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Introduction

Let n be a Jordan domain in the complex plane C. If w0 G Q, we let co = co( •; Q, w0)
denote the harmonic measure on dQ evaluated at w0. It can be defined as the image of
normalized Lebesgue measure under the boundary correspondence induced by a
conformal mapping / of the unit disc D = { z e C : | z | < l } onto Q with /(0) = w0.

The purpose of this paper is to study metric properties of the harmonic measure or,
more precisely, to study possible relations between co and the Hausdorff measures.

Let cp be a continuous, increasing function on [0, t0) such that cp(O) = 0. Let £ be a
bounded plane set. For 5 > 0 consider all coverings of E with a countable number of
discs Aj with radii r-} < 3 and define

AJ(E) = inf{J>(r,)},
j

the infimum being taken over all such coverings. The limit

A,(E) = lim AJ(£)

is called the Hausdorff measure of E with respect to the measure function cp. If
<p(t) = ta, for some a > 0, then A^ is denoted by Aa. See [7] for more information
about Hausdorff measures.

The harmonic measure is said to be absolutely continuous with respect to A,, if

AV(E) = 0 =* co(E) = 0

for all Borel subsets E a 3C1. We write co « Av in this case. The harmonic measure co
is by definition singular with respect to A ,̂ if there exists a Borel subset E e <5Q such
that AV(E) = 0 and co(dQ\E) = 0. (Notation: co 1 A,,.) Clearly, these notions do not
depend on the choice of w0.

We now recall some well-known theorems. If Q is a Jordan domain with rectifiable
boundary, a theorem by F. and M. Riesz (see [8, Chapter 10, § 1, Theorem 2]) states
that co is equivalent to arc length (= AJ . However, for non-rectifiable boundaries this
is no longer true. Lavrentiev [10] was the first to give an example of a Jordan domain
such that co <fc Aj. A simpler example with the stronger property co 1. Ax is due to
McMillan and Piranian [13]. Subsequently, Carleson [6] constructed for each a < j
a domain such that co <fc Av where

= te\p{\ogat~1}.

Finally, Kaufman and Wu [9] proved that there exists a Jordan domain such that for
each A > 0, co 1 Av where
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370 N. G. MAKAROV

In the other direction, it was shown that the compression of boundary sets cannot be
too strong. It is a consequence of Beurling's projection theorem that co is always
absolutely continuous with respect to A± (see [12]). In his remarkable paper [6]
Carleson proved that there exists a number jS > j such that co « Ap for all Jordan
domains. To the best of my knowledge the question of whether co is always absolutely
continuous with respect to Aa for all a < 1 remained open.

As to the expansion of boundary sets, a theorem due to 0ksendal is of importance
(see [14, 15]): co is always singular with respect to area measure (= A2). It was asked
[15, p. 183] whether co is always singular with respect to Aa for all a > 1.

The principal results of the paper are presented in the following three theorems.
Theorems 1 and 3 answer in affirmative the two questions stated above. Theorem 2
refines the result of Kaufman and Wu. Our results are very nearly sharp.

THEOREM 1. There exists a universal constant C > 0 such that for any Jordan
domain Q the harmonic measure on dQ is absolutely continuous with respect to the
Hausdorff measure A^ where

<p(t) = t expjC^log T l log log log r %

THEOREM 2. There exist a positive number c > 0 and a Jordan domain Q such that
the harmonic measure on dQ is singular with respect to the Hausdorff measure A^ where

<p(t) = t exp{c7(log r 1 log log log t~l)}.

THEOREM 3. For any simply connected domain Q and for any measure function cp
such that

lim (q>(t)/t) = 0,
r-» oo

the harmonic measure on dQ is singular with respect to A^.

The first two theorems show that the distortion on the boundary obeys, in some
sense, the law of the iterated logarithm (LIL). We intend now to explain what this law
has to do with conformal mappings.

The distortion of boundary sets depends on the boundary behaviour of the
derivative of the conformal mapping. The well-known correspondence exists between
the derivatives of univalent functions and the class & of Bloch functions (i.e.
holomorphic functions b in D satisfying

\\b\\# = \b(0)\ + suip(\-\z\2)\b'(z)\<oo,
D

see [3]). The lacunary series

b(z) = X z»
fc»0

provides an important example of the Bloch function. Let Sn(z) = Yj = oz2<<- The LIL
for lacunary series [20] asserts that for almost all ( e 3D,

n-oo V(" log log n)

or, which is equivalent,
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ON THE DISTORTION OF BOUNDARY SETS 371

It seems natural that among Bloch functions, lacunary series have the 'greatest
possible' boundary growth (in a sense imposed by the latter assertion). The following
theorem is a clue for the proof of Theorem 1.

THEOREM A. There exists a universal constant C > 0 such that if b e & then for
almost all ( e d&,

,!!?- VOog(l-r)-Mogloglog(l-rn * C " * B*

Theorem A will be proved in § 1. In §2 we shall wderive Theorem 1 by combining
Theorem A with some geometrical considerations due essentially to Carleson [6]. In
§ 3, which does not depend on the results of §§ 1 and 2, we shall prove Theorems 2
and 3.

We shall use the following notation:

| • | is the normalized (| 5D | = 1) Lebesgue measure on the unit circle 3D;
Lp, with 1 ^ p ^ oo, denotes the Lebesgue space on (3D, | • |);
|| • ||p is the Lp-norm;
< , > denotes the scalar product in L2;
f(n) denotes the nth Fourier coefficient $eD £"/(C) I dC, | of the function feL1;
B(z, r) is the open disc of radius r and centre z.
The letters C and c will be used to denote various constants which may differ from

one formula to the next, even within a single string of estimates.

1. LIL for Bloch functions

In this section we shall prove Theorem A. The proof is preceded by a sequence of
lemmas. The main auxiliary result is Lemma 1.3 which yields an estimate for the
growth of Lp-means of Bloch functions.

The basic tool in our investigation will be the description of the Bloch class in
terms of convolutions with the Vallee-Poussin type kernels {Wn}nz0. By definition,
W0(z) = 1 + 2 . If n > 0, then Wn is an analytic polynomial satisfying the following
conditions:

Wn{2n)=\;

Wn is linear on [2"-1,2n] and on [2",2"+1].

Obviously, / = X«2=o/* ^K f°r a n v polynomial / (* is the sign of convolution).
The Bloch class $ can be characterized as follows. (See [4,16].) Let b be a function

holomorphic in D. Then b is a Bloch function if and only if

sup||fr* WJL < oo.

To state the first lemma, we need some more notation. By 9}?n is meant the set of all
multiindices a = (a0, . . . , a j with a, ^ 0 integers. As usual,

| a | = a o + . . . + a n ,

a! = a0!...«„!.

Let P{m) denote the projection in L2 onto the subspace span{zJ: j ^ 2m}. Given a
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Bloch function b, we define

N. G. MAKAROV

b* = b'0
0...b*"-

Finally, we define the following quantities associated with a fixed Bloch function b
and integers n ̂  0 and p, v ̂  2:

ba

X(n, p) = sup

X(n,p,v).= sup

V

V
(n + v)

aesnn,M=p a a !

the supremums being taken over all collections of complex numbers {xa} such that

1.1. LEMMA. There exists a universal constant C > 0 such that the inequalities

(1)

(2)

hold for any b in (% with || b \\& ^ 1.

Proof. We can assume that || bj IL < 1 for any j . If p = 1 then

2

" ,1 ) ] 2 = sup VjVj

I<n\<bi,bj)\

I 1

Besides, X(n, 1, v) = 0 for all v ̂  1.
For p > 1 we proceed by induction. Assume that (1) and (2) are valid for the values

1,2, ...,p— 1 instead of p. First, we shall establish the inequality (1). Note that

ba "
• / > / > jS !

with \yj,p\ ^ 1. Therefore,

y e ,
| y | = p - l

^ 2
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ON THE DISTORTION OF BOUNDARY SETS 373

By assumption this does not exceed

n+p

P!

provided that C ^ 10.
It remains to establish the inequality (2). For v = 1 it follows from (1). Hence, we

suppose that v ^ 2. Since

ba A A M ^ bp

with l^fc,/?! ^ 1, and since fc*(w) = 0 for m ^ 2v+j~l provided k ^ 2 V " 2 , we have

(3) %P,vU I I Y,

(Note that X{n, p, v) = 0 for p ^ 2V"1.)
By induction, the first sum in (3) does not exceed

J \ // A
Tofc!/V\* o

The second sum in (3) does not exceed

) ^ 1 A

"1 A

Hence,

which implies (2) provided that C ^ 9e. This completes the proof.
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374 N. G. MAKAROV

1.2. COROLLARY. / / b is a Block function, with \\ b \\# ̂  1, and if p > 0 is an integer,
then

C being a universal constant.

Proof We have

bp*Wn\\
2

2

*Wn

2

Since ba is zero on [p2J+l, oo), provided that a e $R,- and | a | = p, we have

I bj I
n-2-(logp)/(log2)<jJsn+l flgfl)!

n-2-(logp)/(log2)<j<n+1

1.3. LEMMA. Let b be a Blochfunction, with \\ b ||^ ^ 1, and let p > 0 fee an integer.
Thenforre{\-e-p,\),

\b(rO\2p\dC\^Cpp\\ogp-^--r,

C being a universal constant.

Proof Without loss of generality, we can assume that b(0) = 0. Then

b(rC)\2p\dt;\= Y r2k\Tp{k)\2

ft = 2 "

It is easy to check that if p < log(l —r)~l, then

for some C > 0.

1:4. Proof of Theorem A. Assume that || b \\ # ^ 1. Fix an integer p ^ 2 and consider
the maximal function
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ON THE DISTORTION OF BOUNDARY SETS 375

where £ e dO and r e (0,1). By Lemma 1.3 and the Hardy-Lit t lewood maximal
theorem,

[
provided that r e (1 — e~p, 1). Define

Then
P

MCI

Hence, there exists a set Ep on <9O enjoying the following properties:
(a) \E,\>\-2->',
(b) if C e Ep, then J{_e-pw(r)0r(C)dr ^ {2C)ppp.
Now, fix C e Ep and let r G (1 -e~", 1). Since the function r H-> gfr(Q increases,

Therefore, (b) implies that

flUC) <

and hence

(4) |6(rO|

C being a universal constant.
For an arbitrary positive integer p0, let

u n E,.
P^po

If r e (1-exp{-expexpp 0 } , 1), we substitute p = logloglog(l - r ) " 1 in (4) taking
into account that p ^ p0, ( e £p, and r G (1 - e " p , 1). Then, by (4),

\b(r()\

Hence, if ( belongs to

po P^Po

we have

It remains only to note that (a) implies that \E\ = 1.

2. Absolute continuity of harmonic measure

This section is devoted to the proof of Theorem 1. It will be accomplished in several
stages. First, we shall establish two geometrical lemmas which, put together, show
that the distortion on the boundary is, roughly speaking, the same as the distortion
inside the domain. The latter, by the Koebe distortion theorem, depends entirely on
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376 N. G. MAKAROV

the derivative of the conformal mapping, and this explains the relevance of our
preceding results (see Introduction).

We shall make intensive use of extremal lengths. The notion is due to Ahlfors and
Beurling [2]. For the convenience of the reader we shall recall the definition and some
basic properties.

2.1. DEFINITION. Let F be a family of locally rectifiable curves in the complex plane.
Consider all measurable (with respect to area measure), non-negative functions p
defined on C such that

A(p) = I p2 * 0, oo.

For each p, we define

p(z)\dz\.

(If p is not measurable with respect to \dz\, the integral is meant to be infinite.) The
supremum

is called the extremal length of the family F.

EXAMPLE. Let F be the family of all arcs in the annulus {z: ry < \z\ < r2} which
join the boundary circumferences. Then

PROPERTIES, (a) The extremal length is a conformal invariant.
(b) If each curve y2 e F2 contains some curve yx e F t then /(F,) ^ A(F2) (the

comparison principle).
(c) If the families {Vj} lie in disjoint, measurable sets and if F = \J F7 then

(the Grotzsch principle).

For the proof see [1, Chapter ID].
The following theorem (see [17]) provides a link between the extremal length and

the harmonic measure:

Let Q be a Jordan domain and let K a Q be a continuum. For each Borel set E on
dQ denote by F £ the family of all arcs in Q joining E with K. There exists a constant
A > 0 independent of E, such that

co{E; fi, w0) ^ A exp{ - TT/(F£)}.

2.2. LEMMA. Let if/ be a continuous, increasing function on [0, oo) such that î (0) = 0.
Let f:D—>Qbea conformal mapping onto a Jordan domain Q satisfying

(1)
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ON THE DISTORTION OF BOUNDARY SETS 377

/ / / is a subarc of dB with endpoints zx and z2, and if a is a crosscut of Q joining f(zx)
and f(z2), then

where c > 0 is a universal constant.

Proof. Assume that

(2)

C to be chosen later. We define

Q = {zeD:z\z\-1 el,

To simplify the notation, let d - 1 - 1 z | and S•= dist(/(z), 50). By (1) and the Koebe
distortion theorem,

UzEf~l((T) then, by (2), <5 < | / | i^( |/ |)/C, which implies that

Hence, d < \ I | provided that C > 4, and any arc in Q which joins / and /' must
intersect f~Y{o).

Let F, denote the family of all arcs in Q joining /' and / " 1(a). Comparing A(Fr) with
the extremal length of the family of all arcs in Q which join / and /', we see that

Set r w = / o r . . I f z e / ' then rf = |/1 and S ̂  i | / | ^ ( | / | ) ^ iCdiama. Each arc in
fw has an endpoint on /(/ '), that is, outside B(f(zl), r2) where r2 = ^Cdiam a, and an
endpoint on a, that is, inside Bifiz^^^ where ry =diam<r. By the comparison
principle,

/ ( r j^-5- iog"^ logic

2n rx In

which contradicts (3) provided C is big enough.
REMARK. AS is known, the inequality (1) is valid with \jj{t) = t for any function /

univalent in D and such that /'(O) = 1. In this case Lemma 2.2 provides an estimate
due to M. A. Lavrentiev, C. Gattegno, and A. Ostrowski (cf. [18, Chapter 11, §2,
Corollary 5]).

2.3. LEMMA. Let Q be a Jordan domain, let w0 e Q, and let co = <y(-;fi, wQ). If A
is a disc of radius e ̂  £0 such that

co(dQ n A) ^ e,

there exists a crosscut a of Q. which lies in the disc A' of radius 2e concentric with A and
separates from vv0 a subarc ft of dQ satisfying

 1460244x, 1985, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s/s3-51.2.369 by Suny Stony B

rook U
niversity, W

iley O
nline L

ibrary on [24/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



378 N. G. MAKAROV

Proof. Fix a continuum K in fi. We can assume that it does not intersect closA'.
Assume also that w0 £ closA'. Let fi0 denote the component of fi\A containing w0.
Let {Uj} be the set of those components of fi0 n A' whose boundary has an arc on dA.
Evidently, this set is not empty.

Fix j and consider the domain U = Uj. It is easy to see that it is a Jordan domain.
The intersection dU n {A'\clos A} is the union of open subarcs of dU with endpoints
on dA u dA'. Precisely two of these arcs join different circumferences. Their comple-
ment also consists of two subarcs of dU, and we denote by d = dj that one which
intersects dA. The set (dU n dA)\dQ is relatively open with respect to dA and consists
of open subarcs {/v} of dA. Each arc /v forms a crosscut of fi separating w0 from some
subarc av of dfi. We denote the union (Jvav by Ej.

Let Fj be the family of all arcs in fi joining K with £,-. By the theorem stated in § 2.1,

ojj = o)(Ej) ̂  A exp{ — nXiTj)}.

If F'j denotes the family of all arcs in Uj which join dA and dA' then

On the other hand, by the Grotzsch principle,

j

Hence,

(4) card{): coj ^ Aenk} ^ (27r/log2)/clog£-1.

Consequently,

<(27r/4/log2)log£

provided that e is sufficiently small. Since dQnAcz [jjEj and co(dQn A) ^ e, this
implies that

j
> AC

~ 1The latter sum, by (4), has at most (27i/log2)loge~1 terms. Hence, for some j 0 ,

log 2 co(dQ n A)

^ ^ " 4 ^ " logs"1 •
This proves the lemma with

and a being an arbitrary crosscut of Ujo whose endpoints coincide with that of (1.

2.4. COROLLARY. Let \\i be a continuous, increasing function on [0, oo) such that
t//(0) = 0, and let x be the inverse of the mapping 11—> t\jj(i). If the conformal mapping
f: D -+ fi onto a Jordan domain fi satisfies

(5) w « A z ( f ) ,Og(i/ ,) .
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ON THE DISTORTION OF BOUNDARY SETS 379

Proof. We can assume that w0 =/(0) . All we need is to check that if A is a disc of
radius e ^ e0 then

&)^ Cx(e)\oge~l.

This inequality is obvious when co(dQ n A ) < £ . Otherwise, we can make use of
Lemma 2.3, and construct an arc /? and a crosscut a with the corresponding
properties. Let / denote f~l{fi). Since diama ^ 2e, by Lemma 2.2 we have

Hence,

(Clearly, for the proof of (5) it can be assumed that #(2t) ̂  Q(t) .) By Lemma 2.3,

co(dQnA)< Ccu(jS)loge"*

= C | / | l oge - 1

Our next lemma is a consequence of Theorem A. We obtain an estimate for the
derivative of the conformal mapping. For ( e O w e define

To simplify the notation, we write log(3) instead of log log log.

2.5. LEMMA. There exists a universal constant C > 0 such that if f is a univalent
function in D then for almost every ( e 3D,

(6) ™ °

Proof. Remark first that if b is in 28 and || b ||^ ^ 1, and if

for some C e 3D (according to Theorem A it is valid almost everywhere on 3D), then

m TT- \Hz)\

Indeed, for z e 3>{Q let / be the smaller subarc of the circle of radius | z | with endpoints
in z and ( | z | . The length of/ does not exceed (1 — |z|)N/log(l — M ) " 1 , and, since
||fr H.4 ^ 1, we have that \b'\ ^ ( 1 - l z l 2 ) " 1 on /. Hence,

which together with (7) implies (8).
To prove (6) we can assume that /'(O) = 1. Define b = £ log/ ' . By the distortion

estimates (see [8, Chapter 2, §4]),

: i - M 2 '

Therefore, b e £% and || b \ s ^ 1. Let (8) be valid for some ( on 3D. For z e 3){Q with
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380 N. G. MAKAROV

1 — \z\ sufficiently small, we have

(9)

which implies (6).

REMARK. From (9) it also follows that, almost everywhere on 50 ,

when z -* ( and z e 3{Q. This considerably improves a result of Seidel and Walsh
[21]:

| / ' (z) | = o ( ( l - | z | ) -* ) a.e. on 50 .

2.6. Proof of Theorem 1. Let / be a conformal mapping of O onto Q and let

q>(t) =

where C will be chosen later. Also let Eo be a Borel set on 5fi such that e0 =/~*(£())
has positive Lebesgue measure. We need to check that

(10) A,(E0) > 0.

First, we make use of Lemma 2.5 to choose a closed subset e of 50 enjoying the
properties: \e\ > 0, e c e0, and

(11)

for all z in \J^ee^(C) a "d some M > 0. It is easy to construct a Jordan domain G <= D
with smooth boundary such that

(a) G <= [Ucee^(C)] u {z: | z | < 0-9} (and thus (11) holds for all z in G),
(b) e c 5G,
(c) if n(z) denotes the unit exterior normal to dG at z then

(12) \n{zx)

for all Zi,z2 G dG.
Let g: O -»• G denote a conformal mapping onto G. Then (c) provides an estimate

for the derivative g'\

(13) log|gr'(z)|~x ^ const.^/log2(1 — | z | )~ l .

The proof, which we outline, is based on the standard arguments (cf. [8, Chapter 10,
§ 1, Theorem 6]). Let T = argg'. By the Lindelof theorem [8, Chapter 10, § 1, Theorem
4], T is continuous up to the boundary and satisfies

(14) T(() = n(g(Q) — arg (

on 50 . Since g' e L2, for d and (2 on 50 we have \g(Ci) — #((2)! ^ const.^/K, — (2| .
Hence, (12) and (14) imply that

|T(C,)-T(C2)|^const./N/log2|C1-C2r1-
For : £ D we have

log0'(z) = 1
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ON THE DISTORTION OF BOUNDARY SETS 381

and

1
which yields (13).

Further, we define the mapping h =fog. Then \h'(z)\ = \g'(z)\ | / ' ( ^ i ) | where zl

stands for g(z). By the distortion theorem,

1 -1 Zi | ^ dist(zl5 5G) ^ i(l - 1 z

Hence, (11) and (13) imply that

C b e i n g a u n i v e r s a l c o n s t a n t . S i n c e \e\ > 0, w e h a v e \ g ~ l ( e ) \ > 0. B y C o r o l l a r y 2.4,

AZ(«)iog<i/i)(iio) > 0,

where % is the inverse of the mapping t »-»• exp{ —CN/(logt~1 log(3)t"
1)}. Clearly,

X{t) ^ texp{C7(logr* log ( 3 ) r
x )} ,

and (10) follows.

3. Singularity of harmonic measure

Both Theorem 2 and Theorem 3 will be proved by a single method. The method is
based on the notion of a dominating subset due to Rubel and Shields [19]. Let Q
denote a bounded domain in C and let //°°(fi) denote, as usual, the Banach algebra of
all bounded holomorphic functions on Q in the supremum norm || • H .̂ A subset A of
Q is said to be a dominating subset of Q if

ll/IL = sup|/(A)|

for any / s //°°(fi). In case Q is D, the dominating subsets are characterized as follows
(see [5, Theorem 3]): a subset A of .0 is a dominating subset if and only if almost every
boundary point £ 6 dD> is a non-tangential limit point of A. Clearly, the property of a
set to be dominating is conformally invariant. In this section 5X denotes dist(A, dQ) for
A €Q.

3.1. LEMMA. Let Qbe a simply connected, bounded domain and let q> be a continuous,
increasing function such that (p(0) = 0. / / there exists a dominating subset A of Q such
that XA6A <P@X) < °o. then w 1 Av.

Proof For each k e A we define Ex = dQn B(X, 2(5 J . It is a consequence of the
Milloux inequality [8, Chapter 8, §4, Theorem 6] that

(w(£A;f i ,A)>c>0.

We claim that

co([jE,)=\.
AeA

Otherwise, there would exist a Borel subset £ 0 c= 5Q\ | J A 6 A £ / l of positive harmonic
measure. We define f=e\p{h + ih} where h() = a>(E0;Q, •) and Ti denotes the
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382 N. G. MAKAROV

conjugate function. Then \\ f ]]„ = exp 1 and

| f(X) | = exp{co(E0; Q, A)} ^ exp{ 1 - c},

provided A e A. This would contradict the definition of a dominating subset.
If A is obtained from A by omitting a finite number of points, the union {JXe\Ex

will still be of full harmonic measure. Since ( J ^ A ^ A 0 1 \Jxe\B(A,2Sx) and since
ZASA <P(<5A) is arbitrarily small for an appropriate A, the assertion follows.

REMARK. I do not know whether the converse of this lemma is true. It can be
shown that the converse is true for (p(t) = t.

The next lemma was proved in [11]. For convenience, we shall repeat that part of
its proof which will be of use later. By St(£) is meant the Stolz angle with vertex at
C e 3D, that is, the interior of the convex hull of {z: | z | ^ | } u {(}.

3.2. LEMMA. Let Q be a simply connected, bounded domain and let / : D -> O 6e a
conformal mapping onto Q. Let q> be a continuous, increasing function on [0, t0) with
q>(0) = 0 such that, for some a > 0 and fi > 0,

(1) the function (p{t)/ta increases and the function cp{t)/tp decreases.

Let \\j{t) = (p~l(t)/t. The following are equivalent:
(a) for almost every £ e dfi,

(b) there exists a dominating subset A of Q such that

(3) X q>(Sx) < oo.
AeA

Proof of (a) => (b ) . F i x e > 0. F o r e a c h ( s a t i s f y i n g (2) t h e r e e x i s t s z = z { e S t ( ( )
s u c h t h a t

Let /c denote a subarc of 3D centred at ( and of length 1 — | z j . By the covering lemma
we can select a sequence {(,„} such that the set (Jn /„ has full Lebesgue measure and
£ „ / „ < oo (/„ stands for lQn).

Let A(e) denote the set {/(zCn)}. By the distortion theorem, for z = z^ and / = /? we
have

Sfiz)^4\f'(z)\\l\.

Applying (1), we obtain

Consequently,
Z Vi^x) ^ const. ea.
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ON THE DISTORTION OF BOUNDARY SETS 383

The set A = ljfc^o^(2-k) is a dominating subset of Q by the criterion stated at the
beginning of the section. Obviously, (3) is valid.

3.3. Proof of Theorem 2. To construct a Jordan domain with the required
properties, we shall make use of the Ahlfors-Becker univalence criterion (see [18,
Chapter 6]): if/ is holomorphic in D, /'(0) = 0, and

(4) (\-\z\2)\z(f"(z)/f'(z))\^c<l

then / is univalent and maps D onto a Jordan domain. We define / by

for some /? £ (0,£). It is easy to see that / satisfies (4) (cf. [18, Chapter 2]). Let Q
denote the Jordan domain / (O) .

A theorem of Salem and Zygmund [20]—the LIL for lacunary series—states that,
for almost every £ e 50 ,

- r )" 1 10*3, (1- r )" 1 )

Consequently,

r-̂ T_ exp{-i0V(log(l - r )

Let (p(t) = texp^VOogrMogojr1)} . Then

m = cp-\t)it ~ exp{- t fV(io g r J i o * 3 ) r '

when t tends to zero. Hence, almost everywhere on 50,

lim
r-> 1 -

By Lemma 3.2 there exists a dominating subset A of Q such that (3) holds. By
Lemma 3.1, co _L Av.

3.4. Proof of Theorem 3. Let limf_ot 1(p(t) = 0. We define a modified function
<Pi by

(px{t) =tsup{s">(s): 0 ̂  s ̂  t}.

Clearly, (pt(f) ^ cp(t), H m ^ o f V i W = 0, and the function t"1^^^) increases. Thus,
we can apply to q>x the implication (a) => (b) of Lemma 3.2. (Only the first condition
in (1) was used in the proof of this implication.) If ^ ( t ) denotes (px~

x{t)/t then
lim,_0 ipi{t) = oo. The assertion (a) in Lemma 3.2 now follows by the Lusin-Privalov
uniqueness theorem [8, Chapter 10, §2, Theorem 1]—the derivative <p' has the infinite
angular boundary values at every point ( not satisfying (2). Hence, there exists a
dominating subset A of Q such that

Z
AeA

An application of Lemma 3.1 completes the proof.
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