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Introduction

By the classical definition, a quasiconformal mapping is a sense-
preserving diffeomorphism of a plane domain onto another plane domain
which maps infinitesimal circles onto infinitesimal ellipses with a
uniformly bounded ratio of axes. Later it was found preferable to
relax a priori differentiability conditions and define a quasicon-
formal mapping in the plane as a sense-preserving homeomorphism which
leaves some conformal invariant quasi-invariant. The most general
conformal invariant suitable for this purpose is the module of a path
family. The precise requirement for quasiconfrormality is the exist-
ence of a fixed constant K such that the module of every path family
lying in the domain in which the homeomorphism is considered increases
at most K times,.

A closer analysis of the relations between the classical and the
more general definition led to the characterization of quasiconform-
ality in terms of the Beltrami differential equation. It then turned
out that quasiconformal mappings had in fact been studied for a very
long time, within the theory of partial differential equations. How-
ever, this was not realized until quite a while after quasiconformal
mappings were introduced into complex analysis and were given a name.
In retrospect, it is amazing that it took so long before the connec-
tion between these two approaches to the theory of quasiconformal
mappings finally became cliear, in the late fifties.

Around 1960 the general theory of plane quasiconformal mappings
had reached a satisfactory level. Interest was then focused on quasi-

conformal mappings in higher dimensional euclidean spaces R". At the
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outset, the theory of such mappings has no longer anything in common
with complex analysis. But somewhat surprisingly, there appear to be
striking analogues between (not necessarily injective) quasiconformal

mappings and analytic¢ functions of one complex variable,

1. Beltrami Differential Equation

Every sense-preserving diffeomorphism is locally gquasiconformal.
It follows that there is no undisputed criterion to determine the
first appearance of quasiconformal mappings in analysis. 1 have not
found any direct connection with Euler, but we have good reason to
open the survey of quasiconformal mappings with Gauss.

The problem of Gauss in which quasiconformal mappings are
involved is to map a surface locally conformally into the plane. Let
S be a smooth orientable surface in the euclidean space R3. Given
an arbitrary point p €S, let f = (fl'fZ’f3) be the inverse of a
local parameter near p, i.e., f is a diffeomophism of a domain in the
plane R2 onto a neighborhood of p on S. Gauss wanted to find a
mapping f which is conformal in the sense that it preserves angles.

By means of f, the line element ds of S can be expressed in

the form
2 3 afi afi 2
ds® = 7§ (-——dx+——dy)
i=1 3x 3y
2 2
= Edx” + 2Fdxdy + Gdy™, (1.1)
with
3 Af . \2 3 3fi afi 3 'c)fi 2
E = E (_-..I_) , F = z _, G = E (._) .
i=1  9x i=1 3x 9y i=1 " 3y

The expression (1.1) is invariant in that it does not depend on the
local representation of §.
Here it is advisable to use complex notation dz = dx+idy,

dz = dx- i dy {even though Gauss did not). We then obtain from {1.1)

ds = A|dz+wdz|, (1.2)
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A2 = % (E+ G+ 276G - F%), p=—bt B 20F
E+6+ 276G - F2

It Is important to note that

2
E+ G- 2V/E6 - F 1

£+ 6+ 27EG - F2

Gauss proved that the mapping f s conformal if and only if

2
l

E=2G, F=20; the proof is standard calculus. This condition is

=

equivalent to 1 being identically zero. In this case ds

2 2)

E(dx” + dy or

ds = xldz].

Local coordinates z = x + iy of § with this property are called

isothermal,
Gauss was thus led to the problem of finding isothermal coordi-
The idea is to transform suitably

the coordinates z given by F~], i.e., to consider a diffeomorphism

f onto another plane domain. Then ldw| =
3 = (a/0x + i3/3y)/2

nates for the given surface S.

z »w of the domain of
[owdz + 3wdz]|, where 3 = (3/9x - i3/dy})/2 and
denote complex derivatives. Suppose that

3 (1.3}

dw = Udw.

Then |dw| = |aw]|dz + udz|, and comparison with (1.2} shows that

ds = {A/]|9w]) |dw|. We see that if we can find an injective solution
of the differential equation (1.3), then the w-coordinates are iso-
thermal. (For a diffeomorphic solution, lawl # 0, because the condi~
tion |dw| # 0 is equivalent to the Jacobian being non-zero.)

Gauss [5] solved the equation (1.3}, which was later named after
Beltrami, using real notation and assuming u to be sufficiently
smooth. Thus he solved the problem of finding a locally conformal
mapping of a smooth orientable surface into the plane. This result,
highly interesting as such, allows important interpretations if we

use modern terminology, and it Jeads to far-reaching generalizations.

First of all, the transition z +w from the original coordi-
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nates to the new ones is a locally quasiconformal mapping, and p =
w/ow s its complex dilatation. Complex dilatation is a function
which describes the local geometric properties of the quasiconformal
mapping. In solving (1.3), Gauss solved a basic problem in the theory
of quasiconformal mappings by showing that the complex dilatation can
be prescribed.

Another interpretation brings Gauss's result into contact with
complex analysis. Suppose that z and w are both isothermal coordi-
nates corresponding to the same portion of S. Then the induced
mapping z - w is conformal, sc that isothermal coordinates define
a conformal structure of S. |In other words, Gauss proved that
a smooth orientable surface in R3 can always be made into a Riemann
surface. The method used by Gauss can be applied to a much more
general situation, and it follows that an abstract surface with
a Riemannian metric can be given a complex-analytic structure.
Solving an equation (1.3), i.e., finding a quasiconformal mapping
with a prescribed complex dilatation, is again the crucial step.

In 1825, the terminology could of course not be used by Gauss,
who considered the problem of finding conformal mappings of a surface
from the point of view of differential geometry. It took some more
decades before Riemann fully recognized the fundamental connection
between conformal mappings and complex analysis.

After Gauss, it took well over a century before Beltrami equa-
tions {1.3) became an inseparable part of complex function theory.
There were hints of an intimate connection: An easy computation shows

that if w, and w, are diffeomorphic solutions of the same equation

1 2
(1.3), then Wy 0 W, is a conformal mapping. !n other words, the

solutions of (1.3) are unique up to conformal transformations. This

uniqueness theorem, combined with the general uniformization theorem,
yields an important result about the existence of global solutions of
(1.3). Suppose that (1.3) can be solved locally injectively in a
simply connected domain A of the complex plane. By the uniqueness
theorem, these local solutions define a conformal structure for A
which thus becomes a Riemann surface. 8y the general uniformization
theorem, this Riemann surface is conformally equivalent to the Riemann
surface A with its natural conformal structure defined by the
identity mapping. The mapping function is a globally injective

solution of (1.3) in A.
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the point of view of quasiconformal mappings it is of

to note the result, due independently to Lichtenstein and

oon: from around the year 1915, that if u is Hglder continuous,

" then the sotutions of (1.3) are diffeomorphic. tn the other direction,
‘the complex dilatation of a diffeomorphism is continuous but not
necessarily HGlder continuous. However, attempts to extend the

result of Lichtenstein and Korn to a continuous u failed, and since
~the 1950's we know that a continuous y does not necessarily produce

a continuousty differentiable solution of (1.3).

't meant decisive progress for the theory of Beltrami equations
when Morrey [10] in 1938 realized that one should not look for solu-
tions of (1.3) in the classical sense but, as we would say today, in
the sense of distributions. More precisely, let y be a measurable
function in a plane domain with [[uff_ < 1. A function w isanlL™-
solution of (1.3) if w is continuous, belongs locally to the Sobolev

space W! (i.e., has generalized first order partial derivatives

2 .
which are locally in L2) and satisfies (1.3) almost everywhere.

has .
Using suitable approximation, Morrey proved that (1.3) always ;\

ion is
a homeomorphic Lz-soiution. He also showed that the solution

P tinuous
unique up to conformal mappings and that it Is absalutely con

; hese genera-
with respect to the two-dimensional Lebesgue measure. T g

hing else but quasiconformat mappings

E,i., years ero
in the mode‘“ sense. O A i

i rstood. e
importance of Morrey's paper for complex analysis was unde ;

2. Quasiconformal Mappings in the Plane

Let f be a complex-valued diffeomorphism of a domain A of
q . in
the complex plane and aaf(z) the derivative of f at z €A

the direction «. The function

max |3 f(z)|
a '«

Z D(Z) = mina iauf(z‘)l

is called the dilatation quotient of f, Clearly f is a conformal
mapping of A if and only if D(z) =1 at every point z € A,
In 1928, Grdtzsch [3] introduced the class of sense-preserving

diffeomorphisms with bounded dilatation quotients. He proved that
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a number of results holding for conformal mappings can be extended for
these more general mappings, either as such or with obvious modifica-
tions. In particular, certain conformal invariants remain quasi-invar-
iant. Let Q(z1,22,23,z“) be a quadrilateral, i.e., a Jordan domain
Q and a sequence of four points 21’22'23’Zh on the boundary 30Q
determining & positive orientation of 3Q with respect to Q. Let
M(Q) denote the conformal module of Q(21’22’23’2h)’ (fF Q s
mapped conformally onto the rectangle {x + iy[0 « x « M, 0 « y ~ 1}
such that 21,22,23,zq correspond to the vertices, z, > 0, then

M(Q) = M. M(Q) is also the module of the family of paths of @

joining the sides (z,,z ) and (23'Zh)') Grotzsch proved that for

2
a diffeomorphism f of A, the inequality D(z) £ K holds if and

only if
M{F{Q)} < KM(Q) (2.1)

for all quadrilaterals of A.

It socon became apparent that the mappings of Grdtzsch were not
merely an interesting generalization of conformal mappings. It was
realized that they were an important tocl in analysis and even more,
that they had an intrinsic rolte in complex function theory. Ahifors
was the first to call these mappings quasiconformal in 1935. (If
D(z) £ K, the mapping is said to be K-quasiconformal.)

Around 1935, Lavrentjev introduced a class of homeomorphisms
defined by certain geometric mapping properties. The Lavrentjev
mappings were clearly more general than the Grdtzsch mappings, but
still possessed many properties similar to those of conformal trans-
formations. 1In 1957, Bojarski proved that Lavrentjev mappings agree
with those homecomorphic Lz—solutions of Beltrami equations which have
a continuous .

in the late thirties, quasiconformal mappings rose to the fore-
front of complex analysis thanks to Teichmiller. Introducing novel
ideas, Teichmiiller showed the intimate interaction between quasicon-
formal mappings and Riemann surfaces {see especially Teichmiller [151.)
After the second World War, Teichmiiller's ideas were taken up and
pursued further by Ahlfors. His paper [1] revived interest in
Teichmiller's work, and it also meant an important event in the

history of quasiconformal mappings.



or

‘ar-

211

the applications, Grétzsch mappings had exhibited certain
cks. They are not closed under uniform convergence, with the
result that many natural extremal problems fail to have a solution
within the class. Often one had to allow a quasiconformal mapping
not to be continuously differentiable at isolated points or on
certain arcs. A more general definition was therefore desirable.
Such a definition was suggested by Pfluger [11] in 1951, and Full
use of it was made by Ahlifors in the afore-mentioned paper [1] in 1953.
The inequality (2.1) characterizes K-quasiconformal diffeo-
morphisms. According to Pfluger and Ahlfors, a mapping is K-quasi-
conformal if it is a sense-preserving homeomorphism (not a diffeo-
morphism as before) which satisfies (2.1). This is a standard
definition of quasiconformality today. (It was later proved that this

definition is equivalent to the quasi~invariance of the module of path

families mentioned in the !atroduction.)

i as
With this definition, a number of new problems arose as it W

. i r§tzsch
asked to what extent these quasiconformal mappings generalize Grd i
i i jon in

mappings. Questions of this type were answered in rapid success

. s to real
the fifties, most theorems belonging by their nature more

d Mori
analysis than to complex anatysis. It was proved by Strebel an

i iines and
that a quasiconformal mapping is absolutely continuous on

- i 1 mappin
by Mori that it is differentiable a.e. For a K-quasiconformal mapping

f, differentiability a.e. in conjunction with an old resutt of

Gr8tzsch, gave the inequality |

{2.2)
max Iaf )] £ K min {af Y| a.e.

a Qa

This in turn showed that the partial derivatives of a quasiconformal
mapping are locally in LZ.
in the opposite direction, it was possible to characterize
quasiconformality by properties of this kind, After a gradual reduc-
tion of conditions (Yujobo, Bers [3], Pfluger}, Gehring and Lehto
proved in 1959 that a sense-preserving homeomorphism f {is K-quasi-
conformal if f is absojutely continuous on lines and satisfies {2.2) 3
a.e.
It was in this connection that the mere writing of (2.2) in a

different form had an unbelievable effect. An elementary computation

shows that




max |3uf} = |af| + |of}, min |aafj = |3f| - |3¢f].
a a

It follows that (2.2) is equivalent to the inequality

K—
K +

3F(2)] s Kot arl] ae.

If we write

3f = wof, (2.3)

we see that a homeomarphic f is K-quasiconformal if and only if f
{s an Lz-soiution of (2.3}, where Julz)] 2 (K- 1)/(K+1) <1 a.e.
In other words, quasiconformal mappings coincide with the solutions of
Beltrami equations in the sense of Morrey. This fundamental observa-
tion was made by Bers [3) in 1957. (Why had the corresponding obser-
vation not been done in connection with Grdtzsch mappings, in the
thirties?)

For more details about the history of Beltrami equations and
quasiconformal mappings in the plane we refer to the monograph Lehto-
Virtanen [9].

The discovery of Bers immediately solved an open probiem for
quasiconformal mappings: They are absolutely continuous with respect
to the Lebesgue area measure, because Morrey had proved it for his
solutions as early as in 1938. This implies for a quasiconformal

mapping f that 3f # 0 a.e. It follows that the complex dilatation
wo= of/3f

can be defined at almost all points.

The amalgamation of the two appreoaches to quasiconformal
mappings, by way of complex analysis on the one hand and of Beltrami
equations on the other hand, was quickly utilized. Compiex dilatation
started to play an increasingly important role in the general theory.
Besides, its systematic use in the hands of Bers, Ahlfors and others
soon brought abcout a striking new progress in the theory of Teich-
miller spaces (see, e.g., Ahlfors [2], Chapter VI.)

in many cases problems dealt with in connection with Teicmiiller

spaces projected back to classical function theory. For instance,



Was focused on univalent functions with quasiconformal exten-

‘From around 1970 on, they have been systematically studied by

Kihnau and others, without any more connections with Riemann surfaces.
Rlso, Schwarzian derivative, introduced by H.A. Schwarz [14] in

1869, underwent g3 renaissance. On Riemann surfaces it is a quadratic

differential, which explains its importance in the Teichmiiller theory.
in the plane it has revealed unsuspected links between quasiconformal
) mappings and classical complex analysis.

A third notion which has largely gained in importance in recent
years is a quasidisc, i.e., the image of a disc under » quasiconformal
mapping of the plane. Again, its importance was first recognized
primarily in the Teichmiiller theory and later in its own right. |
Gehring [6] has given a comprehensive exposition of the various i
geometric and analytic characterizations of quasidiscs which were

known by 1982,

3. Quasiconformal Mappings in Several Dimensions

X jzations
Arcund 1960, the relations between the various character

larified.
of quasiconformal mappings in the plane had more or less been cia

o the same for quasiconformal

i 5isa13 then set off tod
Gehring and Vaisali 2 in spite of the

mappings in higher dimensional euclidean spaces

= ntered
fact that a good model existed in the case n = 2, they encou
s offered less help

5bi ansforma= U
than in the plane, because there are no others than Mobius tr ,

succeeded

many difficulties. For instance, conformal mapping

tions if n 2 3. But in a few years, Gehring and Vdisdla
in proving a number of results which show that, by and large, fhe
definitions holding for n = 2 can be generalized to higher dimen-
sional cases. A solid foundation was thus laid for the theory of
quasiconformal mappings in several dimensions, for which only scattered
results had existed before. Lavrentjev seems to have been a pioneel.',
having studied quasiconformal mappings in R3 in 1938. For 2 detailed
account of the various definitions of quasiconformality in R we
refer to the monograph Viisidls [16]. ‘ |
At an early stage it beﬁomg clear that, in some respects, the
theories are different in R2 and in Rn, n>2. Astriking differ-
ence is the lack of the Riemann mapping theorem in higher dimensional

spaces. in the plane, all simply connected domains bounded by a non-

R,
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degenerate continuum are conformally equivalent. In contrast, already
in R3 it is a highly non-trivial question which topological spheres
can be mapped onto each other quasiconformally. This problem was
studied for the first time systematically by Gehring and Vdisdla ([7])
in 1965. '

Complex dilatation is a more complicated notion in R", n > 2,
than it is in the plane. Partial differential equations can be
utilized (Bojarski and Iwaniec [4]), but the necessity to do without
the existence theorem of Beltrami equations has been bitterly felt on
several occasions.

Let us conclude this article by some remarks on quasiconformal
mappings which are not necessarily injective. !f the mappings are
not allowed to take on the value «, they are called quasiregular
functions. In the plane, a natural definition for a quasiregular
function f is that it be an Lz-solution of a Beltrami equation
3w = pow, ull < 3; f is K-quasiregular if [lull < (K- 1}/(k + 1).

It is easy to prove that
f =g oh, (3.1)

where h is a homeomorphic Lz;solution of the same equation (i.e.,
a quasiconforma! homeomorphism) and g is an analytic function.
Because of the very simple representation (3.1), quasiregular func-
tions have not been found very interesting in the plane.

There is no difficulty in generalizing the definition of a quasi-
reqular function for dimensions n > 2. Suppose f is continuous in
a domain A c R” and belongs locally to the Sobolev space w; (i.e.,
f has generalized first derivatives which are locally Ln-integrable).
The linear map f'{x}: R" + R™ and the Jacobian Jf(x) = det f'(x)
can then be defined for almost all x € A. The function f is said

to be K-guasiregular in A if

n a
HEr () KJf(X) a.e. in A. (3.2)
Here || || denotes the sup norm. For n = 2, this definition agrees
with the previous one. If f is injective in A, then f is a K-

quasiconformal mapping of A.
n

At first glance, the theory of quasiregular functions in R
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n > 2, has nothing to do with complex analysis. However, a closer
study has revealed surprising analogues with the classical theory of
analytic functions.

The beginning for a systematic study of quasiregular functions
in several dimensions was a paper of Resetnjak 112] which appeared in
1966. Regetnjak proved, among other things, that a non-constant quasi-
regular function is discrete and open. tnspired by Regetnjak's paper,
Martio, Rickman and VdisZli focused their interest on quasiregular
functions and, from 1969 on, proved jointly a number of important
results. (For a survey of the theory until 1978, see Viisdld [171.)

Regetnjak's result that a non-constant quasiregular function is
discrete and open is the same in all dimensions. in contrast, the
branching properties of a gquasiregular function are different in R"
from what they are in the plane. The branch set 8, is defined as
the set of all points at which a non-constant quasiregular f is not
locally homeomorphic. Zorig established in 1967 the striking result
that if f is quasiregular in R", n > 2, and B =@, then f s
a homeomorphism onto R".  This is of course not true in the plane.

By Picard's classical theorem, a function which is non-constant
and analytic in R? can omit only one finite value. At an early
stage, it became a famous problem whether Picard's theorem holds for
quasiregular functions in R". 1f n = 2, the answer is trivially
affirmative, on the basis of the representation formula (3.). An
example constructed by Zorit¢ shows that, as in the classical case,

a non-constant quasiregular function can omit one value in R™,

The first step towards a Picard theorem was the generalization
of Liouville's theorm: Regetnjak proved in 1968 that a non-constant
quasiregular function in R" is unbounded. Wext, Regetnjak and,
independently, Martio, Rickman and V3is3l3 showed that the set of
omitted values is of n-capacity zero. Finally, Rickman solved the
problem in two steps. (n 1978, he proved that thé omitted set is
finite. This still teft open the exact number of exceptional values.
Later Rickman showed that in R3, the number of omitted values of a
non-constant K-quasiregular function may tend to « as K » o,

Rickman's result indicates a marked similarity to the classical
Picard theorem. More than that, Rickman has shown in recent years

that it is possible to develop a value distribution theory for quasi-

regular functions along the classical lines. His theory exhibits
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a remarkable analogue with the classical Nevanlinna theory and the
Ahlfors theory of covering surfaces (see Rickman [13].] In this
sense, there is also in higher dimensions a connection between
quasiregular functions and analytic functions of one complex variable,
even though the connection is far less explicit than the one expressed

by formula (3.1) in the plane.
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