
CONFORMAL REMOVABILITY IS HARD

CHRISTOPHER J. BISHOP

Abstract. A planar compact set E is called conformally removable if every home-
omorphism of the plane to itself that is conformal off E is conformal everywhere
and hence linear. We show that the collection of removable subsets of [0, 1]2 is not
a Borel subset of the space of compact subsets of [0, 1]2 with its Hausdorff metric.

1. Introduction

A planar compact set E is called removable for a property P if every function with

property P on Ω = Ec = C\E is the restriction of a function on C with this property.

For example, if P is the property of being a bounded holomorphic function, then E is

removable iff every bounded holomorphic function on its complement extends to be

bounded and holomorphic on the whole plane (and hence is constant by Liouville’s

theorem). A standard result in many complex variable classes is the Riemann remov-

able singularity theorem, that says single points are removable in this sense. While

there are a wide variety of properties that could be considered, most attention has

been devoted to the following cases:

• H∞-removable: P = bounded and holomorphic,

• A-removable: P = H∞ and uniformly continuous,

• S-removable: P = holomorphic and 1-to-1 (also known as conformal or schlicht),

• CH-removable: P = conformal and extends to a homeomorphism of C.

Recall that uniformly continuous on Ω is equivalent to extending continuously from

Ω to the Riemann sphere S. For any excellent survey of what is currently known

about each of these classes, see Malik Younsi’s 2015 survey paper [48].
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The basic problem is to find “geometric” characterizations of these sets. For exam-

ple, Xavier Tolsa has given a characterization of H∞-removable sets in terms of the

types of positive measures supported on the set (see Section 2). Alhfors and Beurling

[1] gave a characterization of S-removable sets in terms of a quantity called “abso-

lute area zero” (the complement of every conformal image of Ω has zero area). On

the other hand, although there are various known sufficient conditions and necessary

conditions, e.g., [27], [29], [30], there is no simple characterization of A-removable or

CH-removable sets. Thus it seems that the characterizing these sets is “harder” than

characterizing H∞-removable or S-removable sets (or perhaps simply that smarter

people have worked on the latter problems). The following is a precise formulation

of the idea that A-removability and CH-removability are actually harder.

Theorem 1.1. Let S = [0, 1]2 be the unit square in C and let 2S denote the hyperspace

of S, i.e., the compact metric space consisting of all compact subsets of S with the

Hausdorff metric. Within this metric space, the collection of

(1) H∞-removable subsets is a Gδ,

(2) S-removable subsets is a Gδ,

(3) A-removable sets is not Borel,

(4) CH-removable sets is not Borel,

(5) A-removable closed Jordan curves is not Borel.

Thus, in some sense, removability for conformal homeomorphisms is infinitely more

complicated than for bounded holomorphic functions. It turns out the proof of parts

(1) and (2) are relatively elementary, parts (3) and (4) follow from well known results

in descriptive set theory and complex analysis (the most recent result we cite dates

to 1960), and (5) requires a new construction. The obvious question of whether CH-

removable Jordan curves are Borel or not remains open, and seems closely connected

to other difficult problems, such as deciding whether the collection of conformal

weldings is a Borel subset of the space of circle homeomorphisms. We shall prove

that the set of CH-non-removable curves is residual in the space of all closed Jordan

curves; see Section 9.

Below I shall sketch a quick proof of (1) and (4) for experts familiar with both areas;

the remainder of the paper provides the full details for readers who are familiar with

only one (or perhaps neither) side of the story. Although I have not found this
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theorem stated in the literature, I would not be surprised if it were known to some

experts, e.g., various papers of Robert Kaufman contain all the relevant facts for

proving (1)-(4).

We start with some definitions. Given a compact set K, we define the Hausdorff

distance between compact subsets K1, K2 as

dH(K1, K2) = inf{ǫ : K2 ⊂ K1(ǫ), K1 ⊂ K2(ǫ)},

where Kj(ǫ) = {z : dist(z,Kj) < ǫ} is an ǫ-neighborhood of Kj, j = 1, 2. This

defines a compact metric space on the set of all compact subsets of K, called the

Hausdorff hyperspace of K and denoted 2K (e.g., Theorem A.2.2 of [11]). In this

note we mainly deal with the examples of the unit interval I = [0, 1] ⊂ R, the unit

square S = [0, 1]2 ⊂ R2 = C or the Riemann sphere S. The collection of Borel sets is

the smallest σ-algebra containing the open sets (a σ-algebra is closed under countable

unions, countable intersections and complements). An Fσ set is a countable union of

closed sets; a Gδ is a countable intersection of open sets (this terminology originates

with Hausdorff in 1914). Analytic sets (also known as Suslin sets) are continuous

images of Borel sets and need not be Borel (more about this later); the complement

of an analytic set is called co-analytic and need not be analytic itself (if it is, then it

is also Borel). Cases (3)-(5) in Theorem 1.1 turn out to be co-analytic complete, a

condition we will define in Section 5 and that implies non-Borel.

The removable sets in the first three cases of Theorem 1.1 all form σ-ideals of com-

pact sets, i.e., they are closed under taking compact subsets and compact countable

unions. The subset property is obvious, and the fact that a compact set that is a

countable union of removable sets is also removable is proven in [48] for each of these

three classes. The dichotomy theorem for co-analytic σ-ideals (e.g., Theorem IV.33.3

in [32]) then says these collections must be either Gδ or co-analytic complete in 2S.

Theorem 1.1 indicates which possibility occurs in each case. It is not known whether

the CH-removable sets form a σ-ideal; indeed, it is not even known if the union of

two overlapping CH-removable sets is CH-removable. If the sets are disjoint, then

this is true, but is remains open even if both sets are Jordan arcs sharing a single

endpoint.

The fact that H∞-removable sets are Gδ is an easy normal families argument. We

sketch it here for complex analysis experts, giving the details in Section 2. Suppose
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Kn denotes the set of H∞-non-removable sets in S = [0, 1]2 whose analytic capacity

(a non-negative number measuring of how non-removable the set is) is at least 1/n.

If {Ek} is a sequence of compact sets in Kn that converge in the Hausdorff metric

to a set E, then, by normal families, we can prove E is also non-removable with

analytic capacity ≥ 1/n. Thus Kn is closed collection of sets of 2S. The set of all

H∞-non-removable sets is the union of the Kn, hence is Fσ. The H
∞-removable sets

are the complement of this Fσ in 2S, and therefore are a Gδ subset. The proof for

S-removable sets is similar but the lower bound on analytic capacity is replaced by

lower bounds on Laurent series coefficients.

To show that the CH-removable sets are not Borel, it suffices to show that they are

the image of a known non-Borel subset K of some Polish space X under a continuous

map from X into 2S. A Polish space is a separable topological space X that has a

compatible metric making it complete. Since continuous preimages of Borel sets are

Borel, this implies the CH-removable sets can’t be Borel in 2S. For us, a convenient

choice is to take X to be the hyperspace of I = [0, 1] and K to be the collection of

countable, compact subsets of [0, 1]. A famous result of Hurewicz [28] says that K is

co-analytic but not Borel in 2I . The continuous map 2I → 2S is simply E 7→ E×[0, 1].

We then quote the 1960 result of Fred Gehring [22] that for a compact set E, the

product set E × [0, 1] is CH-removable if and only if E is countable. This proves

CH-removable sets are not Borel. The proof for A-removable sets is similar, but

using a result of Carleson in place of Gehring’s theorem. See Section 6.

The remainder of the paper is devoted filling in the details for the interested non-

expert. (The bored expert may jump to the last three sections where some related

open problems are discussed.)

Although it is a basic theorem of descriptive set theory that every uncountable

Polish space X contains analytic and co-analytic sets that are not Borel (see Section

4), it is very interesting to obtain “natural” examples arising in various areas of

mathematics. For example, if X = C([0, 1]) (continuous functions on [0, 1] with the

supremum norm) the following subsets of functions are all known to be co-analytic

complete, and hence non-Borel:

• everywhere differentiable [39],

• differentiable except on a finite set [43] or countable set [24],
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• nowhere differentiable [38],

• everywhere convergent Fourier series [3].

For the space C([0, 1])N of sequences of continuous functions on [0, 1] the space CN

of everywhere convergent sequences is co-analytic complete, as is the space CN0 of

sequences converging to zero everywhere. See Theorem IV.33.11 of Kechris’s book

[32]. For further examples from analysis and topology, see Howard Becker’s 1992

survey [5].

When X is the hyperspace of the unit circle T (compact subsets with the Hausdorff

metric), we have already mentioned the countable compact sets are co-analytic non-

Borel. Other known examples of non-Borel subsets of 2I are:

• sets of uniqueness [33],

• sets of strict multiplicity [31].

A closed set E ⊂ T is a set of uniqueness if any trigonometric series that converges

to zero everywhere off E must be the all zeros series. E is a set of strict multiplicity

if it supports a measure whose Fourier coefficients tend to zero; the Fourier series of

such a measure shows that its support is not a set of uniqueness in a strong way.

These particular examples have an intimate connection to the foundations of modern

mathematics: Cantor showed that finite sets are sets of uniqueness and the problem

of extending this to infinite sets led him to the creation of set theory. For more about

this fascinating episode in the history of mathematics, see e.g., [15], [16], [37], [44].

We should also mention that many non-Borel sets arise naturally in Banach space

theory. For example, Bossard, Godefroy and Kaufman [25] show that set of ro-

tund norms equivalent to any infinite dimensional Banach space norm is co-analytic

but not Borel in the space of all norms (a norm is rotund if 1 = ‖x‖ = ‖xn‖ =

limn ‖(x + xn)/2‖ implies ‖x − xn‖ → 0). After choosing a (standard) embedding

of separable Banach spaces as a closed subsets of the Cantor set, Bossard [12] shows

the isomorphism relation (as a subset of the product of Cantor sets) is analytic non-

Borel, the class of spaces which do not contain an isomorphic copy of a given space is

co-analytic non-Borel, as is the set of reflexive spaces and the spaces with separable

dual.

This note was prompted by email discussions with Guillaume Baverez, in which he

proposed a possible characterization of CH-removable Jordan curves in terms of their
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conformal weldings (see Section 9). I doubted such a concise criterion could be given,

and eventually I found a counterexample to his conjecture, but the interchange raised

the question of quantifying the difficulty of the problem. This note was written in

the hope that gathering the basic facts needed from descriptive set theory might be

of interest to fellow complex analysts, and perhaps motivate some of them to attack

harder variants of these problems, e.g., those discussed in Sections 8, 9 and 10.

2. H∞-removability is “easy”

As we shall explain below, identifying removable sets isn’t exactly easy in the usual

sense, but in terms of descriptive set theory the collection of such sets is pretty simple:

Lemma 2.1. The collection of H∞-non-removable subsets of S = [0, 1]2 is an Fσ

subset of 2S. The H∞-removable sets are therefore a Gδ subset.

Proof. Suppose E ⊂ [0, 1]2 is non-removable for H∞. Then there is a non-constant,

bounded holomorphic function f defined on the complement of E. Near infinity f

has a Laurent expansion

f(z) = c0 +
c1
z
+

c2
z2

+ . . .

and has at least one non-zero coefficient ck for some ≥ 1. If c1 = 0, the function

f1(z) = z(f(z)− c0) =
c2
z
+

c3
z2

+ . . .

is also bounded, non constant and holomorphic off E. Continuing in this way, we see

that we eventually obtain a bounded holomorphic function on Ω = C \ E that has

non-zero coefficient c1 in its Laurent expansion.

LetXn be the collection of non-removable sets in [0, 1]2 whose complements support

a holomorphic function whose absolute value is bounded by 1 and whose Laurent

coefficient satisfies |c1| ≥ 1/n. We claim Xn is a closed set in 2S. Suppose {Kn} ⊂

Xn are compact sets converging to K in the Hausdorff metric. Assume fn is the

holomorphic function on Kc
n attesting to its membership in Xn. Each compact disk

D in the complement of K is eventually contained in the complements of the Kn for n

large enough, and by a normal families argument, we may extract a subsequence that

converges to a holomorphic function fD on D. Covering Kc by a countable union of

such disks and applying a diagonalization argument, we may extract a subsequence

converging to a holomorphic function f bounded by 1. Applying the Cauchy integral
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formula to a fixed circle surrounding [0, 1]2 we see that the Laurent coefficients of fn

converge to the Laurent coefficients of f and hence |c1(f)| ≥ 1/n. Thus K ∈ Xn.

Since every non-removable set is in some Xn, the collection of all non-removable sets

is an Fσ in 2S. �

The proof that S-removable sets form a Gδ is very similar, except that the trick of

replacing f(z) by z(f(z)−c0) to get |c1| > 0 might not give a 1-to-1 map. Instead, we

may assume the map conformal off E has an expansion f(z) = z+ c1/z+ c2/z
2+ . . .

and that ck 6= 0 for some k. Thus it suffices to prove each member of the countable

family Kn,m where |ck| ≥ 1/n is closed. This proof proceeds just as above.

Of course, just because H∞-non-removable sets are Borel in 2S does not mean that

it is an easy task to find an elegant characterization of them. Indeed, it is a deep

result of Xavier Tolsa that E is non-removable for bounded holomorphic functions if

and only if it supports a positive measure µ of linear growth, i.e.,

µ(D(x, r)) ≤ Mr,(2.1)

(for some M < ∞ and all x ∈ R2 and r > 0) and has finite Menger curvature in the

sense that

c2(µ) =

∫ ∫ ∫

c2(x, y, z)dµ(x)dµ(y)dµ(z) < ∞,(2.2)

where c(x, y, z) is the reciprocal of the radius of the unique circle passing thorough

(x, y, z) (linear growth implies µ3 gives zero measure to the set were two or more of

x, y, z agree).

We know the proof of Lemma 2.1 must break down for A-removable and CH-

removable sets. In both cases we can find non-removable sets contained in the strip

[0, 1]×[0, 1
n
] and with corresponding functions that converge to non-constant functions

on C \ [0, 1] as n → ∞. For A-removability this is done in [8]; one simply has to

take an Jordan arc which has tangents on at most a set of zero linear measure. Thus

any “flat enough” fractal arc will work. For CH-removability, see the construction

of “flexible curves” in [9] or [10].

3. Analytic sets

A topological space X is called Polish if it is separable (has a countable dense set)

and has a compatible metric that makes it complete (Cauchy sequences converge).
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Standard examples include Euclidean space Rn, the continuous functions on [0, 1] with

the supremum norm C([0, 1]), and the collection of compact subsets of a compact set

K ⊂ Rn with the Hausdorff metric. Another important example is the Baire space

NN of infinite sequences of non-negative integers equipped with the metric given by

d((an), (bn)) = e−m, where m = max{n ≥ 0: ak = bk for all 1 ≤ k ≤ n}. One

can show NN is homeomorphic to the irrational numbers (with the usual topology)

although they are different as metric spaces (one is complete and the other is not).

In fact, every Polish space is the continuous image of the Baire space. (e.g., Theorem

B.1.2 in [11]).

If X is a Polish space, then A ⊂ X is called analytic if there is another Polish

space Y and a Borel set E ⊂ X × Y so that A is the projection on E onto A, i.e.,

A = {x ∈ X : ∃y ∈ Y such that (x, y) ∈ E}.

There are several equivalent characteriations of analytic sets, including

(1) A is the projection of a closed set in X × NN,

(2) A is the continuous image of NN,

(3) A is a continuous image of a Polish space,

(4) A is the continuous image of a Borel subset of a Polish space,

(5) A is the Borel image of a Borel subset of a Polish space.

In comparison, Borel subsets of a Polish space are characterized by being

(1) a continuous 1-to-1 image of NN,

(2) a continuous 1-to-1 image of a Borel subset of a Polish space,

(3) a 1-to-1 projection of a closed set in X × NN,

(4) both a co-analytic and analytic set (see below).

If A ⊂ X is analytic, then Ac = X \ A is called co-analytic. Analytic sets are

denoted Σ1

1
and co-analytic sets Π1

1
(using light-faced characters refers to something

else). These form the simplest elements of the projective hierarchy of sets, much

as closed and open sets are the simplest sets of the Borel hierarchy. Such sets can

be quite complicated, e.g., although every uncountable analytic set contains a per-

fect subset, Gödel [26] showed that this question for co-analytic sets is undecidable

(similar to his results for the Axiom of Choice and the Continuum Hypothesis). Sim-

ilarly, all analytic sets are Lebesgue measurable, but proving general projective sets
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are measurable requires additional axioms, e.g., the assumption that certain “large

cardinals” exist. See [45].

In a Polish space every open set and every closed set is analytic, and the analytic

sets are closed under countable unions and intersections. See [32] or Appendix B of

[11]. From this it follows that every Borel set is analytic. However, it is known that

any uncountable Polish space contains an analytic set that is not Borel (see Lemma

4.1), and several explicit examples were already mentioned in Section 1.

Analytic sets are also known as Suslin sets in honor of Mikhail Yakovlevich Suslin,

who proved that a set is Borel if and only it is both analytic and co-analytic. While

a research student of Lusin in 1917, Suslin constructed a Borel set in the plane whose

projection on the real axis is not Borel, contradicting a claim in a 1905 paper of

Lebesgue, (Cooke [15] refers to this as “one of the most fruitful mistakes in all the

history of analysis”). Suslin died of typhus in 1919 at the age of 24, having published

just one 4 page paper while alive, and one posthumously one with Sierpinski. His

work was further developed by Lusin1, Sierpinski2 and others, and Suslin’s legacy

remains very active a century later.

To prove that the conformally non-removable subsets of S = [0, 1]2 form an analytic

subset of the hyperspace of S, we first record a few simple facts.

Lemma 3.1. For any Borel map f : X → Y between Polish spaces, the graph of f

is a Borel set in X × Y .

Proof. It suffices to prove the complement of the graph is Borel. Since Y is separable,

there is a countable basis {Bk} for the topology. Thus given any x ∈ X and y ∈ Y

so that y 6= f(x) there is a basis element Bk so that f(x) ∈ Bk and y 6= Bk. In other

words, (x, y) is contained in the Borel product set f−1(Bk)× (Y \Bk) ⊂ X × Y and

this set is disjoint from the whole graph of f . Thus the complement of the graph of

f is a countable union of Borel sets, and hence is Borel itself. �

1In 1936 Lusin was the victim of a political attack that included charges of taking credit for
Suslin’s work and publishing too much in Western journals. Lusin survived the incident and was
officially rehabilitated in 2012. See [19]. However, Lusin’s thesis advisor, Egorov, died in 1931
following a hunger strike in prison after similar attacks.

2According to [15] although Sierpinski was technically under arrest in Moscow during World War
I as an Austrian citizen, he was allowed to participate in the academic life of Moscow University.
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Lemma 3.2. If A is an analytic subset of 2K, then the collection of supersets of A

is also analytic.

Proof. Since A is analytic it is the continuous image of some Polish space, say A =

f(X). Define a map X × 2K → 2K by (x,E) 7→ f(x) ∪ E. It is easy to check that

taking unions is a continuous map from 2K × 2K → 2K . Since products of Polish

spaces are also Polish, we see the union of supersets is a continuous image of a Polish

space, hence is analytic. �

Note that adding all the supersets to a non-Borel collection of sets can sometimes

create a Borel collection. For example, the collection of supersets of the countable

compact sets is all compact sets.

Lemma 3.3. Suppose X is a Polish space. Suppose K ⊂ C is compact and that each

open U ⊂ C is associated to a closed set X(U) ⊂ X so that ∩αX(Uα) = X(∪αUα)

for any collections of open sets {Uα}. Then the map from points of X to compact

subsets of K = [0, 1]2 defined by

x → Kx = K \ ∪{U : x ∈ X(U)},

is Borel from X to 2K.

Proof. Note that if V ⊂ W are open sets, then V ∪ W = W so X(V ) ⊃ X(V ) ∩

X(W ) = X(V ∪W ) = X(W ), so our map has a “reverse monotone” property.

For each closed set E ⊂ K and ǫ > 0 the collection {F ⊂ K : dH(F,E) < ǫ} is

an open ball in the hyperspace of K and sets of this form are a basis of the topology

of the hyperspace. Thus if suffices to show preimages of such sets are Borel. Each

such set is a countable union of sets of the form {F ⊂ K : dH(F,E) ≤ δ}, say with

δ = ǫ(1− 1/n), so it suffices to show preimages of these sets are Borel.

Clearly dH(Kx, E) ≤ δ is equivalent to having x in both Y1 = {x ∈ X : Kx ⊂ E(δ)}

and Y2 = {x ∈ X : E ⊂ Kx(δ)}.

We claim that x ∈ Y1 iff x ∈ X(U) where U = {z : dist(z, E) > δ}. If the latter

condition holds, then the former holds by the definition of Kx (U is one of the open

sets we subtract from K). If the former condition holds, then for any y /∈ E(δ)

we must have x ∈ X(Uy) for some open Uy containing y. Thus x ∈ ∩yX(Uy) =

X(∪yUu) ⊂ X(U); where the union is over all y /∈ E(δ) and the last inclusion is
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implied by U ⊂ ∪yUy and the reverse monotone property. By assumption X(U) is a

closed subset of X, so Y1 is closed.

Next we consider Y2. Its complement X \Y2 consists of points x so that Kx is more

than distance δ from E, i.e., Kx misses some closed disk D = D(y, r) with r > δ

that contains a closed disk of radius δ centered at some point of E. The disk D can

chosen from the countable collection of disks with rational centers and radii. For each

point z ∈ D, z 6∈ Kx implies x ∈ X(Uz) for some open set Uz containing z, hence

x ∈ ∩zX(Uz) = X(∪zUz) = X(V ) where V is an open set containing D but disjoint

from Kx. This is a closed set of points in X. Thus Y c
2 = X \ Y2 is Fσ, so Y2 is a Gδ.

Thus Y1 ∩ Y2 is Gδ. Recalling that the inverse image of an open ball was a countable

union of such sets, we deduce that the inverse image of any open set is a Gδσ set. �

Lemma 3.4. The CH-non-removable subsets of [0, 1]2 form an analytic subset of the

hyperspace of [0, 1]2. Thus the removable sets are co-analytic.

Proof. Let X be the space of homeomorphisms of the plane to itself that are holo-

morphic off K = [0, 1]2 and normalized to be h(z) = z + O(1/|z|)) at infinity. This

is a Polish space with the supremum metric.

For each open set U ⊂ C let X(U) be the elements of U that are holomorphic on

U . Since uniform limits of holomorphic functions are holomorphic, this is a closed

subset of X. Moreover, if h is holomorphic on each sets in a collection {Uα} it is

holomorphic on the union so X(∪αUα) = ∩αX(Uα). (All functions in this set may be

homomorphic on a strictly larger set, e.g., if the union has removable complement,

but this equality still holds, and simply gives an example where X(V ) = X(W ) even

if V is strictly contained in W .)

For each h ∈ X, and let Uh = C\Kh be the largest open set so that h is holomorphic

on some neighborhood of every z ∈ Uh. Lemma 3.3 says that h 7→ Kh from X to Y

is a Borel map, Lemma 3.1 says its graph {(h,Kh)} is a Borel set in X × Y , and the

projection onto the second coordinate gives an analytic set A = ∪h∈XEh (projections

of Borel sets are analytic). By definition, a compact subset of K is conformally non-

removable if and only if it contains a set in A. Thus conformally non-removable sets

are analytic in 2K by Lemma 3.2. �

Corollary 3.5. The A-removable subsets of S = [0, 1]2 are co-analytic in 2S.
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Proof. This is exactly the same as the proof of Lemma 3.4, except that now we

work in the Polish space of all continuous functions on the Riemann sphere that are

holomorphic off S. As before, the map sending each such function to the complement

of the set where it is holomorphic is a Borel mapping of this Polish space into 2S,

and the projection of its graph onto the second coordinate gives an analytic subset

of 2S. Taking all supersets gives all A-non-removable sets. �

4. Analytic non-Borel sets exist

This is another standard result, but we include the simple proof for completeness.

We follow the argument in [13].

Lemma 4.1. NN contains an analytic set that is not Borel. The complement of this

set is co-analytic and not Borel.

Proof. This is a diagonalization argument. We claim it suffices to show there is an

analytic subset X ⊂ NN ×NN so that every analytic subset A ⊂ NN occurs as a slice

A = Xy = {x ∈ NN : (x, y) ∈ X} for some y. Given such a set X, then

B = {x ∈ NN : (x, x) ∈ X}

is the projection of the intersection of X with the (closed) diagonal of NN × NN and

hence is the continuous image of an analytic set, and therefore is itself analytic. The

complementary set

Bc = {x ∈ NN : (x, x) 6∈ X}

is automatically co-analytic, and if Bc were also analytic, then it would be equal to

a slice Xy of X for some y. In this case,

Xy = {x : (x, y) ∈ X} = {x : (x, x) 6∈ X} = Bc,

and y ∈ B and y ∈ Bc both lead to contradictions. Thus Bc can’t be analytic and

hence neither B nor Bc is Borel (since Borel sets are closed under complements and

all Borel sets are analytic). Thus we have reduced finding a non-Borel analytic set

to finding an analytic set X ⊂ NN × NN which has every analytic subset of NN as a

slice.

First we show this is possible for closed slices. If Y is a Polish with a countable

basis {Bk} for the topology and y ∈ Y let S(y) ⊂ N be all the k’s with y 6∈ Bk and
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T (y) ⊂ NN all the sequences with elements in S(y). Then {(y, T (y)) ∈ Y × NN} is a

closed set: if yn → y and yn 6∈ Bk for large n, then y 6∈ Bk, since Bc
k is closed. The

second coordinates also converge, since the topology on NN agrees with the product

topology. If we fix a sequence (ak) ∈ NN as the second coordinate, the first coordinate

ranges over Y \ ∪kBak , so any closed subset of Y can occur as a slice.

Next, to obtain every analytic subset of NN as a slice, we apply the previous

argument to Y = NN × NN to get a closed set X ⊂ (NN)3 = NN × NN × Nn so that

every closed subset of (NN)2 occurs as a slice of X. Hence every analytic subset of

NN occurs when we project X onto the first coordinate. Since projections of analytic

sets are analytic, projecting X onto the first and third coordinates gives an analytic

subset of NN × NN where the first coordinate ranges over all analytic subsets of NN,

as desired. �

Note that this implies the cardinality of the analytic subsets of a Polish space is

at most the cardinality of NN, which is same as R, the continuum c. Since points are

analytic sets, the analytic subsets of R have cardinality c. Thus the Borel subsets of

R have the same cardinality.

5. Co-analytic complete sets

A co-analytic subset A ⊂ X of Polish space is called complete co-analytic if for

any co-analytic set B of NN there is a Borel map f : NN → X so that f(y) ∈ A iff

y ∈ B. Thus membership in any such B can be reduced to checking membership in

A. Since Borel pre-images of Borel sets are Borel, and we know that NN contains a

non-Borel co-analytic set, we can deduce that any complete co-analytic set A must be

non-Borel. Thus a common strategy for proving a co-analytic set A ⊂ X is non-Borel

is to find a Borel map f : NN → X so that its inverse image f−1(A) is a known non-

Borel set. A common example to use for this purpose is the collection of wellfounded

trees.

Let N∗ be the set of finite sequences of natural numbers (including the empty

sequence). A tree T is a subset of N∗ that is closed under removing the final element,

i.e., if a finite sequence is in T , so is every initial segment, including the empty one.

An infinite branch of T is an element of NN, all of whose finite initial segments belong

to T . The set of all branches is denoted [T ].
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A tree is wellfounded if it has no infinite branches. Finite trees are obviously

wellfounded, and the infinite set of finite sequences (n, n−1, n−2, . . . , 1) with n ∈ N,

together with all initial segments of these sequences, form an infinite wellfounded

tree. Since N∗ is countable and a subset can be identified with its indicator function,

any tree can be identified with a point of 2N, i.e., the Cantor set of infinite binary

sequence. In fact, the set of all trees corresponds to a closed subset of 2N with the

usual metric, making it a Cantor set itself. However, the collection of wellfounded

trees is co-analytic complete, and hence non-Borel, in this space. To prove this we

will use the following.

Lemma 5.1. Every closed set in NN is of the form [T ] for some tree T . For every

analytic set A ⊂ NN there is a tree T so that a = (a1, a2, . . . ) ∈ A if and only if there

is some b = (b1, b2, . . . ) ∈ NN so that

W (a, b) = (a1, b1, a2, b2, . . . ) ∈ [T ].

Proof. The first part is straightforward. Let T be the tree of all finite initial segments

of all elements in K. Using the definitions and the fact NN is complete, we see that

K is closed iff the limit x of any Cauchy sequence in the set is also in the set iff

for every n the sequence of initial n-segment eventually equals (x1, . . . , xn) iff x is a

branch of T .

To prove the second part, note that NN × NN is homeomorphic to NN by the 1-1,

continuous map that interweaves sequences:

W : (a1, a2, . . . )× (b1, b2, . . . ) 7→ (a1, b1, a2, b2, . . . ).

Thus, A is the projection onto the first coordinate of the closed set W−1([T ]) ⊂

NN ×NN and hence A is analytic. Conversely, if A is analytic, then it is a continuous

image A = f(NN) and hence the projection of the closed set (x, f(x)) ∈ NN × X

(recall that graphs of continuous functions are closed sets). Taking T to correspond

to this closed set gives the condition in the lemma. �

Lemma 5.2. The wellfounded trees are co-analytic complete in 2N.

Proof. SupposeA is analytic in NN. Then there is a tree T so that a = (a1, a2, . . . ) ∈ A

iff W (a, b) ∈ [T ] for some b = (b1, b2, . . . ) ∈ NN. If we fix a, then the map NN to

itself given by b 7→ W (a, b) is continuous. Since the inverse image of a closed set is
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closed, we see that T (a) = {b ∈ NN : W (a, b) ∈ T} is a closed set in NN, and this

corresponds to a tree by the previous lemma. We claim the mapping NN → 2N
∗

given

by a 7→ T (a) is Borel. If this is true, then it suffices to show that the image of Ac

under this map is the set of well founded trees (since AC can be any co-analytic set

in NN). Note that a sequence x ∈ Ac iff W (a, b) 6∈ [T ]∀b ∈ NN. Thus x ∈ Ac iff T (a)

is a wellfounded tree.

To check that the map a 7→ T (a) is Borel, we recall T (a) is a closed set of sequences

in NN and that a neighborhood of such a set is a countable union of basis elements

where we specify a finite initial segment and allow the remaining elements to be

free. The inverse image of one such basis element is the collection of all sequences

a, so that (1) interweaving the initial elements of a with the specified elements of

the basis gives a finite string in T and (2) so that there is some continuation of the

specified elements to an infinite sequence so that interweaving is a branch of T . Thus

a is simply the sequence of odd coordinates of all branches of T that pass through

the specified vertex, and this is a closed set. Thus inverse images of open sets are

countable unions of closed sets, so the mapping is Borel, as desired. �

Theorem 5.3 (Hurewicz, [28]). The compact countable subsets of I = [0, 1] are

co-analytic complete in 2I .

Proof. We have to construct a continuous map from the space of trees into 2I , so that

the image of T is countable if and only if T is wellfounded. For each n = 1, 2, . . . ,

let An = {x ∈ [0, 1] : 1
2n+1

≤ |x − 1
2
| ≤ 1

2n
}. Then the An are all disjoint and each

consist of two compact intervals. For any S ⊂ N define

AS = {
1

2
}
⋃

∪n∈SAn

This is a compact subset of [0, 1], and equals {1/2} if and only if S is empty.

Suppose we are given a tree T . The root vertex (labeled by the empty string) is

associated to E0 = I∅ = [0, 1]. In general, Suppose En is a compact subset of [0, 1]

whose connected components are a countable number of points labeled by strings

of length < n, and a countable number of non-trivial closed intervals Is labeled by

strings of length n. All strings that occur as labels correspond to labels of vertices

in level n of T , and for each such label, 2n intervals in En will have that label. To

construct En+1 from En, we keep every point component from En (and leave the label
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the same) and replace each interval component Js labeled by a string s of length n

by LS(AS), where S is the set of integers that can be appended to S to give a length

n+1 string in T (i.e., these correspond to the edges leading out of vertex s), AS is as

above, and LS is a linear map from J to Js. Since each An consists of two intervals,

each nth generation interval with a given label gives rise to two intervals in the next

generation with identical labels. Let ET = ∩En. Since the En are nested, this is a

non-empty compact subset of [0, 1].

If T as an infinite branch, then following this branch through the construction gives

a Cantor subset of E, hence E is uncountable. Conversely, if E is uncountable, then

E ∩ J1 must be uncountable for one of the countably many connected components

of E1. Then E ∩ J2 must be uncountable for one of the countably many components

of E2 contained in J1. Continuing in this way, we obtain nested, non-degenerate

components J1 ⊃ J2 ⊃ J3 ⊃ . . . whose labels form an infinite branch of T , so T is

not wellfounded. �

The endpoints of all the components of En in the previous proof are rational

numbers. Thus the sets E that arise from wellfounded trees are subsets of Q, and

we could reformulate the result to say that compact subsets of Q ∩ I are co-analytic

complete in 2I . Theorem 5.3 also gives a rather concrete example of a non-Borel set

in [0, 1]. Let {rn} be an enumeration of Q ∩ [0, 1] and for K ∈ 2I define

f(K) =
∑

rn 6∈K

3−n.

Clearly f is 1-to-1 (since distinct sums of powers of 3 are distinct). The sets {K :

f(K) > α} are easily checked be open in 2I , so f is Borel. Thus

X = {f(K) : K ⊂ Q ∩ [0, 1] and is compact } ⊂ [0, 1],

cannot be Borel.

6. A-removable sets are co-analytic complete

We start with a well known fact from complex analysis.

Lemma 6.1. If E ⊂ [0, 1] has positive length, then it is H∞-non-removable.

Proof. If E is an interval, then we take E2 = [0, 1] and apply the Riemann mapping

theorem to get a non-constant bounded holomorphic function on the complement.
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The general case was proven by Ahlfors and Beurling in [1] (or see Section I.6 of

Garnett’s book [20]):

F (z) =

∫

E

dz

z − w
=

∫

E

t− x

(t− x)2 + y2
+ i

∫

E

y

(t− x)2 + y2

is holomorphic on Ω = Ec, has imaginary part bounded by π and Laurent expansion

c1 = ℓ(E). Thus G = exp(F ) takes values in the right half-plane, and (G−1)/(G+1)

maps Ω holomorphically into the disk and one can compute its Laurent coefficient

c1 = ℓ(E)/4. �

Extending this result from subsets of R to subsets of graphs of real Lipschitz func-

tions was a major breakthrough by Alberto Calderon which led to many important

developments in in harmonic analysis and geometric measure theory over the last

fifty years, including Tolsa’s result, discussed in Section 2. For some of the related

history, see [18], [40], [46], [47].

The following is stated and proved on page 117 of Carleson’s 1951 paper [14]:

Theorem 6.2. If E1, E2 ⊂ [0, 1] are compact and E2 has positive Lebesgue measure

then E = E1 × E2 is A-removable iff E1 is countable.

Proof. For completeness, we recreate Carleson’s proof, although we will only need

the direction that E1 countable implies E is removable, which we prove first.

Suppose f is continuous on the sphere and holomorphic off E = E1 × E2. Then f

is uniformly continuous on the whole sphere; thus its modulus of continuity

ω(f, δ) = max
|z−w|≤δ

max
z,w∈Q

|f(z)− f(w)|

tends to zero uniformly with the diameter of Q. Near infinity f(z) = c0 + c1/z +

c2/z
2 + . . . .

Fix ǫ > 0. If E1 is countable, enumerate it as {xn} and for each n choose a dyadic

interval In that contains xn and so that the variation of f over In is less than ǫ2−n.

A countable number of such intervals cover E1 and for each In used in this cover,

O(1/||In|), squares of diameter |In| suffice to cover (E1∩In)×E2 (in fact, this suffices

to cover E1∩In× [0, 1]). Doing this for each In gives a covering of E by squares {Qk}
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Near infinity f(z) = c0 + c1/z + c2/z
2 + . . . . Let zQ be the center of the square Q.

Using the Cauchy integral formula

|c1| =
1

2π

∑

Q

∫

∂Q

|f(z)− f(zQ)||dz| = O

(

∑

Q

diam(Q)ω(f, diam(Q))

)

= O

(

∑

n>0

ω(f, 2diam(In))

)

= O

(

ǫ
∑

n>0

2−n

)

.

Since ǫ > 0 was arbitrary, c1=0. But the same argument applies to f1 = z(f(z)−c0) =

c1 + c2/z + . . . to show c2 = 0. Continuing in this way, we see f is constant, and

hence E is removable.

Conversely if E2 has positive length, then there is a non-constant bounded analytic

function f on the complement of iE2 (see remark following this proof). If E1 is

uncountable, then it supports a non-atomic, positive, finite measure µ. Then F (z) =
∫

f(z + x)dµ(x) is continuous on the sphere and holomorphic off E = E1 × E2. We

may assume c1 6= 0 (otherwise recursively replace f by z(f(z)−c0) until this happens)

and the fact

1

z − x
=

1

z
+ (

1

z + x
−

1

z
) =

1

z
+

x

z2
,

implies F also has non-zero Laurent coefficient and hence non-constant. Hence E is

non-removable. �

Corollary 6.3. The A-removable compact subsets of S = [0, 1]2 are co-analytic com-

plete in 2S, hence not Borel.

Proof. We already know this set is co-analytic by Corollary 3.5. To prove complete-

ness, note that the mapping E 7→ E × [0, 1] is continuous between the respective

Hausdorff metrics and hence reduces the set of countable compact subsets of [0, 1]

to the set of A-removable sets. Since the former is co-analytic complete, so is the

latter. �
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7. A-removable Jordan curves are co-analytic complete

A case of particular interest among compact planar sets are the closed Jordan

curves. Let Homeo(X, Y ) ⊂ C(X, Y ) denote the 1-to-1 continuous maps of X into

Y . It is easy to see that this subset is neither open nor closed in C(X, Y ). However,

a map f : T → C is 1-to-1 if and only if any two disjoint closed dyadic intervals have

disjoint images (an open condition) and hence Homeo(T,C) is a Gδ set in C(T,C).

We can think of closed Jordan curves elements of Homeo(T,C)/Homeo(T,T), i.e.,

modulo re-parameterizations. Thus f, g ∈ Homeo(T,C) are equivalent if f = g ◦ ρ

for some ρ ∈ Homeo(T,T). We can define a metric between equivalence classes as

d([f ], [g]) = inf{‖f − g ◦ ρ‖∞ : ρ ∈ Homeo(T,T)},

although Jordan curves are not complete in this metric. A complete metric on Jordan

curves separating 0 and ∞ is described by Pugh and Wu in [41], where they attribute

the idea to Thurston (one takes conformal maps of S \ T to S \ Γ normalized to fix

0 and ∞ respectively and have positive derivative at these points, and then use the

supremum metrics between conformal maps).

Theorem 7.1. The collection of A-removable Jordan curves contained in S = [0, 1]2

is co-analytic complete in 2S.

Proof. We will construct a continuous map from trees into Jordan curves. As in

earlier arguments, it suffices to show that the preimage of the removable curves is

precisely the set of wellfounded trees.

To simplify some formulas, we work in [−1, 1]2 instead of [0, 1]2. We start with

a map from trees to compact subsets of [−1, 1] that maps wellfounded trees into

countable sets, using a slightly different map than we did in the proof of Theorem

5.3. For S ⊂ N, we define

An = {x :
1

4
+

1

2n+ 1
≤ |x| ≤

1

4
+

1

2n
},

and

AS = {±
1

4
}
⋃⋃

n∈S

An ⊂ [−1, 1].

This is similar to what we did before, except that now the pairs of intervals An

converge to two different points ±1/4, instead of a single point. However, the rest



20 CHRISTOPHER J. BISHOP

of the construction is the same and associates to each tree T a compact set ET that

is countable if and only if T is wellfounded. Recall that each string s of length n

is associated to 2n intervals which we label Ijs , j = 1, . . . 2n. We assume these are

numbered left to right.

Next we construct a Cantor set K = ∩nKn ⊂ [−1, 1] of positive Lebesgue measure

where each Kn is a union of 2n equal length closed intervals which we denote Kk
n,

k = 1, . . . , 2n. We assume the components are numbered left to right.

For a string s = s1, . . . sn letN(s) = s1+· · ·+sn. Each such string can be associated

to 2n+N(s) closed rectangles Rj,k
s = Ijs ×Kk

N(s) with 1 ≤ j ≤ 2n and 1 ≤ k ≤ 2N(s). For

an non-empty string s = s1, . . . sn we will often drop the j, k and let Rs denote one of

the rectangles Rj,k
s . The empty string is associated to a single rectangle R∅ = [−1, 1]2.

Each rectangle Rs has four marked points on its boundary: two on the left vertical

side and two on the right vertical side. The exact placement is unimportant, but in

Figure 1 I have drawn these points to be symmetric with respect to the midpoints of

these sides and the same height on both sides. As in Figure 1 we connect the upper

left point for R∅ to the upper left of R1,2
1 , the lower left point for R∅ to the lower left

point for R1,1
1 . The points on the right side of R∅ are connected to the corresponding

points on the right sides of R2,1
1 and R2,2

1 , as shown in the figure. The lower left point

of R1,2
1 is connected to the lower right point point of R2,2

1 , and similarly the upper

point of the left side of R1,1
1 is connected to the upper point of the right side of R2,1

1 .

In general, each rectangle R of the form Rj,k
s is immediately to the left or right of

two rectangles R′, R′′ of the form Rp.q
s′ , where the last element of s′ is one larger than

the last element of s. Suppose R is to the left of R′ and R′′ and R′ is above R′′. Then

we connect the upper right point of R to the upper left point of R′, and connect the

lower right point of R to the lower left point of R′′. Then the lower left point of R′

is connected to the upper right point of R′′.

We continue inductively over all n and add the set {−1
4
, 1
4
} × K. We obtain the

picture in Figure 1: the union of the rectangles, Jordan arcs and two copies of K form

two connected sets. We can connect these two sets by adding the vertical segments

on the left and right sides of R∅ that connect the upper and lower points on these

sides. This picture is the basic template for the construction.
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Figure 1. Each vertex of T labeled by a string s of length n is
associated to 2n+N(s) rectangles. Here we show all the rectangles for
strings of length 1, with Rj,k

1 being the four “outermost” ones, Rj,k
2 the

eight rectangles “adjacent” to these, Rj,k
3 the next sixteen, and so on.

As n ր ∞, these rectangles accumulate on two vertical copies of K,
which will each lie on the curve we are constructing.

In the general case, suppose that we have a compact set that is the union of string

indexed rectangles, Jordan arcs connecting rectangles and Cantor sets. Suppose

each rectangle is indexed by a finite sequence of the form s = s1, . . . , sn,m, where

s′ = s1 . . . , sn labels a vertex in the tree T . Then the longer sequence s is either in

the tree or it is not. If it is not, then the rectangle Rs is replaced by two horizontal

line segments that connect the two upper points of Rs and the two lower points. The

curve in this rectangle is now finished and will not be altered at later stages. For

example, if the tree consists of just the one vertex labeled by the emptyset, then we

add these horizontal segment to every rectangle of the form Rj,k
s were s = 1, 2 . . . is

a string of length 1. The result is the curve in Figure 2, the simplest curve in our

family.

If the vertex s is in the tree, then we replace each rectangle Rj,k
s by a template

as in Figure 1. The horizontal direction of the template is scaled linearly, but the

vertical direction is not quite because when we split a component interval of Kn into
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Figure 2. The curve corresponding to the 1-vertex tree. This is a
countable union of line segments and two linear Cantor sets and hence
is A-removable. It is the “simplest” curve in our collection.

two components of Kn+1, the gap between them is not a fixed fraction of the interval

(this would lead to a zero length Cantor sets), but is a smaller fraction at each stage,

so the template has to be adjusted to accordingly. Figure 3 shows what happens

when we replace each of the four rectangles of the form Rj,k
1 with the appropriate

template, and Figure 4 shows the curve assuming this is the only time the template

is used (this corresponds to the tree with two vertices {∅, 1}. Figure 5 shows the tree

for a tree with three vertices {∅, 1, 2} (curves for larger trees get harder to draw and

to see).

If T is wellfounded, then the final curve is countable union of line segments and

linear Cantor sets and hence is A-removable by one direction of Carleson’s theorem. If

T has an infinite branch then the curve contains a copy of E×K, where E is a Cantor

set depending on the branch, and thus it is non-A-removable by other direction of

Carleson’s theorem.

The map from trees to curves is continuous from the product topology to the

Hausdorff metric because if two trees have the same set of vertices in [1, . . . , N ]N

then the two curves will agree except on a union of rectangles with small diameter

(tending uniformly to zero with N) and each contains at least one point inside each
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Figure 3. The four rectangles of the form Rj,k
1 have been replaced

by a second stage template. Any curve containing the vertices {∅, 1}
will contain these arcs. The minimal such tree is shown in Figure 4.

Figure 4. The curve corresponding to the tree with vertices {∅, 1}.



24 CHRISTOPHER J. BISHOP

Figure 5. The curve corresponding to the tree with vertices {∅, 1, 2}.
There are countably many segment and 10 copies of the linear Cantor
set K.

of these rectangles; thus the curves are close in the Hausdorff metric. Thus the set

of wellfounded trees is the exact preimage of the set of A-removable curves under

a continuous map from trees into the hyperspace of [−1, 1]. Thus this collection of

A-removable curves is co-analytic complete, hence non-Borel. �

8. CH-removable sets are co-analytic complete

The following is due to Fred Gehring [22] in 1960. We include a proof for the

reader’s convenience.

Lemma 8.1. For compact sets E ⊂ [0, 1], E × [0, 1] is CH-non-removable if and

only if E is uncountable.

Proof. If E is compact and uncountable then it supports positive, finite, non-atomic

measure µ. By restricting µ to an appropriate subset set E0 of zero Lebesgue measure

and multiplying by an appropriate constant we may assume µ is singular to Lebesgue

measure, is supported in an interval J = [a, b] ⊂ [0, 1], has total mass equal to half
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the length of J . Fix a constant c ∈ [0, 1] and define hc(x) = x outside J and

hc(x) = x+ c

(
∫ x

0

dµ(t)−
x− a

2

)

,

inside J . It is easy to check this is a homeomorphism that is linear with slope 1− c
2

on each component of J \ E0. On the other hand, it maps E0 to a set of length

cℓ(J)/2 > 0.

Let g(y) = max(0, 1
2
− |x− 1

2
|) and define

F (x, y) = (hg(y)(x), y).

See Figure 6. This is a homeomorphism of the plane that is the identity off J × [0, 1],

and for any component K of J \E0 F is a skew linear map on J × [0, 1
2
] and J × [1

2
, 1]

with uniformly bounded dilatation. Thus F is quasiconformal off E0 × [0, 1]. It

is not quasiconformal on the whole plane because the zero length set E0 × {y} is

mapped to a set of positive length for each 0 < y < 1, and thus E0 × [0, 1] is a set

of zero area that is mapped to positive area; this is impossible for quasiconformal

maps, see e.g., [2]. Using the measurable Riemann mapping theorem we can find a

quasiconformal mapping ϕ of the whole plane so that ϕ◦F is conformal off E× [0, 1]

but not quasiconformal everywhere, hence not conformal everywhere. Thus E× [0, 1]

is CH-non-removable.

Figure 6. If E is a Cantor set there is homeomorphism h of C that
is quasiconformal off E × [0, 1] and maps E × [0, 1] to a set of positive
area. This can’t happen if E has zero length and h is quasiconformal
on the whole plane.
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If E is C-non-removable with witness f and z0 6∈ E, then g(z) = f(z)− f(z0)/(z−

z0) continuous and bounded on the plane and holomorphic off E, so E is also A-non-

removable. If E is compact and countable, then Carleson’s Theorem 6.2 show that

E × [0, 1] is A-removable, and the previous sentence implies E is CH-removable. �

Corollary 8.2. CH-removable sets in S = [0, 1]2, are co-analytic complete in 2S.

The proof is the same as for A-removable sets, except using Gehring’s result in

place of Carleson’s. On the other hand, I have been unable to give an analogous

construction to Theorem 7.1:

Question 1. Are the CH-removable curves co-analytic complete?

One approach to this question would be to use a theorem of Robert Kaufman [31],

who proved that whenever E ⊂ [0, 1] is compact and uncountable, E× [0, 1] contains

the graph of a continuous function f defined on E that is a CH-non-removable set.

Extending f to be continuous on R and linear on the complementary intervals of

E, gives a graph that is Jordan curve containing a CH-nonremovable graph, and

hence is non-removable itself. Thus we might try to prove CH-removable curves are

co-analytic complete by mapping trees to graphs of continuous functions (instead

of product sets) and using Kaufman’s theorem (instead of Carleson’s or Gehring’s).

However, I have not seen how to make this work.

The difficulty is that Kaufman’s construction starts by choosing a positive, non-

atomic measure µ (all points have mass zero) on the uncountable set E ⊂ I = [0, 1].

So it seems that we need a Borel map from trees to probability measures so that

the non-wellfounded trees are the preimage of the non-atomic measures. However,

it is easy to see that the non-atomic measures are co-analytic in P ([0, 1]), so such a

map is impossible, since the preimage of a co-analytic set under a Borel map must

be co-analytic. The space P (I) of probability measures on I = [0, 1] can be made

into a Polish space using the dual Lipschitz metric

d(µ, ν) = sup
f

|

∫

fdµ−

∫

fdν|,

where the supreumum is over all 1-Lipschitz functions. This metrizes the weak*

topolgy on measures; see Appendix A.3 of [11].

Question 2. Are CH-removable continuous graphs co-analytic complete in 2S?
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We also recall some questions from the introduction:

Question 3. Do CH-removalble sets form a σ-algegra? Is the union of two CH-

removable sets removable?

9. How hard is conformal welding?

Another problem that seems ripe for the descriptive set theory treatment is confor-

mal welding. If Γ is a closed Jordan curve in the plane the Riemann mapping theorem

gives conformal maps f, g from the inside and outside of the unit circle to the inside

and outside of Γ. By Carathéodory’s theorem these maps extend to be homeomor-

phisms of T to Γ (this was actually first proven by his student Marie Torhorst in

her 1918 doctoral dissertation using Carathéodory’s theory of prime ends, so per-

haps it is more appropriate to call it the Carathéodory-Torhorst theorem). Thus

h = g−1 ◦ f : T → T is a homeomorphism, and circle homeomorphisms that arise in

this way are called conformal weldings.

Not every homeomorphism is a welding. Consider the graph of sin(1/x) for x 6= 0,

together with the limiting segment [−i, i]. See Figure 7. This is closed set X dividing

the plane into two simply connected domains and one can show that the conformal

maps form either side of T to either side of X still define a circle homeomorphism h.

However, h cannot correspond to any Jordan curve Γ; if it did, one could conformally

map the two sides of X to the two sides of Γ so that the maps agree along the graph

of sin(1/x). Since this smooth curve is removable for conformal homeomorphisms

the map extends to be conformal from the complement [−i, i] to the complement

of a point. Since the complement of the segment is conformally equivalent to the

unit disk, we would get conformal map between the disk and the plane, which would

violate Liouville’s theorem. Thus this homeomorphism is not a conformal welding.

It is a long standing, and apparently very difficult, problem to characterize confor-

mal weldings among circle homeomorphisms. We explained in Section 7 that circle

homeomorphisms are a Gδ set in C(T,T), and hence a Polish space.

Question 4. Are conformal weldings Borel in the space of circle homeomorphisms?

It’s not hard to show

Lemma 9.1. The set of conformal weldings is analytic in Homeo(T,T)
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Figure 7. If f1, g1 map the two sides of T to the two sides of a
sin(1/x) curve γ, then h = g−1

1 ◦ f1 is a homeomorphism, but is not a
conformal welding. Otherwise, h = g−1

2 ◦ f2 with maps corresponding
to a Jordan curve, and then (by Morera’s theorem) f2◦f

−1
1 and g2◦g

−1
1

would define a conformal map from the complement of a segment to
the complement of a point, contradicting Liouville’s theorem.

Proof. Briefly, each closed curve gives a conformal welding and the mapping is con-

tinuous, so conformal weldings are the continuous image of a Polish space, hence

analytic. However, there are actually a family of conformal weldings associated to

each curve, so we have to be slightly more careful.

For each 1-to-1 map γ : T → C (the parameterization of a closed Jordan curve),

let Fγ ⊂ C(C,C) be the homeomorphisms of the plane that are holomorphic on D

and map T to Γ = γ(T), and let Gγ ⊂ C(C,C) be the homeomorphisms that are

analytic outside Γ and map Γ to T. Then, since uniform limits of holomorphic func-

tions are holomorphic, {(γ,Fγ ,Gγ)} is a closed set inside the product Homeo(T,C)×

Homeo(C,C) × Homeo(C,C). Map this closed set into T × T × T by (γ, f, g) 7→

(z, f(γ(z)), g(γ(x))). The projection of the image onto the latter to coordinates is the

graph of a conformal welding homeomorphism, and every welding occurs for some

choice of (γ, f, g) so the set of conformal weldings is the continuous image of a closed

set in a product of Polish spaces, hence is analytic. �

The best known sufficient condition for being a conformal welding (due to Beurling

and Ahlfors [7]) is quasisymmetry: h is M -quasisymmetric if

1

M
≤

|f(I)|

|f(J)|
≤ M,

whenever I, J are adjacent arcs on T of the same length, and |I| denotes the length of

an arc. For a fixed M , this is clearly a closed condition, so taking M → ∞ along the
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integers shows quasisymmetric homeomorphisms are a Fσ set inside Homeo(T,T).

Quasisymemtric welding correspond precisely to closed curves that are quasicircles.

i.e., images of the unit cirlce under quasiconformal maps of the plane. There are

numerous characterizations of this class of curves, e.g., any two points z, w ∈ γ

are connected by a subarc with diameter boundedby by O(|z − w|). See [2]. It is

easy to see M -quaissymmetric maps are nowhere dense, so the set of quasisymmetric

homeomorphisms is first category in the space of all circle homeomorphisms.

A more obscure sufficient condition is that h be log-singular, i.e., that there exist

a set E ⊂ T of logarithmic capacity zero so that T \ f(E) also has logarithmic

capacity zero. In [10] it is proven that h is log-singular if and only if the curve is

flexible; this implies that the set of curves corresponding to h is dense in the space

of all closed curves with the Hausdorff metric. See [10] for the precise definition.

Quasisymmetric and log-singular circle homeomorphisms are easily seen to be disjoint

sets (QS homeomorphisms preserve sets of zero logarithmic capacity).

If γ is a closed curve with complementary components Ω1,Ω2, we say x ∈ γ is

rectifiably accessible from Ωk, k = 1, 2 if it is the endpoint of a rectifiable curve in

Ωk. By a result of Gehring and Hayman ([23] or Exercise III.16 of [21]) this occurs iff

the hyperbolic geodesic ending at x has finite Euclidean length. A result of Charles

Pugh and Conan Wu [41] says there is a residual set of closed curves γ so that no

point on γ is rectifably accesible from both sides at once. In their terminology, γ in

not pierced by any rectifiable arc. By a result of Beurling the set of points that are

not rectifiably accessible from Ωk, k = 1, 2 is the image of zero logarithmic capacity

set on T under any conformal map D → Ωk; see [6], Exercise III.23 of [21], or [4]. If

follows that every curve in this Gδ set has a conformal welding that is log-singular.

Thus

Theorem 9.2. The collection of CH-non-removable closed curves is residual in the

space of all closed Jordan curves.

Question 5. Is the set of log-singular homeomorphisms residual in the space of all

circle homeomorphisms?

Question 6. What is the Borel complexity of the log-singular homeomorphisms?
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It is not hard to show that they are at least analytic: h is log-singular if for

every n ∈ N there is a compact set such that both E and h(Ec) have logarithmic

capacity less than 1/n (Lemma 11 of [10]). Thus the log-singular maps are a countable

intersection of projections of the Borel sets {(h,E) : cap(E), cap(h(Ec)) < 1/n} in

Homeo(T,T)× 2T. Can analytic be improved to Borel? Note that this would be true

if the map from curves to weldings was 1-to-1 (bijective continuous images of Polish

spaces are Borel). However, it is well known that this map is not 1-to-1.

Given a curve Γ the conformal maps of either side of Γ to either side of T can

be post-composed with Möbius transformations fixing the unit disk. Thus the con-

formal weldings should really be considered as equivalence classes, modulo pre- and

post-composition with such transformations. Similarly, any curve Γ has the same

weldings as any Möbius image of Γ, so curves should be considered modulo Möbius

transformations. If the mapping from equivalence classes of curves to equivalence

classes of conformal weldings was 1-to-1, then conformal weldings would be Borel.

Unfortunately, this is not the case.

For brevity, we say Γ′ is a CH-image of Γ if Γ′ = f(Γ) where f is a homeomorphism

of the sphere that is conformal off Γ and is a strict-CH-image if f is not a Möbius

transformation. Saying Γ is C-non-removable means that strict-CH-images exist.

Any CH-image of a curve has the same welding as that curve. Thus the correspon-

dence is 1-to-1 if and only if the only CH-images of a curve are also Möbius images.

This is far from true. For example, a curve Γ whose conformal welding is log-singular

is a “flexible curve” in the sense that its not CH-images are dense in the space of

all closed Jordan curves (and hence there must be non-Möbius images). Examples

are constructed in [9], [10]. Thus not only is the map from curves to weldings not

1-to-1, there is a dense set of weldings, each of which has a dense pre-image. This

also indicates that the set theoretic complexity of conformal weldings is intimately

related to that of CH-removable curves.

Question 7. Is the map from (equivalence classes of) curves to (equivalence classes

of) conformal weldings 1-to-1 exactly on the CH-removable curves?

It is very tempting to say the answer is obviously yes. So tempting that many

authors (including myself) have erroneously stated it as a fact; see Malik Younsi’s

paper [48] for a list of some of these transgressions. However, Maxime Fortier Bourque
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pointed out that the image of Γ under a non-Möbius homeomorphism of the sphere

might coincidentally agree with its image under some Möbius map. Moreover, Malik

Younsi [49] has constructed a curve with a strict-CH-image that agrees with itself.

In Younsi’s example, there are other strict-CH-images that are not Möbius images,

so the answer to Question 7 might still be yes. His example suggests we restate the

question as:

Question 8. Does a non-CH-removable curve always have a CH-image that is not

a Möbius image?

I expect this is true. The following is a stronger version.

Question 9. Does every CH-non-removable curve have a CH-image of positive area?

Some other related problems are:

Question 10. Is the map from equivalence classes of curves to equivalence classes

of weldings always either 1-to-1 or uncountable-to-1?

Question 11. Are CH-images of a curve a connected set in the Hausdorff metric?

Question 12. The CH-images of a flexible curve are dense in the space of closed

Jordan curves, and hence are not a closed set. Is it Borel? (It must be analytic.)

In [10] it is proven that every circle homeomorphism h and every ǫ > 0, there is a

conformal welding that agrees with h except on a set of Lebesgue measure less than

ǫ. Thus conformal weldings are dense in all circle homeomorphisms in a very strong

way. It this related to their Borel complexity? [10] also shows that given any circle

homeomorphism there is an explicit way to construct conformal maps {fn}, {gn}

of {|z| < 1} and {|z| > 1} onto disjoint Jordan domains so that fn(x) − gn ◦ h(x)

tends to zero everywhere except on a countable set. What can we say about the

homeomorphisms where this difference tends to zero everywhere? It contains all

conformal weldings, but what else does it contain? What is the Borel complexity of

this set of homeomorphisms?

Yet another sufficient condition for being a welding map is given in Guy David’s

paper [17]. Roughly, it says that h is a welding if it has diffeomorphic extension H

to the disk whose dilatation µ = Hz/Hz satisifes |µ| > 1 − ǫ only on a set of area
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O(exp(−O(1/ǫ))). These are also called trans-quasiconformal homemorphisms. Are

these a Borel subset of all circle homeomorphisms?

10. What are natural ranks for removable sets?

This section requires greater familiarity with the transfinite ordinals than did ear-

lier sections. Very briefly, each ordinal is a well ordered set (each element has a

successor, although some elements have no predecessor). The ordinals themselves are

well ordered and there is a first well ordering of an uncountable set, which is denoted

ω1. Every ordinal that becomes before ω1 is, by definition, the well ordering of some

countable set. The continuum hypothesis is the claim that ω1 = c, where c is the

cardinality of R, and is well known to be independent of ZFC.

If X is Polish and A ⊂ X is co-analytic, then there always a co-analytic rank on

A. This is a function ρ on X that assigns each each point of X to some ordinal ≤ ω1

and such that

(1) A = {x ∈ X : ρ(x) < ω1},

(2) {(x, y) ∈ A× A : ρ(x) < ρ(y)} is co-analytic in X ×X,

(3) {(x, y) ∈ A× A : ρ(x) ≤ ρ(y)} is co-analytic in X ×X.

Given such a function ρ, one can show that for every countable ordinal α, every set

Aα = {x ∈ A : ρ(x) ≤ α} is a Borel set and every analytic subset of A is contained

in some Aα. Moreover, A is Borel if and only if every co-analytic rank is bounded

above by some countable ordinal on A.

The standard example (dating back to Cantor and motivating his invention of

transfinite ordinals) involves the derived sets of a compact set in R. Given a compact

K, the derived set K ′ is K with it isolated points removed; this is a compact subset

of K, with at most countably many point removed. If K was finite then K ′ = ∅, and

otherwise we can repeat the process to get the second derived set K ′′. Continuing, we

get a nested sequence of sets that either becomes empty after n < ∞ steps (in which

case we set ρ(K) = n) or we get an infinite, strictly decreasing sequence of nested

compact sets whose intersection is a non-empty compact set Kω. If the derived set

of Kω is empty, then set ρ(K) = ω, and otherwise continue as before. We proceed

with this using transfinite induction. If K is countable, then since we remove at least

one point at each stage, we must reach the empty set at some countable ordinal, and
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take this ordinal to be the rank of K. Since we remove only countably many points

at each stage, starting with an uncountable sets never gives the empty set at any

countable ordinal. For such sets the rank is defined to be ω1. This defines a rank for

the co-analytic set of countable, compact subsets of [0, 1].

In [34] Kechris and Woodin describe a natural rank on the set of everywhere differ-

entiable functions in C([0, 1]). See also [35], [36], [42], for comparisons between their

rank and other ranks on the same set. A thesis of [34] is that “natural” co-analytic

sets should have natural ranks.

Question 13. What is a natural rank on the space of conformally removable sets?

For the special case of product sets E × [0, 1] with E countable, we can just take

the usual rank on countable compact sets described above.

Question 14. Can the derived set rank on E × [0, 1] be extended to a co-analytic

rank on all removable sets in [0, 1]2?

The standard rank on the product set removes isolated connected components at

each stage, but what happens when we add a horizontal line segment connecting all

the components? This augmented set does not seem much more complicated than

the original; should it have the same rank?

References

[1] Lars Ahlfors and Arne Beurling. Conformal invariants and function-theoretic null-sets. Acta
Math., 83:101–129, 1950.

[2] Lars V. Ahlfors. Lectures on quasiconformal mappings, volume 38 of University Lecture Se-
ries. American Mathematical Society, Providence, RI, second edition, 2006. With supplemental
chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard.

[3] Miklos Ajtai and Alexander S. Kechris. The set of continuous functions with everywhere con-
vergent Fourier series. Trans. Amer. Math. Soc., 302(1):207–221, 1987.

[4] Zoltan Balogh and Mario Bonk. Lengths of radii under conformal maps of the unit disc. Proc.
Amer. Math. Soc., 127(3):801–804, 1999.

[5] Howard Becker. Descriptive set-theoretic phenomena in analysis and topology. In Set theory
of the continuum (Berkeley, CA, 1989), volume 26 of Math. Sci. Res. Inst. Publ., pages 1–25.
Springer, New York, 1992.

[6] Arne Beurling. Ensembles exceptionnels. Acta Math., 72:1–13, 1940.
[7] Arne Beurling and Lars Ahlfors. The boundary correspondence under quasiconformal mappings.

Acta Math., 96:125–142, 1956.
[8] Christopher J. Bishop. Constructing continuous functions holomorphic off a curve. J. Funct.

Anal., 82(1):113–137, 1989.



34 CHRISTOPHER J. BISHOP

[9] Christopher J. Bishop. Some homeomorphisms of the sphere conformal off a curve. Ann. Acad.
Sci. Fenn. Ser. A I Math., 19(2):323–338, 1994.

[10] Christopher J. Bishop. Conformal welding and Koebe’s theorem. Ann. of Math. (2), 166(3):613–
656, 2007.

[11] Christopher J. Bishop and Yuval Peres. Fractals in probability and analysis, volume 162 of
Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2017.
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[39] S. Mazurkiewicz. Über die menge der differenzierbaven functionen. Fund. Math., 27:244–249,
1936.
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