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Abstract We prove that the Sierpiński gasket is non-removable for quasicon-
formal maps, thus answering a question of Bishop (NSF Research Proposal,
2015. http://www.math.stonybrook.edu/~bishop/vita/nsf15.pdf). The proof
involves a new technique of constructing an exceptional homeomorphism
from R

2 into some non-planar surface S, and then embedding this surface
quasisymmetrically back into the plane by using the celebrated Bonk–Kleiner
Theorem (Bonk and Kleiner in Invent Math 150(1):127–183, 2002). We also
prove that all homeomorphic copies of the Sierpiński gasket are non-removable
for continuous Sobolev functions of the class W 1,p for 1 ≤ p ≤ 2, thus
complementing and sharpening the results of the author’s previous work (Nta-
lampekos in A removability theorem for Sobolev functions and detour sets.
arXiv:1706.07687).
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1 Introduction

1.1 Background and main results

The object of this paper is to prove that the Sierpiński gasket is non-
removable for (quasi)conformal maps and Sobolev functions. The problem
of (quasi)conformal and Sobolev removability has been studied extensively.
Besides earlier results by Besicovitch [3] and Gehring [13], various conditions
that guarantee the removability of compact sets have been established by Jones
and Smirnov [18,19], Kaufman and Wu [22,39], Koskela and Nieminen [26],
and recently by the current author [30]. Moreover, removability of Julia sets
has been studied by Kahn [20] and also by Graczyk and Smirnov [14]. On the
other side of the coin, examples of non-removable sets and constructions of
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exceptional functions/homeomorphisms have been given by Kaufman andWu
[21,22], Bishop [4,5], and also Koskela et al. [25]. The present paper provides
one more result in this direction. Interestingly, according to a conjecture of He
and Schramm [17], the problem of removability is also related to the rigidity
of circle domains and Koebe’s conjecture.

So far, the types of sets which were known to be non-removable were sets
of positive Lebesgue measure, some product sets, some Cantor sets, and also
“rough” sets which are topologically “simple” (e.g. simple curves). The task of
constructing an exceptional homeomorphismbecomes very challenging, as the
topology of the set deteriorates. To the best of our knowledge, it is the first time
that a non-trivial construction is used to prove that a set with infinitely many
complementary components, such as the Sierpiński gasket, is non-removable.
This hints that a generic set with infinitely many complementary components
should be non-removable. Such sets are, for example, Sierpiński carpets, the
Apollonian gasket, and also SLEκ for κ ∈ (4, 8); Sheffield [34] has posed the
question whether the latter is removable or not.

We include some background of the problem of removability of sets for
(quasi)conformalmaps inR

2 and Sobolev functions inR
n.We direct the reader

[40] for a thorough survey on the topic of (quasi)conformal removability and
for proofs of some of the facts that we state here.

Definition 1.1 We say that a compact set K ⊂ U ⊂ R
2 is (quasi)conformally

removable inside the domain U if any homeomorphism of U , which is
(quasi)conformal on U\K , is (quasi)conformal on U .

Here we mention some basic facts. A set K is quasiconformally removable
inside U if and only if K is conformally removable inside U . Hence, from
now on, we will be using the term quasiconformal removability. Furthermore,
a set K is quasiconformally removable inside a domain U if and only if K
is quasiconformally removable inside the entire plane R

2. Two fundamental
open questions are the following:

Question 1 (p. 264, [19]). Is the union of two intersecting compact sets qua-
siconformally removable, whenever each one of them is removable?

For a partial result in this direction see [41, Theorem 4]. In the same paper
[41, p. 1306] the author discusses the problem of local removability. A set K
is locally quasiconformally removable if for any open set U (not necessarily
containing K ) and for any homeomorphism f of U that is quasiconformal on
U\K we have that f is quasiconformal on U .

Question 2 If a set is quasiconformally removable, is it also locally quasi-
conformally removable?
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A stronger notion of removability is the notion of W 1,2-removability. We
give the general definition of W 1,p-removability in R

n , where p ∈ [1, ∞].
Recall that a function f lies in W 1,p(U ), where U is an open subset of R

n , if
f ∈ L p(U ) and also f has weak derivatives in U that lie in L p(U ).

Definition 1.2 Let p ∈ [1, ∞]. We say that a compact set K ⊂ R
n is W 1,p-

removable if any real-valued function that is continuous in R
n and lies in

W 1,p(Rn\K ), also lies W 1,p(Rn).

Using partitions of unity one can show that this definition is local, and thus
the answer to the analog of Question 2 is positive in this case. Furthermore,
Hölder’s inequality implies that if a set of measure zero is W 1,p-removable,
then it is also W 1,q -removable for q > p.

Question 3 (p. 264, [19]). Is W 1,2-removability in the plane equivalent to
quasiconformal removability?

Interestingly, so far the techniques used in the two different notions of
removability are the same, but there is no further indicationwhether the answer
to the preceding question should be positive or negative.

If a set K ⊂ R
2 has measure zero, then W 1,2-removability of K implies

quasiconformal removability. If a set K ⊂ R
2 has positive measure then it is

non-removable for quasiconformal maps. In [30] the author posed the question
whether this is true for Sobolev removability. We provide an answer to this
question here:

Theorem 1.3 Let K ⊂ R
n be a compact set of positive Lebesgue measure

and 1 ≤ p < ∞. Then K is non-removable for W 1,p.

However, the statement is not true for W 1,∞:

Proposition 1.4 There exists a compact set K ⊂ R
n of positive Lebesgue

measure that is W 1,∞-removable.

Classes of W 1,2- and quasiconformally removable sets include sets of σ -
finite Hausdorff 1-measure [3], [36, Section 35], quasicircles, boundaries
of John domains, of Hölder domains, and of domains satisfying certain
quasihyperbolic conditions [18,19,26]. Also, some novel techniques for the
removability of Julia sets of quadratic polynomials appeared in [20].

On the other hand, as already remarked, all sets of positive measure are
non-removable for (quasi)conformal maps and W 1,2 functions. Furthermore,
there exist non-removable Jordan curves of Hausdorff dimension 1 [4], and
also non-removable graphs of functions [21].

Most of these results refer to compact sets that are the boundary of the union
of finitely many connected open sets. Until recently, there had been no general
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result on sets with infinitely many complementary components, not falling into
the preceding category. The task of proving that such a set is (non)-removable
requires the development of different tools. In [30] the author studied this
problem and derived a condition that guarantees W 1,p-removability of a set
K ⊂ R

n for p > n. Roughly speaking, the condition is the following:

1. The complementary components of K are uniform Hölder domains (see
e.g. [35] and also [30] for the definition), and

2. for “almost every” line L intersecting K , and for every ε > 0 there exists
a “detour path” γ that ε-follows the line L , but intersects only finitely
many of the complementary components of K that the line L intersects.

In other words, (2) says that we can “travel” in the direction of the line L
using only finitely many components in the complement of K , but still staying
arbitrarily close to the line L; see Fig. 1. We call such sets detour sets, and the
Sierpiński gasket, depicted in Fig. 1, is one such set.

Theorem 1.5 (Corollary 1.4, [30]). The Sierpiński gasket is W 1,p-removable
for p > 2.

Other sets that fall into the same category are the Apollonian gasket and
generalized Sierpiński gasket Julia sets of sub-hyperbolic rational maps; see
[30, Section 7].

The Sierpiński gasket is constructed as follows. We consider an equilateral
triangle in the plane of sidelength 1 and subdivide it into four equilateral
triangles of sidelength 1/2. After removing the middle triangle, we proceed
inductively with subdividing each of the remaining three triangles into four

Fig. 1 The Sierpiński gasket, and a detour path γ near the line L
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equilateral triangles of sidelength 1/22, and so on. The remaining compact set
K is the Sierpiński gasket.
In this work we first prove that Theorem 1.5 is sharp:

Theorem 1.6 The Sierpiński gasket is non-removable for W 1,p, for 1 ≤ p ≤
2.

In fact, by the monotonicity discussed after Definition 1.2, it suffices to
prove that the gasket is non-removable for W 1,2.

The method used is very flexible and we obtain the following result:

Theorem 1.7 Let h : R
2 → R

2 be a homeomorphism and K be the Sierpiński
gasket. Then h(K ) is non-removable for W 1,2.

Of course, if h(K ) has positive Lebesgue measure, then the conclusion fol-
lows immediately fromTheorem1.3, so themeasure zero case is the interesting
one.

Finally, we boost the proof of Theorem 1.6 and add a new ingredient to
obtain the main result:

Theorem 1.8 The Sierpiński gasket is non-removable for quasiconformal
maps.

In other words, there exists a homeomorphism of R
2 that is quasiconformal

in the complement of the gasket, but not globally quasiconformal. This answers
a question raised by Bishop [6, Question 13]. We were not able to show the
analog of Theorem 1.7 in this case, i.e., that all homeomorphic copies of
the gasket are non-removable for quasiconformal maps, but we believe that a
modification of the techniques used here can provide the answer.

We now discuss a natural approach to the problem, which, however, seems
extremely hard to pursue; then, in Sect. 1.2 we give a brief outline of the proof
of Theorem 1.8 and explain what this “new ingredient” that we use in our
approach is.

As explained in [6, p. 15], one may try to construct an exceptional homeo-
morphism as in Theorem 1.8 as follows. Note that between any two triangles
V1 and V2 there exists a conformal map, and this map is unique if one requires
that each vertex of V1 is mapped to a prescribed vertex of V2, and the vertex
correspondence is orientation-preserving. Here, we allow Vi , i = 1, 2, to be
an “unbounded” triangle, i.e., the unbounded complementary component of a
triangle. Hence, one can first map the unbounded complementary component
of the Sierpiński gasket onto an unbounded non-equilateral triangle, and then
(inductively) require that every bounded complementary equilateral triangle
of the gasket is mapped uniquely by a conformal map to a triangle. Note that
at each level of this construction the image of the vertices of a triangle is pre-
scribed by the map of the previous level. This process will uniquely determine
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a map that is conformal on each complementary component of the gasket. If
this map extends to a homeomorphism of R

2, then it cannot be globally con-
formal, since it changes angles. However, it is not clear at all whether this map
can be extended to a continuous map on R

2, and thus to a homeomorphism of
R
2.
Before discussing the outline of the proof of Theorem 1.8 in Sect. 1.2, we

conclude this section with some remarks on the (non)-removability of another
related type of fractals whose complement has infinitely many components,
namely, Sierpiński carpets.

The standard Sierpiński carpet S3 is constructed by subdividing the unit
square [0, 1]2 into nine squares of sidelength 1/3 and removing the mid-
dle square, and then proceeding inductively in each of the remaining eight
squares. It is easy to see that the standard Sierpiński carpet is non-removable
for quasiconformal and W 1,p maps for 1 ≤ p ≤ ∞. We sketch the proof for
quasiconformal non-removability. Note that S3 contains a copy of C × [0, 1],
where C is the middle-thirds Cantor set. Let h : R → R be the Cantor stair-
case function and let ψ : R → [0, 1] be a smooth function with ψ ≡ 0
outside [0, 1] and ψ ≡ 1 in [1/9, 8/9]. Then f (x, y):=(x + h(x)ψ(y), y) is
a homeomorphism of R

2 that is quasiconformal on R
2\S3, but not globally

quasiconformal.
A (generalized) Sierpiński carpet is a planar set S ⊂ R

2 that is homeomor-
phic to S3; the homeomorphism need not be defined on all of R

2. These sets
can be characterized as the compact sets of the plane arising by removing from
the interior of a Jordan region � countably many Jordan regions Qi for i ∈ N,
whose closures are disjoint and contained in �, such that diam(Qi ) → 0 as
i → ∞ and S:=�\⋃

i∈N
Qi has empty interior; see [37].

It is not known, in general, whether these sets are removable for quasicon-
formal maps or Sobolev functions, but we conjecture the following:

Conjecture 1 All Sierpiński carpets are non-removable for quasiconformal
maps and for W 1,p functions, for 1 ≤ p ≤ ∞.

1.2 Sketch of the proof of Theorem 1.8

Let K be the Sierpiński gasket. We quickly sketch the strategy of constructing
a homeomorphism F : R

2 → R
2 that is quasiconformal on R

2\K , but not
globally quasiconformal. The lemmas introduced here are informal and all
details can be found in Sect. 5. We suggest that the reader browse through
the colored figures (see online version for colored figures) (located in Sect. 5)
while reading the sketch.

First, we will define a continuous map f : R
2 → R

2 that is the identity
on the unbounded component of R

2\K , it is injective outside the bounded
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equilateral triangle components of R
2\K , and collapses each equilateral tri-

angle component to a tripod; see Fig. 7. This map is defined inductively. More
precisely, the map f is the identity on the boundary of the unbounded com-
plementary triangle. Then, one collapses in a continuous way the “middle”
complementary equilateral triangle W of sidelength 1/2 to a tripod, whose
barycenter is precisely the barycenter of the vertices of W and whose vertices
are the vertices of W . We also require that the midpoints of the three edges of
W are collapsed to the barycenter of the tripod G. Note that on the vertices of
W the function f has already been defined to be the identity, by the previous
step. Inductively, all complementary equilateral triangles of the gasket will be
collapsed to tripods. The proof of the uniform continuity of such a map is a
significant hurdle that we have to deal with. In fact, one has to choose very
carefully the collapsing maps in each step, so that they satisfy a certain mod-
ulus of continuity. Note that after this procedure the gasket K is blown up by
f to a set of full measure, since the tripods have measure zero. Summarizing,
we have:

Lemma 1.9 There exists a continuous map f : R
2 → R

2 that is injective
outside the complementary equilateral triangles of the gasket, and collapses
each (bounded) complementary equilateral triangle to a tripod. Furthermore,
f (K ) has positive Lebesgue measure.

Of course, this map is not a homeomorphism on the complementary equi-
lateral triangles, so we have to correct it there, but otherwise keep the existing
definition. Unfortunately, there is no way to correct our function in this way,
if the target is R

2. What we do instead, is change the target to a non-Euclidean
metric surface S and correct the map f inside the complementary equilateral
triangles in order to obtain a homeomorphism � : R

2 → S that is quasicon-
formal in R

2\K .
The “correction” that we do in each equilateral triangleW is the following.

We “fold” W on top of the tripod f (W ); see Fig. 8. The folding map will be
M-quasiconformal for a universal M > 0. In fact, the folding map will just
be piecewise linear. More precisely, we prove that for an arbitrary equilateral
triangle W and an arbitrary tripod G we can find an M-quasiconformal map
that foldsW onto six rectangles that are attached on top of the edges ofG, with
appropriate identifications. We call flap the metric space arising by folding a
single equilateral triangle over a tripod. In this folding procedure, one can
choose the “height” of the flap to be arbitrarily small, without affecting the
constant M . Furthermore, a crucial property is that the folding map has to
be compatible, in a sense, with f on ∂W , because we we wish to paste the
two maps. In particular, the folding map has to have a certain modulus of
continuity (the one that ensures the uniform continuity of f ) and it must map
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the midpoints of the edges of W to “lifts” of the barycenter of the tripod G;
see Fig. 8. We now summarize:

Lemma 1.10 There exists a universal M > 0 such that for each equilateral
triangle W and for each tripod G there exists a folding map φW from W onto
the flap space corresponding to G. The height of the flap can be chosen to be
arbitrary small. Moreover, the maps f and φW can be chosen to be compatible
for all complementary equilateral triangles W of the gasket K .

By folding all complementary equilateral triangles over their correspond-
ing tripods, one obtains a flap-plane S, which is a non-Euclidean surface,
and a homeomorphism � : R

2 → S that is M-quasiconformal on R
2\K and

“agrees” with f outside the triangles; see Fig. 7 (we remark here that in the
figure the edges of the green rectangles are not glued to the red rectangles (see
online version for colored figures), except possibly at one point; see also Fig. 4
for the gluing pattern). The map � is the result of pasting the map f with all
the folding maps φW . The map � maps the gasket to a subset of S that has
positive measure. In brief:

Lemma 1.11 There exists a homeomorphism� fromR
2 onto a metric surface

S that is M-quasiconformal on R
2\K and maps K to a subset of S that has

positive Hausdorff 2-measure.

If the target of � were not S but it were R
2, then the proof of non-

removability would be finished. Hence, we have to find a way to change the
target toR

2. This is facilitated by theBonk–Kleiner Theorem [7], which allows
us to embed S into R

2 with a quasisymmetric map. The Bonk–Kleiner Theo-
rem asserts that a metric sphere that is Ahlfors 2-regular and linearly locally
connected is quasisymmetrically equivalent to the standard Euclidean sphere.
We develop a theory of flap-planes constructed similarly to S. These are just
spaces arising by gluing to the plane an infinite collection of rectangles (or
flaps), which are “perpendicular” to the plane. Using the Bonk–Kleiner Theo-
rem we will show that flap-planes can be quasisymmetrically embedded to the
plane, provided that the heights of the flaps are sufficiently small. In our case,
we can obtain a quasisymmetry � : S → R

2. Note that � is a quasisymmetry
on all of S.

Lemma 1.12 There exists a quasisymmetry � : S → R
2. Moreover, � maps

sets of positive Hausdorff 2-measure to sets of positive Lebesgue measure.

The composition F = � ◦ � will be a homeomorphism of R
2 that is

M ′-quasiconformal on R
2\K for some uniform M ′ > 0, but it cannot be

globally quasiconformal, because it has to blow the gasket K to a set of positive
area. This is because �(K ) had positive measure in S and in our setting
the quasisymmetry � has to map sets of positive measure to sets of positive
measure.
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1.3 Organization of the paper

In Sect. 2 we introduce our notation and discuss some preliminaries regarding
quasiconformal and quasisymmetric maps, and also convergence of metric
spaces in the pointed Gromov–Hausdorff sense.

In Sect. 3 we develop a theory of flap-planes, which are surfaces arising
by gluing rectangles, or else, flaps, on top of the Euclidean plane. Under
some assumptions, our goal is to apply the Bonk–Kleiner Theorem to show
that these surfaces can be quasisymmetrically embedded into the plane; see
Theorem 3.7. Hence, we focus on proving that they are Ahlfors 2-regular and
linearly locally connected. These proofs occupy most of the section. Also, this
section is independent of the other sections, and can be mostly skipped in a
first reading of the paper. We will only need the definition and some general
properties of flap-planes from Sect. 3.1 and also we will use the embedding
Theorem 3.7.

The main content of Sect. 4 is the proof of Theorem 1.6, i.e., the non-
removability of the gasket for continuous functions of the class W 1,2. The
proof consists of several steps, which are organized in the subsections. The
heart of the argument is Lemma 4.7. The proof of Theorem 1.7 is contained
in Sect. 4.6. There, we also include the proofs of the general statements in
Theorem 1.3 and Proposition 1.4. Moreover, in Sect. 4.1 we include basic
terminology and geometric properties of the gasket that we use repeatedly
throughout the paper.

Finally, in Sect. 5 we prove the quasiconformal non-removability in The-
orem 1.8. First, in Sect. 5.1 we show how to collapse the complementary
equilateral triangles to tripods in a continuous way with a map f : R

2 → R
2,

as described in Sect. 1.2. The proof of the continuity of f is the same as
the proof of continuity for the Sobolev non-removability in Sect. 4, so we
recommend the reader to read first that proof.

Then, in Sect. 5.2 we explain how to fold a single equilateral triangle on
top of a tripod with a quasiconformal map. In Sect. 5.3 these folding maps
are pieced together with f to obtain a homeomorphism � from R

2 onto a
flap-plane S. Finally, in Sect. 5.4 we finish the proof of non-removability by
embedding S into the plane and obtaining the desired exceptional homeomor-
phism F : R

2 → R
2.

Update

Since the completion and distribution of the first version of this paper, there
has been some further progress. The current author in [31] has proved that all
Sierpiński carpets are non-removable for quasiconformal maps, providing an
answer to Conjecture 1.
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Moreover, further connections between the problems of rigidity of circle
domains and removability of their boundary have been established in [32], in
the spirit of the conjecture of He and Schramm [17]. In particular, it is proved
that all circle domains satisfying the quasihyperbolic condition of [19] are
rigid.

2 Preliminaries

2.1 Notation

We will say that a statement (A) implies a statement (B) quantitatively if the
implicit constants or functions in statement (B) depend only on the implicit
constants or functions in statement (A).

Weuse the notation a � b if there exists an implicit constantC > 0 such that
a ≤ Cb, and a � b if there exists a constantC > 0 such thatC−1b ≤ a ≤ Cb.
Wewill bementioning the parameters onwhich the constantC depends, unless
C is a universal constant.

The Lebesgue measure in R
n is denoted by mn . If a function f : R

n → R

is integrable, then we will denote its integral against Lebesgue measure by∫
f . The open ball around x ∈ R

n of radius r > 0 is denoted by B(x, r). For
visual purposes, the closure of a setU1 is denoted byU1, instead ofU1 and the
closure of a Euclidean ball B(x, r) is denoted by B(x, r). We use the notation
A(x; r, R) for the annulus B(x, R)\B(x, r), where 0 < r < R.
If (X, d) is a metric space and Q > 0, then we denote the Hausdorff Q-

measure by HQ
d ; see e.g. [12, Section 11.2] for the definition. Also, we use

the notation Bd(x, r) for the open ball of radius r > 0, centered at x ∈ X . In
Sect. 3 we will be endowing planar sets with different metrics. If there is no
subscript d in the ball notation, then the ball will always refer to the Euclidean
metric.

We normalize the Hausdorff 2-measure, so that it agrees with the Lebesgue
measure in R

2. This R
2-normalization will also be used when we study the

Hausdorff 2-measure of an arbitrarymetric space. For example, if X is ametric
space and U ⊂ X is a set that is isometric to a measurable subset of R

2, then
its Hausdorff 2-measure agrees with the Lebesgue measure of its isometric
image in R

2.

2.2 Quasiconformal and quasisymmetric maps

We first recall the definition of a quasiconformal map; we direct the reader to
[2,36] for background on quasiconformal maps.
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Definition 2.1 Let U, V ⊂ R
2 be open sets. An orientation-preserving

homeomorphism f : U → V is M-quasiconformal for some M > 0 if
f ∈ W 1,2

loc (U ) and

‖Df (z)‖2 ≤ MJ f (z)

for a.e. z ∈ U , where ‖Df (z)‖ denotes the operator norm of the differential
of f at z, and J f is the Jacobian of f . We also say that f is quasiconformal
if it is M-quasiconformal for some M > 0. The number M > 0 is called the
quasiconformal distortion of f .

Remark 2.2 A priori, if a set K ⊂ U is removable in the sense of Defini-
tion 1.1, it could be the case that the quasiconformal distortion of a map f
in U is larger than the distortion in U\K . However, as remarked in the Intro-
duction, removable sets necessarily have measure zero. Since the inequality
‖Df (z)‖2 ≤ MJ f (z) is required to hold a.e., it follows that the quasiconfor-
mal distortion of f on U is the same as the distortion on U\K .

Quasiconformal maps have the important property that they preserve null
sets:

Lemma 2.3 (Theorem 33.2, [36]). Let U, V ⊂ R
2 be open sets and let

f : U → V be a quasiconformal map. A Borel set A ⊂ U is mapped by
f to a set of measure zero if and only if A has measure zero.

Definition 2.4 If two metric spaces (X, dX ) and (Y, dY ) are locally isometric
to open subsets of R

2, then we say that a homeomorphism f : X → Y is
M-quasiconformal if the following holds. For each x ∈ X there exist open
neighborhoodsUx of x and V f (x) of f (x) and there exist isometries φ : Ux →
U and ψ : V f (x) → V , where U and V are open subsets of R

2 such that
ψ ◦ f ◦ φ−1 : U → V is M-quasiconformal, in the preceding sense.

There exists already a theory of quasiconformalmaps betweenmetric spaces
that is compatible with the definition that we gave. Nevertheless, we will not
need any deep results from that theory, and we wish to keep our approach as
simple as possible, so we do not give the general definition. See, for example,
[16] for more background.

Now, we define the notion of a quasisymmetry between two metric spaces
(X, dX ) and (Y, dY ); see also [15, Chapters 10–11].

Definition 2.5 A homeomorphism f : X → Y is η-quasisymmetric if there
exists a homeomorphism η : [0, ∞) → [0, ∞) such that for every triple of
distinct points x, y, z ∈ X and for their images x ′ = f (x), y′ = f (y),
z′ = f (z) we have
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dY (x ′, y′)
dY (x ′, z′)

≤ η

(
dX (x, y)

dX (x, z)

)

.

The function η is called the distortion function associated to f .

If X = U and Y = V are open subsets of the plane, then an η-
quasisymmetric orientation-preserving homeomorphism f : U → V is
M-quasiconformal, where M depends only on η; this is proved in Chapter
4 of [36], and in particular in Theorem 34.1. The converse does not hold
without extra assumptions. More generally, we have:

Lemma 2.6 If X and Y are locally isometric to open subsets of the plane, then
an η-quasisymmetric map f : X → Y is M-quasiconformal, in the sense of
Definition 2.4. The constant M > 0 depends only on the distortion function η.

Lemma 2.7 Let X, Y, Z be metric spaces that are locally isometric to open
subsets of the plane. Also, consider homeomorphisms f : X → Y and g : Y →
Z such that f is M-quasiconformal and g is M ′-quasiconformal. Then the
composition g ◦ f : X → Z is M · M ′- quasiconformal.

See [36, Theorem 13.2] for the preceding fact, in case the spaces X, Y, Z
are Euclidean. We also need the following removability lemma:

Lemma 2.8 (Theorem 35.1, [36]). Let f : U → V be an orientation-
preserving homeomorphism between open subsets of the plane. Let A ⊂ R

2

be a closed set, and assume that f
∣
∣
U\A is M-quasiconformal. If A has σ -finite

Hausdorff 1-measure, then f is M-quasiconformal on U.

Note that this lemma implies that sets of σ -finite Hausdorff 1-measure are
locally removable, in the sense of Question 2 of the Introduction.

Finally, we need a lemma for quasisymmetric maps from a metric space
onto the plane. A metric space (X, d) is Ahlfors Q-regular for some Q > 0
if there exists a constant C ≥ 1 such that for all x ∈ X and 0 < r < diam(X)

we have

1

C
rQ ≤ HQ

d (Bd(x, r)) ≤ CrQ .

Lemma 2.9 Let (X, d) be an Ahlfors 2-regular metric space and assume that
there exists a quasisymmetric map f from X onto R

2. Then the pushforward
measure f∗(H2

d) and the Lebesgue measure on R
2 are mutually absolutely

continuous.

For the proof see [8, Proposition 4.3] and the references therein. The authors
prove the above statement for a quasisymmetry from X onto the sphere Ĉ, but
the same proof applies in our case.
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2.3 Convergence of metric spaces

Here we discuss the notion of pointed Gromov–Hausdorff convergence of
metric spaces and the relevant properties.

We follow the approach of [9, Chapter 8]. For a map f : (X, dX ) → (Y, dY )

between two metric spaces we define its distortion by

dis( f ) = sup{|dX (x, x ′) − dY ( f (x), f (x ′))| : x, x ′ ∈ X}.

A pointed metric space is a triple (X, d, p), where d is the metric of X and
p ∈ X is a point.

Definition 2.10 A sequence (Xn, dn, pn) of pointed metric spaces converges
to a pointed metric space (X, d, p) in the Gromov–Hausdorff sense if the
following holds. For every r > 0 and ε > 0 there exists n0 ∈ N such that for
every n > n0 there exists a (not necessarily continuous)map f : Bdn (pn, r) →
X such that the following hold:

1. f (pn) = p,
2. dis( f ) < ε, and
3. the ε-neighborhoodof the set f (Bdn (pn, r)) contains the ball Bd(p, r−ε).

Ametric space (X, d) is doubling if there is a constant N ∈ N such that each
ball of radius r can be covered by at most N balls of radius r/2. It is easy to see
that if (X, d) is Ahlfors Q-regular for some Q > 0 then it is also doubling, and
the implicit constant depends only on Q and the Ahlfors regularity constant.
A family of spaces is uniformly Ahlfors Q-regular, if the implicit constants
are the same for all spaces in the family. Similarly, one defines a uniformly
doubling family of spaces. We will need the following lemma, regarding the
convergence of Ahlfors regular spaces:

Lemma 2.11 Let (Xn, dn, pn) be a sequence of uniformly Ahlfors Q-regular
pointed metric spaces. Suppose that (Xn, dn, pn) converges to a space
(X, d, p) in the Gromov–Hausdorff sense. Then the metric space (X, d, p)
is Ahlfors Q-regular, with implicit constants depending only on the constants
of the spaces (Xn, dn, pn).

This lemma appears in [10, Lemma 8.29]. The authors use a different def-
inition for the convergence of metric spaces; see [10, Definition 8.9]. This
definition is not very handy in practice and we will not use it. However, their
definition agrees with our Definition 2.10, in case the spaces involved are
uniformly doubling. Finally, we need the following lemma regarding the con-
vergence of a mapping package:
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Lemma 2.12 Let (Xn, dn, pn) and (Yn, ρn, qn) be pointed metric spaces for
n ∈ N, which are complete and uniformly doubling. Moreover, suppose that
there exists a sequence of η-quasisymmetric homeomorphisms fn : Xn → Yn
such that fn(pn) = qn for all n ∈ N and there exists a constant C > 0 and
points xn ∈ Xn such that

1

C
≤ dn(pn, xn) ≤ C and

1

C
≤ ρn(qn, f (xn)) ≤ C,

for each n ∈ N. Then there exist subsequential Gromov–Hausdorff limits
(X, d, p)and (Y, ρ, q)of (Xn, dn, pn)and (Yn, ρn, qn), respectively, and there
exists a limiting η-quasisymmetric homeomorphism f : X → Y with f (p) =
q.

This lemma follows from [10, Lemma 8.22], since our assumptions guaran-
tee equicontinuity and uniform boundedness; see also [15, Corollary 10.30].
This lemma has also appeared in [24, Lemma 2.4.7].

3 Flap-planes

3.1 Definition and general properties

3.1.1 Constructing a flap-plane out of a single tripod

A tripod G is the union of three line segments (also called edges) in the plane,
which have a common endpoint, but otherwise they are disjoint; note that their
length need not be the same and their angles could vary. The common endpoint
of the edges is called the center or central vertex of the tripod.

We cut the plane along a tripod G, and then glue two rectangles (or else a
rectangular pillow) on each slit that arises from cutting an edge e of G with
the identifications shown in Fig. 2, so that we obtain a space homeomorphic
to the plane. We write E ∼ G to denote that a rectangle E is glued to an edge
of G. The width of each of these rectangles is equal to the the length of the
corresponding edge e of G, and the height is a prescribed constant h > 0.
Whenever two rectangles are glued along one of their edges, or a rectangle is
glued to a slitted edge of G, then the gluing map is taken to be the “identity”,
namely an isometry. We direct the reader to [9, Chapters 3.1–3.2] for details
on gluing length spaces and constructing polyhedral spaces.

The resulting space S = S(G) (the height h is suppressed in the notation)
is equipped with its internal metric d and it is homeomorphic to the plane by
construction, while the subset of S consisting of the six rectangles attached
to G is homeomorphic to a closed Jordan region �. Topologically, one can
think of this construction as cutting the plane alongG and “inserting” a Jordan
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Fig. 2 The tripod G on the left is first slitted and its complement is homeomorphic to the
complement of a closed Jordan region �, as the one bounded by the solid red curve in the
middle figure; note that the central vertex of G corresponds to three points in ∂�. Then we
consider, as depicted, six topological rectangles in this Jordan region �, each bounded by the
dashed and solid lines. The middle figure shows the (topological) gluing pattern of the six
Euclidean rectangles in the figure on the right, which are glued to the slitted edges of the tripod
G, giving rise to the flap-plane. Although in the figure on the right we only see three rectangles,
in fact each of them represents a rectangular pillow having two distinct faces and two slits, along
which these two faces are glued to the slitted edge of the tripod and to the other two pillows
(color figure online)

region � in the plane, whose boundary consists of the six edges of the slitted
G; see Fig. 2.We identify S with the union ofR

2\G and the rectangles E ∼ G,
after proper identifications.

Let P : S → R
2 denote the “orthogonal” projection map. This collapses

each point of a rectangle E that is glued on top of a slitted edge e to the
corresponding point of the edge e ⊂ R

2. For instance, if a rectangle E =
[a, b] × [c, d] is glued to the edge e = [a, b] × {0} ⊂ G along its side
[a, b] × {0} ⊂ E with the identity map, then the projection of a point x =
(s, t) ∈ E is P((s, t)) = (s, 0) ∈ e ⊂ R

2. Outside the rectangles E ∼ G, the
map P is the “identity”. The projection of a point x ∈ S to the plane will be
denoted by x̃ = P(x). Some immediate properties of P are the following:

(i) P is 1-Lipschitz, i.e.,

|x̃ − ỹ| ≤ d(x, y)

for all x, y ∈ S, where |x̃ − ỹ| denotes the Euclidean distance between x̃
and ỹ.

(ii) For all x, y ∈ S we have

d(x, y) ≤ |x̃ − ỹ| + 6h.

This is because the line segment [x̃, ỹ] ⊂ R
2 has a lift under P that is

a continuum γ connecting x and y, and whose length inside each glued
rectangle is either h or 0. On the other hand, the number of rectangles that
we glue is six (or three two-sided rectangular pillows).
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Fig. 3 A family of tripods
possessing property (G).
Different tripods meeting at
a point are denoted by
different colors (color figure
online)

(iii) Let γ̃ ⊂ R
2 be a polygonal path that connects x̃ and ỹ. If x ∈ P−1(x̃)

and y ∈ P−1(ỹ), then P−1(γ̃ ) is a continuum that connects x and y. In
fact, P−1(γ̃ ) contains a polygonal path γ with the same property. Here,
γ ⊂ S is a polygonal path in the sense that it is the union of finitely
many isometric copies of compact intervals, whose endpoints are glued
appropriately.

3.1.2 Constructing a flap-plane with multiple tripods

Now, assume that we are given a sequence of tripods in the plane Gi , i ∈ N,
such that if the tripods Gi and G j intersect for i �= j , then Gi ∩ G j is a
singleton and more specifically it is a non-central vertex of one of Gi or G j .
There are essentially three ways this can occur:

(i) a non-central vertex of G j lies on the central vertex of Gi , as in the left
of Fig. 4,

(ii) a non-central vertex of G j lies on an open edge of Gi ,
(iii) a non-central vertex of G j lies on a non-central vertex of Gi ,

or the above occur with the roles of i and j reversed. More generally, if any
collection of planar tripods {Gi }i∈I has this property, we say that

{Gi }i∈I possesses property(G).

See Fig. 3 for a family of tripods with this property.
We wish to use the tripods G1, . . . ,Gn in order to construct a flap-plane

Sn = S(G1, . . . ,Gn) that “distinguishes” between the tripods G1, . . . ,Gn ,
in the sense that natural projections can be defined from Sn onto flap-planes
Sk , k < n. To achieve this, we do not glue the rectangles corresponding to
the flap-planes of different tripods, even if the tripods intersect each other (the
intersection can contain at most one point).

More precisely, we can construct a flap plane S2 = S(G1,G2) as follows. If
G2∩G1 = ∅, thenwe can construct the flap-plane S2 by cutting the plane along
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a

Fig. 4 The flap-plane (right) corresponding to two tripodsG1,G2 (left) that intersect at a point.
The rectangles attached to G1 are not glued to any of the rectangles attached to G2, except at a
single point a; see the middle figure for the gluing pattern

G2 and attaching rectangles of height h2, as before. In this case, the rectangles
corresponding to G1 and G2 do not intersect. If, however, a ∈ G2 ∩ G1, then
we cut the plane along G2 and attach rectangles to G2, but the rectangles of
G2 containing a are not attached to any of the rectangles corresponding to G1,
except at the point a; see Fig. 4.We also provide an alternativeway to construct
S2, which shows that S2 is homeomorphic to the plane. First consider the flap-
plane S1 = S(G1) corresponding to G1, with associated height h1. Using the
property (G) of the tripods G1 and G2 and studying their relative positions we
see that S(G1) contains a (unique) “distinguished” homeomorphic copy G̃2 of
G2 that projects homeomorphically onto G2 ⊂ R

2 under the restriction of the
projection P1:=P; namely, if a non-central vertex of G2 lies on G1, then this
copy is the closure in S(G1) of the preimages under P1 of the open edges of
G2. We first glue the rectangles of height h2 to G2, disregarding the presence
of G1, and obtain a flap-plane S(G2) in this way. Then one uses the projection
P1 : S(G1) → R

2 ⊃ G2 in order to glue the rectangles attached to G2 to the
“distinguished” homeomorphic copy of G2 in S(G1). Topologically, we are
just cutting the tripod G̃2 ⊂ S(G1) � R

2 and we are “inserting” a Jordan
region, so the resulting space S2 is also homeomorphic to R

2.
We identify S(G1,G2) with the union of R

2\(G1 ∪G2) and the rectangles
attached to G1 and G2, after proper identifications as explained above. One
can define natural projections P2 : S2 → S1 and P2,0 : S2 → R

2. Suppose
that E2 ∼ G2 is a rectangle E2 = [a, b] × [c, d] and it is attached to the
edge e2 = [a, b] × {0} ⊂ G2. Then for (s, t) ∈ E2 with (s, 0) ∈ R

2\G1
we have P2((s, t)) = (s, 0) ∈ S1 (after identifying points of S1 lying outside
the rectangles E ∼ G1 with R

2\G1). If (s, 0) ∈ G1, then P2((s, t)) is the
point of S1 lying on the base of a rectangle E1 ∼ G1, which is in fact the
“intersection” point of E2 and E1 in S2; this would be the point a in Fig. 4. For
points of S2 that do not lie on rectangles E ∼ G2 the map P2 is defined to be
the “identity”. The map P2,0 is defined to be the “identity” on R

2\(G1 ∪ G2)

and on the rectangles attached toG1 andG2 it is defined to be the “orthogonal”
projection as above. One sees that P2,0 = P1 ◦ P2.
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Using the property (G) and induction on the number of tripods, for each n ∈
N we can define the flap-plane Sn = S(G1, . . . ,Gn), with associated heights
h1, . . . , hn for the rectangles corresponding to G1, . . . ,Gn , respectively, and
also define natural projections Pn : Sn → Sn−1, Pn,0 : Sn → R

2 so that:

• Sn is homeomorphic to the plane and
• if G0 ⊂ R

2 is a tripod such that the family {G0} ∪ {Gi : i ∈ {1, . . . , n}}
possesses property (G), then Sn contains a “distinguished” homeomorphic
copy G̃0 of G0 that projects homeomorphically onto G0 ⊂ R

2 under the
restriction of the projection Pn,0 : Sn → R

2.

We provide a sketch of the proof. Suppose that Sn−1 has the above two prop-
erties and let G0 ⊂ R

2 be a tripod such that the family {G0} ∪ {Gi : i ∈
{1, . . . , n}} possesses property (G). Since both families {Gi : i ∈ {1, . . . , n}}
and {G0} ∪ {Gi : i ∈ {1, . . . , n − 1}} have property (G), it follows that Sn−1
contains “distinguished” homeomorphic copies G̃n and G̃0 of Gn and G0,
respectively. Since Sn−1 is homeomorphic to R

2, we may think of G̃n and
G̃0 as (topological) tripods in the plane with non-straight edges. Property (G)

imposes the same restrictions on the relative positions of G̃n and G̃0. For the
construction of Sn , one cuts the plane along this “distinguished” tripod G̃n
and attaches the rectangles, or else, “inserts” a Jordan region whose boundary
consists of the six edges of the slitted G̃n . This implies that Sn is homeomor-
phic to the plane. Then the restrictions on the relative positions of G̃n and G̃0
imply that Sn contains the desired “distinguished” homeomorphic copy of G̃0
and thus of G0.

We now record some important properties of the flap-planes Sn . We endow
the space Sn with its internal path metric dn . With this metric (Sn, dn) is
homeomorphic to the plane, and it is also complete and locally compact. We
also set S0 = R

2. The notation E ∼ Gi is used to denote that a rectangle
E ⊂ Sn is glued to an edge of Gi , i ∈ {1, . . . , n}. The space Sn is regarded
as the union of R

2\ ⋃n
i=1 Gi and the rectangles E ∼ Gi , i ∈ {1, . . . , n}, with

proper identifications. The metric dn has the property that is locally isometric
to dn−1, away from the rectangles E ∼ Gn . Furthermore, dn restricted to a
rectangle E ∼ Gi is locally isometric to the planar metric on the rectangle E .
For any two points x, y ∈ Sn there exists a (not necessarily unique) geodesic
γ that connects them, with dn(x, y) = lengthdn (γ ); see [9, Section 2.5.2]. We
will use the notation Bn(x, r) for a ball in Sn , whenever it is more convenient
than the notation Bdn (x, r).

Consider now the natural projections Pk : Sk → Sk−1 for k ≥ 1. These
natural projections are defined similarly to P1 and P2 as above. We also define
projections Pk,l : Sk → Sl by Pk,l = Pk ◦ · · · ◦ Pl+1 for 0 ≤ l ≤ k − 1 and let
Pk,k be the identity map on Sk . These projections satisfy the following:
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(G1) Pk and Pk,l are 1-Lipschitz.
(G2) For all x, y ∈ Sk we have

dk(x, y) ≤ dk−1(Pk(x), Pk(y)) + 6hk .

(G3) If γ ∗ ⊂ Sk−1 is a polygonal path connecting x∗ and y∗, then P−1
k (γ ∗)

contains a polygonal path that connects P−1
k (x∗) to P−1

k (y∗).
(G4) The projections are compatible, i.e., for 0 ≤ m ≤ l ≤ k we have

Pk,m = Pl,m ◦ Pk,l .

(G5) If γ ∗ is a geodesic in Sk−1 that does not intersect the tripod Gk (or
rather the lift P−1

k−1,0(Gk)), then γ ∗ lifts isometrically under Pk to a unique
geodesic γ ⊂ Sk . Conversely, if γ ⊂ Sk is a geodesic that does not intersect
the rectangles E ∼ Gk , then its projection γ ∗ is also a geodesic in Sk−1
and is isometric to γ .

The latter property, implies the next important property:

(G6) If a ball Bk−1(x∗, r) ⊂ Sk−1 does not intersect the tripod Gk , then
x∗ has a unique preimage x under Pk , and P−1

k (Bk−1(x∗, r)) = Bk(x, r).
Conversely, if Bk(x, r) ⊂ Sk does not intersect the rectangles E ∼ Gk ,
then it projects onto a ball Bk−1(x∗, r).

In the same spirit, we have the following property for the Hausdorff 2-measure
μk on Sk :

(G7) If A ⊂ Sk is a Borel set, then

μk(A) ≥ μk−1(Pk(A)).

Moreover, if the set A does not intersect Gk , then we obtain equality.

We finally record a property of the metric dk on the rectangles E glued to the
tripod Gi :

(G8) The metric dk restricted on a rectangle E ∼ Gi , i ∈ {1, . . . , k}, is
isometric, not only locally but also globally, to the Euclidean metric on E .

3.1.3 The inverse limit S∞ of Sn

We consider the set Tn = ⋃n
i=1 Gi as a (possibly disconnected) planar graph,

whose vertices are the vertices ofG1, . . . ,Gn . Note that an edge e ofG j might
be “cut” into two (or more) edges, if a vertex of Gi , i �= j , lies in the interior
of the edge e. See Fig. 3 for such a graph Tn . We also consider the “graph”
T∞ = ⋃∞

i=1 Gi . A point x ∈ R
2 is a vertex of T∞ (by definition) if x is a
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vertex of Tn for all sufficiently large n ∈ N. We suppose that T∞ has uniformly
bounded degree, that is, there exists N0 > 0 such that the degree of each vertex
x of Tn is bounded by N0 for all n ∈ N.

Under these assumptions, we can identify the inverse limit S∞ of the
sequence of spaces Sn . The set S∞ is the subset of

∏∞
n=0 Sn consisting of points

z = (z0, z1, . . . ) with the property that Pn(zn) = zn−1 for all n = 1, 2, . . . .
We will find a simpler representation for S∞.

Note that if z0 ∈ R
2\⋃∞

i=1 Gi then z0 = z1 = . . . , recalling that we have
identified points of Sn not lying on any tripod with R

2\⋃n
i=1 Gi . Hence, in

this case we may identify the point z ∈ S∞ with z0 ∈ R
2\⋃∞

i=1 Gi and say
that z ∈ Sn for all n = 0, 1, . . . .

Now, if z0 lies on a tripod Gi and is not a vertex of T∞, then zi ∈ Si lies
on a rectangle attached to Gi and zk has a unique preimage under Pk+1 for
all k ≥ i , since no rectangle is attached to zi in order to obtain the spaces Sk ,
k > i . Hence, we may write that zi ∈ Sk for all k ≥ i and we may identify the
point z ∈ S∞ with zi , thus saying that z lies in Sn for all sufficiently large n.

Finally, suppose that z0 lies on a tripodGi and it is a vertex of T∞. Since T∞
has uniformly bounded degree, it follows that there are finitely many tripods
containing z0, and we may assume that i is the largest index with z0 ∈ Gi . It
follows that zi ∈ Si , and as in the previous case, no rectangle is attached to zi
in order to obtain the spaces Sk , k > i . Hence, we may write again that zi ∈ Sk
for all k ≥ i and we may identify the point z ∈ S∞ with zi , thus saying that z
lies in Sn for all sufficiently large n.

Summarizing, if z ∈ S∞, then z lies in (or rather projects to) Sn for all
sufficiently large n. With this in mind, we may also identify S∞ with the
union of R

n\⋃∞
i=1 Gi and the rectangles attached to each Gi , after proper

identifications.

Remark 3.1 Ifwe had not assumed that the degree of T∞ is uniformly bounded,
then we would not be able to represent the inverse limit S∞ as above, since
it could contain points that do not lie on R

2\⋃∞
i=1 Gi or in any rectangle

attached to the tripods.

Proposition 3.2 If the heights {hn}n∈N of the rectangles attached to the tripods
are chosen so that

∞∑

i=1

hi < ∞

then the inverse limit (S∞, d∞) of (Sn, dn) is a complete metric space.
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Proof The metric of d∞ is defined as the limit of dn . To ensure that this exists,
we fix x, y ∈ S∞, so x, y ∈ Sn for all sufficiently large n, and note that

dn−1(x, y) = dn−1(Pn(x), Pn(y)) ≤ dn(x, y)

if n is sufficiently large, by the Lipschitz property (G1) of the projections;
here we have considered the identifications of x, y with Pn(x), Pn(y), respec-
tively, for large n. Hence, the sequence dn(x, y) converges, possibly to ∞. To
exclude this possibility, we apply repeatedly property (G2) together with the
compatibility (G4) and obtain

dn(x, y) ≤ dn−1(Pn(x), Pn(y)) + 6hn ≤ |x̃ − ỹ| + 6
n∑

i=1

hi ,

where x̃, ỹ are the projections of x, y, respectively, to the plane.By assumption,
the last sum is convergent, so our claim is proved.

Now,we show that (S∞, d∞) is complete. Let {xk}k∈N be aCauchy sequence
in S∞. If xk lies infinitely often in a given rectangle E ⊂ Si , then xk has a
convergent subsequence, since the metric d∞, restricted on E , is isometric to
the Euclidean metric, by the limiting version of (G8). Hence, we may assume
that xk either lies in R

2\⋃∞
i=1 Gi infinitely often, or it has a subsequence, still

denoted by xk , that lies in distinct rectangles Ek ⊂ Sik .
In the first case, xk (or rather its projection to the plane) converges in the

Euclideanmetric to a point x ∈ R
2, because the projection of S∞ to the plane is

1-Lipschitz. If x ∈ R
2\ ⋃∞

i=1 Gi , then the line segment [xk, x] ⊂ R
2 does not

intersect any given tripod Gi for sufficiently large k. Hence, for each i0 ∈ N

there exists k0 ∈ N such that for k ≥ k0 the segment [xk, x] does not intersect
G1, . . . ,Gi0 . For n ≥ i0 + 1, by a repeated application of (G2), we have

dn(x, xk) ≤ dn−1(x, xk) + 6hn

≤ di0(x, xk) + 6
n∑

i=i0+1

hi .

Now, applying repeatedly (G5), we note that di0(x, xk) = |x − xk |, which is
the length of the geodesic [xk, x] in the plane. Hence,

dn(x, xk) ≤ |x − xk | + 6
∞∑

i=i0+1

hi ,
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and passing to the limit we have

d∞(x, xk) ≤ |x − xk | + 6
∞∑

i=i0+1

hi

for all k ≥ k0. This implies that d∞(x, xk) → 0, as desired.
On the other hand, if x lies on a tripod, and x is a vertex of T∞, then there

exists Nx ∈ N such that the degree of x in Tn is equal to Nx ≤ N0 for all
sufficiently large n ∈ N; recall that N0 is a uniform bound on the degree of the
graphs Tn . For a small r > 0 the edges of tripods Gn that meet at x split the
ball B(x, r) ⊂ R

2 into Nx components. Each of these components contains x
in its boundary and is a circular sector if r is sufficiently small, so in particular,
it is convex. One of these components, say V , must contain infinitely many
points xk , and thus all, after passing to a subsequence. We let Gn0 be a tripod
such that x ∈ Gn0 , and also Gn0 contains one of the edges that bounds the
sector V . We let x0 be the point of Sn0 that projects to x , is accessible from V ,
and lies on the boundary of a rectangle E ∼ Gn0 . We claim that xk → x0 in
d∞. We look at the open segments (xk, x) and note that they do not intersect
Gn0 or any other tripod Gi infinitely often. Arguing as before, we have that
for all i0 ∈ N there exists k0 ∈ N such that

d∞(x0, xk) ≤ |x − xk | + 6
∞∑

i=i0+1

hi ,

for k ≥ k0. This shows convergence. The case that x ∈ Gn0 but x is not a
vertex of T∞ is treated in the same way, and here B(x, r)\Gn0 contains only
two components, provided that r is small.

The last case is to assume that xk ∈ Ek ∼ Gik , where Ek are rectangles of
height hik , and hik → 0, since the rectangles Ek are distinct. In this case, we
can find a point yk in the “base” of the rectangle Ek that is glued to R

2 such
that

d∞(xk, yk) ≤ hik ,

by (G8). Hence, yk is also Cauchy in d∞, and it suffices to show that it con-
verges, because hik → 0. Arbitrarily close to each yk we can find a point
zk ∈ R

2\ ⋃∞
i=1 Gi , with d∞(yk, zk) ≤ 1/k. This is justified as in the previous

paragraph and using the observation that
⋃∞

i=1 Gi has empty interior (e.g.,
using the Baire category theorem). Now, the convergence of zk is obtained by
the previous case. ��
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Remark 3.3 The preceding proof, together with the Lipschitz property (G1),
show that if we restrict the metric d∞ of S∞ to R

2\⋃∞
i=1 Gi , then it is topo-

logically equivalent to the Euclidean metric, in the sense that a sequence
xk ∈ R

2\⋃∞
i=1 Gi converges to a point x0 ∈ S∞ if and only if the projections

xk converge to the projection of x0 in the Euclidean metric.

Remark 3.4 There exist natural projections from S∞ onto Sn andR
2 for all n ∈

N. Analogs of properties (G1), (G4) and (G7) also hold for these projections.
Moreover, property (G8) is true for S∞, so the metric d∞ restricted on a
rectangle E ∼ Gi for i ∈ N is isometric to the Euclidean metric on E .

Proposition 3.5 If the heights {hn}n∈N are chosen as in Proposition 3.2, then
for each p ∈ S∞ there exist points pn ∈ Sn such that the sequence of spaces
(Sn, dn, pn) converges to (S∞, d∞, p) in the pointedGromov–Hausdorff sense
of Definition 2.10.

Proof Let p ∈ S∞. Then, by the representation of S∞ that we gave, p lies in
Sn for all sufficiently large n, so we set pn = p ∈ Sn for, say, n ≥ n0. We fix
n ≥ n0 and r, ε > 0 and define f : Sn → S∞ to be any right inverse of the
projection from S∞ onto Sn , which is surjective. Clearly, f (pn) = p.

Let x̃, ỹ ∈ Sn be arbitrary. Also, consider arbitrary lifts x, y ∈ S∞ of x̃, ỹ,
respectively. Then x, y ∈ Sm for sufficiently large m ∈ N. By (G1) and (G2),
for sufficiently large m ≥ n we have

0 ≤ dm(x, y) − dn(x̃, ỹ) ≤ 6
∞∑

i=n+1

hi .

Letting m → ∞ yields

0 ≤ d∞(x, y) − dn(x̃, ỹ) ≤ 6
∞∑

i=n+1

hi . (3.1)

Since
∑∞

i=n+1 hi → 0 as n → ∞, this shows that dis( f ) can be made less
than ε, if n is sufficiently large (independent of x̃, ỹ). Hence, condition (2) of
Definition 2.10 holds.

Finally, we check condition (3). If d∞(p, x) < r − ε, then the projection
x̃ of x to Sn satisfies dn(pn, x̃) ≤ d∞(p, x) < r − ε < r , for n ≥ n0; see
property (G1) and Remark 3.4. This implies that x̃ ∈ Bdn (pn, r). On the other
hand, f (x̃) is a lift of x̃ and the points f (x̃) and x project to the same point of
Sn . Thus, by (3.1) we obtain

d∞( f (x̃), x) ≤ 6
∞∑

i=n+1

hi .
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If n is sufficiently large (independent of x), then the above is less than ε, so x
is contained in the ε-neighborhood of f (Bdn (pn, r)), as desired. ��
Remark 3.6 The preceding results, Propositions 3.2 and 3.5, do not depend
on the geometry of the tripods Gn . Hence, they also hold if the tripods Gn ,
n ∈ N, are not a priori given to us, but they are constructed inductively, based
on the previous tripods. In fact, once we have the tripods G1, . . . ,Gn−1 and
the corresponding heights h1, . . . , hn−1, then the tripod Gn can depend both
on G1, . . . ,Gn−1 and the heights h1, . . . , hn−1! In particular, in this more
general setting, one can still obtain a limiting space (S∞, d∞), as long as∑∞

i=1 hi < ∞, and the degree of T∞ is uniformly bounded. A different way
to think of that is as follows. Supposewe have a “machine” or an algorithm that
produces the tripod Gn , based on G1, . . . ,Gn−1 and h1, . . . , hn−1. Then we
can choose hn to be sufficiently small and feed this back into the “machine”
to obtain the next tripod Gn+1. The point of this remark will be evident in
Sect. 5.3, where a sequence of tripods is constructed inductively and is used
to build a flap-plane.

3.1.4 Quasisymmetric embedding of S∞ into the plane

The main result in Sect. 3 is the next theorem.

Theorem 3.7 If the heights {hn}n∈N are chosen to be sufficiently small
(depending on the tripods Gn), then there exists a quasisymmetry from
(S∞, d∞) onto R

2 with the Euclidean metric. Furthermore, (S∞, d∞) is
Ahlfors 2-regular.

Recall that a standing assumption is that the degree of the “graph” T∞ is
uniformly bounded. Again, the heights hn have to satisfy the condition in
Proposition 3.2, but this time we have more restrictions as it will be evident
from the proof. Moreover, as in Remark 3.6, the choice of the heights is to be
interpreted as follows: for each n ∈ N the height hn has to be chosen to be suf-
ficiently small, but only depending on the tripodsG1, . . . ,Gn . Also, the tripod
Gn is not necessarily a priori given to us, but it can depend on G1, . . . ,Gn−1
and the already chosen heights h1, . . . , hn−1. In the latter scenario, it is nec-
essary that Gn is chosen so that the family {G1, . . . ,Gn} has the property (G)

for all n ∈ N.
The proof of Theorem 3.7 is based on the Bonk–Kleiner Theorem:

Theorem 3.8 (Theorem 1.1, [7]). Let (X, d) be an Ahlfors 2-regular metric
space homeomorphic to the sphere S2, equipped with the spherical metric.
Then (X, d) is quasisymmetric to S2 if and only if (X, d) is linearly locally
connected.
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SeeSect. 3.3 for the definition of linear local connectivity. This theoremgave
an excellent criterion for quasisymmetric parametrizability of 2-dimensional
surfaces, and a necessary and sufficient condition is still to be found. Since its
publication, there have been some improvements and generalizations [28,38],
and very recently twonewproofs of the theoremwere published [27,33],which
give an alternative perspective to the problem of finding parametrizations of
2-dimensional surfaces. We direct the reader to [33] for more references and
background on the problem of uniformization of 2-dimensional surfaces.

In fact, we will need a plane version of this theorem, which was proved by
Wildrick:

Theorem 3.9 (Theorem 1.2, [38]). Let (X, d) be an Ahlfors 2-regular and
linearly locally connected metric space that is homeomorphic to the plane
R
2. If (X, d) is unbounded and complete then (X, d) is quasisymmetrically

equivalent to R
2 with the Euclidean metric.

The statement is quantitative, in the sense that the distortion function of the
quasisymmetry can be chosen to depend only on the constants associated to
the Ahlfors 2-regularity and linear local connectivity.

In the next two sections we prove that the spaces (Sn, dn) are Ahlfors
2-regular and linearly locally connected with uniform constants, under the
assumptions of Theorem 3.7. The proof of Theorem 3.7 is completed in
Sect. 3.4.

3.2 Ahlfors regularity

Recall that a metric space (X, d) is Ahlfors Q-regular for some Q > 0 if there
exists a constant C ≥ 1 such that for each x ∈ X and for all 0 < r < diam(X)

we have

1

C
rQ ≤ HQ

d (Bd(x, r)) ≤ CrQ, (3.2)

where HQ
d denotes the Hausdorff Q-measure.

In this section we prove, under the assumptions of Theorem 3.7, that the
spaces (Sn, dn) are Ahlfors 2-regular with uniform constants. Remark 3.6 also
applies here, i.e., at the n-the stage the tripod Gn need not be given to us, but
it can depend on the tripods G1, . . . ,Gn−1 and the heights h1, . . . , hn−1.

In fact, we only need to show the right inequality in (3.2). The left inequality
will follow from right inequality and the linear local connectivity of (Sn, dn)
that is discussed in the next Sect. 3.3; see Proposition 3.12 and Proposition
3.13.
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Proposition 3.10 Assume that the degree of Tn is bounded by N0 > 0, for
all n ∈ N. If the heights {hn}n∈N are chosen to be sufficiently small, then the
spaces (Sn, dn) are Ahlfors 2-regular, with uniform constants, depending only
on N0.

As we remarked, we will only show the upper bound in (3.2). We denote the
Hausdorff 2-measure of (Sn, dn) by μn , and we use the ball notation Bn(x, r),
instead of Bdn (x, r).

Lemma 3.11 Assume that the degree of Tn is bounded by N0 > 0, for all
n ∈ N. If the heights {hn}n∈N are chosen to be sufficiently small, then there
exists a constant c > 0 such that for all n ∈ N, x ∈ Sn, and r > 0 we have

μn(Bn(x, r)) ≤ cr2.

The constant c depends only on N0.

Proof Using (G7), we write

μn(Bn(x, r)) = μ0(Pn,0(Bn(x, r))) +
n∑

k=1

μn

⎛

⎝
⋃

E∼Gk

Bn(x, r) ∩ E

⎞

⎠ ,

(3.3)

where μ0 is the Lebesgue measure in R
2 and Pn,0 is the projection from Sn to

R
2. By the Lipschitz property (G1) we have

μ0(Pn,0(Bn(x, r))) ≤ μ0(B(Pn,0(x), r)) = πr2.

Also, if E ∼ Gk and y ∈ Bn(x, r) ∩ E , then Bn(x, r) ∩ E ⊂ Bn(y, 2r) ∩ E .
On the other hand, Bn(y, 2r)∩E is isometric to the intersection of a Euclidean
ball of radius 2r with the Euclidean subset E by (G8), therefore

μn

⎛

⎝
⋃

E∼Gk

Bn(x, r) ∩ E

⎞

⎠ ≤ 6 · 4πr2. (3.4)

Recall at this point that 6 rectangles are attached to a given tripod Gk .
If the projectionof Bn(x, r) toR

2 intersects atmost N0 tripodsGi1, . . . ,GiN ,
N ≤ N0, then by (3.3) we have

μn(Bn(x, r)) ≤ πr2 + N0(6 · 4πr2) = (π + 24N0π)r2.

This bound is independent of the choice of heights hi and tripods Gi (cf.
Remark 3.6).
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We claim that we can choose inductively the height hn of the rectangles
E ∼ Gn depending only on the tripods G1, . . . ,Gn such that when-
ever the projection of a ball Bn(x, r) to the plane intersects some tripods
Gi1, . . . ,GiN0

,GiN0+1 with i1 < · · · < iN0+1 ≤ n, we have

μn

⎛

⎜
⎝

⋃

E∼GiN0+1

E

⎞

⎟
⎠ ≤ r2, (3.5)

and also

μn

⎛

⎝
⋃

E∼Gi+1

E

⎞

⎠ ≤ 1

2
μn

⎛

⎝
⋃

E∼Gi

E

⎞

⎠ , (3.6)

for all i = 1, . . . , n − 1.
Assuming that, we finish the proof. Let Bn(x, r) be an arbitrary ball in

Sn , whose projection intersects the tripods Gi1, . . . ,GiN0
,GiN0+1 , i1 < · · · <

iN0+1 ≤ n. Also, assume that these are the smaller possible such indices,
namely there exists no i /∈ {i1, . . . , iN0+1} with i < iN0+1 such that the
projection of Bn(x, r) intersects Gi . Then we have

n∑

k=1

μn

⎛

⎝
⋃

E∼Gk

Bn(x, r) ∩ E

⎞

⎠ =
N0∑

j=1

μn

⎛

⎜
⎝

⋃

E∼Gi j

Bn(x, r) ∩ E

⎞

⎟
⎠

+ μn

⎛

⎜
⎝

⋃

E∼GiN0+1

Bn(x, r) ∩ E

⎞

⎟
⎠

+
∑

iN0+1<k≤n

μn

⎛

⎝
⋃

E∼Gk

Bn(x, r) ∩ E

⎞

⎠

≤ N0 · 24πr2 + r2 +
∑

iN0+1<k≤n

μn

⎛

⎝
⋃

E∼Gk

E

⎞

⎠ ,

where we used the bound (3.4) for the first term, and condition (3.5) for the
second term. By condition (3.6), the last term is bounded by
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μn

⎛

⎜
⎝

⋃

E∼GiN0+1

E

⎞

⎟
⎠ ·

∞∑

k=1

1

2k
≤ r2.

This concludes the proof, by (3.3), with constant c = π + 24N0π + 2.
Now, we focus on our claim, which we will prove by induction on n ∈ N.

For n = 1, . . . , N0 we have nothing to show, since the projection of a ball
Bn(x, r) to R

2 will always intersect at most N0 tripods. We can also adjust
the heights hi , i = 1, . . . , N0, to be so small, depending on G1, . . . ,GN0 , that
(3.6) holds. We assume that the statements hold for some n ∈ N, n ≥ N0,
and consider the tripod Gn+1 and the flap-plane (Sn+1, dn+1). We also choose
hn+1 to be so small that (3.6) holds; note that by (G8) the rectangles E ∼ Gi ,
i < n + 1, with metric dn+1 are isometric to Euclidean rectangles, so we only
have to choose hn+1 to be small small enough so that (3.6) holds for the (last)
index i = n. Later, we will make hn+1 even smaller in order to achieve (3.5).

If Bn+1(x, r) has a projection to the plane that intersects Gi1, . . . ,GiN0
,

GiN0+1 , with i1 < · · · < iN0+1 ≤ n + 1 then we split in two cases:
Case 1 iN0+1 �= n + 1. If P : Sn+1 → Sn denotes the natural projec-

tion, then in this case the projection of Bn(P(x), r) to R
2 also intersects

Gi1, . . . ,GiN0
,GiN0+1 . This is essentially because the projection P from Sn+1

to Sn is 1-Lipschitz by (G1), and also the projections are compatible by (G4).
Now, using the induction assumption we obtain

μn

⎛

⎜
⎝

⋃

E∼GiN0+1

E

⎞

⎟
⎠ ≤ r2.

The measure μn , restricted to E , is identical to the Lebesgue measure, and
also to μn+1 by (G8). This completes the proof of (3.5) in this case.

Case 2 iN0+1 = n + 1. Then there exist points ai j ∈ Gi j ⊂ R
2 for j =

1, . . . , N0 and a point an+1 ∈ Gn+1 such that

|ai j − an+1| < 2r

for all j = 1, . . . , N0. This is because the projection of Bn+1(x, r) to R
2

intersects the corresponding tripods, by assumption, and also it is 1-Lipschitz
by (G1).

We now introduce auxiliary vertices on Gn+1 as follows. We partition each
edge of Gn+1 in finitely many edges such that the interior of each (new) edge
of Gn+1 does not contain any vertex of Gi , i ≤ n, and also each (new) edge
of Gn+1 has one “free” vertex that does not lie on any Gi , i ≤ n; this is
possible because the tripods {Gi }i∈N possess property (G) and in particular

123



548 D. Ntalampekos

the intersection of Gn+1 with the union of the tripods Gi , i ≤ n, contains
finitely many points. For i ≤ n we set δi > 0 to be to be the minimum
(Euclidean) distance of the (new) edges of Gn+1 from Gi , excluding the edges
of Gn+1 that intersect Gi . We then set δ = min1≤i≤n δi > 0. The partitioning
of the edges of Gn+1 is only used to define δ in this proof, and is not supposed
to alter the tripod Gn+1 for any other consideration.

If |ai j − an+1| ≥ δ for some j ∈ {1, . . . , N0}, then we have δ ≤ 2r . Hence,
if we set hn+1 to be so small (depending on δ) that

μn+1

⎛

⎝
⋃

E∼Gn+1

E

⎞

⎠ ≤ δ2/4 ≤ r2,

then we obtain the desired conclusion. Note that δ, and thus hn+1, is chosen
depending only on G1, . . . ,Gn+1.

If |ai j − an+1| < δ for all j ∈ {1, . . . , N0}, then by the definition of δ this
means that an+1 necessarily lies on an edge e of Gn+1 that intersects Gi j , for
all j ∈ {1, . . . , N0}. However, the edge e by construction has a “free” vertex,
so only one of the two vertices of the edge e can intersect tripods Gi , i ≤ n.
Hence, there are N0 + 1 tripods (including Gn+1) meeting at a vertex of the
edge e. This implies that there are N0 + 1 edges of the graph Tn+1, meeting
at a vertex of the edge e. We now have a contradiction to the assumption that
the degree of the planar graph Tn+1 is at most N0. ��

3.3 Linear local connectivity

A metric space (X, d) is linearly locally connected (LLC) if there exists a
constant c ≥ 1 such that for each ball Bd(x, r) and for any two points z, w ∈ X
we have:

(i) If z, w ∈ Bd(x, r), then there exists a continuum F ⊂ Bd(x, cr) con-
necting z and w.

(ii) If z, w /∈ Bd(x, r), then there exists a continuum F ⊂ X\Bd(x, r/c),
connecting z and w.

In this case, we say that X is c-LLC.
As we remarked earlier, the LLC property and the upper mass bound of

Ahlfors regularity in the 2-dimensional setting can yield the lowermass bound:

Proposition 3.12 Let (X, d) be a metric space homeomorphic toR
2. If (X, d)

has locally finite Hausdorff 2-measure and is c-LLC, then there exists a con-
stant c′ > 0 depending only on c such that

H2
d(Bd(x, r)) ≥ c′r2
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for all x ∈ X and 0 < r < diam(X).

This is a folklore statement, and it is discussed in [33, Section 16]; see also
[23, Corollary 1.4]. We give a quick proof for the sake of completeness.

Proof Let x ∈ X and r < diam(X). Consider the function φ(z) = d(x, z),
which is 1-Lipschitz. Let y /∈ B(x, r). Then for each t ∈ (0, r) there exists a
component Kt ofφ−1(t) that separates x from y [29, IVTheorem26].Weclaim
thatH1

d(Kt ) ≥ C1r for all t ∈ [r/4, r/2] and for a constantC1 > 0 depending
only on c. If this is the case, then by the co-area formula [1, Proposition 3.1.5],
there exists a uniform constant C2 > 0 such that we have

H2
d(Bd(x, r)) ≥ C2

∫ r/2

r/4
H1

d(φ
−1(t)) dt ≥ C2C1

4
r2,

as desired.
To prove our claim, note that for anyw ∈ Kt , t ∈ [r/4, r/2], we have x, y /∈

Bd(w, r/4). By condition (ii) in the definition of linear local connectivity, it
follows that there exists a continuum F ⊂ X\Bd(w, r/(4c)) that connects
x and y. However, any such continuum has to intersect Kt . It follows that
Kt cannot be contained in Bd(w, r/(4c)) for any w ∈ Kt , hence H1

d(Kt ) ≥
diam(Kt ) ≥ r/(4c). Our claim is proved with C1 = (4c)−1. ��

Note that each space (Sn, dn) satisfies condition (i) with constant 1, since
the space is endowed with its internal metric the distance between two points
x, y ∈ Sn is equal to the length of the shortest path between the two points.

Proposition 3.13 Assume that the degree of Tn is bounded by N0, for all
n ∈ N. If the heights {hn}n∈N are chosen to be sufficiently small, then the
spaces (Sn, dn) are c-LLC, with the constant c depending only on N0.

We remark, once again, that the choice of the heights is to be interpreted
as follows: the height hn of the rectangles attached to Gn has to be chosen to
be sufficiently small, depending on G1, . . . ,Gn; see also the comments after
Theorem 3.7.

We first prove a version of that proposition for the flap-plane corresponding
single tripod G, with constants independent of the geometry of G.

Lemma 3.14 Let G ⊂ R
2 be a tripod and consider a flap-plane S = S(G).

If the height h of the rectangles E ∼ G is less than the width of E, then S is
c-LLC for a universal constant c > 1.

In particular, the constant c is independent of the lengths of the edges of G
and of their angles.
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Proof Note that we only have to prove condition (ii), i.e., for any ball Bd(x, r)
in S and any two points z, w ∈ S\Bd(x, r) there exists a continuum F ⊂
Bd(x, r/c) connecting z and w, where c > 1 is a universal constant to be
determined.

In fact, it suffices to show that there exists a constant c > 1 such that for each
ball Bd(x, r) and z /∈ Bd(x, r) there exists a polygonal pathγz ⊂ S\Bd(x, r/c)
that connects z to a point z′, whose projection to R

2 lies outside B(x̃, r/c).
Here x̃ is the projection of x to R

2. Indeed, if this is true, then the same
statement holds for a pointw /∈ Bd(x, r), and there exists a polygonal path γw

and a point w′ with the corresponding properties. One can then connect the
projections z̃′ and w̃′ with a polygonal path γ̃ ⊂ R

2\B(x̃, r/c). By properties
(G3) and (G1), the path γ̃ lifts to a polygonal path γ that connects z′ and w′
and lies outside B(x, r/c). Then the concatenation of γz, γ , and γw yields the
desired path in the LLC (ii) condition.

Assume that z /∈ Bd(x, r). We denote by P : S → R
2 the projection of S

to the plane. Also, for a point y ∈ S we use the notation ỹ = P(y). We now
split the argument in two cases:

Case 1 r ≥ 12h. Then the projected point z̃ does not lie in B(x̃, r/2). Indeed,
if |x̃ − z̃| < r/2, then by the property (G2) we have

d(x, z) ≤ |x̃ − z̃| + 6h < r/2 + r/2 = r,

a contradiction. Hence, we can take z′ = z, and c ≥ 2.
Case 2 r < 12h. We set r1 = r/48 < h/4.
We connect z to x with a geodesic γ ⊂ S. If γ (or rather its projection γ̃ )

does not intersect G, then by (G5) it projects isometrically to a geodesic from
z̃ to x̃ , which has to be a straight line segment. Then

|x̃ − z̃| = d(x, z) > r

so z̃ /∈ B(x̃, r), and we can set z′ = z and c ≥ 1.
If γ̃ does intersect G, we consider y to be the first entry point of γ into a

rectangle E ∼ G as it travels from z to x ; we could have y = z in case z
lies in a rectangle attached to G. In particular, the segment [z, y] ⊂ γz does
not intersect the rectangles attached to G, except possibly at the point y, and
projects isometrically to a line segment [z̃, ỹ] in R

2. If y ∈ Bd(x, 5r1), then
using the 1-Lipschitz property (G1) of the projection and also (G5) we have

|z̃ − x̃ | ≥ |z̃ − ỹ| − |ỹ − x̃ | ≥ d(z, y) − d(y, x)

≥ d(z, x) − 2d(y, x) > r − 10r1 > r1,

since r = 48r1 > 11r1. It follows that z̃ lies outside B(x̃, r1). Hence, we may
take z′ = z and c ≥ 48.
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Finally, we have to treat the case that y ∈ E but y /∈ Bd(x, 5r1). We claim
that y can be connected to a point y′ ∈ E with a polygonal path γy ⊂ E
outside Bd(x, r1) such that y′ projects to a point ỹ′ lying outside B(x̃, r1). In
this case, note that we also have [z, y] ∩ Bd(x, r1) = ∅, since y /∈ Bd(x, r1)
and [z, y] ⊂ γz , where γz is a geodesic from z to x . Then one can concatenate
the path [z, y] with γy to obtain the desired polygonal path. Here, we have
z′ = y′ and c ≥ 48.

We now prove our last claim. If Bd(x, r1) ∩ E = ∅, then we connect y
with a polygonal path in E to a point y′ ∈ E , whose projection lies outside
B(x̃, r1). This can be done because E projects onto a line segment of length
equal to the width of E , and thus greater than the height h, by assumption. On
the other hand, the ball B(x̃, r1) has diameter 2r1 < h/2. Next, assume that
Bd(x, r1) ∩ E �= ∅ and that the intersection contains a point a ∈ E . We have

y /∈ Bd(x, 5r1) ⊃ Bd(a, 4r1) ⊃ Bd(a, 2r1) ⊃ Bd(x, r1).

Themetric d is isometric to the Euclideanmetric when restricted to E by (G8),
hence Bd(a, 2r1) ∩ E is the intersection of a round ball with the rectangle E .
Since 2r1 < h/2, the ball Bd(a, 2r1) cannot intersect both the top and bottom
“long” sides of E . This implies that the set E\Bd(a, 2r1) has at most two
connected components, one of which contains a “long” side E of E , with
length equal to the width of E , and thus greater than the height h.

If E\Bd(a, 2r1) has only one component then it is path connected. In this
case, the point y ∈ E\Bd(a, 2r1) can be connected with a polygonal path
γy ⊂ E\Bd(a, 2r1) to a point y′ ∈ E , whose projection to the plane lies
outside B(x̃, r1). Again, this is because the set E\Bd(a, 2r1) projects onto an
interval in R

2 whose length is larger than h > 4r1 > diam(B(x̃, r1)).
The scenario in which E\Bd(a, 2r1) has two components can only occur if

Bd(a, 2r1) intersects two adjacent sides of the rectangle E . The point y then
has to lie in the “large” component that also contains the sideE of E . Indeed, the
other component is contained in B(a, 4r1), hence it cannot contain y. Now, as
before,we can connect ywith a polygonal path outside Bd(a, 2r1) ⊃ Bd(x, r1)
to a point y′ with the desired property.

Summarizing, we proved that S is c-LLC with c = 48, provided that h is
smaller than the length of the edges of G. ��
Remark 3.15 The proof of Lemma 3.14 shows that one may obtain the fol-
lowing stronger conclusion which implies that the space is c-LLC:
There exists a constant c > 1 such that for each ball Bd(x, r) and for each
z /∈ Bd(x, r) there exists a path γz outside Bd(x, r/c) that connects z to a point
z′, whose projection z̃′ to the plane lies outside B(x̃, r/c). The path γz can be
taken to be polygonal.

Next, we have a version of the previous lemma for N ≤ N0 tripods.
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Lemma 3.16 Let {G1, . . . ,GN } be a family of tripods possessing property
(G) and suppose that N ≤ N0. Consider a flap-plane S = S(G1, . . . ,GN ).
If the height hi of each rectangle E ∼ Gi is less than the width of E for all
i ∈ {1, . . . , N }, then the flap-plane S is c0-LLC, with constant c0 depending
only on N0.

In fact, Remark 3.15 also applies here. It is important in this lemma that the
height hi can be chosen to depend only on Gi and not on G j for i �= j . In
particular, we can set hi to be less than smallest among the lengths of the edges
of Gi . Moreover, the dependence of c0 on the number of tripods N0 cannot be
relaxed.

Proof Wegive the argument in case N = 2 and then sketch the almost identical
induction argument required to prove the statement for arbitrary N ≤ N0.
Assume that we have two tripods G1 and G2, and let h1, h2 > 0 be smaller
than the length of each edge ofG1,G2, respectively.Without loss of generality,
we assume that h1 ≤ h2.

Consider a flap-plane S = S(G1,G2) with metric d, and let � = S(G2)

with metric σ be the flap-plane that arises by collapsing (or projecting) in
S the rectangles E ∼ G1 to the plane. Also, consider the natural projection
P∗ : S → �. For a point x ∈ S we denote x∗ = P∗(x).
As remarked in the beginningof the proof ofLemma3.14 and also inRemark

3.15, it suffices to show that for each ball Bd(x, r) and z /∈ Bd(x, r) there exists
a path γz ⊂ S\Bd(x, r/c0) that connects z to a point z′, whose projection to
R
2 lies outside B(x̃, r/c0). Here, c0 > 1 is a constant that depends only on N0

and, as usual, x̃ denotes the projection of x to the plane.
As in the proof of Lemma 3.14 we split in two cases. If r ≥ 12h1, then we

have z∗ ∈ �\Bσ (x∗, r/2). Indeed, otherwise, by (G2) we would have

d(x, z) ≤ σ(x∗, z∗) + 6h1 < r/2 + r/2 = r,

a contradiction. By Lemma 3.14 and Remark 3.15 there exists a universal
constant c > 1 and there exists a polygonal path γ ∗ outside Bσ (x∗, r/2c)
that connects z∗ to a point (z∗)′, whose projection to the plane lies outside
B(x̃, r/2c). Using (G1) and (G3), we can lift γ ∗ to a polygonal path γ ⊂
S\Bd(x, r/2c) that connects z to a point z′, whose projection to the plane
agrees with the projection of (z∗)′ (by compatibility (G4)), and therefore lies
outside B(x̃, r/2c). Hence, we may choose c0 ≥ 2c.

If r < 12h1, then we also have r < 12h2. Then the same argument as
in Case 2 of the proof of Lemma 3.14 can be used to obtain the conclusion
and here we only need to choose c0 ≥ 48. Summarizing, one has to choose
c0 = max{2c, 48}.

Assume that the statement holds for any family of N − 1 ≤ N0 tripods
G1, . . . ,GN−1 satisfying the assumptions. Namely, there exists a constant
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c depending only on N0 such that any flap-plane S = S(G1, . . . ,GN−1)

with the correct choice of heights is c-LLC and satisfies the condition of
Remark 3.15. We now consider N ≤ N0 tripods G1, . . . ,GN and a flap-plane
S = S(G1, . . . ,GN ) with metric d as in the statement. By reordering the
tripods, we may assume that h1 ≤ · · · ≤ hN . Let � with metric σ be the
flap-plane arising by collapsing all rectangles E ∼ G1 to the plane. Then
� = S(G2, . . . ,GN ) and it satisfies the condition of Remark 3.15, by the
induction assumption.

We consider z ∈ S\Bd(x, r) and split in two cases. If r ≥ 12h1, then
z∗ ∈ �\Bσ (x∗, r/2), where z∗ = P∗(z), and P∗ : S → � is the projection.
By the induction assumption it follows that z∗ can be connected with a path
γ ∗ ⊂ �\Bσ (x∗, r/2c) to a point (z∗)′, whose projection to the plane lies
outside B(x̃, r/2c). Lifting the path γ ∗ to S yields the desired path. Hence, it
suffices to choose the LLC constant to be c0 ≥ 2c.

If r < 12h1 then in fact r < 12hi for all i ∈ {1, . . . , N }. Thus, the argument
in Case 2 of the proof of Lemma 3.14 can be used, and the LLC constant has
to be c0 ≥ 48. Summarizing, one has to choose c0 = max{2c, 48}, which
depends only on N0, since by assumption c depends only on N0. In fact, one
can choose c0 = 2N0−148. ��
Proof of Proposition 3.13 The metric of Sn = S(G1, . . . ,Gn) is denoted by
dn and the ball around x of radius r will be denoted by Bn(x, r).

We argue by induction on n. We claim that for each n ∈ N there exists a
constantCn > 1, increasing and uniformly bounded in n such that if the height
hn is chosen to be small enough depending on G1, . . . ,Gn and also smaller
than the width of the rectangles E ∼ Gn , then the following holds:
whenever z /∈ Bn(x, r) for some x ∈ Sn and r > 0, we can connect z to a
point z′ with a polygonal path γ ⊂ Sn\Bn(x, r/Cn) such that the projection
z̃′ of z′ to R

2 lies outside B(x̃, r/Cn).
This suffices by Remark 3.15, and shows that Sn is Cn-LLC. Since Cn is
bounded above by a constant C , it follows that Sn is C-LLC for all n ∈ N,
which is the desired conclusion.

Now, we focus on proving our claim. For n = 1 the statement holds with
the constant C1 given by Lemma 3.16, provided that h1 is sufficiently small
depending on G1. We assume that the claim holds for S1, . . . , Sn , so, in par-
ticular, the height hi of each rectangle E ∼ Gi has been chosen to be less than
the width of E for i ∈ {1, . . . , n}. Our goal is to choose the height hn+1 of
the rectangles E ∼ Gn+1 so that our claim holds. To begin with, we choose
hn+1 to be smaller than the width of all rectangles E ∼ Gn+1, and later we
will choose it to be even smaller. Consider a ball Bn+1(x, r) ⊂ Sn+1 and
z /∈ Bn+1(x, r). We split into two main cases:

Case 1 The projection of Bn+1(x, r) to the plane does not intersect both
Gn+1 and

⋃
i<n+1 Gi .
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Assume first that the projection of Bn+1(x, r) to the plane intersects only
Gn+1. We denote by � = S(Gn+1) the flap-plane that arises by collaps-
ing all rectangles E ∼ Gi , i < n + 1, to the plane. Also, we denote by
P∗ : S(G1, . . . ,Gn+1) → � the natural projection, and by σ the metric of �.
An application of (G6) yields (P∗)−1(Bσ (x∗, r)) = Bn+1(x, r), where x∗ =
P∗(x). We now have that z∗ = P∗(z) /∈ Bσ (x∗, r), hence, by Lemma 3.16
and Remark 3.15, there exists a polygonal path γ ∗ ⊂ �\Bσ (x∗, r/C1) that
connects z∗ to a point (z∗)′, whose projection to R

2 lies outside B(x̃, r/C1).
Using (G3) and the 1-Lipschitz property (G1), we lift the path γ ∗ under P∗ to
a polygonal path γ ⊂ Sn+1\Bn+1(x, r/C1) that connects z to a point z′, whose
projection to R

2 is the same as the projection of (z∗)′ to R
2 (by compatibility

(G4)), so it lies outside B(x̃, r/C1). The constant Cn+1 will be chosen later
so that Cn+1 ≥ Cn ≥ C1. Hence, γ lies outside Bn+1(x, r/Cn+1) and the
projection of z′ to the plane lies outside B(x̃, r/Cn+1), as desired.

Next, assume that the projection of Bn+1(x, r) to the plane intersects only⋃
i<n+1 Gi . We denote here by P∗ the projection of Sn+1 to Sn . Then by (G6)

wehave (P∗)−1(Bn(x∗, r)) = Bn+1(x, r). Since z∗ /∈ Bn(x∗, r), by the induc-
tion assumption there exists a polygonal path γ ∗ ⊂ Sn\Bn(x∗, r/Cn) that
connects z∗ to a point (z∗)′, whose projection to R

2 lies outside B(x̃, r/Cn).
Lifting this path and noting thatCn+1 ≥ Cn , as before, yields again the desired
path γ and point z′.

Case 2 The projection of Bn+1(x, r) to the plane intersects both Gn+1 and⋃
i<n+1 Gi . Let J ⊂ {1, . . . , n} be the set of indices j such that the projection

of Bn+1(x, r) to the plane intersects G j .
Assume first that #J ≤ N0 − 1 (here N0 is by assumption the bound on

the degree of the graph Tn+1), and let � = S({Gn+1} ∪ {G j : j ∈ J }) with
metric σ be the flap-plane arising by collapsing the rectangles E ∼ Gi , i /∈ J ,
i �= n+1, to the plane. We note that we can apply Lemma 3.16 to�, since the
heights of the rectangles attached to the corresponding tripods are smaller than
thewidths, by the induction assumption and the choicewe havemade for hn+1.
Since Bn+1(x, r) (or rather its projection to R

2) intersects only tripods that
are also “present” in �, we can use as before property (G6) and path-lifting to
reduce the statement to �. By Lemma 3.16 and Remark 3.15, the conclusion
holds in � with the constant C1 given by Lemma 3.16.

Assume now that #J ≥ N0. Then there exist points a j ∈ G j , j ∈ J , and a
point an+1 ∈ Gn+1 such that

|a j − an+1| < 2r

for all j ∈ J . This follows from the 1-Lipschitz property (G1) of the projec-
tions.
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As in the proof of Lemma 3.11, we introduce auxiliary vertices on Gn+1 as
follows. We partition each edge of Gn+1 in finitely many edges such that the
interior of each (new) edge of Gn+1 does not contain any vertex of Gi , i ≤ n,
and also each (new) edge of Gn+1 has one “free” vertex that does not lie on
anyGi , i ≤ n. For i ≤ n we set δi > 0 to be to be the minimum distance of the
(new) edges of Gn+1 from Gi , excluding the edges of Gn+1 that intersect Gi .
We then set δ = min1≤i≤n δi . The partitioning of the edges of Gn+1 is only
used to define δ in this proof, and is not considered to alter the tripod Gn+1
for any other consideration. Note that δ depends only on G1, . . . ,Gn+1.

As in the proof of Lemma 3.11, there has to exist some j ∈ J such that
|a j − an+1| > δ, since the degree of Tn+1 is at most N0. Hence, δ < 2r . Now,
for any number α ∈ (0, 1), we can choose the height hn+1 to be so small,
depending only on N0, δ, and α, that

Bn+1(x, r) ⊃ (P∗)−1(Bn(x
∗, αr)), (3.7)

where P∗ denotes the projection from Sn+1 onto Sn . Indeed, for any y∗ ∈
Bn(x∗, αr) and any preimage y ∈ (P∗)−1(y∗) we have by (G2)

dn+1(x, y) ≤ dn(x
∗, y∗) + 6hn+1 < αr + (1 − α)δ/2 < r,

provided that hn+1 < (1 − α)δ/12. (3.7) implies that z∗ /∈ Bn(x∗, αr), so
by the induction assumption there exists a path γ ∗ ⊂ Sn\Bn(x∗, αr/Cn) that
connects z∗ to a point (z∗)′ /∈ Bn(x∗, αr/Cn), whose projection to R

2 lies
outside B(x̃, αr/Cn). The path γ ∗ lifts to a path γ ⊂ Bn+1(x, αr/Cn), so our
claim holds with Cn+1 = Cn/α. Now, we choose α = 1 − 1/(n + 1)2, so

Cn+1 = Cn

(

1 − 1

(n + 1)2

)−1

> Cn ≥ C1.

With this choice we have

Cn+1 ≤ C1
∏∞

i=1(1 − 1/(i + 1)2)
=:C < ∞

for all n ∈ N. Note that C depends only on C1, and thus only on N0. ��

3.4 Proof of Theorem 3.7

We will use Theorem 3.9. We note first that the assumptions of the theorem
are satisfied by the spaces (Sn, dn) with uniform constants. Indeed, each of
the flap-planes (Sn, dn) is unbounded since the projection onto the plane is 1-
Lipschitz by (G1). Also, (Sn, dn) is complete since it is obtained by attaching
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finitelymany rectangles to the plane; cf. proof of Proposition 3.2. Furthermore,
if the heights h1, . . . , hn are chosen (inductively) to be sufficiently small, then
by Propositions 3.10 and 3.13 we conclude that (Sn, dn) is Ahlfors 2-regular
and LLC with constants independent of n. We also choose the heights to be
even smaller, if necessary, so that the conclusions of Propositions 3.2 and 3.5
hold.

Theorem 3.9 now yields for each n ∈ N a quasisymmetry fn from (Sn, dn)
onto R

2. Since the statement of the theorem is quantitative, we may assume
that the distortion function η of fn is independent of n. We would like to pass
to a limiting quasisymmetry f : S∞ → R

2. This will be obtained by applying
Lemma 2.12, after normalizing the functions fn .

Consider the limiting space (S∞, d∞), given by Proposition 3.2. By Propo-
sition 3.5, for a fixed point p ∈ S∞ we may choose points pn ∈ Sn such that
the sequence (Sn, dn, pn) converges to the space (S∞, d∞, p) in the pointed
Gromov–Hausdorff sense of Definition 2.10.

Since all of the spaces Sn are Ahlfors 2-regular with uniform constants, it
follows that they are uniformly doubling; see comments after Definition 2.10.
For each n ∈ N we consider a point xn ∈ Sn such that dn(pn, xn) = 1; recall
that the space Sn is a length space. By postcomposing fn with a Möbius trans-
formation ofR2,wemayobtain a sequence gn : Sn → R

2 such that gn(pn) = 0
and gn(xn) = 1 for all n ∈ N. The functions gn will still be η-quasisymmetric,
since the distortion function is not affected under compositions with scalings
and translations. Lemma 2.12 (with Yn ≡ R

2) now yields a subsequence of gn
that converges to an η-quasisymmetry g : S∞ → R

2. By Lemma 2.11 it also
follows that S∞ is Ahlfors 2-regular. ��

4 The continuous case

In this section we prove first the non-removability of the gasket for continuous
W 1,2 functions (Theorem1.6) and then the non-removability of homeomorphic
copies of the gasket (Theorem1.7).Also,we include proofs of the general state-
ments in Theorem 1.3 and Proposition 1.4, regarding the (non)-removability
of sets of positive measure.

4.1 Terminology and geometry of the gasket

We first recall the definition of the Sierpiński gasket, introduce some termi-
nology, and discuss its combinatorial properties.

The Sierpiński gasket is constructed as follows. We consider an equilateral
triangle of sidelength 1 and subdivide it into four equilateral triangles of side-
length 1/2. After removing the middle triangle, we proceed inductively with
subdividing each of the remaining three triangles into four equilateral triangles
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of sidelength 1/22, and so on. The remaining compact set K is the Sierpiński
gasket; see Fig. 1. From the definition it is immediate that K has area zero.
Indeed, at the n-th step of the construction K is contained in the union of 3n

equilateral triangles of sidelength 1/2n , hence

m2(K ) ≤ 3n ·
√
3

4

1

4n
,

which converges to 0 as n → ∞. We will assume in what follows that K ⊂
B(0, 2) ⊂ R

2.
We call w-triangles the complementary triangles of K that are removed in

each step.Making abuse of terminologywe also call the unbounded component
ofR

2\K aw-triangle of sidelength 1. In the construction of K , at each step we
remove a central w-triangleW0 from an equilateral triangle V0 having double
the sidelength of W0, after subdividing V0 into four equilateral triangles. We
call v-triangles the triangles arising as V0. w-triangles and v-triangles are by
definition open sets. Hence, using the previous notation V0\W 0 is the union of
three v-triangles. We say that the level of a w-triangle W0 is equal to n if the
sidelength of W0 is equal to 2−n . In particular, the unbounded w-triangle has
level 0, and the central w-triangle of the first step of the construction has level
1. For n ≥ 1 there exist 3n−1 w-triangles of level n. Similarly, we say that the
level of a v-triangle V0 is equal to n if its sidelength is 2−n . Note that there
exists one v-triangle of level 0 and 3n v-triangles of level n, for each n ∈ N.

We denote by W be the collection of w-triangles, and

W∞:=
⋃

W∈W
W .

Also, we use the notation K ◦ for the points of K that do not lie on the boundary
of any w-triangle, so in particular we have

K ◦ = K\W∞.

In the proofs, if z is a point of the gasket, we will often have to distinguish
between three cases, depending on whether z is a vertex of a w-triangle, or a
point on an edge of a w-triangle but not a vertex, or none of the above, i.e.,
z ∈ K ◦. In the first case that a point z ∈ K is a vertex of a w-triangle, we
say that z is of vertex type. In the second case that z lies on the boundary of a
w-triangle but it is not a vertex, we say that it is of edge type.

Two w-trianglesW1,W2 are adjacent if a vertex ofW1 lies on ∂W2, or vice
versa. Note that if W1 has a vertex on ∂W2 then the level of W2 is strictly
smaller than that of W1, i.e., W2 is a strictly larger triangle than W1.
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We now study some important properties of the combinatorics of the gasket.
For each point z ∈ K there exists a sequence {Vn}n∈N of nested v-triangles
with

{z} =
∞⋂

n=1

V n.

In fact, this sequence is unique if the following hold:

(i) z is not a vertex of a w-triangle, or it is a vertex of the unbounded w-
triangle of level 0,

(ii) V1 has level 0 (so it is the very first triangle in the construction of K ), and
Vn has level n − 1 for n ∈ N,

(iii) Vn+1 ⊂ Vn for n ∈ N.

If z is a vertex of a w-triangle of level at least 1 then there are precisely two
distinct sequences shrinking to z and satisfying (ii) and (iii).

The following two lemmas describe how the sequence V n shrinks to the
point z. In fact, the first lemma refers to v-triangles and the second lemma to
w-triangles. We could have incorporated both lemmas in one, but this would
complicate the statements, so we state them separately.

Lemma 4.1 Let {Vn}n≥1 be a nested sequence of v-triangles satisfying (ii)
and (iii), and converging to a point z ∈ K, in the sense that

{z} =
∞⋂

n=1

V n.

In case z is a vertex of a w-triangle of level at least 1 we also consider the
other sequence {V ′

n}n∈N that is distinct from {Vn}n∈N and converges to z. If z
is a vertex of the unbounded w-triangle of level 0 we set V ′

n = Vn for n ∈ N.

(I) If z is of vertex type, then there exist two (possibly non-distinct) w-
triangles A and B with z ∈ ∂A ∩ ∂B such that for each n ∈ N the
set A ∪ B ∪ V n ∪ V

′
n contains all sufficiently small open neighborhoods

of z.
(II) If z is of edge type, then z ∈ ∂Vn for all n ∈ N and moreover, there exists

a w-triangle B with z ∈ ∂B such that for each n ∈ N the set B ∪ V n
contains all sufficiently small open neighborhoods of z.

(III) If z ∈ K ◦ then z /∈ ∂Vn for all n ∈ N, so for each n ∈ N the set Vn
contains all sufficiently small open neighborhoods of z.

The following lemma describes essentially Fig. 5.
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xk(n),l(n) xn−1,l(n)

xn−1,k(n)

xn,k(n)

xn,l(n)

Wn−1

Wn

An = Wk(n)

Wl(n) = Bn

Fig. 5 A typical situation as described in Lemma 4.2(III)

Lemma 4.2 Let {Vn}n≥1 be a nested sequence of v-triangles satisfying (ii)
and (iii), and converging to a point z ∈ K, in the sense that

{z} =
∞⋂

n=1

V n.

Also, for each n ∈ N consider the centralw-triangle Wn ⊂ Vn of level n. Then,
for n ≥ 2, Wn has one vertex on ∂Wn−1, and two vertices on the boundaries of
some w-triangles An, Bn (we could have An = Bn if they are the unbounded
w-triangle of level 0). Assume that the level of Bn is at most the level of An
(so Bn is a larger triangle than An). Furthermore:

(I) If z is a vertex of a w-triangle A (i.e., z is of vertex type), then there exists
anotherw-triangle B with z ∈ ∂A∩∂B such that for all sufficiently large
n ∈ N we have An = A and Bn = B. In this case, ∂Vn is contained in
∂Wn−1 ∪ ∂A ∪ ∂B and contains z, ∂Wn−1 ∩ ∂A, ∂Wn−1 ∩ ∂B, and also
the vertices of Wn ⊂ Vn.

(II) If z is of edge type, then there exists a w-triangle B such that z ∈ ∂B and
Bn = B for all sufficiently large n ∈ N, but no other w-triangle A has
the property that An = A infinitely often. Moreover, for all sufficiently
large n ∈ N, Wn−1 has a vertex on ∂B and a vertex on ∂An, and An has a
vertex on ∂B. In fact, there exists a sequence {k(n)}n∈N with k(n) → ∞
as n → ∞ such that An = Wk(n) for all sufficiently large n ∈ N. In this
case, ∂Vn is contained in ∂Wn−1∪∂Wk(n) ∪∂B and contains the vertices
∂Wn−1∩∂B, ∂Wk(n) ∩∂B, ∂Wn−1∩∂Wk(n), and also the vertices of Wn.
Finally, the vertices xn−1,k(n) = ∂Wn−1∩∂Wk(n), xn,k(n) = ∂Wn∩∂Wk(n),
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and xk(n),B = ∂Wk(n) ∩ ∂B are contained in a half-edge of ∂Wk(n), and
xn,k(n) lies between the two other vertices.

(III) If z ∈ K ◦, then no w-triangle W has the property that An = W or
Bn = W infinitely often. Moreover, for all sufficiently large n ∈ N,
Wn−1 has a vertex on ∂An and a vertex on ∂Bn, and An has a vertex
on ∂Bn. In fact, there exist sequences {k(n)}n∈N, {l(n)}n∈N that diverge
to ∞ such that An = Wk(n) and Bn = Wl(n) for all sufficiently large
n ∈ N. In the latter case, note that l(n) < k(n) < n − 1 < n, and
also ∂Vn ⊂ ∂Wn−1 ∪ ∂Wk(n) ∪ ∂Wl(n). Finally, the vertices xn−1,k(n) =
∂Wn−1∩∂Wk(n), xn,k(n) = ∂Wn∩∂Wk(n), and xk(n),l(n) = ∂Wk(n)∩∂Wl(n)

are contained in a half-edge of ∂Wk(n), and xn,k(n) lies between the two
other vertices. The same statement holds with the roles of k(n) and l(n)

reversed; see Fig. 5.

The proofs of both lemmas are elementary and can be done by induction,
so we leave them to the reader. Especially the second lemma will be crucially
used in the proof of continuity of f in the next theorem, which is a restatement
of Theorem 1.6.

Theorem 4.3 (Theorem 1.6). There exists a continuous function f : R
2 → R

with f ∈ W 1,2(R2\K ), but f /∈ W 1,2(R2). In particular, K is non-removable
for W 1,2.

The function f will be almost a constant on eachw-triangle, andwill rapidly
change near the vertices. The (almost constant) value of f on each w-triangle
will be the average of the values on neighboring triangles of the previous level,
with the exception of the central w-triangle of level 1; see Fig. 6.

The construction will be done in several steps. We will give an inductive
construction of the function f , and ensure that it has finite energy, i.e., ∇ f ∈
L2(R2). In fact, we will show that ‖∇ f ‖L2(R2) can be made arbitrarily small,
and this will prevent f from lying in W 1,2(R2). Finally, we will focus on
proving that our function f with the inductive definition is continuous on
R
2. The proof of the latter property is very delicate and occupies most of the

section.

4.2 Building block

Here we describe the building block functions that will be used to define f on
each w-triangle.

Let W ⊂ R
2 be an open equilateral triangle with vertices x1, x2, x3. Then

for each ε > 0 and each choice of real numbers a, c1, c2, c3 there exists
a continuous function g : W → R with g ∈ W 1,2(W ) and balls B(xi , ri ),
i = 1, 2, 3, such that
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(B1) g ≡ a on W\⋃3
i=1 B(xi , ri ),

(B2) g(xi ) = ci for i = 1, 2, 3,
(B3) g is monotone increasing or decreasing (not necessarily strictly) on
each half-edge of ∂W , from its midpoint to a vertex,
(B4)

∫
W |∇g|2 < ε.

Furthermore, the balls B(xi , ri ) can be chosen to be arbitrarily small. Hence,
by (B1) we may have that

(B5) g has the value a at the midpoints of the edges of W .

The value a is called the height of g. See Fig. 6 for an illustration of the graph
of four such functions. Finally, we require a monotonicity property:

(B6) oscW (g) = osc∂W (g).

To construct such a function near the vertex xi of W , we may assume that
a = 0, ci = 1, and that xi = 0 ∈ R

2. The conceptual fact behind this
construction is that the 2-capacity of a point is equal to 0; see [11, Section 3].
For 0 < r < R consider the function

g(x) =

⎧
⎪⎨

⎪⎩

(log(R/r)−1 log(R/|x |), r ≤ |x | ≤ R

1, |x | < r

0, |x | > R.

Then there exists a constant C > 0 such that
∫ |∇g|2 ≤ C log(R/r)−1, which

converges to 0 as r → 0. In fact, making R smaller one sees that g can be
supported in an arbitrarily small neighborhood of 0. Hence, the ball B(xi , ri )
with ri = R can be made arbitrarily small. One can now glue together three
such functions, one near each vertex of W , to obtain the desired building
block function. However, in order to prove the continuity of the function f
in Theorem 4.3, we will not use this particular function g, but we will need
to make a more careful construction, towards the end of the proof, so that a
certain modulus of continuity is satisfied.

Remark 4.4 For the continuity of the function f of Theorem 4.3 we will need
the properties (B2), (B3), (B5), and (B6) of the building block functions.
Properties (B1) and (B4) are only used to show that f does not lie inW 1,2(R2)

in the next section.

4.3 Avoidance of W1,2(R2)

The function f will be defined inductively in the next section so that f ≡ 0
in the unbounded component of R

2\K and in particular outside a fixed ball
B(x0, R0), f ≡ 1 in a fixed ball B(x0, r0) contained in the centralw-triangle of
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Fig. 6 Illustration of the graph of f on w-triangles of level at most 2

sidelength 1/2, and 0 ≤ f ≤ 1. Inside each w-triangle W the function f will
be equal to a suitable building block function gW , so that global continuity is
ensured; see Fig. 6. We fix ε > 0. By choosing ‖∇gW‖L2(W ) to be sufficiently
small for each W , we may have

‖∇ f ‖L2(R2) = ‖∇ f ‖L2(R2\K ) =
∑

W∈W
‖∇gW‖L2(W ) < ε.

We remark that the ball B(x0, r0) on which f ≡ 1 and the ball B(x0, R0)

outside of which f ≡ 0 are independent of ε.
Now, we wish to prevent f from lying in W 1,2(R2). Suppose that f ∈

W 1,2(R2), and in particular that f is absolutely continuous on almost every
line; see e.g. [36, Section 26]. Let It , 0 ≤ t ≤ r0, be the family of horizontal
segments [0, 1] × {t}, translated and scaled, so that It starts inside B(x0, r0)
and ends outside B(x0, R0) for each t . Since f ≡ 0 outside B(x0, R0) and
f ≡ 1 in B(x0, r0), by the absolute continuity on almost every line we obtain

1 ≤
∫

It
|∇ f | ds

for a.e. t ∈ [0, r0]. Integrating over t ∈ [0, r0] and applying Fubini’s theorem
and the Cauchy-Schwarz inequality we have

r0 ≤
∫

B(x0,R0)

|∇ f | ≤ ‖∇ f ‖L2(R2)π
1/2R0 < επ1/2R0.
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If ε is sufficiently small, we obtain a contradiction. Hence, by choosing a small
ε > 0 we may have that f /∈ W 1,2(R2).

4.4 Inductive choice of parameters

Here, we give the inductive construction of f .
We let f = 0 on the closure of the w-triangle of level 0 (i.e., the closure

of the unbounded component of R
2\K ), and we define f in the closure of the

central w-triangle of level 1 to be a building block function with parameters
a = 1 and ci = 0 for i = 1, 2, 3. In particular, f ≡ 1 in a fixed ball B(x0, r0),
by the property (B1) of the building block function.

Once f has been defined on the closure of w-triangles of level m − 1, we
define f on each triangle W ∈ W of level m as follows. Note that the vertices
xi , i = 1, 2, 3, of the triangle W lie on the boundaries of triangles of level at
most m − 1. Hence, the function f has already been defined on the vertices of
W . We now set

ci = f (xi ), i = 1, 2, 3, and

a = 1

3
(c1 + c2 + c3).

Define f onW to be equal to a building block function with these parameters;
see Fig. 6. We also set

O(W ) = max
i=1,2,3

|a − ci |,

which controls the oscillation of f on W . In particular,

oscW ( f ) = osc∂W ( f ) ≤ 2O(W ), (4.1)

by properties (B3) and (B6). Proceeding inductively, f is defined on W∞ =⋃
W∈W W .
One important observation is that the function f has amonotonicity property

outside the centralw-triangle of level 1; here monotonicity is to be understood
in the sense that the maximum and minimum on open sets is attained at the
boundary of these sets. Of course, validity of such a monotonicity property
depends partly on the building block functions. We now formulate more pre-
cisely and prove the form of monotonicity that we will need.
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Lemma 4.5 For each v-triangle V of level m ≥ 1 we have

sup
x∈V∩W∞

f (x) = max
x∈∂V

f (x), and

inf
x∈V∩W∞

f (x) = min
x∈∂V

f (x).

In particular,

oscV∩W∞( f ) = sup
x∈V∩W∞

f (x) − inf
x∈V∩W∞

f (x) = osc∂V ( f ).

Note that ∂V is contained in the union of the boundaries of the w-triangles,
so f is already defined there and all the expressions that appear in the lemma
make sense.

Proof Assume thatW1 ⊂ V is thew-triangle whose vertices xi , i = 1, 2, 3, lie
on ∂V . Then, by the averaging definition of f and the monotonicity properties
(B3) and (B6) of the building block functions, it follows that the maximum
and minimum of f on W 1 are attained at the vertices of W1, i.e.,

min
i∈{1,2,3} f (xi ) ≤ f (z) ≤ max

i∈{1,2,3} f (xi )

for all z ∈ W 1. Hence,

max
x∈∂V

f (x) ≤ f (z) ≤ max
x∈∂V

f (x)

for all z ∈ W 1.
Let V2 be one of the three v-triangles of V \W 1, and let W2 ⊂ V2 be the

central w-triangle whose vertices lie on ∂V2. If the vertices of W2 are yi ,
i = 1, 2, 3, then as before we have

min
i∈{1,2,3} f (yi ) ≤ f (z) ≤ max

i∈{1,2,3} f (yi )

for all z ∈ W 2. The vertices yi lie on ∂V2 ⊂ ∂W1 ∪ ∂V , hence

max
i∈{1,2,3} f (yi ) ≤ max

x∈∂W1∪∂V
f (x) = max

x∈∂V
f (x),

by our conclusion for W1. The analog of this statement also holds for the
minimum, hence, we obtain in this case

max
x∈∂V

f (x) ≤ f (z) ≤ max
x∈∂V

f (x)
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for all z ∈ W 2. The proof of the general statement follows with the same
argument by induction. ��

4.5 Proof of Continuity

Proposition 4.6 The function f : W∞ → R is uniformly continuous and thus,
it has a continuous extension to R

2, which is the closure of W∞ = ⋃
W∈W W.

The way to interpret this statement is that there exists a choice of building
block functions that makes f continuous. As we remarked in Sect. 4.2, we
cannot use a “generic” building block function, but we have to make a careful
construction.

Theproof of continuity relies on the next crucial lemma.Recall the definition
of O(W ) from Sect. 4.4.

Lemma 4.7 For each ε > 0 there exist at most finitely many w-triangles W
with

O(W ) > ε.

In particular, for each ε > 0 there exist at most finitely many w-triangles W
with

oscW ( f ) > ε.

Assuming the lemma, we prove Proposition 4.6.

Proof of Proposition 4.6 Using Lemma 4.7, we fist prove:

Claim 1 For each ε > 0 there exist at most finitely many v-triangles V with

oscV∩W∞( f ) > ε. (4.2)

We argue by contradiction, assuming that there exists ε > 0 such that the
above holds for infinitely many v-triangles. Let V be one of them. Then by
the monotonicity of f from Lemma 4.5 we have osc∂V ( f ) > ε. Each edge
of ∂V is contained in an edge of a w-triangle, so there exist three (possibly
non-distinct) w-triangles W1, W2, and W3 such that

ε < osc∂V ( f ) ≤ osc∂V∩∂W1( f ) + osc∂V∩∂W2( f ) + osc∂V∩∂W3( f ).

In particular, for one of them, say forW , we have osc∂V∩∂W ( f ) > ε. We thus
see that each v-triangle of the set {V : oscV∩W∞( f ) > ε} corresponds to a
w-triangle W such that osc∂V∩∂W ( f ) > ε/3. Moreover, this correspondence
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is finite-to-one. Indeed, if there were infinitely many v-triangles Vn , n ∈ N,
corresponding to a singlew-triangleW , then the diameters of Vn would shrink
to 0.However, the uniform continuity of the restriction of f to ∂W would imply
that osc∂Vn∩∂W ( f ) → 0, a contradiction. It follows that there exist infinitely
many w-triangles W with the property that there exists a v-triangle V such
that

ε/3 < osc∂V∩∂W ( f ) ≤ osc∂W ( f ) ≤ 2O(W ),

where we used (4.1). This contradicts Lemma 4.7.
Now, we prove that f is uniformly continuous on W∞. We argue by con-

tradiction, assuming that there exists ε > 0 and sequences xn, yn ∈ W∞ with
|xn − yn| → 0 such that | f (xn) − f (yn)| ≥ ε for all n ∈ N. The sequences
xn, yn cannot escape to ∞ since f is identically equal to 0 in a neighborhood
of ∞. Consider an accumulation point z of xn and yn , and by passing to a
subsequence, assume that xn, yn → z. Note that z cannot lie in the interior of
anyw-triangle, since the function f is already continuous there. Hence, z ∈ K
and we split into three cases.

Suppose first that z is of vertex type. By Lemma 4.1(I) there exist two
(possibly non-distinct) w-triangles A and B containing z on their boundary
and two (possibly non-distinct) sequences of v-triangles V k and V

′
k shrinking

to z such that for each k ∈ N the set A∪ B ∪ V k ∪ V
′
k contains all sufficiently

small neighborhoods of z. We fix k and a small r > 0 such that B(z, r) ⊂
A ∪ B ∪ V k ∪ V

′
k . Since z ∈ ∂A ∩ ∂B ∩ V k ∩ V

′
k , for each p ∈ B(z, r) we

have

| f (p) − f (z)| ≤ oscA∩B(z,r)( f ) + oscB∩B(z,r)( f ) + oscV k∩W∞( f )

+ oscV ′
k∩W∞( f ).

By choosing a sufficiently large k, we may have that oscV k∩W∞( f ) < ε/8
and oscV ′

k∩W∞( f ) < ε/8, by Claim 1. By choosing r > 0 to be sufficiently

small, using the uniform continuity of the restriction of f on A and B we may
also have oscA∩B(z,r)( f ) < ε/8 and oscB∩B(z,r)( f ) < ε/8. It follows that
| f (p) − f (z)| < ε/2 for all p ∈ B(z, r). Now, if n is sufficiently large, then
xn, yn ∈ B(z, r), hence

| f (xn) − f (yn)| ≤ | f (xn) − f (z)| + | f (yn) − f (z)| < ε/2 + ε/2 = ε,

which is a contradiction.
If z is of edge type, then applying Lemma 4.1(II) we obtain a w-triangle

B with z ∈ ∂B and a sequence of v-triangles V k shrinking to z such that for
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each k ∈ N the set B ∪ V k contains all sufficiently small neighborhoods of
z. One now argues exactly as in the previous case, using Claim 1 or using the
uniform continuity of the restriction of f on B. It follows that for each k ∈ N

there exists a small r > 0 such that for all p ∈ B(z, r) we have

| f (p) − f (z)| ≤ oscB∩B(z,r)( f ) + oscV k∩W∞( f ) < ε/8 + ε/8 = ε/4.

Since xn, yn ∈ B(z, r) for all sufficiently large n, we obtain again a contradic-
tion to the assumption that | f (xn) − f (yn)| ≥ ε for n ∈ N.

Finally, suppose that z ∈ K ◦. By Lemma 4.1(III) there exists a sequence of
v-triangles Vk shrinking to z such that z ∈ Vk for all k ∈ N. It follows that for
each k there exists a large n such that xn, yn ∈ Vk . In particular, we have

| f (xn) − f (yn)| ≤ oscV k∩W∞( f ).

If we choose a sufficiently large k ∈ N then the latter is less than ε by Claim
1 and we obtain a contradiction. ��

Finally, we prove the basic Lemma 4.7.

Proof of Lemma 4.7 We argue by contradiction, assuming that for some ε0 >

0 we have

oscW ( f ) > ε0 (4.3)

for infinitely many w-triangles W . We split in three cases.
Case 1 There exist infinitely manyw-triangles satisfying (4.3) and converg-

ing to a point z ∈ K of vertex type.
By Lemma 4.2(I), the vertex z is (contained in) the intersection of the clo-

sures of two fixed w-triangles A and B (these might be non-distinct if they are
the unbounded w-triangle). Since the restriction of f is uniformly continuous
on A ∪ B, for each ε > 0 there exists δ > 0 such that for all x, y ∈ A ∪ B
with |x − y| < δ we have | f (x) − f (y)| < ε.

Using the notation from Lemma 4.2(I), we consider the sequences of trian-
gles Wn and Vn . For sufficiently large n, the triangle Vn has z on its boundary,
and is contained in the δ/2-neighborhood of z. Note that each triangle Wn has
its vertices on ∂Wn−1, ∂A, and ∂B for all sufficiently large n. Assume that all
of the above hold for n ≥ N .

We denote by cn the height of f on Wn (recall the definition of the height
of a building block function in Sect. 4.2), and note that for n > N we have

cn = 1

3
(cn−1 + cn,A + cn,B),
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where cn,A and cn,B are the values of f on the vertex of Wn lying on ∂A and
∂B, respectively. Note that the vertex of Wn lying on ∂Wn−1 is the midpoint
of an edge of ∂Wn−1. Hence, by property (B5), the value of f at this vertex is
equal to the height of f on the triangle Wn−1, i.e., cn−1.

Our goal is to find a sequence {�n}n∈N such that

O(Wn) = max{|cn − cn−1|, |cn − cn,A|, |cn − cn,B |} ≤ �n (4.4)

for n ∈ N, and �n ≤ 3ε for sufficiently large n. Then

osc∂Vn ( f ) ≤ osc∂Vn∩∂A( f ) + osc∂Vn∩∂B( f ) + osc∂Vn∩∂Wn−1( f )

≤ 2ε + oscWn−1
( f ) ≤ 2ε + 2�n−1 ≤ 8ε

for all sufficiently large n, where we used (4.1).
Note that there are at most two nested sequences {Vn}n∈N and {V ′

n}n∈N

shrinking to z, for which the above bounds hold; see Lemma 4.1(I). If W is a
small w-triangle near z satisfying (4.3), then it has to be contained in Vn or V ′

n
for some large n, by Lemma 4.1(I). Using the monotonicity of f we see that

oscW ( f ) ≤ max{osc∂Vn ( f ), osc∂V ′
n
( f )} ≤ 8ε.

This contradicts (4.3) if we choose ε < ε0/8.
We proceed to the proof of (4.4). For 1 ≤ n ≤ N we use the trivial bound

O(Wn) ≤ 1=:�n . Once �n−1 has been defined and satisfies (4.4), for n > N
we have

|cn − cn−1| ≤ 1

3
(|cn,A − cn−1| + |cn,B − cn−1|)

≤ 1

3
(|cn,A − cn−1,A| + |cn−1,A − cn−1|
+ |cn,B − cn−1,B | + |cn−1,B − cn−1|)

≤ 1

3
(ε + �n−1 + ε + �n−1)

≤ 2ε

3
+ 2

3
�n−1,

|cn − cn,A| ≤ 1

3
(|cn−1 − cn,A| + |cn,B − cn,A|)

≤ 1

3
(ε + �n−1 + ε)

≤ 2ε

3
+ 1

3
�n−1, and

|cn − cn,B | ≤ 2ε

3
+ 1

3
�n−1.
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Here, we used the fact fromLemma 4.2(I) that the vertices ∂Wn∩∂A, ∂Wn−1∩
∂A, and ∂Wn ∩ ∂B, ∂Wn−1 ∩ ∂B are all contained in ∂Vn , which lies in the
δ/2-neighborhood of z. Thus, we may choose �n:=2ε

3 + 2
3�n−1 for n > N ,

which yields

�n = 2ε

3
+ · · · + 2n−Nε

3n−N
+ 2n−N

3n−N
≤ 2ε + 2n−N

3n−N
.

Since �n ≤ 3ε for sufficiently large n, we have the desired conclusion.
Case 2 There exist infinitely manyw-triangles satisfying (4.3) and converg-

ing to a point z ∈ K\K ◦ that is of edge type, i.e., it lies on an open edge of a
w-triangle B.

We consider the unique sequences of triangles Vn and Wn converging to
z, as in Lemma 4.2(II). We fix a small ε > 0 and consider δ > 0 such that
| f (x) − f (y)| < ε whenever |x − y| < δ and x, y ∈ ∂B. Assume that Vn is
contained in the δ/2-neighborhood of z for n > N . Then arguing as in Case
1, we wish to find a sequence �n that bounds the oscillation of f on Wn , and
�n is sufficiently small, depending on ε.

This time we have

cn = 1

3
(cn−1 + cn,An + cn,B).

for n ≥ 1; also here, cn is the height of f on Wn and we use again property
(B5). By Lemma 4.2(II), An = Wk(n) for, say, n > N , where k(n) → ∞.
We set cn,k(n):=cn,An . In general, if a w-triangle Wn has a vertex on ∂Wm for
some m, then the value of f at that vertex is denoted by cn,m .

Our claim now is that for each m ∈ N there exists Nm ∈ N and �m such
that

O(Wn) ≤ �m

for n > Nm , and �m ≤ 5ε for sufficiently large m.
We assume this for the moment. IfW is a smallw-triangle sufficiently close

to z, thenW ⊂ Vn for some large n, by Lemma 4.1(II). The boundary of Vn is
contained in ∂Wn−1, ∂Wk(n), and ∂B; see Lemma 4.2(II). Also Vn lies in the
δ/2-neighborhood of z for large n. Hence,

oscW ( f ) ≤ osc∂Vn ( f ) ≤ ε + 2O(Wn−1) + 2O(Wk(n))

≤ ε + 4�m

provided that n− 1, k(n) > Nm . IfW is sufficiently close to z, then Vn can be
chosen to be sufficiently close to z, so n − 1, k(n) and m can be large enough,
in order to have n − 1, k(n) > Nm , and �m ≤ 5ε. Hence,
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oscW ( f ) ≤ 21ε

and this contradicts (4.3), if we choose ε < ε0/21.
Now, we prove our claim. For m = 1 we use the trivial bound O(Wn) ≤

1=:�1, which holds for all n ∈ N. If Nm−1 has been chosen, we choose
Nm > N to be so large that n − 1, k(n) > Nm−1 for all n > Nm . This can be
done since k(n) → ∞ by Lemma 4.2(II). For n > Nm we have

|cn − cn−1| ≤ 1

3
(|cn,k(n) − cn−1| + |cn,B − cn−1|).

If |cn,k(n) − cn−1,k(n)| ≤ �m−1/2 then we have

|cn − cn−1| ≤ 1

3
(|cn,k(n) − cn−1,k(n)| + |cn−1,k(n) − cn−1|

+ |cn,B − cn−1,B | + |cn−1,B − cn−1|)
≤ 1

3
(�m−1/2 + �m−1 + ε + �m−1)

≤ 2ε

3
+ 5

6
�m−1.

Here we used the fact from Lemma 4.2(II) that V n contains the vertices
∂Wn−1 ∩ ∂B and ∂Wn ∩ ∂B, so they are δ-close to each other.

If |cn,k(n) − cn−1,k(n)| > �m−1/2, then we necessarily have |cn,k(n) −
ck(n),B | ≤ �m−1/2, where ck(n),B denotes the value of f at the vertex of
Wk(n) lying on ∂B. This is because the vertices ∂Wn−1 ∩ ∂Wk(n), ∂Wn ∩
∂Wk(n), ∂Wk(n) ∩ ∂B are ordered points, contained in a half-edge ofWk(n) (by
Lemma 4.2), where f is monotone increasing or decreasing by property (B3)
in Sect. 4.2. On the other hand, by the induction assumption, the oscillation of
f on this half-edge is bounded byO(Wk(n)) ≤ �m−1, since k(n) > Nm−1. In
this case, we have

|cn − cn−1| ≤ 1

3
(|cn,k(n) − ck(n),B | + |ck(n),B − cn−1,B | + |cn−1,B − cn−1|

+ |cn,B − cn−1,B | + |cn−1,B − cn−1|)
≤ 1

3
(�m−1/2 + ε + �m−1 + ε + �m−1)

= 2ε

3
+ 5

6
�m−1.
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Non-removability of the Sierpiński gasket 571

In the same way we also compute bounds for |cn − cn,k(n)| and |cn − cn,B |,
and we can show that they are all bounded by

O(Wn) ≤ 2ε

3
+ 5

6
�m−1=:�m .

Observe that

�m ≤ 4ε + 5m−1

6m−1 ≤ 5ε

for sufficiently large m, as desired.
Case 3 There exist infinitely manyw-triangles satisfying (4.3) and converg-

ing to a point z ∈ K ◦.
In the previous two cases the proof was mostly combinatorial, based on

Lemmas 4.1 and 4.2, on qualitative properties of the building block functions,
and on the fact that the restriction of f on the union of finitely many w-
triangles is uniformly continuous. However, in this case it will be crucial to
make a suitable choice of the building block functions, so that they have a
certain modulus of continuity on each w-triangle near the vertices.

Let W0 be a w-triangle, and consider the corresponding oscillationO(W0),
which depends on the value of f at the vertices of W0, by the inductive defi-
nition of f . We require the following:

4.5.1 Condition (∗)

(∗) Assume that two w-triangles W1 and W2 are adjacent, and each has a
vertex on a triangle ∂W0 of strictly lower level. If z1 ∈ ∂W1 ∩ ∂W0 and
z2 ∈ ∂W2 ∩ ∂W0 are these vertices, then

| f (z1) − f (z2)| ≤ O(W0)/3.

Recall thatW1 is adjacent toW2 ifW1 has a vertex on ∂W2, or vice versa. Note
at this point the vertices of W0 can only lie on triangles of strictly lower level
from that of W0, by our observations in Sect. 4.1, so in particular they do not
lie on W1 or W2. Of course, we still require the initial properties (B1)–(B6)
of the building block functions from Sect. 4.2.

To construct f onW0 with the desired properties wework as follows.We fix
an edge I ⊂ ∂W0, and a vertex z ∈ I ofW0. Assume that the edges ofW0 have
length 1, and that I = [0, 1], z = 0. We consider the points 2−k , k ≥ 2, on I ,
and define a radial function with the following procedure. For a fixed N ∈ N

we define f on the annulus A1:=A(0; 2−3, 2−2) to be a radial function that
is equal to 0 in the outer circle and increases to 1/N in the inner circle, with
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slope � 23/N . For 1 ≤ k ≤ N , we define f in Ak :=A(0; 2−2−k, 2−1−k) to
be a radial function that is equal to (k − 1)/N in the outer circle and increases
to k/N in the inner circle, with slope � 22+k/N . In the ball B(0, 2−2−N ) we
set f ≡ 1, outside the ball B(0, 2−2) we set f ≡ 0, and then we restrict f to
the triangle W 0. Then f ∈ W 1,2(W0) and

∫

W0

|∇ f |2 =
N∑

k=1

∫

W0∩Ak

|∇ f |2 �
N∑

k=1

(
22+k

N

)2

m2(W0 ∩ Ak)

�
N∑

k=1

1

N 2 � 1

N
.

Hence, by choosing a large N we can achieve both that the f has small energy,
and that

| f (2−k) − f (2−k−1)| ≤ 1

N
≤ 1

3

for all k ≥ 1. Note that the same bounds hold for the corresponding dyadic
points lying on the other edge of W0 that is connected to 0, and is a rotation
of I by 60 degrees. Of course, the assumptions that f = 1 near z = 0 and
f = 0 outside B(0, 2−2) are not restrictive, since by rescaling f and choosing
a sufficiently large N we can achieve the oscillationwewishwith small energy.

We now consider dyadic points as above on each half-edge ofW0, converg-
ing to the corresponding vertex, and do a similar construction for all vertices.
Near each vertex we may have that f oscillates radially from a given value
to the desired height and also has the property that if x1 and x2 are adjacent
dyadic points lying on an edge I of W0 then

| f (x1) − f (x2)| ≤ O(W0)/3. (4.5)

Again, by dyadic points we mean points of the form 2−k and 1 − 2−k for
k ∈ N, once we scale W0 so that I = [0, 1] is an edge of W0. The properties
(B1)–(B6) in Sect. 4.2 hold by construction. Especially, note that the property
(B3) holds, since f is radially increasing or decreasing near each vertex.

To check property (∗) we first use a scaling followed by a rotation of the
Sierpiński gasket so that the points z1, z2 in question lie on the edge I = [0, 1]
of ∂W0. One now has to observe that if z1, z2 ∈ I ⊂ ∂W0 are vertices of
adjacent triangles W1,W2, and they are not vertices of W0, then they must
both lie in one of the closed dyadic intervals of the form [2−k−1, 2−k] or
[1 − 2−k, 1 − 2−k−1], k ≥ 1. Hence, using the monotonicity of f on these
intervals (property (B3)) and (4.5) we obtain
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Non-removability of the Sierpiński gasket 573

| f (z1) − f (z2)| ≤ O(W0)/3.

To prove the observation mentioned, we first note that the two vertices of
∂W0 that are endpoints I , actually lie on the edges of two triangles A and
B. The triangles W0, A, and B bound a v-triangle V , and each w-triangle
that has a vertex on I must be contained in V . We consider the central w-
triangle W (1/2) ⊂ V that has a vertex at the midpoint of I . The points
2−2, 1− 2−2 ∈ I are vertices of triangles W (2−2), W (1− 2−1), respectively,
which also have a vertex on ∂W (1/2). Inductively, the points 2−k, 1−2−k ∈ I ,
k ≥ 2, are the vertices of trianglesW (2−k),W (1−2−k), which have vertices on
W (2−k+1), W (1− 2−k+1), respectively. Note that the v-triangles bounded by
∂W0, ∂W (2−k+1), and ∂W (2−k), or by ∂W0, ∂W (1−2−k+1), and ∂W (1−2−k)

are disjoint for k ≥ 1, and that the closures of these v-triangles cover I , except
for its endpoints.

Now, if W1,W2 ⊂ V are adjacent triangles as in the statement of (∗), and
they are not equal to the “dyadic” triangles W (2−k), W (1− 2−k), k ∈ N, that
have a vertex on a dyadic point of I , then their vertices z1, z2 ∈ I cannot lie
in distinct dyadic intervals. This is because in this case W1 and W2 would lie
in disjoint v-triangles, and thus, they would not be adjacent. With a similar
analysis one deals with the cases where one of W1,W2, or both, are equal
to “dyadic” triangles. In any case the vertices z1 ∈ ∂W1 ∩ ∂W0 and z2 ∈
∂W2 ∩ ∂W0 must both lie in one of the intervals of the form [2−k−1, 2−k] or
[1 − 2−k, 1 − 2−k−1], k ≥ 1, as desired. ��

Now, we return to the main proof of Case 3, that (4.3) cannot occur for
infinitely many w-triangles near a point z ∈ K ◦ = K\W∞.

We consider the sequence of nested v-triangles {Vn}n≥1 converging to z and
the correspondingw-trianglesWn ⊂ Vn , given by Lemma 4.2(III). In this case,
for sufficiently large n ∈ N the triangle Wn has a vertex on ∂Wn−1 and two
vertices on boundaries of some w-triangles Wk(n),Wl(n), with k(n), l(n) →
∞; see Fig. 5.

Let �1 = 1. We claim that for each m ≥ 2 there exists Nm ∈ N and
�m = 7�m−1/9 such that for n > Nm we have

O(Wn) ≤ �m .

If this is the case, then �m = 7m−1/9m−1 for m ∈ N, and it follows that

O(Wn) ≤ 7m−1/9m−1 ≤ ε

for all sufficiently large m and n > Nm , where ε > 0 is to be chosen. The
triangle Vn that contains Wn has boundary contained in ∂Wn−1, ∂Wk(n), and
∂Wl(n). Note that ifW is aw-triangle that is sufficiently close to z, thenW ⊂ Vn
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for some large n, by Lemma 4.1(III). On the other hand, for any w-triangle
W ⊂ Vn by the monotonicity of f in Lemma 4.5 and (4.1) we have

oscW ( f ) ≤ osc∂Vn ( f ) ≤ 2O(Wn−1) + 2O(Wk(n)) + 2O(Wl(n)) ≤ 6ε,

provided that n is sufficiently large, so that n − 1, k(n), l(n) > Nm . Choosing
ε < ε0/6 yields a contradiction to (4.3).

Now, we proceed with the proof of our claim. For m = 1 we use the trivial
boundO(Wn) ≤ 1=:�1, which holds for all n ∈ N. If Nm−1 has been chosen,
we choose Nm to be so large that for n > Nm the vertices of the triangle Wn
lie on triangles ∂Wn−1, ∂Wk(n), ∂Wl(n), with n − 1, k(n), l(n) > Nm−1. This
can be done since k(n), l(n) → ∞. Now we have

cn = 1

3
(cn−1 + cn,k(n) + cn,l(n)),

using the notation of Case 2. We assume that the order of the triangles by
level is Wl(n),Wk(n),Wn−1,Wn , i.e., l(n) < k(n) < n − 1 < n, as in Lemma
4.2(III). In order to control O(Wn), we will find bounds for the differences
cn − cn−1, cn − cn,k(n), and cn − cn,l(n).

We have

cn − cn−1 = 1

3
(cn,k(n) − cn−1 + cn,l(n) − cn−1)

= 1

3
[(cn,k(n) − cn−1,k(n)) + (cn−1,k(n) − cn−1)

+ (cn,l(n) − cn−1,l(n)) + (cn−1,l(n) − cn−1)]

The first difference is bounded (in absolute value) byO(Wk(n))/3 ≤ �m−1/3,
by the induction assumption and the property (∗) of the function f ; note
that the triangles Wn and Wn−1 are adjacent and they both have a vertex
on ∂Wk(n). With the same reasoning the third difference is also bounded by
O(Wl(n))/3 ≤ �m−1/3. Finally, by the definition of f onWn−1, the sum of the
second and fourth differences is equal to cn−1 − cn−1,D , where cn−1,D is the
value of f on the third vertex of Wn−1 that does not lie on ∂Wk(n) and ∂Wl(n).
Hence, for the absolute value of the sum of the second and fourth differences
we obtain the upper bound O(Wn−1) ≤ �m−1. Putting these altogether, we
have

|cn − cn−1| ≤ 1

3
(�m−1/3 + �m−1/3 + �m−1) = 5

9
�m−1.
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We now do the same analysis for the difference cn − cn,k(n). We have

cn − cn,k(n) = 1

3
(cn−1 − cn,k(n) + cn,l(n) − cn,k(n))

= 1

3

[
(cn−1 − cn−1,k(n)) + (cn−1,k(n) − cn,k(n))

+(cn,l(n) − ck(n),l(n)) + (ck(n),l(n) − cn,k(n))
]
.

(4.6)

We bound the first difference by �m−1, using the induction assumption.
The second and fourth differences have opposite sign since the vertices
∂Wn−1 ∩ ∂Wk(n), ∂Wn ∩ ∂Wk(n), ∂Wk(n) ∩ ∂Wl(n) are ordered points (see
Fig. 5), contained in a half-edge ofWk(n) (byLemma4.2),where f ismonotone
increasing or decreasing by property (B3) in Sect. 4.2. Using the fundamental
inequality

|x + y| ≤ max{|x |, |y|}

whenever x, y ∈ R and xy < 0 (or more generally x, y ∈ C and their angle is
π ), we conclude that

|(cn−1,k(n) − cn,k(n)) + (ck(n),l(n) − cn,k(n))|
≤ max{|cn−1,k(n) − cn,k(n)|, |ck(n),l(n) − cn,k(n)|} ≤ O(Wk(n)) ≤ �m−1.

For the third difference in (4.6), by Lemma 4.2(III) we have that Wk(n) has a
vertex on ∂Wl(n). Hence, Wk(n) and Wn are adjacent triangles having a vertex
on the strictly larger triangle ∂Wl(n). Property (∗) now implies that

|cn,l(n) − ck(n),l(n)| ≤ O(Wl(n))/3 ≤ �m−1/3,

by the induction assumption. Summarizing,

|cn − cn,k(n)| ≤ 7

9
�m−1.

Finally, we look at the difference cn − cn,l(n). As before, we have

cn − cn,l(n) = 1

3
(cn−1 − cn,l(n) + cn,k(n) − cn,l(n))

= 1

3

[
(cn−1 − cn−1,l(n)) + (cn−1,l(n) − cn,l(n))

+(cn,k(n) − ck(n),l(n)) + (ck(n),l(n) − cn,l(n))
]
.
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Exactly as in the previous computation, the first difference is bounded by
�m−1, the sum of the second and fourth differences is bounded by �m−1
using property (B3), and the third difference is bounded by �m−1/3. Hence,

|cn − cn,l(n)| ≤ 7

9
�m−1.

Summarizing, we have

O(Wn) ≤ 7

9
�m−1=:�m

for all n > Nm , and the proof is completed. ��

4.6 Generalization to homeomorphic gaskets

Here we show that any image of the gasket under a homeomorphism of R
2

is non-removable for W 1,2 as claimed in Theorem 1.7. We have to split in
two cases, depending on whether the “homeomorphic gasket” has area zero or
positive area. In the first case, our proof for the standard gasket applies with
some modifications, while the second case can be treated with the general
statement that sets of positive measure are non-removable for Sobolev spaces;
see Theorem 4.9.

Theorem 4.8 Let h : R
2 → R

2 be a homeomorphism, and K be the Sierpiński
gasket. If m2(h(K )) = 0, then h(K ) is non-removable for W 1,2.

Proof Our goal is to obtain a continuous function f : R
2 → R, f ∈

W 1,2(R2\h(K )), with 0 ≤ f ≤ 1, f ≡ 0 outside a ball B(x0, R0), f ≡ 1 in
a ball B(x0, r0), such that ‖∇ f ‖L2(R2) = ‖∇ f ‖L2(R2\h(K )) is as small as we
wish; here it is crucial that m2(h(K )) = 0. Then, arguing as in Sect. 4.3, one
can show that f /∈ W 1,2(R2), if ‖∇ f ‖L2(R2) is sufficiently small.

Our proof of Theorem 4.3 and more specifically the construction of f was
combinatorial, except for the construction of the particular building block
functions that satisfy (B1)–(B6) and (∗). We remark that even in Cases 1 and
2 of the proof of Lemma 4.7 (which is the heart of the proof of continuity)
we only used properties (B1)–(B6) of the building block functions, together
with the continuity of the restriction of f on each particular w-triangle, but
we did not need any specific modulus of continuity. The property (∗)was only
needed in Case 3 and requires some special care.

Since the combinatorics of the gasket are preserved under homeomorphisms
of R

2, it remains to show that building block functions satisfying (B1)–(B6)
and (∗) exist when the domain is an arbitrary Jordan region �, rather than a
triangle. Assume thatW is aw-triangle of K such that h(W ) = �. It suffices to
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Non-removability of the Sierpiński gasket 577

do the construction near each vertex of �, i.e., near the images of the vertices
ofW . Let z be a vertex ofW , and consider the two half-edges I, J ⊂ ∂W that
meet at z. Also, consider the dyadic points xk ∈ I , k ∈ N, and yk ∈ J , k ∈ N,
converging to z, as in the proof of (∗) in Case 3; for example, if I = [0, 1],
then xk = 2−k for k ∈ N. Let z′ = h(z), I ′ = h(I ), J ′ = h(J ), x ′

k = h(xk),
and y′

k = h(yk).
Using a conformal map, we map� onto the upper half planeH, and assume

that z′ = 0 and that I ′ ⊂ [0, ∞), J ′ ⊂ (−∞, 0] are closed intervals meeting
at 0. Furthermore, x ′

k ∈ I ′ is a strictly decreasing sequence converging to 0,
and y′

k ∈ J ′ is strictly increasing and converging to 0.
We wish to construct a continuous function g : H → R with the following

properties:

(B1′) g is supported in an arbitrarily small neighborhood of 0,
(B2′) g(0) = 1,
(B3′) g is monotone increasing or decreasing on each of I ′ and J ′
(B4′)

∫
H

|∇g|2 is arbitrarily small,
(B5′) g has the value 0 at the endpoints of I ′ and J ′ that are distinct from
0,
(B6′) g is monotone, in the sense that oscH(g) = osc∂H(g), and
(∗′) |g(x ′

k) − g(x ′
k+1)| ≤ 1/3 and |g(y′

k) − g(y′
k+1)| ≤ 1/3 for all k ∈ N.

Since a conformal map from H onto � extends to a homeomorphism (using
the spherical metric) from H ∪ {∞} onto �, and also it does not change the
Dirichlet energy

∫ |∇g|2, all these properties can be transferred to�, and yield
a function with the corresponding properties. The proof of the analog of (∗)
then follows, as in the proof of Case 3 of the previous section; see Sect. 4.5.1.

The construction of g is very similar to the construction we did in Case 3
of the previous section. We fix a small R1 > 0 and define r1 = R1/2. In the
annulus A1:=A(0; r1, R1) we define g to be a radial function that is equal to
0 in the outer circle, and increases to 1/N in the inner circle, where N ∈ N

is fixed. The slope of g is � 1
N (R1−r1)

in A1. Then we define R2 < r1 to be
so small that the “transition” annulus A(0; R2, r1) contains a point x ′

k ∈ I ′
and a point y′

l ∈ J ′. Here we set g to be constant, equal to 1/N . Then we
define r2 = R2/2 and A2:=A(0; r2, R2), and we set g to be a radial function
that increases from 1/N in the outer circle to 2/N in the inner circle. By
construction, no interval [x ′

m+1, x
′
m] or [y′

m, y′
m+1] can intersect both annuli

A1 and A2; this is because the sequences x ′
m and y′

m are strictly monotone.
The use of the transition annulus is crucial as we will see. We proceed in the
same way, until the last annulus AN = A(0; rN , RN ), where the function g
increases from (N −1)/N in the outer circle to 1 in the inner circle, with slope
� 1

N (RN−rN )
. Finally, we set g ≡ 0 outside B(0, R1), g ≡ 1 inside B(0, rN ),

and then restrict g to H.
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By construction, each of the intervals [x ′
k+1, x

′
k], [y′

k, y
′
k+1], k ∈ N, inter-

sects at most one annulus Am ,m ∈ {1, . . . , N }, where the function g increases
by 1/N . In the transition annuli of the form A(0; Rm, rm−1) the function g is
constant. Hence, we have

|g(x ′
k) − g(x ′

k+1)| ≤ 1

N
and |g(y′

k) − g(y′
k+1)| ≤ 1

N

for all k ∈ N. In particular, these are less than 1/3 if N is sufficiently large.
Regarding the Dirichlet energy, we compute:

∫

|∇g|2 =
N∑

m=1

∫

H∩Am

|∇g|2 �
N∑

m=1

1

N 2(Rm − rm)2
m2(H ∩ Am)

�
N∑

m=1

1

N 2(Rm − rm)2
(R2

m − r2m) �
N∑

m=1

1

N 2r2m
r2m � 1

N
,

where we used the fact that Rm = 2rm . If N is sufficiently large, then
∫ |∇g|2

can be as small as we wish, completing the proof. ��
The case that h(K ) has positive Lebesgue measure has to be treated sepa-

rately, and, in fact, the following more general statement holds in R
n:

Theorem 4.9 (Theorem 1.3). Let K ⊂ R
n be a compact set of positive

Lebesgue measure and 1 ≤ p < ∞. Then K is non-removable for W 1,p.

Proof We may assume that int(K ) = ∅, otherwise K is trivially non-
removable forW 1,p, 1 ≤ p ≤ ∞, since one can simply consider a continuous
function with no partial derivatives, supported on int(K ).

Define �:=R
n\K . Let x0 ∈ K be a Lebesgue point, i.e.,

mn(B(x0, r) ∩ �)

mn(B(x0, r))
→ 0

as r → 0. Hence, for each i ∈ N there exists an arbitrarily small ri > 0 such
that

mn(B(x0, ri ) ∩ �) ≤ 2−i prni . (4.7)

Without loss of generality, we assume that x0 = 0 and we set Bi = B(x0, ri ).
We can also assume that the sequence {ri }i∈N satisfies

ri+1 < ri/2 < 1/2 (4.8)
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for i ∈ N.
Let φ : R → R be the 1-periodic extension of |t |χ [−1/2,1/2](t). Let ci be a

sequence of positive numbers and mi be a sequence of positive integers, to be
determined. We define

φi (x) = ciφ

(

mi

(
2|x |
ri

− 1

))

· χ [ri/2,ri ](|x |)

for x ∈ R
n and i ∈ N. Roughly speaking, we changed the amplitude and

frequency of x �→ φ(|x |), and also translated its support to the annulus
A(0; ri/2, ri ). Observe that φi ∈ W 1,p(Rn) for all 1 ≤ p < ∞, φi is continu-
ous in R

n , and |φi | ≤ ci . Furthermore, for a.e. x in the annulus A(0; ri/2, ri )
we have

|∇φi (x)| � cimi

ri
,

with uniform constants. Hence,

‖∇φi‖L p(Rn) � cimir
n/p−1
i

with constants depending only on the dimension n, and

‖∇φi‖L p(�) � cimi

ri
2−i rn/p

i � 2−i cimir
n/p−1
i ,

by (4.7).
We define

f =
∞∑

i=1

φi

and note that f is pointwise defined with f (0) = 0, since φi have disjoint
supports by (4.8). Observe that if ci → 0, then the series

∑∞
i=1 φi converges

uniformly to a continuous function.
We have

‖∇ f ‖L p(�) ≤
∞∑

i=1

‖∇φi‖L p(�) �
∞∑

i=1

2−i cimir
n/p−1
i ,

so we wish to have that the latter series converges. If this is the case, then we
will have indeed f ∈ W 1,p(�) by the completeness of the space.
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If f ∈ W 1,p(Rn), then

‖∇ f ‖p
L p(Rn)

=
∫ ∣

∣
∣
∣

∞∑

i=1

∇φi

∣
∣
∣
∣

p

=
∞∑

i=1

‖∇φi‖p
L p(Rn)

�
∞∑

i=1

cpi m
p
i r

n−p
i

because the functions φi have disjoint support. We wish the latter to be a
divergent series, so that f /∈ W 1,p(Rn).

Summarizing, we have to choose ci ,mi such that ci → 0,

∞∑

i=1

2−i cimir
n/p−1
i < ∞, and

∞∑

i=1

cpi m
p
i r

n−p
i = ∞.

If p ≥ n, then we can choose ci = r1−n/p
i · i−1/p and mi = 1 for all i ∈ N. If

1 ≤ p < n, then we choose ci = i−1/p and mi to be the smallest integer such
that mir

n/p−1
i ≥ 1. Then (mi − 1)rn/p−1

i < 1, so mir
n/p−1
i ≤ 2. ��

However, the conclusion fails for W 1,∞:

Proposition 4.10 There exists a compact set K ⊂ R
n of positive Lebesgue

measure that is W 1,∞-removable.

Proof Let C ⊂ R be a Cantor set of positive Lebesgue measure, and define
K :=Cn , so mn(K ) > 0. We claim that K is W 1,∞-removable. Let f be a
continuous function on R

n that lies in W 1,∞(Rn\K ). We wish to show that
f is M ′-Lipschitz, where M ′ > 0 depends on M = ‖ f ‖W 1,∞(Rn\K ). We fix
a coordinate direction, say e1, and a line L parallel to e1. The function f is
M-Lipschitz on each component of L\K . On the other hand, by perturbing
the line L we may obtain a line L ′ arbitrarily close and parallel to L such that
L ′ ∩ K = ∅. Hence, f is M-Lipschitz on L ′, and by continuity it is also M-
Lipschitz on L . If x, y ∈ R

n are arbitrary points, then one can connect them
with a polygonal path γ , each of whose segments is parallel to a coordinate
direction such that the length of γ is comparable to |x − y|. The conclusion
follows by using the Lipschitz bound on each of the segments of γ . ��
Remark 4.11 In fact, the complement of the Cantor set K is a quasiconvex
set in R

n , i.e., there exists a constant M > 0 such that for any two points
x, y ∈ R

n\K there exists a rectifiable path γ ⊂ R
n\K that connects x and y,

with

length(γ ) ≤ M |x − y|.
The argument in the proof of Proposition 4.10 can be modified to show that if
the complement of compact set K with empty interior is quasiconvex, then K
is W 1,∞-removable.

123



Non-removability of the Sierpiński gasket 581

5 Quasiconformal non-removability

We quickly sketch the strategy of constructing a homeomorphism F : R
2 →

R
2 that is quasiconformal on R

2\K , but not globally quasiconformal; see also
Sect. 1.2.

First we will define a continuous map f : R
2 → R

2 that is the identity on
the unbounded complementary component of the gasket K , but collapses each
w-triangle to a tripod; see Fig. 7. This is done in Sect. 5.1.

Of course, this map is not a homeomorphism on thew-triangles, so we have
to correct it. We do that by “folding” each w-triangle on top of each tripod;
see Figs. 8 and 9. The folding map will be M-quasiconformal, in the sense of
Definition 2.4, restricted on eachw-triangle. The folding of a single equilateral
triangle on top of a tripod is explained in Sect. 5.2. Moreover, the folding has
to be compatible, in a sense, with f on the boundary of each w-triangle.

If the heights of the rectangles attached to each tripod are chosen to be
sufficiently small, then we will obtain a homeomorphism � from R

2 onto
a limiting flap-plane S (Fig. 7), which is constructed out of infinitely many
tripods, and thus falls into the setting of Proposition 3.2. The map � is the
result of patching together the map f outside the w-triangles with the folding
map of each w-triangle. The construction of the map � and of the flap-plane
S is discussed in Sect. 5.3.
Finally, if one chooses the heights of the rectangles to be even smaller, then

by Theorem 3.7 one obtains a quasisymmetric embedding � of S onto R
2.

The composition F = � ◦ � will be a homeomorphism of R
2 that is M ′-

quasiconformal on each w-triangle for some uniform M ′ > 0, but it cannot
be globally quasiconformal, because it has to blow the gasket K to a set of
positive area. Section 5.4 contains these details that finish the proof of non-
removability.

5.1 Collapsing of w-triangles

Recall the definitions of w-triangles and v-triangles from Sect. 4.1. In this
section we define a continuous map f : R

2 → R
2 that is equal to the identity

in the unboundedw-triangle, and collapses each boundedw-triangle to a tripod
G. Further properties of f will be that it is injective on K ◦, and it maps the
latter to a set of positive measure. Interestingly, the construction of such a map
is rather a modification of the construction of the continuous function that we
constructed in Sect. 4.

5.1.1 Building block

Recall from Sect. 3 that a tripod G is by definition the union of three line
segments in the plane, which have a common endpoint, but otherwise they
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c1

c2

c3

a

c1

c2

c3

x1

x2

x3x13

x23x12

f

Φ

Fig. 7 Illustration of the collapsing map f : R
2 → R

2 and of the homeomorphism � from
R
2 onto the flap-plane S. For each i = 1, 2, 3 the collapsing map f sends the vertex xi of the

central pink triangle to the vertex ci of the central pink tripod. For i < j the midpoint xi j of
xi is mapped to the barycenter a of the central tripod. The map � is a homeomorphism so in
particular the green rectangles are not glued to the red rectangles, except at the three points
�(xi j ), i < j ; these are the points that correspond to the barycenter a of the pink tripod (color
figure online)

are disjoint; note that their length need not be the same. We call the common
endpoint the central vertex of the tripod G. Every triple c1, c2, c3 ∈ R

2 of
non-collinear points defines a canonical tripod, whose central vertex is the
barycenter of c1, c2, c3, i.e., it is

a = 1

3
(c1 + c2 + c3).

In what follows, we will only be using canonical tripods, even if we do not
mention it explicitly.

We consider an analog of the building block function discussed in Sect. 4.2.
Let W ⊂ R

2 an open equilateral triangle with vertices x1, x2, x3. Then for
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each triple of non-collinear points c1, c2, c3 ∈ R
2 and for the canonical tripod

G corresponding to these points there exists a continuous map g : W → G
such that

(B̃2) g(xi ) = ci for i = 1, 2, 3,
(B̃3) g is injective andmonotone (see comments below), on each half-edge
of ∂W , from its midpoint to a vertex,
(B̃5) g maps the midpoints of the edges of W to the central vertex a of G,
and
(B̃6) g is monotone in the sense that oscW (g) = osc∂W (g). Here,
oscW (g) = sup{|g(x) − g(y)| : x, y ∈ W }.

These properties should be compared to the properties of the building block
function in Sect. 4.2. Note that (B̃6) follows immediately from continuity and
(B̃2), since they imply that g(∂W ) = G. Also, (B̃2), (B̃5), and the injectivity
from (B̃3) imply that g maps each half-edge of W homeomorphically onto
an edge of the tripod G. In particular, (B3) from Sect. 4.2 holds here, in the
sense that if I ⊂ ∂W is a half-edge of W and J1 ⊂ J2 ⊂ I are segments,
then oscJ1(g) ≤ oscJ2(g). This explains the use of the word monotone in the
statement of (B̃3).

From now on, a building block map will be a map g as above, and we will
say that its parameters are c1, c2, c3. At this moment we are not interested in
the definition of the map g in the interior of the triangle W (which could be
anything as long as g(W ) = G and g is continuous), but we only focus on
its boundary. The construction of such a continuous map g is elementary. For
example, one can first collapseW to the canonical tripod defined by its vertices
y1, y2, y3, so that the midpoints of the edges are mapped to the barycenter of
the triangleW , and so that the map is injective on each edge of ∂W . Then one
can use an affine map to map this tripod to the canonical tripod G defined by
c1, c2, c3 such that the vertices y1, y2, y3 aremapped to c1, c2, c3, respectively.
Note that affine maps preserve barycenters.

5.1.2 Inductive definition

A fundamental lemma that wewill use is the following. A convex quadrilateral
is the open region in the plane that is bounded by a polygon with four sides and
(interior) angles strictly less than π (we wish to exclude degenerate cases).

Lemma 5.1 Let U ⊂ R
2 be convex quadrilateral and consider points

c1, c2, c3 ∈ ∂U such that c1 is a vertex of U, and c2, c3 lie on the interior
of distinct sides of U that are not congruent to the vertex c1. Also, consider the
canonical tripod G corresponding to c1, c3, c3, which are necessarily non-
collinear points. Then G ⊂ U and each component Z of U\G is a convex
quadrilateral. Furthermore, two of the sides of such a component Z are two
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of the edges of the tripod G and are congruent to its central vertex, while the
other two sides of Z are contained in distinct sides of U.

The proof is elementary and is omitted. Now, we define the desired map
f inductively, in a very similar way, as the map we defined in Sect. 4.4. We
define f to be the identity in the closure of the w-triangle of level 0 (i.e., the
closure of the unbounded component of R

2\K ).
Note that the map f is already defined on the vertices of the central w-

triangle W1 of level 1. We define f on W 1 to be a building block map that
collapses this triangle to a tripod G1. This tripod is contained in the v-triangle
V1 of level 0, which is convex. Each component U2 of V1\G1 is a convex
quadrilateral.Wewill be callingU2 a u-quadrilateral. Note that each v-triangle
V2 of level 1 (i.e.,V2 is a component ofV1\W 1) corresponds to au-quadrilateral
U2, and in fact f maps ∂V2 to ∂U2 homeomorphically, in an orientation-
preserving way, by property (B̃3). Moreover, the midpoint x1 of an edge of
V2 is mapped to a vertex c1 of U2 and the other two edges of V2 are mapped
to the other edges of U2 that are not congruent to c1.

We claim that we can define f on all w-triangles, so that each v-triangle
corresponds to a u-quadrilateral as above. We now formulate and prove the
inductive step.

Let V be a v-triangle and suppose that f
∣
∣
∂V has been defined and maps ∂V

homeomorphically onto the boundary of a convex quadrilateral U . Moreover,
suppose that f maps the midpoint x1 of an edge of V to a vertex c1 of U and
that each of the other two edges of V is mapped to one of the other two sides
of U that are not congruent to c1.

Consider the central w-triangle W ⊂ V that has its vertices x1, x2, x3 on
∂V . By the assumptions on themap f

∣
∣
∂V , the points c2:= f (x2) and c3:= f (x3)

lie on distinct sides of U that are not congruent to c1 = f (x1). We define f
on W to be a building block map that collapses the triangle W to a tripod G
with vertices c1, c2, c3.

By Lemma 5.1 we see that each componentU ′ ofU\G is a convex quadri-
lateral. Two of the sides of U ′ are edges of the tripod G, each of which is the
homeomorphic image of a half-edge of W under f , by property (B̃3) of the
building block map on W . Suppose, for instance, that the edge of W is the
segment [x1, x2]. The other two sides ofU ′ are contained in two distinct sides
of U . These two sides of U ′ have to correspond under the homeomorphism
f
∣
∣
∂V to an arc of ∂V that connects x1 and x2. Among the two such arcs, there

is only one possibility, since it follows by the assumptions that f −1
∣
∣
∂U maps

each side of U into one edge of V .
We thus see that there exists a v-triangle V ′ ⊂ V \W such that f maps ∂V ′

homeomorphically onto ∂U ′. The midpoint x ′
1 = x1+x2

2 of the edge ∂V ′ ∩ W
of V ′ is mapped to a point c′

1 that is a vertex of U ′ (in fact it is the central
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vertex of G as follows from Lemma 5.1) and the other two edges of V ′ are
mapped to the other two sides of U ′ by the mapping properties of f .

This completes the proof of the inductive step and shows that f can be
defined on all of W∞ = ⋃

W∈W W .

5.1.3 Properties of f

(a) Each w-triangle W is mapped to a tripod G with vertices c1, c3, c3 and
central vertex a = (c1 + c2 + c3)/3. Following the notation of Sect. 4, we
define

O(W ) = max
i=1,2,3

|a − ci |.

Note that O(W ) is the length of the largest edge of the tripod G. The map
f is monotone in the following sense. For each v-triangle V of level m ≥ 1
we have

oscV∩W∞( f ) = sup
x,y∈V∩W∞

| f (x) − f (y)| = osc∂V ( f ).

This is the analog of Lemma 4.5. The reason it holds in our case is that, by its
inductive definition, f maps ∂V homeomorphically onto a quadrilateral ∂U ,
and all w-triangles contained in V are mapped to tripods contained in U .

We define the level of a u-quadrilateralU , which corresponds as above to a
v-triangle V , to be an integer equal to the level of V ; see also Sect. 4.1. More
precisely, if the sidelength of V is 2−n , n ∈ N, then the level of V and U is n.

(b) The map f has a continuous extension to R
2. The proof is the same as

the proof of Proposition 4.6, with minor modifications. One observes that we
have given essentially the same definition for f and it satisfies the properties
(B̃2), (B̃3), (B̃5), and (B̃6), as in Sect. 4.2; see also Remark 4.4. Namely, what
we called “height” of f on a w-triangle W in Sect. 4.2 is now the barycenter
a = (c1 + c2 + c3)/3 of the tripod G. Hence, the “height” of f here is the
average of the values of f on the vertices of W , precisely as it was the case in
the definition of f in Sect. 4.4. The only difference is that f is now complex-
valued, instead of real-valued, but this does not affect the proofs. The proof of
continuity goes through, if we ensure that f has on each w-triangle a certain
modulus of continuity, as described in Case 3 of the proof of the basic Lemma
4.7 (see Sect. 4.5.1):

(∗) Assume that the triangles W1,W2 are adjacent and each has a vertex
z1, z2, respectively, lying on a triangle ∂W0 of a strictly lower level. Then

| f (z1) − f (z2)| ≤ O(W0)/3.
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As already discussed in Sect. 4.5.1, this boils down to looking at the dyadic
points {xk}k∈N contained in each half-edge I of ∂W0 and accumulating in the
corresponding vertex of W0, and requiring that

| f (xk) − f (xk+1)| ≤ O(W0)/3, (Dyadic∗)
for all k ∈ N, where xk and xk+1 are “consecutive” dyadic points (for example,
if I = [0, 1] and 0 is a vertex of W0, then xk = 2−k for k ∈ N). This will be
ensured in the next section, where we construct more carefully the map f on
each w-triangle, so that it still has properties (B̃2), (B̃3), (B̃5), and (B̃6), and
also has this particular modulus of continuity.

(c) By continuity, the map f : R
2 → R

2 is surjective. The u-quadrilaterals
induce subdivisions in the image side, exactly as the v-triangles do in the
domain. Let U1 be the equilateral triangle of sidelength 1 that is the image of
the v-triangle V1 of level 0 (in fact, U1 = V1 since f is the identity on ∂V1).
Then U1 contains three disjoint u-quadrilaterals of level 1, which lie in the
complement of a “removed” tripod. Each of these quadrilaterals is the image
of a v-triangle of level 1. This follows by the continuity and themonotonicity of
f . In general, the closure of each u-quadrilateral of level m is the union of the
closures of three disjoint u-quadrilaterals of levelm+1. These u-quadrilaterals
are the images of v-triangles of level m + 1; see Fig. 7. By continuity, the
diameters of u-quadrilaterals of level m converge to 0 as m → ∞.

For each point z ∈ U1 we can find a sequence Un , n ∈ N, of nested u-
quadrilaterals such that

{z} =
∞⋂

n=1

Un.

We set L◦ to be the set of points ofU1 that do not lie on any “removed” tripod.
The correspondence between Un and Vn and the uniqueness of a sequence Vn
shrinking to a point x ∈ K ◦ (see the comments before Lemma 4.1) imply that
f maps K ◦ onto L◦, and in fact f is injective on K ◦.
(d) The tripods contained in U 1, which are the images of the w-triangles,

have σ -finite length. Thus, the area of the tripods is equal 0. This implies that
the image of K ◦ has full measure inside U 1.

5.2 Folding equilateral triangles to tripods

So far, we have a continuous surjective map f : R
2 → R

2 that is injective
outside the union W∞ of the closures of the w-triangles; of course continuity
is still subject to choosing suitably the building block maps so that they have a
certain modulus of continuity. We wish to change the definition of the map f
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only inside eachw-triangle so that f becomes injective everywhere. However,
this is not possible if the target is R

2. Thus, we change the target to a flap-
plane S by attaching rectangles to each of the tripods; see Sect. 3 for the
definition of a flap-plane. We then change the definition of f inside the w-
triangles and allow them to be mapped onto the rectangles attached to the
corresponding tripod. We wish to do this in such a way that the resulting map
� : R

2 → S is a homeomorphism, quasiconformal inside thew-triangles. This
will be discussed in detail in the next section.

In this section we show how one can “fold” an equilateral triangleW ⊂ R
2

onto a space X obtained by attaching rectangles E to a single tripod G. The
space X is constructed very similarly to the flap-planes discussed in Sect. 3.1.
One first cuts the plane along the edges of the tripod G, and then attaches two
rectangles on each slit arising from an edge. The width of each rectangle is
equal to the length of the corresponding edgeofG, and the height is a prescribed
constant h > 0, which is the same for all 6 rectangles. The barycenter a of
G must “lift” to three line segments, along which neighboring rectangles are
glued; see Fig. 2 for the gluing pattern.We remark that the lengths of the edges
of G, and thus the widths of the rectangles, need not be equal to each other.
The space X is a topological disk, and we endow it with its natural length
metric d, so that each rectangle E ∼ G (i.e., E is glued to an edge of G) is
isometric to a rectangle with the Euclidean metric.

We wish to construct a homeomorphism φ : W → X that has the following
properties:

(A) the composition of φ with the natural projection X → G satisfies (B̃2),
(B̃3), (B̃5), and (B̃6),

(B) the same composition has the modulus of continuity in (Dyadic∗), and
(C) φ is M-quasiconformal (in the sense of Definition 2.4) in the interior of

the preimage of each rectangle E ∼ G, where M is independent of the
tripod G and of the height h of the rectangles E ∼ G,

provided that h is sufficiently small.
To do this, we first draw the heights of W , which split it into three quadri-

laterals, each of which is a rotation of the other, and contains in its boundary
a vertex of W together with two congruent half-edges of W ; see Fig. 8. Let Z
be one of these quadrilaterals. We will “fold” Z with a piecewise linear map
to the two rectangles attached to an edge of e of G. Assume that the length
of e is �. We assume that the height h of the rectangles is less than �/6. Then
there exists a unique N ∈ N such that

� = Nh + q,

where h ≤ q < 2h is a remainder term.
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Fig. 8 An equlateral triangle W is split into three quadrilaterals Zi , i = 1, 2, 3. Then each Zi
is folded over an edge of the tripod G. Finally, the resulting rectangles are glued to obtain the
space X

We now divide each of the two rectangles E attached to e into N squares
of dimensions h × h, and a rectangle of dimensions q × h, as in Fig. 9. We
also subdivide Z by considering N + 1 dyadic points on each half-edge of
W that is contained in ∂Z , and drawing trapezoids as in Fig. 9. Each of these
2N trapezoids is similar to the trapezoid ABCD, in the sense that it can be
obtained by applying a Euclidean similarity to ABCD.

Each of these trapezoids can be mapped with a piecewise linear map to the
corresponding square of dimensions h×h. In fact, this can be done by drawing
one diagonal in each trapezoid and in each square, and and then gluing two
linear maps. This piecewise linear map is M-quasiconformal for a uniform
M > 0.
We have to treat specially the two triangles near the vertex of W that lies in

∂Z . The triangle H I K is a right triangle with angle Ĥ I K equal toπ/6. Hence,
it can be mapped to the rectangle H ′ I ′ J ′K ′ (so that vertices are mapped to the
corresponding vertices) with a piecewise linear map that is M-quasiconformal
for a universal M > 0. Recall here that the ratio of the sides of the rectangle
H ′ I ′ J ′K ′ is by construction bounded between 1 and 2. The construction of
such a map is done by converting the triangle H I K to a quadrilateral, by intro-
ducing the midpoint J of the segment I K . Then one can draw the diagonals
H J and H ′ J ′ and glue together two linear maps, one from the triangle H JK
to the triangle H ′ J ′K ′, and one from the triangle H I J to the triangle H ′ I ′ J ′.

Hence, we obtain two piecewise linear maps, one defined on the triangle
H I K and one defined on the triangle K I L . The first one maps linearly the
segment I J to the segment I ′ J ′ and the second maps linearly the segment I J
to the segment Ĩ ′ J ′. Upon folding, the segment I ′ J ′ gets glued to the segment
Ĩ ′ J ′, so we obtain a homeomorphism φ from Z onto the two folded rectangles
that are glued over an edge of the tripodG.We remark that the segment A′D′ is
not glued to anything at this moment, and it will be glued to the corresponding
segment that arises from the rectangles attached to another edge of G.
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I
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H L
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H ′ K ′

B′ C ′

A′ D′

J ′I ′ Ĩ ′
J

Fig. 9 Illustration of the folding map from a quadrilateral Z onto two rectangles

With the same procedure, we construct such a homeomorphism φi for each
one of the three quadrilaterals Zi , i = 1, 2, 3, in the subdivision of the original
triangle W . The map φi maps Zi to the two folded rectangles attached to the
edge ei of G, for i = 1, 2, 3. We remark that the heights of all these rectangles
are equal to h, but their widths might vary if they are attached to distinct edges
of G. The quadrilateral Z1 is glued to Z2 along edges of the form AD. The
maps φ1 and φ2 are linear on these edges and they map AD to edges of “type”
A′D′, whose length is h. Hence, the maps φ1 and φ2 can be “glued” together to
obtain a homeomorphism from Z1 ∪ Z2 onto the rectangles that are attached
on two of the edges of the tripod G. Finally, one glues the third piece Z3 to
obtain the desired homeomorphism φ : W → X ; see Fig. 8. The map φ is M-
quasiconformal, in the sense of Definition 2.4, in the interior of the preimage
of each rectangle E ∼ G. Note that the set where φ is quasiconformal is the
complement in W of finitely many line segments, along which the triangle W
is “folded”.

By construction, (A) and (C) hold, so it only remains to check that φ has
the desired modulus of continuity (B). We reformulate the claim, using the
metric d of the space X . The quantity O(W ) is equal to the maximum length
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of the edges of the tripod G. We need to check that if xk, xk+1 are consecutive
“dyadic” points in a half-edge of W , then

d(φ(xk), φ(xk+1)) ≤ O(W )/3.

Since the segment [φ(xk), φ(xk+1)] ⊂ X projects isometrically into an edge
of G ⊂ R

2, the desired claim will then follow. Note that φ(xk) and φ(xk+1)

are contained either in an edge of a square of dimensions h × h, or in an edge
of a rectangle of dimensions q × h, where h ≤ q < 2h; recall the subdivision
of Z into “dyadic” trapezoids and the definition of φ in each trapezoid. Hence,
d(φ(xk), φ(xk+1)) ≤ 2h ≤ �/3, since we chose h ≤ �/6, where � is the length
of the edge of G that contains xk and xk+1. On the other hand, � ≤ O(W ), so
our claim is proved.

5.3 Homeomorphism onto a flap-plane

Here we show how to patch together the folding maps φ of each w-triangle
W (from Sect. 5.2) with the continuous map f : R

2 → R
2 in order to obtain

a homeomorphism � from R
2 onto a flap-plane S. This will be done in three

steps. (a) First, we explain how the folding maps φ of the w-triangles can
induce the building block maps of f : R

2 → R
2, so that f is continuous;

recall the comments in Sect. 5.1.3(b). (b) Then we discuss how to construct a
flap-plane S by gluing rectangles to the tripods provided by f . (c) Finally, we
explain how one can “patch” together the map f with the folding maps φ to
obtain a homeomorphism � : R

2 → S that is quasiconformal in R
2\K .

(a) LetW be an equilateral triangle andG be a tripod. Consider a map φ that
mapsW to a metric space X as in Sect. 5.2, satisfying (A), (B), and (C). There
is a natural projection P : X → G, so that the composition P ◦ φ satisfies
(B̃2), (B̃3), (B̃5), (B̃6), and condition (∗). Note that φ depends on the height
h of the rectangles that we attach to the tripod G, and condition (∗) is subject
to choosing a sufficiently small height h.

Using the compositions P ◦ φ as the building block maps of f we obtain
a continuous map f : R

2 → R
2. More specifically, once f has been defined

on w-triangles of level m − 1, then we know the tripods (as sets) that will
correspond to the w-triangles of levelm. Then one considers the folding maps
φ with respect to thew-triangles of levelm and the corresponding tripods. The
compositions P ◦ φ yield the building block maps that are used to define f
on w-triangles of level m. The comments in Sect. 5.1.3(b) justify why f will
extend continuously on all of R

2.
A subtlety here is that if we change the height h of the rectangles attached

to a specific tripod, then this changes the folding map φ, and alters the map f
completely!
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(b) Let G be the family of tripods arising from f , that is, the family f (W ),
where W is a w-triangle of level at least 1. The family G is a family of tripods
that has property (G), i.e., any two tripods have at most one point of inter-
section, in which case it is a non-central vertex of one of them; recall the
definitions from Sect. 3.1.2. Also, the “graph” T∞ = ⋃

G∈G G has degree uni-
formly bounded by 6, as one can see inductively. Proposition 3.2 implies that
if the heights of the rectangles attached to each tripod are sufficiently small,
then one obtains a limiting flap-plane (S, d), which is a complete metric space.
Recall Remark 3.6, which allows us to choose inductively the tripods G and
the heights h of the corresponding rectangles, and still obtain the limiting flap-
plane. The limiting space S can be regarded as the union of R

2\⋃
G∈G G with

the rectangles attached to each tripod G, after proper identifications; see also
the comments in Sect. 3.1.3.

(c) The map f can be “patched” with the maps φ to yield naturally a map
� : R

2 → S. Namely, the maps f and � agree outside the closures of w-
triangles, and inside a w-triangle W the map � is defined to be equal to the
folding map φ that folds W on top of the corresponding tripod f (W ). There
is possibly an ambiguity in the definition of �, whenever two w-triangles
W 1,W 2 intersect at one point. In this case the corresponding tripods G1,G2
also intersect at one point (as described in property (G)). Then �(W 1) and
�(W 2) also have to intersect at precisely one point in the space S, by our basic
rules in the construction of a flap-plane; see Sect. 3.1 and Fig. 4. Hence,� can
unambiguously be defined.

We claim that� is injective. Recall from Sect. 5.1.3(c) that f is injective on
K ◦ with f (K ◦) = L◦ and it is the identity in the unbounded complementary
component of the gasket K . Also, each of the maps φ is a homeomorphism
from a w-triangle W onto the rectangles attached to the corresponding tripod.
In order to show that � is injective, it remains to prove that if x1 ∈ ∂W1
and x2 ∈ ∂W2, where W1,W2 are distinct w-triangles with �(x1) = �(x2),
then x1 = x2. From the construction of S (looking at a finite stage of the
construction) one sees that the equality �(x1) = �(x2) is only possible if the
triangles W1 and W2 are adjacent, so we necessarily have that x1 = x2 and it
is the intersection point ∂W1 ∩ ∂W2. This completes the proof of injectivity.

In fact, � is also surjective, since f maps K ◦ surjectively onto L◦; see
the comments in Sect. 5.1.3(c). Note that � maps, in a sense, ∞ to ∞ and is
continuous in a neighborhood of∞, as it agrees with the identity there. Hence,
if we show that � : R

2 → S is continuous, then it will be a a proper bijective
map, and hence a homeomorphism, as desired.

The proof of continuity is very similar to the proof of Proposition 3.2, so
we only provide a sketch. Assume for the sake of contradiction that xk is a
sequence inR

2 converging to a point x ∈ R
2, but the image points yk = �(xk),

y = �(x) satisfy d(yk, y) ≥ δ for all k ∈ N and for some δ > 0. The map �
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is already continuous in the interior of all w-triangles, as it agrees there with
the homeomorphisms φ, hence x cannot lie in the interior of a w-triangle. It
follows that x must lie on the gasket K .

With the same reasoning, we cannot have that infinitely many terms xk lie
in the same w-triangle W . Hence, we either have a subsequence of xk all of
whose terms lie in K ◦, or there exists a subsequence of xk , still denoted by xk ,
whose terms lie in distinct w-triangles Wk .

In the first case, we assume that xk ∈ K ◦ for all k ∈ N and we consider
two subcases. The first subcase is that x ∈ K ◦, in which case y ∈ L◦ ⊂
R
2\⋃

G∈G G; recall that�(K ◦) = f (K ◦) = L◦ from Sect. 5.1.3(c). Then we
necessarily have yk → y with the Euclideanmetric. This is because themap�

“agrees” therewith f , and f is continuous.Wewould like to argue that yk → y
with respect to themetric d of S. This follows because themetric d restricted to
R
2\⋃

G∈G G is topologically equivalent to the Euclidean metric; see Remark
3.3. Hence, we obtain a contradiction to the assumption that d(yk, y) ≥ δ for
all k ∈ N.

The other subcase is that x lies on an edge of a w-triangleW . Then one can
find a nested sequence Vk of v-triangles and a subsequence of xk , still denoted
by xk , such that xk ∈ Vk and x ∈ ∂Vk for all k ∈ N; see comments before
Lemma 4.1. The triangles Vk correspond, under f , to a nested sequence of
u-quadrilaterals Uk such that the projection ỹ of the point �(x) = y ∈ S to
the plane lies in ∂Uk . In fact, y lies in the boundary of a rectangle E attached
to the tripod G that corresponds toW , and also y is “accessible” fromUk ; this
statement can be mademore precise if one looks at a finite stage (Sn, dn) of the
construction of (S, d), as discussed in Sect. 3. The line segments (ỹ, yk] ⊂ R

2

are contained in the convex quadrilateral Uk and have the property that they
do not intersect any tripod infinitely often. As in the proof of Proposition 3.2,
this implies that for any given ε > 0 we have

d(y, yk) ≤ |ỹ − yk | + ε ≤ diam(Uk) + ε

for all sufficiently large k. Since diam(Uk) → 0 by the continuity of f , we
obtain a contradiction.

The second case is that xk ∈ Wk , which are distinct w-triangles. We will
reduce this to the previous case. One can find points x ′

k ∈ ∂Wk with x ′
k → x ,

since the diameters ofWk shrink to 0, such that the corresponding image points
y′
k satisfy d(y′

k, yk) → 0. This is because the heights of the rectangles attached
to distinct tripods have to shrink to 0; see the statement of Proposition 3.2. It
suffices to show that d(y′

k, y) → 0. Finally, arbitrarily close to x ′
k one can

find points x ′′
k ∈ K ◦ that converge to x such that the corresponding image

points y′′
k ∈ L◦ satisfy d(y′

k, y
′′
k ) → 0. This follows from the argument in the
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previous paragraph. However, we are now reduced to the previous case, so
d(y′′

k , y) → 0, and therefore d(yk, y) → 0, a contradiction.

5.4 Finishing the proof of non-removability

Wehave constructed a homeomorphism� : R
2 → S that isM-quasiconformal

in eachw-triangleW , except at the finitelymany line segments alongwhichW
is folded; recall property (C) of the folding maps in Sect. 5.2. If the heights of
the rectangles attached to the tripods are chosen inductively to be sufficiently
small, then by Theorem 3.7 there exists an η-quasisymmetry � : S → R

2.
Now, we consider the composition F :=� ◦ � which is a homeomorphism of
R
2.
The map �, restricted on a rectangle E attached to a tripod, is η-

quasisymmetric, and thus M ′-quasiconformal, where M ′ depends only on η;
this follows from Lemma 2.6 and the fact that the metric d, restricted to E , is
isometric to the Euclidean metric. Hence, by Lemma 2.7, in each w-triangle
W the map F is M · M ′-quasiconformal in the complement of finitely many
line segments; these are precisely the segments along which the triangle W
is folded. Since these segments have finite length, the are removable for qua-
siconformal maps by Lemma 2.8, so F is M · M ′-quasiconformal on each
w-triangle W .

We finally claim that F cannot be quasiconformal on R
2. First, recall the

continuous map f : R
2 → R

2 that is in fact the composition of � with the
natural projection P from S to R

2; see Sect. 3.1 and Remark 3.4 for the
definition of the projection. We note that f (K ◦) = L◦ has positive Lebesgue
measure, as remarked in Sect. 5.1.3(d). Since the projection P is 1-Lipschitz
and L◦ projects to itself, if μ denotes the Hausdorff 2-measure of S, we have

μ(L◦) ≥ m2(L
◦) > 0.

Compare to the property (G7) of the projections of flap-planes in Sect. 3.1.
Finally, by Lemma 2.9, we conclude that the pushforwardmeasure�∗μ and

the Lebesgue measure on R
2 are mutually absolutely continuous. This implies

that F(K ◦) = �(L◦) ⊂ R
2 has positive Lebesgue measure. Thus, the map F

blows the set K ◦ of measure zero to a set of positive measure. Using Lemma
2.3, we conclude that F cannot be globally quasiconformal. ��
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