) = lim sup
r→0

L f (x, r)

l f (x, r)
, (1.1)

where, for r > 0,

L f (x, r) = sup{| f (x) − f (y)| : y ∈ �, |x − y| ≤ r} and

l f (x, r) = inf{| f (x) − f (y)| : y ∈ �, |x − y| ≥ r}.

By a result of Gehring [8, Corollary 3], f is quasiconformal if and only if there exists
H ≥ 1 such that H f (x) ≤ H for every x ∈ �. This is known as the metric definition
of quasiconformality. Geometrically, it says that f maps all sufficiently small balls
centered at x to topological balls with bounded eccentricity. The eccentricity of a
bounded open set A ⊂ R

n is by definition

E(A) = inf{M ≥ 1 : there exists an open ball B such that B ⊂ A ⊂ MB}.

Observe that the eccentricity of a ball is 1 and if B(x, r) ⊂ B(x, r) ⊂ �, then

E( f (B(x, r))) ≤ L f (x, r)

l f (x, r)
.

The reverse inequality is not true in general. If f is quasiconformal then

lim sup
r→0

E( f (B(x, r)))

is uniformly bounded in �.
A fundamental theorem proved by Heinonen–Koskela [12] is that the “limsup”

in the definition of H f in (1.1) can be replaced by “liminf”. Thus, only a sequence
of balls centered at x and shrinking to x is required to be mapped under f to sets
with bounded eccentricity. This significant result was immediately applied in rigidity
problems in complex dynamics in the work of Przytycki–Rohde [29] and in further
works that we mention below.

One natural question is whether one can define quasiconformality by requiring the
symmetric condition that arbitrary sets of bounded eccentricity and not necessarily
balls are mapped to sets of bounded eccentricity. We prove here that this is indeed the
case. We first provide a definition.

Definition 1.1 Let � ⊂ R
n be an open set and f : � → R

n be a topological embed-
ding. The eccentric distortion of f at a point x ∈ � is defined by
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Metric definition of quasiconformality... 3233

E f (x) = inf{M ≥ 1 : there exists a sequence of open sets Ak ⊂ �, k ∈ N,

with x ∈ Ak, k ∈ N, and diam(Ak) → 0 as k → ∞
such that E(Ak) ≤ M and E( f (Ak)) ≤ M for all k ∈ N},

Observe that

E f (x) ≤ H f (x)

for each x ∈ �, thus, quasiconformal maps have uniformly bounded eccentric distor-
tion. We prove that the converse is true.

Theorem 1.2 Let� ⊂ R
n be anopen set and f : � → R

n be a topological embedding.
Suppose that there exists a constant H ≥ 1 such that for all x ∈ � we have

E f (x) ≤ H . (1.2)

Then f is quasiconformal in �.

Equivalently, f is quasiconformal if for each x ∈ � there exists a sequence of
open sets Ak , k ∈ N, containing x and shrinking to x such that Ak and f (Ak) have
uniformly bounded eccentricity, not depending on k or x . One advantage of this con-
dition, compared to the classical metric definition, is that it is completely symmetric
with respect to f and f −1:

E f (x) = E f −1( f (x)).

Another advantage is that the sets Ak shrinking to x are uncentered, as opposed to
the balls in the metric definition. This feature makes Theorem 1.2 very powerful, as
illustrated by a compelling application in the problem of rigidity of circle domains
that we discuss below.

The proof of the theoremofHeinonen–Koskela, replacing “limsup”with “liminf” in
(1.1), cannot be used for the proof of Theorem 1.2. The reason is that it relies crucially
on the Besicovitch covering theorem (see Theorem 2.2), which roughly asserts that
a cover by open balls can be replaced by a subcover that has bounded multiplicity.
This powerful tool can be used only for coverings by geometric balls and not by
arbitrary sets of bounded eccentricity. Thus, for the proof of Theorem 1.2 we need a
new technical covering lemma, which is one of the innovations of the current work
and we term the egg-yolk covering lemma. We present this lemma in Sect. 2. Theorem
1.2 is a special case of the more general Theorem 1.3, in which we allow for some
exceptional sets as well, instead of requiring (1.2) at all points.

1.2 Exceptional sets for the definition of quasiconformality

By a result of Gehring [8, Theorem 8], in order to establish quasiconformality one
does not need to verify condition (1.1) at all points x ∈ �, but can allow for some
exceptional sets: a set of σ -finite Hausdorff (n − 1)-measure, where we could have
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H f = ∞, and a set of n-measure zero, where H f could be finite but unbounded. On
the other hand, the result and methods of Heinonen–Koskela [12] do not allow for an
exceptional set, if one replaces “limsup” with “liminf” in (1.1).

Later Kallunki–Koskela [18, 19] proved a significant generalization of the theorems
of Gehring and Heinonen–Koskela, replacing “limsup” with “liminf” in (1.1) and
allowing for the same type of exceptional sets as Gehring’s theorem. The possibility
of an exceptional set in the Heinonen–Koskela theorem was immediately exploited
for resolving rigidity problems in complex dynamics [9, 10, 23, 30].

There has been a long line of research in obtaining such results for Sobolev functions
in Euclidean space and for Sobolev and quasiconformal maps in metric spaces; see
[5, 6, 13, 20–22, 34].

Ourmain result, Theorem 1.3, is a further generalization of above results and allows
for a much larger class of exceptional sets than sets of σ -finite Hausdorff (n − 1)-
measure. Namely, sets that are “negligible for extremal distances” in some weak sense
are exceptional for the definition of quasiconformality.We introduce some terminology
before stating the result.

For an open setU ⊂ R
n and two continua F1, F2 ⊂ U the family of curves joining

F1 and F2 insideU is denoted by�(F1, F2;U ). For a set A ⊂ R
n we denote byF0(A)

the family of curves in R
n that do not intersect A, except possibly at the endpoints,

and by Fσ (A) the family of curves in R
n that intersect A at countably many points,

not counting multiplicity.
A set A ⊂ R

n is negligible for extremal distances if for every pair of non-empty,
disjoint continua F1, F2 ⊂ R

n we have

Modn �(F1, F2;Rn) = Modn(�(F1, F2;Rn) ∩ F0(A)).

In this case, we write A ∈ NED. We remark that we do not require A to be closed.
Closed NED sets in the plane were studied and characterized in the seminal work of
Ahlfors–Beurling [1]. Specifically, a closed set A isNED if and only if every conformal
embedding f : C\A → C is the restriction of a linear map. The role of NED sets in
higher dimensions and their connection to removable sets for Sobolev functions were
studied in [2, 31, 33].

We introduce in this paper a significantly larger class of sets and show that they
are exceptional for the definition of quasiconformality. We say that a set A ⊂ R

n is
countably negligible for extremal distances if

Modn �(F1, F2;Rn) = Modn(�(F1, F2;Rn) ∩ Fσ (A))

for every pair of non-empty, disjoint continua F1, F2 ⊂ R
n . In this case we write

A ∈ CNED. Again, the set A need not be closed. The monotonicity of modulus
implies that NED ⊂ CNED. We now state our main theorem.

Theorem 1.3 Let� ⊂ R
n be anopen set and f : � → R

n be a topological embedding.
Let A,G ⊂ � be sets such that

A ∈ CNED and either mn(G) = 0 or mn( f (G)) = 0.
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Suppose that there exists a constant H ≥ 1 such that for all x ∈ � \ (A∪G) we have

E f (x) ≤ H ,

and for all x ∈ G we have

E f (x) < ∞.

Then f is K -quasiconformal in �, for some K ≥ 1 depending only on n and H.

Here mn denotes the n-dimensional Lebesgue measure. If A = G = ∅, then we
obtain Theorem 1.2. The proof of Theorem 1.3 is presented in Sect. 3. The central
technical device for the proof is Theorem 3.1.

We remark that Theorem 1.3 is innovative in three different directions, compared
to previous results of Gehring, Heinonen–Koskela, and Kallunki–Koskela. First, we
assume upper bounds for the eccentric distortion E f rather than the metric distortion
H f ; recall that E f ≤ H f . Second, our proof gives a new perspective and allows the
possibility that either mn(G) = 0 or mn( f (G)) = 0, while in previous works only
the first assumption was considered. Third, the set A is assumed to be CNED, while in
the past only sets of σ -finite Hausdorff (n − 1)-measure were considered. In [26] the
current author shows that the class of CNED sets includes sets of σ -finite Hausdorff
(n−1)-measure, as well as, many other known classes of quasiconformally removable
sets. A closed set A ⊂ R

n is quasiconformally removable if every homeomorphism
of Rn that is quasiconformal in R

n \ A is quasiconformal in R
n . Thus, we have the

following consequence of Theorem 1.3.

Corollary 1.4 Closed CNED sets are quasiconformally removable.

It is an open problem to characterize such sets even in dimension 2. Known classes
of removable sets include sets of σ -finite Hausdorff (n − 1)-measure [4, 8], sets
with good geometry, such as boundaries of John and Hölder domains [16, 17], and
NED sets [1]. In the subsequent work [26] the current author shows that the above-
mentioned classes of sets are also in the CNED class, suggesting that closed CNED
sets characterize quasiconformally removable sets.

Theorem 1.3 has already found an application in the deep problem of rigidity of
circle domains. A circle domain in the plane is conformally rigid if every conformal
map onto another circle domain is the restriction of a Möbius transformation. It is
conjecturedbyHe–Schramm[15] that a circle domain is rigid if andonly if its boundary
is quasiconformally removable. The conjecture has been established in some cases by
He–Schrammandby the author in jointworkwithYounsi [28].With the aid ofTheorem
1.3 the current author [27] is able to establish that circle domains withCNED boundary
are rigid, a result that features not only CNED sets, but also the use of the eccentric
distortion in the definition of quasiconformality. This development is the strongest so
far and provides substantial evidence for the conjecture of He–Schramm; for example,
if one can show that CNED sets coincide with quasiconformally removable sets, then
the conjecture is true for domainswith totally disconnected boundary as a consequence
of [27].
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3236 D. Ntalampekos

We expect that our results will find further applications in rigidity problems in
complex dynamics, where often one has no geometric information about the distortion
of balls, but can control the distortion of non-round dynamical objects, such as puzzle
pieces.

2 The egg-yolk covering lemma

For quantities A and B we write A � B if there exists a constant c > 0 such that
A ≤ cB. If the constant c depends on another quantity H that we wish to emphasize,
then we write instead A ≤ c(H)B or A �H B. Moreover, we use the notation A � B
if A � B and B � A. As previously, we write A �H B to emphasize the dependence
of the implicit constants on the quantity H . All constants in the statements are assumed
to be positive even if this is not stated explicitly and the same letter may be used in
different statements to denote a different constant.

2.1 Known covering results

We first state a classical covering result.

Lemma 2.1 (5B-covering lemma, [11, Theorem 1.2, p. 2]) Let X be a metric space
and B be a collection of open balls in X with uniformly bounded radii. Then there
exists a disjointed subcollection B′ of B such that

⋃

B∈B
B ⊂

⋃

B∈B′
5B.

For an open ball B = B(x0, r0) and λ > 0 we denote by λB the ball B(x0, λr0).
Note that in metric spaces the center and radius of a ball need not be unique, so we
regard the ball B(x0, r0) not only as a set, but also as a pair (x0, r0). Then there is no
ambiguity in the definition of λB.

The power of the 5B-covering lemma lies on the fact that it allows us to replace
arbitrary covers by balls with covers by essentially disjoint balls. One drawback of
the 5B-covering lemma, however, is that if f is an arbitrary homeomorphism on X ,
then there is no relation between the sizes of f (B) and f (5B). In particular, rescaling
the family { f (5B)}B∈B′ by a uniform fixed factor will not give a disjointed family
in general; more specifically, one cannot find a scaling factor λ ∈ (0, 1) and points
xB ∈ f (5B) so that the family {B(xB, λ diam( f (5B)))}B∈B′ is disjointed. For this
reason, when working with homeomorphisms of Euclidean space, one can instead use
the Besicovitch covering theorem.

Theorem 2.2 (Besicovitch covering theorem, [24, Theorem 2.7]) Let A ⊂ R
n be a

bounded set and B be a family of closed balls such that each point of A is the center
of a ball in B. Then there exists a subcollection B′ of B such that

A ⊂
⋃

B∈B′
B and

∑

B∈B′
χ B ≤ c(n).
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Obviously, if f is a homeomorphism of Rn , then the family { f (B)}B∈B′ covers the
set f (A)with uniformly bounded multiplicity. Hence, unlike the 5B-covering lemma,
here we obtain information for both {B}B∈B′ and { f (B)}B∈B′ . The drawback of this
theorem is that it only works with geometric balls in Euclidean space and there is no
generalization for covers by sets of bounded eccentricity, as defined in the Introduction,
or for balls in metric spaces.

The egg-yolk covering lemma that we prove in this section can be regarded as
a generalization of the 5B-covering lemma and the Besicovitch covering theorem,
giving favorable covers that encode geometric information both in the domain and the
range of a homeomorphism between metric spaces.

Before moving to the statement of the egg-yolk covering lemma, we state a well-
known inequality that is often used in combination with covering lemmas.

Lemma 2.3 [7] Let p ≥ 1 and λ > 0. Suppose that {Bi }i∈N is a collection of balls in
R
n and ai , i ∈ N, is a sequence of non-negative numbers. Then

∥∥∥∥∥
∑

i∈N
aiχλBi

∥∥∥∥∥
L p(Rn)

≤ c(n, p, λ)

∥∥∥∥∥
∑

i∈N
aiχ Bi

∥∥∥∥∥
L p(Rn)

.

2.2 Egg-yolk pairs

Let (X , d) be a connected metric space. For a ball B = B(x0, r0) ⊂ X , we define
r(B) = r0.We always have diam(B) ≤ 2r(B) and if X \B �= ∅, since X is connected,
we have

r(B) ≤ diam(B) ≤ 2r(B).

Let A ⊂ X be a bounded open set and M ≥ 2. Suppose that there exists an open ball
B = B(x0, r0) such that B ⊂ 2B ⊂ A ⊂ MB. Then we call (A, B) an M-egg-yolk
pair; see Fig. 1. If (A, B) is an M-egg-yolk pair, we have the following immediate
properties.

(EY1) diam(A) ≤ 2Mr(B).
(EY2) If X \ A �= ∅, then

diam(B) ≤ 2r(B) ≤ diam(2B) ≤ diam(A) ≤ 2Mr(B) ≤ 2M diam(B).

(EY3) If X \ A �= ∅, then dist(B, X \ A) ≥ r(B).
(EY4) If x ∈ B and y ∈ A, then d(x, y) ≤ (M + 1)r(B).

Moreover, the following statements are true.

(EY5) Let (Ai , Bi ) be M-egg-yolk pairs, for i = 1, 2, such that B1 ∩ B2 �= ∅ and
A2 �⊂ A1. Then

diam(A2) ≥ c(M) diam(A1).
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3238 D. Ntalampekos

Fig. 1 An M-egg-yolk pair

Proof of (EY5) If A2 = X there is nothing to prove, so we assume that X\A2 �= ∅.
Also, since A2 �⊂ A1, we cannot have A1 = X ; thus X \ A1 �= ∅. If (M + 1)r(B2) <

dist(B1, X \ A1), then by (EY4) for x ∈ B1 ∩ B2 and y ∈ A2 we have d(x, y) ≤
(M + 1)r(B2) < dist(B1, X\A1). Thus, by the triangle inequality,

dist(y, X \ A1) ≥ dist(B1, X \ A1) − d(x, y) > 0.

It follows that A2 ⊂ A1, a contradiction. Therefore, by (EY3) and (EY2),

(M + 1)r(B2) ≥ dist(B1, X \ A1) ≥ r(B1) ≥ 2−1M−1 diam(A1)

and, by (EY2) again,

diam(A2) ≥ 2r(B2) ≥ 1

M(M + 1)
diam(A1). ��

(EY6) Let (Ai , Bi ), i ∈ I , be a family of M-egg-yolk pairs and suppose that there
exists i0 ∈ I such that Ai ∩ Ai0 �= ∅ and diam(Ai ) ≤ a diam(Ai0) for each
i ∈ I and for some a > 0. We set AI = ⋃

i∈I Ai . Then (AI , Bi0) is a
c(a, M)-egg-yolk pair.

Proof of (EY6) Note that Bi0 ⊂ 2Bi0 ⊂ Ai0 ⊂ AI and Ai ⊂ (2a + 1)MBi0 for each
i ∈ I . Thus, AI ⊂ (2a + 1)MBi0 . ��

2.3 The egg-yolk covering lemma

Lemma 2.4 (Egg-yolk covering lemma) Let X ,Y be compact, connected metric
spaces, f : X → Y be a homeomorphism, and M ≥ 2. Let {(Ai , Bi )}i∈I and
{(A′

i , B
′
i )}i∈I be families of M-egg-yolk pairs in X and Y , respectively, with f (Ai ) =

A′
i for each i ∈ I . Then there exists a set J ⊂ I and families {(Dj , Bj )} j∈J and

{(D′
j , B

′
j )} j∈J of c(M)-egg-yolk pairs in X and Y , respectively, such that

(i)
⋃

j∈J D j = ⋃
i∈I Ai ,
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(ii) f (Dj ) = D′
j for each j ∈ J , and

(iii) the balls B j , j ∈ J , are pairwise disjoint and the balls B ′
j , j ∈ J , are pairwise

disjoint.

The remaining of the section is devoted to the proof of the egg-yolk covering lemma.
The reader interested in the proof of the main theorem of the paper, Theorem 1.3, may
skip the rest of Sect. 2 and proceed with Sect. 3.

It is crucial for the application of the lemma that we are not requiring Bi to be
related to B ′

i ; we are only assuming that f (Ai ) = A′
i . In the case that X = Y , f is the

identity map, and B ′
i = Bi , compare this lemma to the 5B-covering lemma.

The main idea of the proof is to create the sets Dk with the aid of property (EY6),
by taking the union of sets Ai , A j whenever Bi ∩ Bj �= ∅. The essential difficulty
is that the diameters of Ai and A j might not be comparable. We first establish an
auxiliary result, which allows us to reduce to the case that Ai and A j have comparable
diameters whenever Bi ∩ Bj �= ∅.
Lemma 2.5 Under the assumptions of Lemma 2.4, there exists a set J ⊂ I and families
{(Fj , Bj )} j∈J and {(F ′

j , B
′
j )} j∈J of c(M)-egg-yolk pairs in X and Y , respectively,

such that

(i)
⋃

j∈J Fj = ⋃
i∈I Ai ,

(ii) f (Fj ) = F ′
j for each j ∈ J , and

(iii) if Bi ∩ Bj �= ∅ (resp. B ′
i ∩ B ′

j �= ∅) for some i, j ∈ J , then

c(M)−1 ≤ diam(Fi )

diam(Fj )
≤ c(M)

(
resp. c(M)−1 ≤ diam(F ′

i )

diam(F ′
j )

≤ c(M)

)
.

We remark that {Bj } j∈J and {B ′
j } j∈J are just subcollections of {Bi }i∈I and {B ′

i }i∈I ,
respectively, which are given in the assumptions of Lemma 2.4.

If I were a finite index set, then one could choose {Fj } j∈J to be a subcollection of
{Ai }i∈I satisfying (i) and with the property that Fi �⊂ Fj whenever i �= j . Then (EY5)
would immediately give the crucial property (iii) in Lemma 2.5. In the case that I is
infinite, the idea is the same, but the proof is more involved.

Proof of Lemma 2.5 Note that the collection {Ai }i∈I is partially ordered with respect
to inclusion. By the Hausdorff maximal principle [25, §1.11, p. 69], for each k ∈ I
there exists a maximal totally ordered set W (k) = {A j } j∈J (k) ⊂ {Ai }i∈I containing
Ak . Since f is injective and f (Ai ) = A′

i , the collection {A′
j } j∈J (k) is also a maximal

totally ordered subcollection of {A′
i }i∈I . Define AW (k) = ⋃

j∈J (k) A j and A′
W (k) =

f (AW (k)) = ⋃
j∈J (k) A

′
j . Obviously,

⋃
k∈I AW (k) = ⋃

i∈I Ai . We define

L(W (k)) = sup{diam(A j ) : A j ∈ W (k)} and

L ′(W (k)) = sup{diam(A′
j ) : A j ∈ W (k)}.

Note that both numbers are finite since A j ⊂ X , A′
j ⊂ Y , and X ,Y are bounded

spaces. We fix Ai1 , Ai2 ∈ W (k) such that diam(Ai1) ≥ L(W (k))/2 and diam(A′
i2
) ≥

123



3240 D. Ntalampekos

L ′(W (k))/2. SinceW (k) is totally ordered, we have Ai1 ⊃ Ai2 or Ai2 ⊃ Ai1 . Without
loss of generality, assume that Ai1 ⊃ Ai2 . Since f (Ai ) = A′

i for each i ∈ I , we have
A′
i1

⊃ A′
i2
. Thus, diam(A′

i1
) ≥ diam(A′

i2
) ≥ L ′(W (k))/2. Summarizing, there exists

Ai(k) ∈ W (k) such that diam(Ai(k)) ≥ L(W (k))/2 and diam(A′
i(k)) ≥ L ′(W (k))/2.

Note that diam(A j ) ≤ L(W (k)) ≤ 2 diam(Ai(k)) and diam(A′
j ) ≤ L ′(W (k)) ≤

2 diam(A′
i(k)) for each A j ∈ W (k). Moreover, for each A j ∈ W (k), we have A j ∩

Ai(k) �= ∅ and A′
j ∩ A′

i(k) �= ∅ by the total ordering of W (k). By property (EY6)
we conclude that (AW (k), Bi(k)) and (A′

W (k), B
′
i(k)) are c(M)-egg-yolk pairs for each

k ∈ I .
If AW (k) = X for some k ∈ I , then we set j = i(k), J = { j}, Fj = AW (k),

F ′
j = f (Fj ), and we have nothing to prove. Hence, we suppose that X \ AW (k) �= ∅,

and thus X \ Ak �= ∅, for each k ∈ I .
We claim that

diam(AW (k)) �M diam(AW (l)) whenever Bi(k) ∩ Bi(l) �= ∅. (2.1)

The same is true for (A′
W (k), B

′
i(k)), k ∈ I . To see this, suppose that Bi(k) ∩ Bi(l) �= ∅.

If AW (k) ⊂ AW (l) = ⋃
j∈J (l) A j , then by the compactness of AW (k) and the total

ordering of W (l), there exists an open set A j ∈ W (l) such that AW (k) ⊂ A j . If
A j ∈ W (k), then AW (k) = A j , so A j is clopen. By the connectedness of X , A j = X ,
a contradiction. Therefore, A j ∈ W (l)\W (k). This implies thatW (k)∪{A j } is totally
ordered, which contradicts the maximality of W (k). Therefore, AW (k) �⊂ AW (l) and
by (EY5) we have diam(AW (k)) �M diam(AW (l)). By reversing the roles of k and l,
we see that diam(AW (k)) �M diam(AW (l)).

If the mapping k �→ i(k) were injective on I , then the proof would have been
completedwith J = i(I ) ⊂ I . In general, thismight not be the case. For j ∈ J = i(I ),
we define Fj to be the union of all sets AW (k) such that i(k) = j . Since (AW (k), Bj )

is a c(M)-egg-yolk pair whenever i(k) = j , we conclude by (EY2) that

diam(AW (k)) �M diam(Bj ).

By property (EY6), (Fj , Bj ) is a c′(M)-egg-yolk pair. We also set F ′
j = f (Fj ) and

similarly, (F ′
j , B

′
j ) is a c

′(M)-egg-yolk pair. Without loss of generality, assume that
X\Fj �= ∅ for each j ∈ J . We only have to justify (iii). Suppose Bj1 ∩ Bj2 �= ∅ for
some j1, j2 ∈ J and consider k, l ∈ I with i(k) = j1 and i(l) = j2. Then, by (EY2)
and (2.1), we have

diam(Fj1) �M diam(Bj1) �M diam(AW (k)) �M diam(AW (l))

�M diam(Bj2) �M diam(Fj2).

The same argument applies to (F ′
j , B

′
j ), j ∈ J . This completes the proof. ��

Proof of Lemma 2.4 We will show that given {(Ai , Bi )}i∈I and {(A′
i , B

′
i )}i∈I as in

the statement, there exist families {(Dj , E j )} j∈J and {(D′
j , E

′
j )} j∈J of c(M)-egg-

yolk pairs, where {E j } j∈J and {E ′
j } j∈J are subcollections of {Bi }i∈I and {B ′

i }i∈I ,
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respectively, satisfying conclusions (i), (ii), and such that the sets {E ′
j } j∈J are pairwise

disjoint; that is, only one half of conclusion (iii) is satisfied. Then using this statement
for f −1 and for the given {(Dj , E j )} j∈J and {(D′

j , E
′
j )} j∈J (in place of {(Ai , Bi )}i∈I

and {(A′
i , B

′
i )}i∈I ), we may find families {(D̃ j , Ẽ j )} j∈ J̃ and {(D̃′

j , Ẽ
′
j )} j∈ J̃ of c̃(M)-

egg-yolk pairs, satisfying the full conclusions of the lemma.
If diam(Ai ) = 0 for some i ∈ I , then Ai is a singleton and is clopen. The connect-

edness of X implies that X is a singleton. In this case there is nothing to prove, so we
assume that diam(Ai ) > 0 for each i ∈ I .

By Lemma 2.5, we may assume that the given {(Ai , Bi )}i∈I and {(A′
i , B

′
i )}i∈I

are families of c′(M)-egg-yolk pairs with f (Ai ) = A′
i for each i ∈ I and with the

additional property that

diam(A′
i ) �M diam(A′

j ) whenever B ′
i ∩ B ′

j �= ∅. (2.2)

We set L = supi∈I diam(Ai ), which is positive and finite, since the space X is
bounded. Define F0 = ∅ and k0 = 0. Suppose that F j ⊂ I and k j ∈ Z have been
defined for j ∈ {0, . . . ,m} such that k j is increasing in j ∈ {0, . . . ,m} and suppose
that we have obtained c(M)-egg-yolk pairs (Di , Ei ) and (D′

i , E
′
i ) for i ∈ {1, . . . , km},

where Ei ∈ {Bj } j∈I and E ′
i ∈ {B ′

j } j∈I , such that

(1) F0 ∪ · · · ∪Fm ⊂ {i ∈ I : diam(Ai ) > 2−mL} ⊂ {i ∈ I : Ai ⊂ Dj for some j ∈
{1, . . . , km}} and ⋃km

i=1 Di ⊂ ⋃
i∈I Ai ,

(2) f (Di ) = D′
i , i ∈ {1, . . . , km},

(3) the sets E ′
i , i ∈ {1, . . . , km}, are pairwise disjoint, and

(4) {i ∈ I : B ′
i ∩ E ′

j �= ∅ for some j ∈ {1, . . . , km}} ⊂ {i ∈ I : Ai ⊂
Dj for some j ∈ {1, . . . , km}}.

Note that all of these statements are vacuously true for m = 0. Assuming that the
above statements are true for each m ∈ N ∪ {0}, we see that (1), (2), and (3) give (i),
(ii), and (iii), respectively, completing the proof of the lemma.

Now we show the inductive step. We define

Fm+1 = {i ∈ I : 2−m−1L < diam(Ai ) ≤ 2−mL and Ai �⊂ Dj , j ∈ {1, . . . , km}}.

IfFm+1 = ∅, we define km+1 = km . Suppose thatFm+1 �= ∅ and let i1 ∈ Fm+1. Since
Ai1 �⊂ Dj for all j ∈ {1, . . . , km}, we conclude by the induction assumption (4) that
B ′
i1

∩ E ′
j = ∅ for all j ∈ {1, . . . , km}. Suppose that B ′

i1
∩ B ′

j �= ∅ for some j ∈ I with
A j �⊂ Di for all i ∈ {1, . . . , km}. By (2.2) we conclude that diam(A′

i1
) �M diam(A′

j ).
We define E ′

km+1 = B ′
i1
and D′

km+1 to be the union of A′
i1
with the sets A′

j such that
B ′
i1

∩ B ′
j �= ∅ and A j �⊂ Di for all i ∈ {1, . . . , km}; see Fig. 2. By (EY6), we conclude

that (D′
km+1, E

′
km+1) is a c(M)-egg-yolk pair. Define Dkm+1 = f −1(D′

km+1) and
Ekm+1 = Bi1 . Note that Dkm+1 is the union of Ai1 with some sets A j such that
Ai1 ∩ A j �= ∅ (since A′

i1
∩ A′

j ⊃ B ′
i1

∩ B ′
j �= ∅) and A j �⊂ Di for i ∈ {1, . . . , km};

thus, by the induction assumption (1) we have diam(A j ) ≤ 2−mL < 2 diam(Ai1). It
follows that (Dkm+1, Ekm+1) is a c(M)-egg-yolk pair by (EY6). We remark that by

123



3242 D. Ntalampekos

Fig. 2 Top figure: B′
i1

∩ B′
j �= ∅, so diam(A′

i1
) �M diam(A′

j ). On the other hand, Bi1 need not intersect
B j and diam(A j ) might be much smaller than diam(Ai1 ). Bottom figure: Formation of Dkm+1 by taking
the union of Ai1 with sets A j such that B′

i1
∩ B′

j �= ∅

construction we have {i ∈ I : B ′
i ∩ E ′

km+1 �= ∅} ⊂ {i ∈ I : Ai ⊂ Dj for some j ∈
{1, . . . , km + 1}}.

We continue in the same way, by picking i2 ∈ Fm+1\{i1} such that Ai2 �⊂ Dkm+1.
If no such i2 exists, we define km+1 = km+1. Note that B ′

i2
∩E ′

km+1 = ∅ by the choice
of E ′

km+1, and B ′
i2

∩E ′
j = ∅ for each j ∈ {1, . . . , km} by the induction assumption (4).

We define E ′
km+2 = B ′

i2
and D′

km+2 to be the union of A′
i2
with the sets A′

j such that

B ′
i2

∩ B ′
j �= ∅ and A j �⊂ Di for i ∈ {1, . . . , km + 1}. Also, set Dkm+2 = f −1(D′

km+2)

and Ekm+2 = Bi2 . In this way we produce c(M)-egg-yolk pairs (D′
km+2, E

′
km+2) and

(Dkm+2, Ekm+2) such that E ′
km+2 ∩ E ′

j = ∅ for j ∈ {1, . . . , km + 1}. As before, by
construction we have {i ∈ I : B ′

i ∩ E ′
km+2 �= ∅} ⊂ {i ∈ I : Ai ⊂ Dj for some j ∈

{1, . . . , km + 2}}.
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We claim that this process will stop after finitely many steps. That is, there exists
km+1 > km with the property that there is no i ∈ Fm+1 \ {i1, . . . , ikm+1−km } such that
Ai �⊂ Dj for each j ∈ {km +1, . . . , km+1}. Indeed, by the uniform continuity of f −1,
we have

inf
i∈Fm+1

diam(A′
i ) > 0. (2.3)

Each E ′
i , i = km + 1, km + 2, . . . , is a ball of radius comparable to diam(D′

i );
thus, diam(E ′

i ) is bounded below away from 0 by (2.3). Moreover, the balls E ′
i are

disjoint and are contained in the compact space Y . This shows that this process will
necessarily end after a number km+1 − km of steps. We also conclude that if i ∈
Fm+1\{i1, . . . , ikm+1−km }, then Ai ⊂ Dj for some j ∈ {km + 1, . . . , km+1}; this is
also trivially true for i ∈ {i1, . . . , ikm+1−km }.

We first verify (1) for the index m + 1. By the definition of Dj , j ∈ {km +
1, . . . , km+1}, and the induction assumption (1) it is clear that

⋃km+1
i=1 Di ⊂ ⋃

i∈I Ai .
This explains the last part of (1). If i ∈ Fm+1, then by the definition of Fm+1 we
have diam(Ai ) > 2−m−1L . If 2−m−1L < diam(Ai ) ≤ 2−mL , then either i ∈ Fm+1,
so Ai ⊂ Dj for some j ∈ {km + 1, . . . , km+1}, or Ai ⊂ Dj for some j ≤ km .
In combination with the induction assumption, this shows the inclusions in (1). By
construction and the induction assumption, (2) and (3), and (4) are automatically
satisfied for the index m + 1. Thus, the proof of the inductive step is completed. ��

3 Proof of Theorem 1.3

3.1 Preliminaries

The 1-dimensional Hausdorff measure H 1(A) of a set A ⊂ R
n is defined by

H 1(A) = lim
δ→0

H 1
δ (A) = sup

δ>0
H 1

δ (A),

where

H 1
δ (A) = inf

⎧
⎨

⎩

∞∑

j=1

diam(Uj ) : A ⊂
⋃

j

U j , diam(Uj ) < δ

⎫
⎬

⎭ .

If δ = ∞, the quantity H 1∞(A) is called the 1-dimensional Hausdorff content of A
and is an outer measure on subsets of Rn . An elementary fact is that

H 1(A) = 0 if and only ifH 1∞(A) = 0.

We always have

min{H 1(A), diam(A)} ≥ H 1∞(A)
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and if the set A is connected, then

H 1∞(A) = diam(A).

See [3, Lemma 2.6.1, p. 53] for an argument.
A path or curve is a continuous function γ : I → R

n , where I ⊂ R is a compact
interval. The trace of a path γ is the image γ (I ) and will be denoted by |γ |. The
endpoints of a path γ : [a, b] → R

n are the points γ (a), γ (b).
Let � be a family of curves inRn . A Borel function ρ : Rn → [0,∞] is admissible

for the path family � if

∫

γ

ρ ds ≥ 1

for all rectifiable paths γ ∈ �. We define the n-modulus of � as

Modn � = inf
ρ

∫
ρn,

where the infimum is taken over all admissible functions ρ for �. By convention,
Modn � = ∞ if there are no admissible functions for �. Note that unrectifiable
paths do not affect modulus. Hence, we will assume that families of n-modulus zero
appearing in the next considerations contain all unrectifiable paths; for example, see
(M3) below. We will use the following standard facts about modulus:

(M1) The modulus Modn is an outer measure in the space of all curves in R
n . In

particular, it obeys the monotonicity and countable subadditivity laws.
(M2) If �0 is a path family with Modn �0 = 0, then the family of paths γ that have a

subpath in �0 also has n-modulus zero.
(M3) If � ⊂ R

n is an open set and ρ : � → [0,∞] is a Borel function with ρ ∈
Ln
loc(�), then there exists a path family �0 with Modn �0 = 0 such that for each

path γ /∈ �0 with trace in � we have
∫
γ

ρ ds < ∞; here we implicitly assume
that if γ /∈ �0, then γ is rectifiable.

(M4) If ρ : Rn → [0,∞] is a Borel function with ρ = 0 a.e., then there exists a
path family �0 with Modn �0 = 0 such that for each path γ /∈ �0 we have∫
γ

ρ ds = 0.

See [32, Chapter 1, pp. 16–20] and [14, Section 5.2] for more details about modulus
and proofs of these facts.

3.2 Finite distortion implies absolute continuity

The next theorem is the main technical result leading to the proof of the main theorem,
Theorem 1.3. We use the notation m∗

n for the n-dimensional outer Lebesgue measure
in Rn .
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Theorem 3.1 Let� ⊂ R
n be anopen set and f : � → R

n be a topological embedding.
Let X ⊂ � be a set and suppose that there exists a constant H ≥ 1 such that for all
x ∈ X we have

E f (x) ≤ H .

Then there exists a Borel function ρ f : � → [0,∞] with the following properties.

(i) (Support) There exists a Borel set U ⊂ � such that X ⊂ U, mn(U ) = m∗
n(X),

mn( f (U )) = m∗
n( f (X)), and ρ f is supported on U.

(ii) (Upper gradient) There exists a path family �0 with Modn �0 = 0 such that for
all paths γ /∈ �0 with trace in � we have

H 1∞( f (|γ | ∩ X)) ≤
∫

γ

ρ f ds.

(iii) (Quasiconformality) For every Borel set V ⊂ � we have

∫

V
ρn
f ≤ C(n, H)mn( f (U ∩ V )).

Proof We split the proof into several parts for the convenience of the reader.
Reduction to a connected domain. First, we reduce to the case that � is connected.

Suppose that � is disconnected and that the theorem is true in each connected compo-
nent � j , j ∈ J , of �. That is, there exists a Borel function ρ f on � satisfying (i)–(iii)
in each � j . We verify that these properties hold in all of �. By (i), for each j ∈ J ,
there exists a Borel set Uj ⊂ � j such that X ∩ � j ⊂ Uj , mn(Uj ) = m∗

n(X ∩ � j ),
mn( f (Uj )) = m∗

n( f (X ∩� j )), and ρ f |� j is supported onUj . We setU = ⋃
j∈J U j

and observe that

m∗
n(X) =

∑

j∈J

m∗
n(X ∩ � j ) =

∑

j∈J

mn(Uj ) = mn(U )

and similar equalities hold for m∗
n( f (X)) and mn( f (U )). This verifies (i). By (ii), for

each j ∈ J , there exists a curve family � j of n-modulus zero such that for all paths
γ /∈ � j with trace in � j we have

H 1∞( f (|γ | ∩ X)) ≤
∫

γ

ρ f · χ� j
ds.

We let �0 = ⋃
j∈J � j , which is a family of n-modulus zero by the subadditivity of

modulus. Then the inequality in (ii) is true for all curves γ in � that are outside �0.
Finally, (iii) is an elementary consequence of the countable additivity of mn .

Construction of approximate gradients. From now on, we assume that � is
connected. Let {Vk}k∈N be an exhaustion of � by connected open sets such that

123



3246 D. Ntalampekos

Vk ⊂⊂ Vk+1 ⊂ � for each k ∈ N. We write X = ⋃∞
k=1 Xk , where Xk = X ∩ Vk ,

k ∈ N. Consider a sequence of open sets Uk+1 ⊂ Uk ⊂ �, k ∈ N, such that
X ⊂ U := ⋂∞

k=1Uk , m∗
n(X) = mn(U ), and m∗

n( f (X)) = m∗
n( f (U )).

We fix k ∈ N. Since E f ≤ H on X , for each x ∈ Xk there exists an arbitrarily
small open set Ax ⊂ Uk ∩ Vk containing x such that

E(Ax ) < 2H and E( f (Ax )) < 2H ;

recall Definition 1.1. These conditions imply that there exists an open ball Bx such that
Bx ⊂ 2Bx ⊂ Ax ⊂ 4HBx and an open ball B ′

x such that B ′
x ⊂ 2B ′

x ⊂ A′
x ⊂ 4HB ′

x .
By considering a smaller set Ax , we may also require that

c2(H)Bx ⊂ Uk ∩ Vk and diam(Bx ) < c2(H)−1k−1

where c2(H) is a positive constant, to be specified. Thus, {(Ax , Bx )}x∈Xk and
{(A′

x , B
′
x )}x∈Xk are families of (4H)-egg-yolk pairs (recall the definition from Sect. 2)

in the compact, connected sets Vk and f (Vk), respectively.
By the egg-yolk covering lemma, Lemma 2.4, there exist families {(Ai , Bi )}i∈I

and {(A′
i , B

′
i )}i∈I of c1(H)-egg-yolk pairs in Vk and f (Vk), respectively, such that

f (Ai ) = A′
i for each i ∈ I , Xk ⊂ ⋃

i∈I Ai ⊂ Uk ∩ Vk , and the families {Bi }i∈I
and {B ′

i }i∈I are disjointed. Moreover, {Bi }i∈I is a subcollection of {Bx }x∈Xk . We now
choose c2(H) = c1(H) + 1, so

(c1(H) + 1)Bi ⊂ Uk ∩ Vk and (c1(H) + 1) diam(Bi ) < k−1. (3.1)

We note that

Ai ⊂ c1(H)Bi and A′
i ⊂ c1(H)B ′

i . (3.2)

In addition, since B ′
i is a ball, we have

diam(A′
i )
n ≤ c1(H)n diam(B ′

i )
n �n,H mn(B

′
i ). (3.3)

We set ri to be the radius of the ball Bi , i ∈ I . Consider the function

ρk =
∑

i∈I

diam(A′
i )

ri
χ(c1(H)+1)Bi .

By (3.1), we see that ρk is supported on Uk . Note that if Ai ∩ |γ | �= ∅ for some
rectifiable curve γ with diam(|γ |) > 1/k, then by (3.2) we have

∫

γ

χ(c1(H)+1)Bi ds ≥ ri ,

provided that |γ | is not contained in (c1(H) + 1)Bi , which is guaranteed by (3.1).
In addition, if K ⊂ � is a compact set and Ai ∩ K �= ∅, then by (3.1) the set
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(c1(H) + 1)Bi is contained in the open (1/k)-neighborhood of K , which we denote
by N1/k(K ). Therefore,

∫

γ

χ(c1(H)+1)Biχ N1/k (K ) ds ≥ ri .

We conclude that for each compact set K ⊂ � and every rectifiable curve γ with
diam(|γ |) > 1/k we have

H 1∞( f (|γ | ∩ Xk ∩ K )) ≤
∑

i :Ai∩|γ |�=∅
Ai∩K �=∅

diam(A′
i ) ≤

∫

γ

ρkχ N1/k (K ) ds. (3.4)

By Lemma 2.3, the fact that {Bi }i∈I is disjointed, (3.3), and the fact that {B ′
i }i∈I is

disjointed, we have

∫
ρn
k �n,H

∫ (
∑

i∈I

diam(A′
i )

ri
χ Bi

)n

�n,H

∫ ∑

i∈I

diam(A′
i )
n

rni
χ Bi

�n,H

∑

i∈I
diam(A′

i )
n �n,H

∑

i∈I
mn(B

′
i ) �n,H mn( f (Uk)).

Moreover, for each compact set K ⊂ �, the same computation shows that

∫

K
ρn
k �n,H mn( f (Uk ∩ N1/k(K ))). (3.5)

Observe that the latter measure is finite for large k ∈ N and bounded as k → ∞.
Compactness argument. The uniform upper bounds of (3.5), combined with the

Banach–Alaoglu theorem [14, Theorem 2.4.1] and a diagonal argument imply that
there exists a Borel function ρ f : � → [0,∞] with ρ f ∈ Ln

loc(�) and a subsequence
of ρk that converges to ρ f weakly in Ln(K ) for each compact set K ⊂ �; see
[14, Lemma 3.3.19] for a variant of this statement. For simplicity, we denote the
subsequence by ρk , k ∈ N.

The fact thatUk+1 ⊂ Uk , k ∈ N, implies that ρk is supported onUk , k ∈ N. Passing
to the weak limit, we conclude that ρ f is supported on U = ⋂∞

k=1Uk , as required in
(i). Let V ⊂ � be a Borel set and K ⊂ V be a compact set. By the weak convergence
of ρk to ρ f in Ln(K ) and (3.5) we have

∫

K
ρn
f ≤ lim inf

k→∞

∫

K
ρn
k �n,H mn( f (U ∩ K )) �n,H mn( f (U ∩ V )).

The inner regularity of Lebesgue measure completes the proof of (iii).
Finally, we show (ii). By Mazur’s lemma [14, Section 2.3], for each compact set

K ⊂ � there exist convex combinations ρ̃k of ρk, ρk+1, . . . , ρm(k), where m(k) ≥ k,
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such that ρ̃k converges strongly to ρ f in Ln(V ) for some neighborhood V of K . By
(3.4) and the fact that Xk ⊂ Xk+1, k ∈ N, we have

H 1∞( f (|γ | ∩ Xk ∩ K )) ≤
∫

γ

ρ̃kχ N1/k (K ) ds

whenever diam(|γ |) > 1/k. Moreover, X ∩ K ⊂ Xk for all sufficiently large k ∈ N,
so

H 1∞( f (|γ | ∩ X ∩ K )) ≤
∫

γ

ρ̃kχ N1/k (K ) ds

whenever diam(|γ |) > 1/k. Observe that ρ̃kχ N1/k (K ) converges to ρ f χ K in Ln(Rn).
By Fuglede’s lemma [32, Theorem 28.1] there exists a path family�(K ) of n-modulus
zero such that for all paths γ /∈ �(K ) we have

∫

γ

ρ̃kχ N1/k (K ) ds →
∫

γ

ρ f χ K ds

as k → ∞. Given a non-constant path γ /∈ �(K ), we then have

H 1∞( f (|γ | ∩ X ∩ K )) ≤
∫

γ

ρ f ds.

Let �0 = ⋃∞
k=1 �(Vk), which is a family of n-modulus zero. If γ /∈ �0 is a non-

constant path with trace in �, then there exists k ∈ N such that |γ | ⊂ Vk , so

H 1∞( f (|γ | ∩ X)) = H 1∞( f (|γ | ∩ X ∩ Vk)) ≤
∫

γ

ρ f ds.

Constant paths satisfy as well this inequality trivially. ��

3.3 Completing the proof of Theorem 1.3

The following statement is a consequence of Theorem 3.1.

Corollary 3.2 Let� ⊂ R
n be anopen set and f : � → R

n be a topological embedding.
Let G ⊂ � be a set such that for all x ∈ G we have

E f (x) < ∞

and either mn(G) = 0 or mn( f (G)) = 0. Then there exists a path family �0 with
Modn �0 = 0 such that for all paths γ /∈ �0 with trace in � we have

H 1( f (|γ | ∩ G)) = 0.

123



Metric definition of quasiconformality... 3249

Proof We write G = ⋃∞
k=1 Gk , where E f (x) ≤ k for x ∈ Gk . We fix k ∈ N and

consider the function ρk given by Theorem 3.1 and corresponding to the set X = Gk .
If mn(G) = 0, then ρk = 0 a.e. by part (i). If mn( f (G)) = 0, then ρk = 0 a.e. by part
(iii). In both cases, ρk = 0 a.e. By property (M4), this implies that there exists a path
family �k of n-modulus zero such that for γ /∈ �k we have

∫

γ

ρk ds = 0.

Combining this with part (ii) of Theorem 3.1, we see that there exists a path family
�′
k with n-modulus zero such that

H 1( f (|γ | ∩ Gk)) = H 1∞( f (|γ | ∩ Gk)) = 0

for all paths γ /∈ �′
k with trace in �. The desired path family is �0 = ⋃∞

k=1 �′
k . ��

With the aid of Corollary 3.2 one can immediately deduce Theorem 1.3 from the
following slightly more general statement.

Theorem 3.3 Let� ⊂ R
n be anopen set and f : � → R

n be a topological embedding.
Let A,G ⊂ � be sets such that A ∈ CNED and assume that there exists a path family
�0 withModn �0 = 0 such that for all paths γ /∈ �0 with trace in � we have

H 1( f (|γ | ∩ G)) = 0.

Suppose that there exists a constant H ≥ 1 such that for all x ∈ � \ (A∪G) we have

E f (x) ≤ H .

Then f is K -quasiconformal in �, for some K ≥ 1 depending only on n and H.

We finally focus on proving Theorem 3.3. We require the next lemma on maps that
are absolutely continuous along paths.

Lemma 3.4 [32, Theorem 5.3] Let � ⊂ R
n be an open set, f : � → R

n be a contin-
uous map, ρ f : � → [0,∞] be a Borel function, and γ : [a, b] → � be a rectifiable
path. Suppose that for every interval [s, t] ⊂ [a, b] we have

| f (γ (t)) − f (γ (s))| ≤
∫

γ |[s,t]
ρ f ds < ∞.

Then for every Borel function ρ : f (�) → [0,∞] we have
∫

f ◦γ

ρ ds ≤
∫

γ

(ρ ◦ f ) · ρ f ds.
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A topological ring R is a bounded open set in R
n whose boundary has two com-

ponents, say F1 and F2. For a topological ring R we denote by �(R) the family of
curves joining F1 and F2 in R; that is, the curves of �(R) are contained in R, except
for the endpoints, which lie in different components of ∂R. We will use the fact that
if F is a family of curves that is closed under subpaths, then

Modn(�(R) ∩ F) = Modn(�(F1, F2;Rn) ∩ F).

In particular, this is true ifF = Fσ (A) for some set A; recall that Fσ (A) is the family
of curves meeting A at countably many points. Hence, if A ∈ CNED,

Modn(�(R) ∩ Fσ (A)) = Modn(�(F1, F2;Rn) ∩ Fσ (A))

= Modn �(F1, F2;Rn) = Modn �(R).
(3.6)

In order to show that the map f of Theorem 3.3 is quasiconformal, we will use the
ring definition of quasiconformality as stated in the next theorem.

Theorem 3.5 [32, Theorem 36.1] Let � ⊂ R
n be an open set and f : � → R

n be a
topological embedding. If there exists K ≥ 1 such that for each topological ring R ⊂
R ⊂⊂ � we have Modn �(R) ≤ K Modn �( f (R)), then f is K -quasiconformal.

Proof of Theorem 3.3 We apply Theorem 3.1 with X = �\ (A∪G). Denote by �′
0 the

union of the exceptional path families given by Theorem 3.1 (ii) and by the statement
of Theorem 3.3, and note that Modn �′

0 = 0. By Theorem 3.1, there exists a Borel
function ρ f : � → [0,∞] with ρ f ∈ Ln

loc(�) such that for all paths γ /∈ �′
0 with

trace in � we have

H 1∞( f (|γ | \ A)) = H 1∞( f (|γ | ∩ (� \ (A ∪ G)))) ≤
∫

γ

ρ f ds (3.7)

and

∫

V
ρn
f ≤ C(n, H)mn( f (V ))

for each Borel set V ⊂ �. The latter implies that for every Borel function ρ : f (�) →
[0,∞] we have

∫
(ρ ◦ f ) · ρn

f ≤ C(n, H)

∫
ρ. (3.8)

By enlarging the exceptional family �′
0, still requiring that Modn �′

0 = 0, we may
assume that it has the additional properties that

∫

γ

ρ f ds < ∞
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for each γ /∈ �′
0 with trace in � and that if γ /∈ �′

0 then all subpaths of γ have the
same property; see properties (M2) and (M3).

Let R ⊂ R ⊂⊂ � be a topological ring. Let γ : [a, b] → � be a path in (�(R) ∩
Fσ (A))\�′

0. By (3.7) and the fact that every subpath of γ lies outside �′
0 we have

| f (γ (t)) − f (γ (s))| ≤ diam( f (γ ([s, t]))) = H 1∞( f (γ ([s, t])))
= H 1∞( f (γ ([s, t]) \ A)) ≤

∫

γ |[s,t]
ρ f ds < ∞

for every interval [s, t] ⊂ [a, b]. Let ρ : f (�) → [0,∞] be admissible for �( f (R)).
Then by Lemma 3.4 we have

∫

γ

(ρ ◦ f ) · ρ f ds ≥
∫

f ◦γ

ρ ds ≥ 1.

This shows that (ρ ◦ f ) · ρ f is admissible for (�(R) ∩ Fσ (A)) \ �′
0, so using (3.8),

we arrive at

Modn(�(R) ∩ Fσ (A)) = Modn((�(R) ∩ Fσ (A)) \ �′
0)

≤
∫

(ρ ◦ f )n · ρn
f ≤ C(n, H)

∫
ρn .

We conclude that

Modn(�(R) ∩ Fσ (A)) ≤ C(n, H)Modn �( f (R)).

Finally, the assumption that A ∈ CNED and (3.6) imply that

Modn(�(R) ∩ Fσ (A)) = Modn �(R).

An application of Theorem 3.5 completes the proof. ��
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