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QUASISYMMETRIC DIMENSION DISTORTION OF AHLFORS
REGULAR SUBSETS OF A METRIC SPACE

Christopher J. Bishop, Hrant Hakobyan and Marshall Williams

Abstract. We show that if f : X → Y is a quasisymmetric mapping between
Ahlfors regular spaces, then dimHf(E) ≤ dimHE for “almost every” bounded
Ahlfors regular set E ⊆ X. If additionally, X and Y are Loewner spaces then
dimHf(E) = dimHE for “almost every” Ahlfors regular set E ⊂ X. The precise
statements of these results are given in terms of Fuglede’s modulus of measures. As
a corollary of these general theorems we show that if f is a quasiconformal map
of RN , N ≥ 2, then for Lebesgue a.e. y ∈ R

N we have dimHf(y + E) = dimHE.
A similar result holds for Carnot groups as well. For planar quasiconformal maps,
our general estimates imply that if E ⊂ R is Ahlfors d-regular, d < 1, then some
component of f(E × R) has dimension at most 2/(d + 1), and we construct exam-
ples to show this bound is sharp. In addition, we show there is a 1-dimensional set
S ⊆ R and planar quasiconformal map f such that f(R × S) contains no rectifi-
able sub-arcs. These results generalize work of Balogh et al. (J Math Pures Appl
(2)99:125–149, 2013) and answer questions posed in Balogh et al. (J Math Pures
Appl (2)99:125–149, 2013) and Capogna et al. (Mapping theory in metric spaces.
http://aimpl.org/mappingmetric, 2016).
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1 Introduction

1.1 Dimension preservation of random translates. A quasiconformal im-
age of a single line can be a fractal curve of Hausdorff dimension greater than 1.
However, a quasiconformal mapping f of RN is ACL for N ≥ 2, cf. [Ahl06,Väi71].
This means that f is absolutely continuous on almost all lines parallel to coordinate
axes. It follows, that the image of almost every such line is a locally rectifiable curve
of Hausdorff dimension 1. In particular, for a quasiconformal mapping f of RN and
a line segment L ⊂ R

N we have

dimHf(y + L) = dimHL = 1, (1.1)

for HN -a.e. y ∈ R
N . In this paper we prove the following generalization of this result.

Theorem 1.1. If f is a quasiconfomal mapping of RN , N ≥ 2, and E ⊂ R
N is a

bounded Ahlfors regular set then

dimHf(y + E) = dimHE, (1.2)

for HN -a.e. y ∈ R
N .

Here E is an Ahlfors d-regular set if Hausdorff d-measure of a ball of radius r
centered at a point in E is comparable to rd, see Section 2 for the precise definition.

Theorem 1.1 is a special case of Theorem 3.8 on Carnot groups. The latter says
that for a Carnot group G of Hausdorff dimension Q (with respect to its Carnot–
Caratheodory metric) we have

dimHf(y · E) = dimHE,

for HQ-a.e. y ∈ G and for any bounded Ahlfors regular subset E ⊂ G. Theorem 3.8
is stated and proved in Section 3.7 by using Theorem 1.2 (see the next paragraph)
and an estimate for modulus of measures, Lemma 3.3. Theorem 1.2, in turn, is a
special case of a more general result about the modulus of the quasisymmetric image
of a family of lower-regular measures with respect to an upper-regular base measure
(see Theorem 4.1).

1.2 Dimension distortion of “generic” Ahlfors regular subsets. Almost
as well known as the ACL property is the slightly stronger fact that a quasiconformal
mapping of R

N is absolutely continuous on “almost every” curve, where “almost
every” is understood in the sense of conformal modulus of curve families (see Section
3 below). A fortiori, if f is a quasisymmetric mapping of RN , we have

dimHf(γ) = dimHγ = 1 (1.3)

for “almost every” rectifiable curve γ in R
N .

In this paper we utilize Fuglede’s modulus of families of measures [Fug57] to
introduce the notion of “almost every Ahlfors d-regular subset” of a metric measure
space X, see Section 3.3 below. This in turn allows us to generalize equality (1.3)
and to show that dimension preservation of “generic subsets” holds under a mild
assumption.



GAFA QS DISTORTION OF AHLFORS REGULAR SUBSETS 381

Theorem 1.2. If f : X → Y is a quasisymmetric mapping between Ahlfors D-
regular spaces, D > 1, which satisfies condition N−1, then for every 0 < d ≤ D we
have

dimHf(E) = dimHE, (1.4)

for modD/d-almost every bounded Ahlfors d-regular set E ⊂ X.

Theorem 1.2 is proven in Section 5. Recall that a homeomorphism f : X → Y
between Ahlfors D-regular metric spaces satisfies Lusin’s condition N if whenever
A ⊆ X is such that HD(A) = 0 then HD(f(A)) = 0. We say that f satisfies condition
N−1 if f−1 satisfies condition N .

We say that condition N−1 is mild because it is known to hold, not only in
the classical case where X and Y are Euclidean domains, but more generally, when
X and Y are domains in D-regular, D-Loewner spaces, see e.g. [HKST01]. Re-
call, that Loewner spaces constitute a large class of metric spaces introduced by
Heinonen and Koskela [HK98], that includes Carnot groups equipped with their
Carnot–Carathéodory metrics. Indeed, conditions N and N−1 are always satisfied
for quasiconformal mappings in this setting. See [HK98,HKST01] for the definitions
of Loewner spaces, and the basic theory of QC mappings between them. Note that lo-
cally, quasiconformality and quasisymmetry are equivalent in this setting [HKST01,
Theorem 9.8], hence our casual conflation of the terms when we discuss mappings
in these spaces. Thus we have the following consequence of Theorem 1.2.

Corollary 1.3. Let f : X → Y be a quasiconformal mapping between Ahlfors
D-regular, D-Loewner spaces, D > 1. Then for every 0 < d ≤ D we have

dimHf(E) = dimHE, (1.5)

for modD/d-almost every bounded Ahlfors d-regular set E ⊂ X.

We do not know if the equality in Theorem 1.2 holds for quasisymmetric map-
pings between arbitrary Ahlfors regular spaces. However, we will prove that an
inequality does hold generally.

Theorem 1.4. If f : X → Y is a quasisymmetric mapping of Ahlfors D-regular
spaces, D > 1, then for every 0 < d ≤ D we have

dimHf(E) ≤ dimHE, (1.6)

for modD/d-almost every bounded Ahlfors d-regular set E ⊂ X.

Thus “generic non-expansion” holds true for every quasisymmetric mapping be-
tween arbitrary Ahlfors regular spaces of the same dimension. Theorem 1.4 is a
special case of Corollary 4.4, which itself is an immediate corollary of Theorem 4.1;
the latter is the main result of the first half of the paper and states that “non-
expansion” holds under much more relaxed conditions than those in Theorem 1.4.
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1.3 Exceptional “fibers” in product spaces. For a quasiconformal map of
R

N , the ACL condition implies that

HN−1({y ∈ R
⊥ : dimf(y + R) > 1}) = 0. (1.7)

Dimension distortion of “generic subspaces” of a Euclidean space under quasi-
conformal mappings has recently been studied by Balogh et al. [BMT13], along with
similar explorations for Sobolev mappings f ∈ W 1,p(RN , Y ), p > N , where Y is a
metric space. In particular they considered the size of the “exceptional” family of
parallel n dimensional subspaces whose image experiences a prespecified jump in
dimension. More precisely, it was proved in [BMT13] that if n is an integer between
1 and N and n′ ≥ n then

H n

n′ N−n{y ∈ (Rn)⊥ : dimf(y + R
n) > n′} = 0. (1.8)

Thus the Hausdorff dimension of the “exceptional” n-dimensional subspaces of RN

whose dimension may jump over n′ > n is at most n
n′ N − n, which is strictly less

than N − n.
The methods in [BMT13] relied heavily on properties of Euclidean space, particu-

larly the foliation by affine subspaces, Lipschitz retractions, the Besicovitch covering
theorem, and so forth, that need not hold in greater generality. As a result, the results
there assume that the source space be a Euclidean domain. The authors concluded
by asking [BMT13, Problem 6.5] what could be said for more general spaces, pro-
viding the broad motivation for the present paper, which addresses this question in
the setting of quasisymmetric maps between metric spaces.

The questions about dimension distortion of “generic subspaces” for more general
source spaces, e.g. for the Heisenberg group, have been further investigated by Balogh
et al., cf. [BMT14,BTW13,BTW16]. In fact, in [BTW13,BTW16] a general form of
inequality (1.8) was obtained for quasiconformal (and Sobolev) mappings defined
on metric spaces supporting Poincaré inequalities, e.g. the Heisenberg group. Our
distortion estimates allow us to generalize (1.8) to even more general product spaces
(thus no Poincaré inequality or even connectivity of the source space is assumed).

Theorem 1.5. Suppose E is Ahlfors d-regular, F is doubling, and f is a qua-
sisymmetric map on E × F with dimH(f(E × F )) ≤ D′. Then for every number
d′ ≤ D′,

H d

d′ D′−d({y ∈ F : dimHf(E × {y}) > d′})) = 0. (1.9)

Theorem 1.5 is proven in Section 6. Note that for E = R
n and F = R

N−n, and
f : RN → R

N quasiconformal, we recover the result of Balogh, Monti and Tyson
(1.8). However, note also that (1.9) not only generalizes (1.8) by allowing the set E
to have arbitrary dimension d, but also by not requiring to have d′ ≥ d. The latter
inequality of course holds necessarily in the case of (1.8), since dimH(f(y + R

n)) ≥
n for every homeomorphism. In our case, on the other hand, it is possible that
dimH(f(E×{y})) < d and moreover dimH(f(E×F )) ≤ D′ < dimH(E×F ) in which
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case Theorem 1.5 estimates the dimension of y’s for which dimHf(E×{y}) is greater
than some d′ < dimHf(E × F ). For instance, let E be the 1/2 dimensional “1/4-
Cantor set” obtained from the unit interval [0, 1] by dividing it into 4 equal intervals,
removing the middle two intervals and repeating the process with the remaining
intervals. Then E × E is the well known four-corner Cantor set of dimension 1,
which has conformal dimension 0, see e.g. [Mac11, Theorem 1.4] or [Tys01], and
therefore there is a quasisymmetric map f such that dimHf(E × E) < 1. Theorem
1.5 then implies that the set of y’s such that dimHf(E × {y}) = dimHf(E × E) is
0-dimensional.

As a consequence of Theorem 1.5, we will prove in Section 6 the following bound
on the infimal dimension distortion of the fibers.

Corollary 1.6. Let E, F , and f satisfy the assumptions of Theorem 1.5. Then

inf
y∈F

dimHf(E × {y}) ≤ dimHf(E × F )
dimH(E × F )

· dimH(E). (1.10)

Corollary 1.6 is already interesting when f : R2 → R
2 is quasiconformal, and E

and F lie in the coordinate axes.
For example, consider a Borel set S ⊆ R, with t = dimH(S). Applying the

corollary to the case E = R and F = S, inequality (1.10) becomes

inf
y∈S

dimHf(R × {y}) ≤ 2
t + 1

. (1.11)

On the other hand, if we additionally assume that S is Ahlfors t-regular, then
we may apply Corollary 1.6 with E = S and F = R, and obtain (interchanging the
order of the factors)

inf
x∈R

dimHf({x} × S) ≤ 2t

t + 1
. (1.12)

1.4 Sharpness of dimension distortion bounds in the plane. Theorem
1.5 and Corollary 1.6 are quite sharp in the planar case. Our next result establishes
the optimality of estimates (1.11) and (1.12) in one fell swoop, as consequences of a
stronger result.

Theorem 1.7. For every 0 < t < 1, there is an Ahlfors t-regular Cantor set
S ⊆ R such that for each ε > 0, there is a quasiconformal mapping f : R2 → R

2, so
that for every Borel subset A ⊆ R × S,

dimH(f(A)) ≥ (1 − ε)
2dimH(A)

t + 1
. (1.13)

In particular,

inf
y∈S

dimHf(I × {y}) ≥ (1 − ε)
2

t + 1
, (1.14)

inf
x∈I

dimHf({x} × S) ≥ (1 − ε)
2t

t + 1
, (1.15)

for every interval I ⊂ R.
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This will be proven in Section 7. As a corollary to Theorem 1.7, we will also
obtain the sharpness of (1.8) for N = 2 and n = 1, and answer [BMT13, Problem
6.3] in the affirmative for the planar case.

Corollary 1.8. For every d′ > 1 and η > 0 there is a quasiconformal map f of the
plane such that

dimH{y ∈ R : dimHf([a, b] × {y}) > d′, ∀[a, b] ⊆ R} ≥ 2
d′ − 1 − η. (1.16)

Sharpness of rectifiability for images of lines. It is instructive to consider the
preceding results in the context of lines parallel to the x-axis. By the ACL property
for quasiconformal maps, if f([0, 1] × {y} has infinite length for every y ∈ S ⊆ [0, 1],
then H1(S) = 0. It is known that this is rather sharp; Heinonen and Rhode showed
there are examples where dimH(S) = 1 [HR93, Theorem 1.9]. Even so, in that result
the images f(R + y) contain many rectifiable subarcs. The question of how many
lines have purely unrectifiable images, i.e., images containing no rectifiable subarcs,
has proved to be a much thornier matter. Kovalev and Onninen [KO09] proved that
given any countable collection L of parallel lines in R

2 there is planar quasiconformal
image of L that contains no rectifiable subarcs, but until now, it was not known if this
could be extended to uncountable families. Problem 6.4 of [BMT13] and Problem
5.3 of [CTW12] ask if this can even be improved at all, i.e., whether there is even a
single uncountable family of lines with this property.

Corollary 1.8 above already answers this question with a resounding yes; if, for
every y ∈ S, we require that f(R×{y}) have no rectifiable subarcs, then the corollary
tells us not only that S can be uncountable, but that dimH(S) can be arbitrarily
close to 1, and furthermore, not only may the images of subarcs be unrectifiable, but
they can be taken to have dimension uniformly bounded away from 1. Moreover,
from Theorem 1.7 itself, we see that the dimension distortion factor may be very
strongly uniform—it can be taken to apply not only to subintervals, but to arbitrary
Borel subsets of the product S × R.

If we insist on uniform dimension expansion, then Corollary 1.6 shows, via esti-
mate (1.11), that this is the best we can do—the set S in the preceding result cannot
have dimension 1, in contrast to [HR93, Theorem 1.9].

Our next result shows that if we sacrifice dimension distortion, and merely ask for
unrectifiability of subarcs of the images of lines, then S can indeed have dimension
1, and can in a certain sense be as large as possible, giving a different, yet equally
vociferous, “yes” to [BMT13, Problem 6.4].

Theorem 1.9. For every increasing function h on [0, ∞) such that

lim sup
t→0

h(t)
t

= ∞, (1.17)

there is a compact set S ⊂ [0, 1] and a quasiconformal map f so that

(1) The quasiconformal constant of f is bounded independently of h and S.
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(2) S has infinite Hausdorff measure with respect to h (cf. Definition 2.2 below).
(3) f([0, 1] × {y}) contains no rectifiable subarc for any y ∈ S.

Theorem 1.9 will be proven in Section 8. In particular, taking h(t) = t| log t| in
the preceding theorem produces a compact set S ⊂ [0, 1] of Hausdorff dimension 1
and a quasiconformal map f of the plane so that f([0, 1]×{y}) contains no rectifiable
subarcs for any y ∈ S.

Note that by the ACL property, the condition (1.17) on the gauge function h is
sharp.

Conformal dimension. Rewriting inequality (1.10) as follows

inf
y∈F

dimHf(E × {y})
dimH(E × {y})

≤ dimHf(E × F )
dimH(E × F )

, (1.18)

we obtain the principle “fiberwise expansion implies global expansion”: if every fiber
E × {y} has its dimension increased by a factor α ≥ 1, then the dimension of the
whole product E × F increases by at least a factor of α as well.

This principle has an immediate implication when considering conformal dimen-
sion. Recall that the conformal dimension of a metric space is the infimal Hausdorff
dimension of its image under any quasisymmetric map, i.e.,

dimCX = inf
f∈QS(X)

dimHf(X),

where QS(X) is the class of all quasisymmetric maps on X. In the event that E
is minimal for conformal dimension (i.e., dimHE = dimCE), the inequality (1.18)
then implies E × F is minimal as well. When E = R this gives a well known result
of Tyson [Tys00]. Also see the discussion after Corollary 4.4 for more general results
in this vein.

Remark 1.10. We cannot reverse (1.18) by replacing the infimum by a supremum.
Consider a quasiconformal map f that maps {0}×R to a curve of dimension D > 1,
but is smooth elsewhere. If F = R and E ⊂ R contains 0 and has dimension
0 < d < D − 1, then the right side of (1.18) is at least D/(d + 1) > 1, but the
smoothness of f off of {0} × R implies dimf(E × {y})/dim(E × {y}) = 1 for every
y. In other words “global expansion does not imply fiberwise expansion”.

This paper is organized as follows. In Section 2 we review the necessary definitions
and preliminary results needed in the paper. In Section 3 we define the various
versions of modulus and prove Theorem 3.8 assuming Theorem 1.2. Theorem 1.1
is a particular case of Theorem 3.8. In Section 4 we state more general versions of
Theorem 1.4, and some corollaries; the reader will observe that Theorem 1.4 is a
special case of Corollary 4.4. In Sections 5–7 we prove the remaining theorems and
corollaries given in this introduction. In Section 9 we list some open problems.
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2 Measures and Mappings

2.1 Measures, dimension and Ahlfors regularity. Unless otherwise stated,
the metric spaces in this paper are assumed to be separable. Given a metric space
X = (X, dX) we will denote by B(x, r) the closed ball in X of radius r centered at
x. When B = B(x, r) and k > 0, we denote by kB the ball B(x, kr). If the metric
space X is clear from the context we will often denote the metric dX by d. The
following covering lemma is well known, cf. Theorem 1.2 in [Hei01], and we will use
it repeatedly in the proof of Theorem 4.1.

Lemma 2.1 (Covering lemma). Every family B of balls of uniformly bounded diam-
eter in a metric space X contains a countable subfamily of disjoint balls Bi ⊂ B
such that

⋃

B∈B
B ⊂

⋃

i

5Bi.

The space X is said to be doubling if there is a constant C such that every ball
in X may be covered by C balls of half the radius.

Throughout the paper, the term “measure” refers to a Borel regular outer mea-
sure. A measure λ on X is locally finite if every x ∈ X lies in a neighborhood U ⊂ X
with λ(U) < ∞. λ is doubling if there is a constant C such that for each ball B ⊆ X,
λ(2B) ≤ Cλ(B).

We are particularly interested in (generalized) Hausdorff measures, whose defin-
ition we now recall, cf. [Mat95], p 60.

Definition 2.2. Given a non-negative function h : [0, ∞) → [0, ∞), and a subset
E ⊆ X, the Hausdorff h-measure of E is defined as follows. For every ε ∈ (0, ∞], let

Hh
ε (E) = inf

{ ∞∑

i=1

h(ri) : E ⊂
∞⋃

i=1

B(xi, ri), ri < ε

}
,

and

Hh(E) = lim
ε→0

Hh
ε (E).

When h(r) = rt, t ≥ 0, the resulting measure is called the t-dimensional Hausdorff
measure and is denoted by Ht.

The Hausdorff dimension of X is

dimH(X) = inf{ t : Ht(X) = 0}.

A subset E ⊂ X is Ahlfors d-regular, if there is a constant CE ≥ 1 such that for
every x ∈ E and 0 < r < diamE the following inequalities hold

1
CE

rd ≤ Hd(E ∩ B(x, r)) ≤ CErd. (2.1)
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We will denote by Ad(X) the collection of all bounded Ahlfors d-regular subsets of
X, that is for every E ∈ Ad(X) the inequalities (2.1) hold for some constant CE ≥ 1.

We will denote the support of a measure λ on X by Eλ. We say that λ is Ahlfors
d-regular, d > 0, if there are constants Cλ ≥ 1 and rλ > 0 such that

C−1
λ rd ≤ λ(B(x, r)) ≤ Cλrd, (2.2)

for every ball B(x, r) centered at x ∈ Eλ with radius r < rλ. More generally, we
say λ is upper or lower d-regular if only the right or left inequality in (2.2) holds,
respectively. We denote by Ld(X) the family of lower d-regular measures in X.

Remark 2.3. If λ is d-regular, then so is the restricted Hausdorff measure Hd�Eλ

[Hei01, Exercise 8.11], so that if we were only interested in the two-sided regularity
condition, there would be no special reason to consider d-regular measures rather
than sets. On the other hand, by itself, mere upper (resp. lower) regularity of λ
does not imply the same condition for Hd�Eλ

. Whereas the full two-sided Ahlfors
regularity condition is rather strong, the existence of upper and lower regular mea-
sures holds in rather great generality—the former may be obtained via the Frostman
lemma (Lemma 2.5 below), and the latter exist on compact doubling metric spaces,
via a theorem of Vol’berg and Konyagin [VK88]1.

The upper regular measures given by the Frostman lemma are crucial to our
applications to product spaces in Theorem 1.5 and Corollary 1.6. Also, the arc-length
measure of a curve satisfies the lower regularity condition, though not necessarily
the upper, so that in order to view our results as a generalization of facts about
curve modulus, we must consider lower regular measures. It is for these reasons that
our most general results, Theorem 4.1 and Corollary 4.2, are formulated in terms of
families of measures, not sets.

We refer to [Mat95,Hei01] for proofs of the next two lemmas and for further
discussion of Hausdorff measures, dimension and Ahlfors regular spaces and their
properties.

Lemma 2.4 (Mass distribution principle). If the metric space X supports a positive
upper D-regular Borel measure, then HD(X) > 0. In particular, dimH(X) ≥ D.

An important converse to the mass distribution principle is the following lemma,
see [Mat95, Theorem 8.8].

Lemma 2.5 (Frostman’s lemma). If X is a doubling metric space, and F ⊆ X is a
Borel set such that Hs(F ) > 0, then there is an upper s-regular measure ν supported
on F such that ν(F ) > 0.

1 Note that the results in [VK88] are formulated in terms of “homogeneous” measures, but on a
bounded set such measures are easily seen to be lower regular.
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Remark 2.6. Frostman’s Lemma is often stated for the special case X = R
n. How-

ever, even if (X, dX) is only a doubling metric space, the lemma is easily obtained
from the Euclidean case via Assouad’s embedding theorem [Ass83]. To see this, we
first denote by Xt the metric space (X, dt

X) for t ∈ (0, 1), i.e. the t-snowflaked version
of X. Now, if Hs(F ) > 0 for some F ⊂ X then by Assouad’s embedding theorem
[Ass83] for every s′ > s there is a bi-Lipschitz embedding j : Xs/s′

↪→ R
n for some

n ∈ N. Since j is bi-Lipschitz, we have

Hs′
(j(F s/s′

)) ∼= Hs′
(F s/s′

) = Hs(F ) > 0,

where F = (F, dX |F ). Assuming Frostman’s Lemma for Rn, we have that j(F s/s′
) ⊂

R
n supports a nontrivial, upper s′-regular measure. Since j is bi-Lipschitz, the space

F s/s′
also supports an upper s′-regular measure μ such that μ(F s/s′

) > 0. Then, if
ν is defined on F as the pullback of μ under the snowflaking, i.e. ν(E) = μ(Es/s′

)
for every Borel set E ⊂ F , then for every ball BX(x, r) ⊂ X we have

BX(x, r) = {y ∈ X : dX(x, y) < r} = {y ∈ X : (dX(x, y))s/s′
< rs/s′}

= {y ∈ Xs/s′
: dXs/s′ (x, y) < rs/s′} = BXs/s′ (x, rs/s′

),

and therefore

ν(BX(x, r)) = μ(BXs/s′ (x, rs/s′
)) ≤ C(rs/s′

)s′
= Crs.

Thus F supports an upper s-regular measure ν, such that ν(F ) = μ(F s/s′
) > 0.

2.2 Quasiconformal and quasisymmetric mappings. Given a homeomor-
phism f : X → Y , x ∈ X and r > 0 we let

Hf (x, r) =
supdX(x,y)≤rdY (f(x), f(y))
infdX(x,y)≥r dY (f(x), f(y))

.

The mapping f is called (metrically) quasiconformal if there is a constant H < ∞
such that

lim sup
r→0

Hf (x, r) ≤ H (2.3)

for every x ∈ X.
Because quasiconformality is an infinitesimal property it is often hard to work

with directly. For this reason one often requires a stronger, global condition from a
mapping f , which we discuss next.

Let η : [0, ∞) → [0, ∞) be a fixed homeomorphism. A homeomorphism f between
metric spaces (X, dX) and (Y, dY ) is called η-quasisymmetric if for all distinct triples
x, y, z ∈ X we have

dY (f(x), f(y))
dY (f(y), f(z))

≤ η

(
dX(x, y)
dX(y, z)

)
. (2.4)
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Quasisymmetric mappings do not distort (macroscopic) shapes too much. In
particular an image of a round ball will be “roundish”, a condition which a priori
holds for QC maps only on small scales depending on x.

A mapping f of a metric space (X, dX) into (Y, dY ) is called a quasisymmetric
embedding if f is a quasisymmetric map of X onto f(X) ⊆ Y , where the metric on
f(X) is the restriction of the metric of Y .

It follows almost immediately from the definition that quasisymmetric maps do
not distort annuli too much. More precisely, we have the following easy result, which
is very similar to Lemma 3.1 in [Tys98], and which we will use in the proof of
Theorem 4.1 below.

Lemma 2.7. If f is an η-quasisymmetric map of a separable metric space X, then
for every closed ball B′ = B(y, s) ⊂ f(X), with y = f(x), there is a closed ball
B = B(x, r) such that for each k ≥ 1, the following inclusions hold:

B′ ⊆ f(B) ⊆ f(kB) ⊆ η(k)B′.

Furthermore, if f−1 is uniformly continuous, with modulus of continuity ω(t), then
we may choose r so that r ≤ ω(s).

Proof. Let r > 0 be the smallest number such that the first inclusion holds. Then
for each α < 1, and a point xα ∈ f−1(B′)\αB, we let yα = f(xα) ∈ B′\f(αB).
Therefore, whenever y1 = f(x1), with x1 ∈ kB, we have

d(y, y1) ≤ d(y, yα)η
(

d(x, x1)
d(x, xα)

)
≤ sη

(
k

α

)
.

Passing to the limit as α goes to 1, we see that d(y, y1) ≤ sη(k), from which the
last inclusion follows. Finally, when f−1 has modulus of continuity ω, the choice of
r implies r ≤ ω(s). �

As a consequence of Lemma 2.7 we obtain the following version of the mass
distribution principle where we require an upper estimate of μ only for a limited
collection of subsets.

Lemma 2.8. Let f be a quasisymmetric map of a metric space X. If there exist
constants C1, C2 ≥ 1, an integer L ∈ N and a measure μ on f(X) such that

• there is a collection of sets Q = {Qi}i∈N s.t. every ball B = B(x, r) can be
covered by L members of Q, Qi1 , . . . , QiL

, so that for k = 1, . . . , L we have

diamQik
≤ C1r,

• for every i ≥ 1 we have μ(f(Qi)) ≤ C2diam(f(Qi))s, for some s > 0,

then dimHf(X) ≥ s.
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Proof. Let B′ = B(f(x), R). We want to show that μ(B′) � Rs. Let B be the ball
containing f−1(B′) given by Lemma 2.7. Since Qik

⊂ (1 + C1)B, from Lemma 2.7
we have for k = 1, . . . , L

f(Qik
) ⊂ f((1 + C1)B) ⊂ η(1 + C1)B′.

Therefore

μ(B′) ≤ μ(f(B)) ≤ μ

(
L⋃

k=1

f(Qik
)

)
≤

L∑

k=1

μ(f(Qik
))

≤ C2

L∑

k=1

(diamf(Qik
))s ≤ C2

L∑

k=1

(η(1 + C1) · 2R)s = CRs,

where C = C2L[2η(1 + C1)]s. Applying the mass distribution principle completes
the proof. �

Even though quasisymmetry is a stronger condition than quasiconformality, it
is often the case that the two notions coincide. For instance if a homeomorphism
f : RN → R

N , N ≥ 2 is QC then it is also QS. This was proved by Gehring for
N = 2 in [Geh60] and by Väisälä for N ≥ 3 [Väi61]. More recently Heinonen and
Koskela extended this equivalence to a large class of metric spaces [HK98,HK95].

3 Modulus

The main tool used in this paper is the modulus of a family of curves, sets, or
measures. In this section we review the definitions and basic properties for each of
these concepts. In the case when the underlying measure space is a locally compact
topological group G, and λ is any measure on G, we estimate from below the modulus
of the family of translates of λ by elements g ∈ K, where K is any subset of G. This
estimate is vital for the proof of Theorem 3.8.

3.1 Modulus of curve families. Given a metric measure space (X, μ), a family
of curves Γ in X and a real number p ≥ 1 the p-modulus of Γ is defined as

modpΓ = inf
ρ

∫

X
ρpdμ,

where the infimum is taken over all Γ-admissible nonnegative Borel functions ρ. Here
a function ρ : X → [0, ∞) is Γ-admissible if

∫
γ ρds ≥ 1 for every locally rectifiable

curve γ ∈ Γ, where ds denotes the arclength element. We say that a property holds
for p-almost every curve in X if it fails only for a curve family Γ such that modpΓ =
0. Notice that by definition, almost every curve is locally rectifiable. We refer to
[GM05,Hei01,HK98] for further details on modulus of curve families including the
definitions of rectifiability and arclength in general metric spaces.

Despite superficial differences, proofs of the aforementioned equivalence between
the definitions of metric quasiconformality and quasisymmetry, no matter the level
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of generality, tend to follow the same broad outline: the metric definition is used,
with the help of various covering arguments, to establish quasi-invariance of the con-
formal modulus of path families, and this invariance, along with modulus estimates
for certain families, facilitates geometric arguments that yield the global distortion
estimate (2.4).

As a result, one obtains the following equivalent definition of quasiconformality,
the so-called “geometric” definition.

Given D > 1 and K ≥ 1, a homeomorphism f : X → Y between Ahlfors D-
regular spaces is called (geometrically) K-quasiconformal if for every family of curves
Γ in X the following inequalities hold

K−1modDf(Γ) ≤ modDΓ ≤ KmodDf(Γ), (3.1)

where f(Γ) denotes the image of the family Γ under f , see [Ahl54,Väi71].
For proofs of the equivalence of geometric quasiconformality to the metric defin-

ition, and to quasisymmetry, in various levels of generality, we refer the reader again
to [Geh60,HK98,HK95,Väi61].

3.2 Modulus of families of measures. The notion of modulus can be ex-
tended far beyond the context of curve families. The modulus of a family of mea-
sures, with respect to an underlying measure, was defined and studied by Fuglede
[Fug57] and Ziemer [Zie69]. In [Hak10] the second author used Fuglede’s modulus to
study conformal dimension of various spaces. More recently, Badger studied extremal
metrics and Beurling criterion for families of measures [Bad13].

Let (X, μ) be a metric measure space and p ≥ 1. Let L be a collection of measures
on X. A Borel function ρ : X → [0, ∞] is said to be admissible for L if

∫

X
ρdλ ≥ 1

for every λ ∈ L. The p-modulus of L is

modp(L, μ) = inf
ρ−adm

∫

X
ρpdμ,

where the infimum is taken over all L-admissible functions ρ. Often we simply write
modp(L), when μ is clear from context.

Next, we summarize some of the properties of modulus that will be useful for us.

Lemma 3.1. For every p ≥ 1 the following properties hold.

(1) (Monotonicity) modpL ≤ modpL′, if L ⊂ L′.
(2) (Subadditivity) modpL ≤ ∑

i modpLi, if L =
⋃∞

i=1 Li.
(3) (Ziemer’s lemma) If 1 < p < ∞, L1 ⊂ L2 ⊂ . . . are families of measures and

L = ∪∞
i=1Li then modpL = limi→∞ modpLi.
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See [Fug57] for (1) and (2). Property (3) is due to Ziemer for families of continua
in R

N , see Lemma 2.3 in [Zie69]. The proof in the case of general measure families is
the same as in [Zie69]. It is important to emphasize here that Ziemer’s lemma holds
only under the assumption p > 1.

We say a property holds for modp-almost every λ ∈ L if it fails only for a family
L0 ⊂ L such that modp(L0) = 0.

3.3 Modulus of families of Ahlfors regular sets. The notion of modulus
defined above is quite general, but also a bit technical and abstract, and presumes
we have at hand not merely a single underlying measure, but a family of other
measures as well. In the greatest generality, this complication is unavoidable—we
cannot speak of the modulus of a family of sets without some measures on hand to
formulate the admissibility condition. Our motivation for working in such generality
was discussed earlier in Remark 2.3.

Ahlfors regularity, on the other hand, is fundamentally a metric notion, in the
sense that the existence of any Ahlfors d-regular measure on a set E is equivalent to
d-regularity of the Hausdorff measure Hd�E , and the latter property is determined
entirely by the metric. With this in mind, given any family E ⊆ Ad(X) of Ahlfors
d-regular sets, we define the p-modulus of E to be

modp(E , μ) = modp({Hd�E}E∈E , μ).

As before, when μ is clear from context, we omit it. In particular, we do this when
X is D-regular and μ = HD. The dimension d will always be clear from context,
so we do not include it in the notation either, and in any case, a given set can be
Ahlfors d-regular for at most one value of d.

Finally, the most important modulus in (quasi)-conformal geometry, when con-
sidering d-dimensional subsets of D-dimensional spaces, is the conformal modulus
modD/d. Thus when E ⊆ Ad(X), and X is Ahlfors D-regular, we unambiguously
define mod(E) := modD/d(E), and simply say “modD/d almost every E ∈ E” to refer
to a property that holds for all E ∈ E\E0, for some subfamily E0 with mod(E0) = 0.

3.4 Modulus and products. Let (E, λ) and (F, ν) be two metric measure
spaces with 0 < λ(E) < ∞. Denote X = E×F and μ = λ×ν. Let F = {E×{y} : y ∈
F}, and for each y ∈ F , let λy be the pushforward of λ by the map x �→ (x, y), so
that for each Borel set A ⊆ X, λy(A) = λ({x ∈ E : (x, y) ∈ A}).

Lemma 3.2. With the notation as above, let LF = {λy : y ∈ F}. Then for every
p ≥ 1 we have

modpLF =
μ(X)
λ(E)p

=
ν(F )

λ(E)p−1
. (3.2)

Proof. This proof is the same as in the classical case of curve families. We give it here
for completeness. First note that since the function ρ(x, y) ≡ λ(E)−1 is admissible
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for LF , we have modpLF ≤ μ(X)
λ(E)p . To obtain the lower bound, note that for every LF -

admissible ρ we have
∫
E ρ(x, y)dλ ≥ 1, ∀y ∈ Y, and therefore by Hölder’s inequality

we obtain that for every y ∈ Y the following holds

1 ≤ λ(E)p−1

∫

E
ρp(x, y)dλ.

Integrating both sides of this inequality with respect to ν we obtain

ν(F ) ≤ λ(E)p−1

∫

X
ρp(x, y)dμ,

and therefore
μ(X)
λ(E)p

=
ν(F )λ(E)

λ(E)p
≤

∫

X
ρp(x, y)dμ.

Hence modpLF ≥ μ(X)
λ(E)p . �

3.5 Modulus and group translations. In this subsection we consider another
example of a family of measures - a family of translates of a given measure λ by
elements of a set K ⊂ G, where G is a topological group, which in particular could
be R

n. We will first show that the modulus of the family of translates of λ depends
on the measure of K, and then will consider an example of translates of the Cantor
set in the real line R.

Suppose G = (G, ν) is a locally compact topological group, with right invariant
Haar measure ν. Let λ be another measure on G. For each y ∈ G, denote by y∗λ the
pushforward of λ by left multiplication by y.

If K ⊆ G is measurable, let K∗λ = {y∗λ : y ∈ K}.

Lemma 3.3. For every p ≥ 1 we have

modp(K∗λ, ν) ≥ ν(K)
λ(G)p

. (3.3)

Proof of Lemma 3.3. Let ρ : G → [0, ∞] be admissible for the family K∗λ, and fix
y ∈ K. Since translation by y maps G to itself, we have y∗λ(G) = λ(G). Thus by
Hölder’s inequality,

∫

G
ρ(yx)p dλ(x) =

∫

G
ρp dy∗λ ≥

(∫
G ρ dy∗λ

)p

λ(G)p−1
≥ 1

λ(G)p−1
.

Thus we obtain

λ(G)
∫

G
ρp dν =

∫

G

∫

G
ρ(y)p dν(y) dλ(x)=

∫

G

∫

G
ρ(yx)p dν(y) dλ(x) (right invariance of ν)

=
∫

G

∫

G
ρ(yx)p dλ(x) dν(y) (Fubini’s theorem)

≥
∫

K

∫

G
ρ(yx)p dλ(x) dν(y)

≥
∫

K

(
1

λ(G)p−1

)
dν =

ν(K)
λ(G)p−1

.
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Dividing each side by λ(G) and infimizing over all admissible functions ρ, we obtain
the desired inequality (3.3). �

Using the terminology of Section 3.3 we have the following consequence of Lemma
3.3.

Corollary 3.4. Let n ≥ 1, 0 < d < n. If E is a nonempty, bounded Ahlfors d-
regular subset of Rn and K ⊆ R

n is a Lebesgue measurable set “of translates” of
E, then the family of translates {y + E : y ∈ K} has positive p-modulus, for any
p ≥ 1, whenever K has positive n-dimensional Lebesgue measure. More precisely, if
Hn(K) > 0 then

modp({Hd� y+E : y ∈ K}, Hn) > 0,

for every p ≥ 1.

Proof. Let (G, ν) = (Rn, Hn) and λ = Hd�E . Then 0 < λ(G) = Hd(E) < ∞ since
E is a nonempty, bounded Ahlfors regular set. Moreover y∗λ = Hd� y+E . The result
follows immediately from inequality (3.3). �
Remark 3.5. Note that the converse of Corollary 3.4 is not true; it is possible to
have a set K ⊂ R

2 of zero Lebesgue measure such that the family {y+E : y ∈ K} has
positive modulus. Indeed, if E = [0, 1], λ = H1� [0,1] and K is the vertical segment
of length one, connecting the origin to the point (0, 1) ∈ R

2, then the family of
translates K∗λ coincides with the product family L[0,1] as in Lemma 3.2, i.e. with
the family of restrictions of the 1-dimensional Lebesgue measure to the horizontal
segments [0, 1] × {y}, with y ∈ [0, 1]. But modp(L[0,1], H2) = 1 for every p ≥ 1, by
Lemma 3.2, even though H2(K) = 0.

3.6 Modulus and Minkowski sum. From the previous remark it follows that
the positivity of modulus of a family of translates K∗λ of a measure λ is not char-
acterized by the measure ν(K) of the set of translates. However, the example in
that remark may lead the reader to think that one may be able to characterize the
positivity of modulus (at least in R

n) in terms of the measure of the Minkowski sum
K +E, i.e. the union of the supports of y∗λ as y runs through K. We will show that
this is also not true. For this we will consider the middle thirds Cantor set C ⊂ [0, 1]
and the Bernoulli probability measure λ supported on C, and will show that there
are two sets of translates K1, K2 ⊆ [0, 1] and p ≥ 1 such that

modp(K1∗λ, H1) > 0 and modp(K2∗λ, H1) = 0

even though

K1 + C = K2 + C.

Let K1 = [0, 1] then clearly K1 + C = [0, 2]. Moreover, by Lemma 3.3 for every
p ≥ 1 we have

modp(K1∗λ, H1) ≥ H1([0, 1])
λ(C)p−1

= 1 > 0.
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Let K2 = C. It is well known that C +C = [0, 2], see e.g. [Ran40]. Next we show
that modp(K2∗λ, H1) = 0 for some values of p.

Lemma 3.6. Let C ⊂ I := [0, 1] be the middle-thirds Cantor set and λ be the
Bernoulli probability measure on C. Then for 1 ≤ p < log2 3 we have

modp(C∗λ, H1) = 0. (3.4)

Proof. To find modp(C∗λ, H1) we let

ρi = 2iχ[1− 1
3i ,1+ 1

3i ]

for every i ≥ 1. We will show ρi is admissible for C∗λ for every i ≥ 1. To see that, fix
a point y ∈ C and consider the measure y∗λ supported on y+C. Note, that 1 ∈ y+C,
since 1 − y ∈ C if y ∈ C. Next for i ≥ 1 let Ji denote the ith generation interval
of length 3−i used in the standard construction of the Cantor set, which contains
the point 1 − y. Then, by definition of λ we have that λ(Ji) = 2−i. Moreover, since
y + Ji contains the point 1 ∈ R we also have

y + Ji ⊂
[
1 − 1

3i
, 1 +

1
3i

]
.

Thus,

∫
ρid(y∗λ) = 2i(y∗λ)

([
1 − 1

3i
, 1 +

1
3i

])
≥ 2i(y∗λ)(y + Ji)

≥ 2iλ(Ji) = 2i2−i = 1,

where we used the fact that λ(Ji) = 2−i on every i’th generation interval Ji of the
Cantor set C. Thus ρi is admissible for C∗λ for every i ≥ 1, and we estimate the
modulus of C∗λ as follows

modp(C∗λ, H1) ≤
∫

C+C
ρp

i dH1 ≤
∫ 2

0

(
2iχ[1− 1

3i ,1+ 1
3i ]

)p
dH1 = 2

(
2p

3

)i
i→∞−−−→ 0,

if 1 ≤ p < log 3
log 2 . Thus, modp(C∗λ, H1) = 0 for p ∈ [1, log2 3). �

Remark 3.7. Lemma 3.3 can be generalized to the case where λ is a measure on
the semigroup Fν of ν-preserving transformations on a measure space (Y, ν). In the
above proof, instead of taking x, y ∈ G, one takes φ ∈ Fν , y ∈ Y , and integrates
accordingly, replacing yx with φ(y). We leave the details to the interested reader.
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3.7 Carnot groups and left translates. Lemma 3.3 allows us to generalize
Theorem 1.1 from Euclidean space to Carnot groups, as was discussed in Section
1.1. For the proof we also assume Theorem 1.2, which will be proven in Section 5.
We refer the reader to [HK00, Chapter 11] for definitions and background on Carnot
groups in the context of metric space analysis.

Theorem 3.8. Let G = (G, ·) be a Carnot group of homogeneous dimension Q >
1, equipped with its left invariant Carnot–Carathéodory metric. Suppose E ⊂ G is
a bounded q-Ahlfors regular set, 0 < q ≤ Q, and f : G → G is a quasiconformal
mapping. Then

dimHf(y · E) = dimHE, (3.5)

for HQ-a.e. y ∈ G.

Proof of Theorem 3.8. We first prove the theorem in the case when E is a bounded
set. Since the metric is left-translation invariant, the sets y · E are isometric to E,
and hence Ahlfors q-regular. Moreover, the Hausdorff measure HQ is positive and
locally finite, and left invariant. Since Carnot groups are unimodular (i.e., left and
right Haar measures coincide), HQ is right invariant as well (though see Remark 3.9
below).

Let K ⊆ G be the set of points y ∈ G for which Equation (3.5) fails. Since
left translations are isometries, the measures y∗Hq�E= Hq�y·E are all q-regular as
well. By Theorem 1.2, we have modQ/q({y · E : y ∈ K}, HQ) = 0. Applying Lemma
3.3 with G = G, ν = HQ, λ = Hq�E , and p = Q/q, we have that HQ(K) = 0 as
desired. �

Remark 3.9. In the preceding proof, we did not really need to use the fact that G is
unimodular. In any locally compact topological group, left and right Haar measures
are comparable on compact subsets, so that right Haar measure ν is locally Ahlfors
Q-regular. Theorem 1.2 easily generalizes to allow replacement of HQ with the locally
Q-regular measure ν, so that

modQ/q({y · E : y ∈ K}, ν) = 0.

Lemma 3.3 implies ν(K) = 0 as before, so using again the fact that ν and HQ are
locally comparable, one has HQ(K) = 0 as well.

4 General Versions of Non-Expansion

We begin with our most general (and technical) dimension distortion theorem, from
which all of our upper bounds on dimension distortion derive. We recall that Ld(X)
denotes the family of lower d-regular measures in X, and that we denote the support
of a measure λ ∈ Ld(X) by Eλ.
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Theorem 4.1. Let D > d > 0, and D′ > d′ > 0, with D
d ≥ D′

d′ . Suppose that μ is
an upper D-regular measure on a separable metric space X, and that f : X → Y is
a quasisymmetric embedding.

(1) If HD′�f(X) is locally finite, then for modD/d-almost every λ ∈ Ld(X), Hd′�f(Eλ)

is locally finite.
(2) If HD′

(f(X)) = 0, then for modD/d-almost every λ ∈ Ld(X), Hd′
(f(Eλ)) = 0.

By fixing the values of D and d and varying D′ and d′, we obtain the following
corollary.

Corollary 4.2. Let D > d > 0, and let μ, X, and f satisfy the assumptions of
Theorem 4.1. Then for modD

d
-almost every λ ∈ Ld(X),

dimHf(Eλ)
dimHf(X)

≤ d

D
. (4.1)

In particular, if modD/d(Ld(X)) > 0 as well, then there is a measure λ ∈ Ld(X)
satisfying (4.1).

Theorem 4.1 and Corollary 4.2 will be proven in Section 5. Readers interested
in analysis on metric spaces, particularly in terms of Newton–Sobolev theory, may
wish to keep in mind the special case of curve modulus. In this setting, integration
with respect to arc-length along a rectifiable curve γ : [0, l] → (parametrized by
arc-length) is the same as integration with respect to the push-forward of Lebesque
measure, γ∗(H1), which is easily seen to be a lower 1-regular measure. Since almost
every curve is locally rectifiable, we may apply Corollary 4.2 to curve families.

Corollary 4.3. Suppose that μ is an upper D-regular measure, D > 1, on a sep-
arable metric space X, and that f : X → Y is a quasisymmetric embedding. Then
for modD-almost every curve γ in X,

dimHf(γ) ≤ dimHf(X)
D

. (4.2)

Proof. For each locally rectifiable curve γ, the corresponding arclength measure λ
is lower-regular and γ = Eλ. Moreover, in this case d = 1, so inequality (4.1) of
Corollary 4.2 implies (4.2). �
If X is Ahlfors D-regular, we may apply Corollary 4.2 to the family Ad(X) of
bounded Ahlfors d-regular subsets of X, by letting μ = HD and observing that
{Hd�E}E∈Ad(X) ⊆ Ld(X). Note that in this case dimHE = d and dimHX = D, and
recall from the previous section that in this context, the notion of “almost every
d-regular set” is well-defined.

Corollary 4.4. Let D > d > 0, let X be Ahlfors D-regular, and let f : X → Y be
a quasisymmetric mapping. Then for modD/d-almost every S ∈ Ad(X),

dimHf(S)
dimHS

≤ dimHf(X)
dimHX

. (4.3)
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In particular, if Y is also D-dimensional, then modD/d-almost every S ∈ Ad(X)
satisfies

dimHf(S) ≤ dimHS. (4.4)

Proof. For each S, let λ be d-dimensional Hausdorff measure restricted to S, so
S = Sλ. Then Corollary 4.2 immediately implies (4.3). �
Remark 4.5. Inequality (4.3) may be thought of as a generalization of the fiber-
wise expansion estimate (1.18) for products. Indeed, if both (E, λ) and (F, ν) are
Ahlfors regular spaces then (X, μ) = (E × F, λ × ν) is also Ahlfors regular and we
may apply Corollary 4.4 with S = E ×{y}. Inequality (4.3) then will imply that for
modD/d-almost every E × {y}, or more precisely for modD/d-almost every λy like in
Section 3.4, the following holds

dimHf(E × {y})
dimHE × {y} ≤ dimHf(E × F )

dimHE × F
,

where as usual D is the dimension of X = E×F . Moreover, by Lemma 3.2, if F ′ ⊂ F
then the family {λy}y∈F ′ has positive modulus if and only if ν(F ′) > 0. Therefore
we obtain the following strengthening of (1.18):

ess sup
y∈F

dimHf(E × {y})
dimHE × {y} ≤ dimHf(E × F )

dimHE × F
, (4.5)

where ess sup is taken with respect to the measure ν on F . Thus, we obtain the
following generalized principle of “fiberwise expansion implies global expansion”: if
there is a set F ′ ⊂ F such that ν(F ′) > 0 and the fibers E × {y}, y ∈ F ′ have
their dimensions increased by f by a factor α ≥ 1, then the dimension of the whole
product E × F increases by at least a factor of α as well.

Remark 4.6. As mentioned before, an important part of Theorem 4.1 is the re-
laxation of the regularity conditions on the underlying space X as well as the
measure μ. Most significantly, we do not assume that μ is a doubling measure, i.e.
μ(B(x, 2r)) ≤ Cμ(B(x, r)) for all x ∈ X and r > 0. Instead, we assume only upper
regularity of μ. This relaxation is of paramount importance to the proof of Theo-
rem 1.5, as Frostman’s lemma only gives us upper regularity (see Remark 4.7 below
for further discussion of this). As a consequence, we cannot use the well known
“Bojarsky lemma”, which is usually used in similar situations when estimating the
modulus from above, see e.g. [Hei01, Theorem 15.10] or [HK95, Proposition 2.9].
Instead, our argument is more in the spirit of the proof of [Wil12, Theorem 1.2], in
that a supremum must be used in place of a summation when constructing admissi-
ble functions, see (5.1) below. This method, in turn, relies on the quasi-preservation
of annuli guaranteed by Lemma 2.7, and so our applications to quasiconformal maps
in the plane depend heavily on the equivalence between quasiconformality and qua-
sisymmetry.
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Remark 4.7. It is important to keep in mind the distinction between a doubling
metric space and a doubling measure on a metric space. It is easy to show that
a metric space with nonzero doubling measure must itself be doubling. Volberg
and Konyagin[VK88] proved that, conversely, compact doubling metric spaces ad-
mit doubling measures, and Luukainen and Saksman[LS98] extended this result to
arbitrary complete metric spaces.

On the one hand, in order to invoke Frostman’s lemma in the first place, F
must be Borel in its completion, and must be doubling as a metric space. Even so,
the conclusion of Frostman’s lemma only gives upper regularity for μ, and so even
though a doubling measure exists, we cannot assume that μ simultaneously has the
doubling property and the desired regularity.

5 Proofs of Theorems 1.2, 4.1 and Corollary 4.2

Proof of Theorem 4.1. We first observe that if the conclusions of the theorem hold
for d′, then they hold for every number larger than d′ as well, and so we may assume
with no loss of generality that D

d = D′

d′ .
To begin, we suppose U ⊆ X is bounded. Then f and f−1 are uniformly contin-

uous, and we may let ω(t) be a modulus of continuity for f−1.
Fix ε > 0, and let δ = ω(ε). Since HD′�f(X) is locally finite, we may choose balls

B′
i = B(yi, si) ⊆ f(X) ⊆ Y

such that
⋃∞

i=1 B′
i ⊇ f(U), each si < ε, and

∑∞
i=1 sD′

i ≤ HD′
(f(U)) + ε. By Lemma

2.7, there is at each point xi = f−1(yi) a radius ri < δ such that the balls Bi =
B(xi, ri) satisfy

B′
i ⊆ f(Bi) ⊆ f(10Bi) ⊆ η(10)B′

i,

where η is the distortion function for f .
Now, let

gδ(x) = sup
i∈N

sd′
i

rd
i

χ2Bi
(x), (5.1)

and for each M > 0, define the family LM
U,ε of measures λ ∈ Ld, whose supports Eλ

are distorted significantly, as follows

LM
U,ε := {λ ∈ Ld(X) | rλ > 2δ and Hd′

εη(10)(f(Eλ ∩ U)) > MCλ}, (5.2)

where Cλ and rλ are the constants in the definition of lower d-regularity (2.2).
Next, to estimate

∫
gδ dλ from below we let Iλ ⊆ N be the set of indices i such

that Bi ∩ Eλ �= ∅. By the basic covering lemma, there is a subset Jλ ⊆ Iλ such that
⋃

j∈Jλ

10Bj ⊇
⋃

i∈Iλ

2Bi ⊇ Eλ ∩ U,
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and for j1 �= j2, 2Bj1 ∩ 2Bj2 = ∅.
Since the balls 2Bj are disjoint, we have

∫
gδ dλ ≥

∫
sup
j∈Jλ

sd′
j

rd
j

χ2Bj
dλ =

∫ ∑

j∈Jλ

sd′
j

rd
j

χ2Bj
dλ =

∑

j∈Jλ

sd′
j

rd
j

λ(2Bj) ≥ 2d

Cλ

∑

j∈Jλ

sd′
j ,

where the last inequality holds because λ ∈ Ld.
Now, since sj < ε and

⋃

j∈Jλ

η(10)B′
j ⊇

⋃

j∈Jλ

f(10Bj) ⊇ f(Eλ ∩ U),

from the definition of LM
U,ε we obtain

∑

j∈Jλ

(η(10)sj)d′ ≥Hd′
εη(10)(f(Eλ ∩ U)) ≥ MCλ.

Combining the last two estimates we obtain
∫

gδ dλ ≥ 2d

Cλ

∑

j∈Jλ

sd′
j ≥ 2d

Cλ
· MCλ

η(10)d′ =
2dM

η(10)d′ . (5.3)

Therefore, if C = η(10)d′

2dM then Cgδ is admissible for LM
U,ε. Since μ is upper D-

regular, we can estimate the modulus of this family as follows:

modD/d(LM
U,ε) ≤ CD/d

∫
g

D/d
δ dμ = CD/d

∫
sup
i∈N

(
sd′
i

rd
i

χ2Bi

)D/d

dμ

≤ CD/d

∫ ∞∑

i=1

(
sd′
i

rd
i

χ2Bi

)D/d

dμ ≤ CD/d
∞∑

i=1

sD′
i

rD
i

μ(2Bi)

≤ CD/d2DCμ

∞∑

i=1

sD′
i ≤ CD/d2DCμ

(
HD′

εη(10)(f(U)) + ε
)

. (5.4)

We would like to let ε approach 0 in (5.4), so we have an estimate in terms of
HD′

(f(U)) rather than HD′
εη(10)f(U). For that note, that if ε1 > ε2 then LM

U,ε1
⊆ LM

U,ε2
.

Thus, if we define

LM
U =

∞⋃

n=1

LM
U, 1

n

,

then LM
U consists precisely of those measures λ ∈ Ld(X) for which

Hd′
(f(Eλ ∩ U)) > MCλ.

By Ziemer’s lemma (see Lemma 3.1) we have

modD/d(LM
U ) ≤ lim

n→∞ modD/d

(
LM

U, 1
n

)
,
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combining which with (5.4) we obtain the key modulus estimate

modD/d(LM
U ) ≤ η(10)

Dd′
d Cμ

HD′
(f(U))

MD/d
. (5.5)

To prove (1), note that if we define L∞
U =

⋂∞
k=1 Lk

U then L∞
U consists of all

the measures λ ∈ Ld(X) for which Hd′
(f(Eλ ∩ U)) = ∞. Therefore, from the

monotonicity of modulus and inequality (5.5) it follows that for every k ∈ N we have

modD/d(L∞
U ) ≤ modD/d(Lk

U ) ≤ η(10)
Dd′

d Cμ
HD′

(f(U))
kD/d

.

In particular, if HD′
(f(U)) < ∞ then

modD/d(L∞
U ) = modD/d{λ ∈ Ld(X) | Hd′

(f(Eλ ∩ U)) = ∞} = 0. (5.6)

Finally, by countable subadditivity of modulus and of Hausdorff measure, along with
the separability of X, we obtain (1) from (5.6).

To prove (2) let L0
U =

⋃∞
k=1 L1/k

U . Note that L0
U consists of those measures λ ∈

Ld(X) for which Hd′
(f(Eλ∩U)) > 0. If HD′

(f(U)) = 0 then by (5.5) mod(L1/k
U ) = 0

for every k ∈ N and therefore by the countable subadditivity of modulus we obtain
that

modD/d(L0
U ) = modD/d{λ ∈ Ld(X) | Hd′

(f(Eλ ∩ U)) > 0} = 0. (5.7)

Finally, again we obtain (2) from (5.7) by using the countable subadditivity of mod-
ulus, of Hausdorff measure and the separability of X. �
Remark 5.1. As noted before, one of the most important features of the proof of
Theorem 4.1 is the construction of the admissible function gδ by the formula (5.1),
which allows us to prove the key inequality (5.5) without assuming that μ is a
doubling measure. This is similar to the arguments of Williams [Wil12].

Proof of Corollary 4.2. To prove inequality (4.1), we suppose that D′ > dimH(f(X)),
and that D

d = D′

d′ . Then by part (2) of Theorem 4.1, we know that for modD/d-almost
every λ ∈ LE , Hd′

(f(Eλ)) = 0, and so dimH(f(Eλ)) ≤ d′, whereby

dimH(f(Eλ))
dimH(f(X))

≤ d′

dimH(f(X))
.

Since this holds for D′ = dimH(f(X)) + 1
n for each n, we obtain by countable

subadditivity that for modD/d-almost every λ ∈ Ld(X),

dimH(f(Eλ))
dimH(f(X))

≤ d′

D′ =
d

D
. �
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Proof of Theorem 1.2. In light of Theorem 4.1, we only need to show that dimf(E) ≥
d for modD/d-almost every E ∈ Ad(X). We shall actually show more, namely, that
Hd(f(E)) > 0 for almost every E.

When d = D the theorem follows immediately from condition N−1. Suppose
then that d < D. Let Lf−1(y, r) = supy′∈B(y,r) d(f−1(y′), f−1(y)), and Lf−1(y) =

lim supr→0
Lf−1 (y,r)

r . Quasisymmetry implies that Lf−1(y)D � Jf−1(y) < ∞, at al-
most every y ∈ Y . Here

Jf−1(y) := lim sup
r→0

HD(f−1(B(y, r)))
HD(B(y, r))

=
df∗HD�X

dHD�Y

is the volume derivative of f−1.
Condition N−1 implies that at almost every x ∈ X, we have Lf−1(f(x)) < ∞.

Egorov’s theorem then gives sets Aε, with HD(X\Aε) < ε, on which Lf−1 (f(x),r)

r is
uniformly bounded for all x ∈ Aε and r < Rε. It follows that the restriction f−1|f(Aε)

is locally Lipschitz.
Now let A =

⋃
ε>0 Aε. Since HD(X\A) = 0, D/d-almost every measure λ satisfies

λ(X\A) = 0 (this is easy to see by taking the admissible function ρ = ∞ · χX\A

for the exceptional family). It follows that D/d-almost every E ∈ Ad(X) satisfies
Hd(E ∩Aε) > 0 for some ε. Since f−1|f(Aε) is locally Lipschitz, we have Hd(f(E)) ≥
Hd(f(E ∩ A)) > 0, and the theorem is proved. �

6 Products and the Proof of Theorem 1.5

To apply Frostman’s lemma in the proof of Theorem 1.5, we need the next lemma,
which follows quickly from a similar result in [BMT13], see Lemma 3.1 in that paper.
Though the statement there is restricted to maps from Euclidean spaces, the proof
uses no metric properties of the domain, employing only the fact that R

m+n =
R

m × R
n is equipped with the product topology. Hence it applies in our setting as

well. We give the argument from [BMT13] here for the reader’s convenience.

Lemma 6.1. Let E and F be topological spaces, with E σ-compact, let Z be a
metric space, and let f : E × F → Z be continuous. Then for each s ≥ 0, the set

F s = {y ∈ F : dimH(f(E × {y})) > s}
is a Borel set.

Proof. Suppose first that E is compact. It suffices to show that for each t ≥ 0 and
ε > 0 the set

F t
∞,ε = {y ∈ : Ht

∞(f(E × {y})) ≥ ε}
is closed, since F s =

⋃
t>s

⋃
ε>0 F t∞,ε. To this end, let y ∈ F\F t∞,ε. Then there is a

sequence of open balls B(zi, ri), with each zi ∈ Z, and with
∑∞

i=1 rs
i < ε, such that
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f(E × {y}) ⊂
∞⋃

i=1

B(zi, ri),

or equivalently,

E × {y} ⊆
∞⋃

i=1

f−1(B(zi, ri)).

By the continuity of f ,
⋃∞

i=1 f−1(B(zi, ri)) is open, so by the compactness of E,
there is an open set U � y such that

E × U ⊆
∞⋃

i=1

f−1(B(zi, ri)),

so that U ⊆ F\F t∞,ε. Thus F\F t∞,ε is open, whereby F t∞,ε is closed as desired.
Finally, suppose E =

⋃∞
i=1 Ei, with each Ei compact. Then F s =

⋃∞
i=1 F s

i , where

F s
i = {y ∈ F : dimH(f(Ei × {y})) > s}.

Since these sets are Borel by the compact case of the lemma, F s is Borel as well. �
Proof of Theorem 1.5. The theorem is trivial if d′ = D′. We also observe that since
quasisymmetric maps are uniformly continuous on bounded sets, they extend to the
completions of the spaces on which they are defined. We may therefore assume that
d′ < D′ and that E and F are complete. Note that d-regularity implies the doubling
property, so that E is a complete doubling metric space. As such, E is proper (balls
are compact), and a fortiori σ-compact.

Let D = d
d′ D′, and Fd′ = {y ∈ F : dimHf(E × {y}) > d′}. Suppose by way of

contradiction that
H d

d′ D′−d(Fd′) > 0. (6.1)

By Lemma 6.1, Fd′ is Borel set. Thus it follows from Frostman’s lemma that
there is a nonzero upper (D − d)-regular measure ν on Fd′ .

Since E (and hence Hd) is d-regular, the measure μ = Hd × ν is upper D-regular
on X = E×Fd′ , and so by Lemma 3.2, we have that modD/d

({Hd�E×{y}: y ∈ Fd′}) >
0. From this and Corollary 4.2 (which applies by the lower regularity of each measure
Hd�E×{y}), we then conclude that there is some y ∈ Fd′ such that

dimHf(E × {y}) ≤ d

D
D′ = d′,

contradicting the definition of Fd′ . �
Proof of Corollary 1.6. Let d′ < infy∈F dimHf(E ×{y}), and D′ = dimH(f(E ×F )).
Using the notation of the preceding proof, we have that F = Fd′ , and so by Theorem
1.5, we obtain

H d

d′ D′−d(F ) = 0,

so that dimH(F ) ≤ d
d′ D′ − d.
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Since E is Ahlfors d-regular, the packing dimension of E is equal to its Hausdorff
dimension (see Theorem 6.13 of [Mat95]). Therefore we also have (see e.g. Corollary
8.11 of [Mat95]) that

dimH(E × F ) = dimHE + dimHF ≤ d

d′ D
′,

whereby

d′ ≤ dD′

dimH(E × F )
=

dimH(f(E × F ))
dimH(E × F )

· dimH(E).

Since this holds for every d′ < infy∈F dimHf(E × {y}), the proof is complete. �

7 Proofs of Theorem 1.7 and Corollary 1.8

Proof of Theorem 1.7. For 0 < t < 1, let α = 2−1/t, and let S be the Cantor set
given by a standard iterative construction that starts with I0 = [0, 1] and replaces
each nth generation interval I with two (n + 1)st generation intervals of length α|I|
and distance 1

3(1 − 2α)|I| from each other and from the endpoints of I. It is easy to
check that dim(S) = t. The proof is somewhat cleaner when we restrict to the case
that α−k is an integer for some positive integer k (which may depend on α). Note
that this holds whenever t ∈ Q. The proof in the general case follows the same idea,
with a few technical modifications, described in the ensuing Remark 7.4. Taking
α−k = N , we have N t = 2k. By taking multiples of k, we may assume N is as large
as we wish.

The basic building block in the construction of f is a quasiconformal map of the
unit square Q = [0, 1]2,

Φ: [0, 1]2 → [0, 1]2. (7.1)

Let {Ij}, j = 1, . . . , 2k be the kth generation covering intervals of S, each of which
has length αk = 1

N , and let Rj = [0, 1] × Ij be rectangles with their short edges on
the vertical sides of Q. Note that each of these is isometric to the 1 × 1

N rectangle

R = {(x, y) ∈ R
2 : 0 < x < 1, 0 < y < 1/N}.

The map Φ will be conformal on each of these rectangles and will be quasiconformal
on the rest of Q. Our construction also gives that Φ is the identity on the top and
bottom edges of Q and it is symmetric with respect to the vertical bisector of Q,
so Φ(1, y) = Φ(0, y) + (1, 0) on the vertical sides of Q. This means that Φ can be
extended to a quasiconformal map of the whole plane by simply mapping each square
Q + (n, m) to itself by (x, y) → Φ(x − n, y − m) + (n, m).

The map Φ is constructed by specifying a generalized quadrilateral T ⊂ Q (T
for “tube”) that has two opposite sides on the vertical sides of Q and conformal
modulus N (the same as R). This means there is a conformal map

φ : R �→ T
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that maps vertices to vertices. This map is used to define a conformal map of each
Rj to a translate Tj of T that connects the left and right sides of Q. The tubes Tj

will have disjoint closures that do not hit the top and bottom edges of Q and so the
complement of these tubes in Q are 2k +1 regions. We define a quasiconformal map
from each component of Q\ ∪j Rj to the corresponding component of Q\ ∪j Tj so
that it extends the mapping on each Rj , is the identity on the top and bottom edges
of Q and is symmetric on the vertical edges of Q. The quasiconformal constant K
of this map depends on the geometry of and spacing between the Tj , but is finite
for the examples we will build.

The tube T will be constructed so that

|φ′| ≥ C1N
1−t

2 , (7.2)

on all of R and with some constant C1 > 0 that is independent of k and N . First we
use this estimate to finish the proof of the theorem, and then we construct a tube
for which this estimate is true.

Let f1 = Φ. The rectangle R has an obvious decomposition into N squares of
side length 1/N . Define a map f2 : Q → Q as the identity outside ∪jRj and inside
each Rj use a scaled version of Φ to map each subsquare of Rj to itself. In general,
fn : Q → Q is defined as the identity off the 2nk rectangles corresponding to the
intervals of generation nk covering S and is defined using a scaled copy of Φ on the
Nn squares, of sidelength αnk = N−n, making up each such rectangle. Then

gn = f1 ◦ · · · ◦ fn

is quasiconformal with constant K (at most one map in the composition is non-
conformal when applied to any point). Thus, the limiting map is also K-
quasiconformal, and we finally define f as follows,

f = lim
n→∞ gn = lim

n→∞ f1 ◦ · · · ◦ fn.

Moreover, on every generation nk square Q̃ in one of the scaled copies of R, f
restricts to a map of the square onto itself, followed by a succession of n conformal
maps, each satisfying inequality (7.2). We therefore have, for every generation nk
square Q̃ in a scaled copy of R, the estimate

diam(f(Q̃)) ≥ Cn
1 Nn( 1−t

2
)diam(Q̃) = Cn

1 N−n( 1+t

2 ). (7.3)

Since C1 does not depend on our choice of N , we may suppose as well that N was
chosen large enough so that C1 ≥ N−( ε

1−ε
)( 1+t

2
), whereby

diam(f(Q̃)) ≥ N
−n

(
1+t

2(1−ε)

)

.

Consider a Borel subset A ⊆ R×S, and let δ < dimH(A). By Frostman’s lemma,
there is a positive measure μ supported on A such that

μ(Q̃) ≤ Cμ(diamQ̃)δ = CμN−nδ.
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Let ν = f#μ be the pushforward measure, and let s = 2δ
(t+1)(1 − ε). Then for every

generation nk square Q̃ in a scaled copy of R,

diam(f(Q̃))s ≥ N
−ns

(
1+t

2(1−ε)

)

= N−nδ ≥ C−1
μ μ(Q̃) = C−1

μ ν(f(Q̃)). (7.4)

Next, note that every ball B = B(x, r) in R × S can be covered by a uniformly
bounded number of generation nk squares of comparable diameter in the scaled
copies of R. Indeed, choose the smallest n ∈ N so that N−n ≥ 2r. Then B intersects
at most 2 rectangles of width N−k and thus at most 2k rectangles of width N−(k+1).
Since each rectangle contains N squares, we can cover B by L = 2k · 2N squares Q̃
of side length N−(k+1). Since diam(Q̃) < r by Lemma 2.8, dim(f(A)) ≥ 2δ

(t+1)(1− ε).

Since this holds for arbitrary δ < dimH(A), we obtain dim(f(A)) ≥ 2dimH(A)
(t+1) (1 − ε).

We are now done, except we must build a tube T ⊂ [0, 1]2 that has the proper
estimate on the conformal map to a rectangle.

The “Tube” construction. As before, let N = α−k. The 1 × 1
N rectangle R is

divided into N disjoint squares and there are 2k such rectangles. Since α < 1
2 , we

have N � 2k when k is large. Let

m =

⌊√
N − 1
2k−1

⌋
,

so that
1
2
N ≤ M = m22k−1 + 1 ≤ N,

if N is large enough.
We start by constructing a large copy of the tube T , which we will denote by

T . Consider the (2km + 1) × m rectangle W shown in Figure 1. The shaded (dark
and light grey) unit area squares in W form a tube T that connects the two vertical

Figure 1: The first version of the “large” tube T ⊂ W is made up of M = m22k−1+1 shaded
squares forming a connected subset of a m × (2km + 1) grid. Here we have taken k = 2 and
m = 10. The dark grey squares make up the pattern, which when repeated periodically
m2k−2 times, forms T , except for the “last” or rightmost sub-square which is adjacent to the
right edge of W
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sides of W . More precisely, denoting by Qp,q the square [p − 1, p] × [q − 1, q] in the
plane, the tube T is obtained by considering the union of 2m (dark grey) squares

Q1,m−1; Q2,m−1, . . . , Q2,1; Q3,1; Q4,1, . . . , Q4,m−1,

repeating this pattern periodically m·2k−2 times (k ≥ 2) and attaching the rightmost
square Qm2k+1,m−1. Alternatively, we may write the tube T as follows

T =
m·2k−2−1⋃

i=0

Q4i,m−1 ∪ (Q4i+1,m−1 ∪ · · · ∪ Q4i+1,1)

∪
m·2k−2−1⋃

i=0

Q4i+2,1 ∪ [Q4i+3,1 ∪ · · · ∪ Q4i+3,m−1] ∪ Qm2k+1,m−1.

Let M be the number of disjoint subsquares in T , which is also the area of T .
Note, that the number of the subsquares of T , which do not intersect the right side
of W is exactly the half of the subsquares of W , which do not intersect its right
side. Indeed, for each column of the grid containing only one square in T , move
that square to the top row of the next column to the right. This gives a sequence of
alternating “full” and “empty” columns, see Figure 1. Since there are m subsquares
of W in any column, we have

M − 1 =
H2(W ) − m

2
=

m × (2km + 1) − m

2
= m2 · 2k−1.

Therefore, M = m2 · 2k−1 + 1.
We think of T as a generalized quadrilateral with two sides (the “short sides”)

on the vertical sides of W and two other sides (the “long sides”) that connect the
vertical sides of W .

Up to a similarity, the region T is almost the tube we want, but it is convenient
to “round the corners” as shown in Figure 2. Rounding the corners will imply that
the derivative of the conformal map of a rectangle R (of the same modulus as T )
to T (as well as to the final tube T ) is everywhere comparable to the ratio of the
widths of R and T , as is demonstrated in Lemma 7.2 below. Next, we carry out this
procedure in more detail.

Let γ be the “core curve” which connects the midpoints of the short sides of T .
More precisely, if Qi is not a “corner subsquare” of T then γ ∩ Qi is a horizontal
or vertical interval in Qi connecting the midpoints of opposite sides. On the other
hand, if Qi is a “corner subsquare” then γ ∩ Qi is the arc of the circle of radius 1/2
connecting the midpoints of two adjacent sides of Qi, see Figure 2.

For 0 < w ≤ 1 we denote by Tw the intersection of T and the w/2-neighborhood
of γ. Thus Tw is a tube around γ of “width” w. Moreover, for w < 1 the long sides
of Tw are C1+α curves for every α < 1, since they are differentiable curves consisting
of line segments and circular arcs. Next, we will show that w can be chosen so that
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Figure 2: The tube Tw has rounded corners, so that the conformal map to the tube from
the rectangle of the same modulus has a “nice derivative” (the minimum and maximum
expansion have bounded ratio). Moreover, Tw has a smaller width w; this increases the
modulus of the family connecting the two long edges of the tube. By “thinning” the tube
we can make its modulus exactly what we want. Since we start within a factor of 4 of the
desired modulus, only a bounded amount of thinning is needed. The darker rectangles in
“non-corner” squares are used to estimate the modulus from below

Tw is conformally equivalent to the 1 × 1/N rectangle R. For that we will need the
following lemma.

Lemma 7.1. For w ∈ (0, 1] let Γw be the path family connecting the long sides of
Tw. Then we have the following estimates

M − 2km

w
≤ mod2Γw ≤ l(γ)

w
<

M

w
, (7.5)

where l(γ) is the length of γ. In particular if 2km < M/2 then for w = 1 we have

1
2
M ≤ M − 2km ≤ mod2Γ1 < M. (7.6)

Proof. To prove the right hand side of (7.5), take the constant metric ρ ≡ w−1 on
Tw. Since every path connecting the long sides of Tw has length ≥ w, we see that ρ
is admissible for Γ. Hence,

mod2Γ ≤
∫

T
w−2dxdy =

H2(Tw)
w2

≤ l(γ)w
w2

=
l(γ)
w

.

To prove the left hand inequality of (7.5) consider all the “non-corner” squares in T .
Note that there are 2km “corner” squares and therefore only M −2km “non-corner”
squares, and we denote them by Qi, i = 1 . . . , M − 2km. For each such “non-corner”
square Qi let Γw

i be the subfamily of paths in Γw contained in Qi. Note, that the
paths in Γw

i connect the opposite sides of the rectangle Qi ∩ Tw of length 1 and
therefore mod2(Γw

i ) = 1/w. Since Γw
i ’s are disjoint families, we have

mod2(Γw) ≥ mod2

⎛

⎝
M−2km⋃

i=1

Γw
i

⎞

⎠ =
M−2km∑

i=1

mod2(Γw
i ) =

M − 2km

w
. �
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Note, that mod2(Γw) changes continuously with w and by (7.5) can be made
as large as desired by taking w small enough. Thus, there is a w0 > 0 such that
mod2(Γw0) = N . Moreover, from (7.5) it follows that for w1, w2 ∈ (0, 1] we have

1
2

mod(Γw2)
mod(Γw1)

≤ w1

w2
≤ 2

mod(Γw2)
mod(Γw1)

.

In particular, from (7.6) we obtain

1
4

≤ 2−1M

N
≤ w0 < 1

and the width of the thinner tube is comparable to the width of the original tube.
Slightly abusing the notation, we let T denote the large rounded, thinned tube

Tw0 of modulus N and finally define the tube T by

T = σ(T )

where σ is the similarity of the plane

σ(x, y) = (m2k + 1)−1(x, y).

Therefore T is a copy of T which connects the vertical sides of Q and intersects
only M subsquares of [0, 1]2 of sidelength (2km + 1)−1.

Take the unit square Q = [0, 1]2 and subdivide it into (2km + 1)2 disjoint
subsquares of side length (2km + 1)−1, grouped into 2k rectangles of dimension
(2km + 1) × m and the single (2km + 1) × 1 strip at the bottom. See Figure 3.

Inside each rectangle, place a (shifted up) copy of the tube T . These are the Tj ’s
mentioned earlier. Finally, we show in Lemma 7.2 that the conformal map from Rj to
Tj (mapping vertices to vertices), or equivalently the map φ : R → T has derivative

Figure 3: On the left is Q and the shaded rectangles Rj . On the right are the tubes Tj (we
have omitted the rounding and thinning to make the picture simpler). Each Rj is conformally
mapped to the corresponding Tj (they have the same modulus, so we can send vertices to
vertices) and we quasiconformally extend these maps to map of Q onto itself that is the
identity on the top and bottom edges and is symmetric on the left and right edges (the tubes
are symmetric with respect to the vertical bisector of Q, so this is possible)
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everywhere comparable to width(T )
width(R) . But, since N t = 2k and thus m �

√
N
2k = N

1−t

2

it follows, that

|φ′| � width(T )
width(R)

=
w0(2km + 1)−1

N−1
� N

2km
� N

N tN
1−t

2

= N
1−t

2

thus completing the proof of Theorem 1.7 (except for the proof of Lemma 7.2).

Lemma 7.2. The conformal map φ : R → T taking the vertices of R to vertices of
T , has a derivative that is everywhere comparable to the width of T divided by
the width of R, i.e.

|φ′(z)| � width(T )
width(R)

. (7.7)

Proof. We will show that the absolute value of the derivative of φ−1 : T → R is
comparable to width(R)

width(T ) everywhere in T .
Using complex notation we consider the linear maps

sT (z) = σ−1z = (2km + 1)z =
w0

width(T )
z, sR(z) =

1
width(R)

z = Nz

and note that if we define

ψ = sR ◦ φ−1 ◦ s−1
T ,

then ψ maps the large rounded tube T onto a rectangle of width 1 and we have the
following expression for the derivative of φ,

|(φ−1)′|= |(s−1
R ◦ ψ ◦ sT )′|= |(sR)′|−1|ψ′||(sT )′| = w0

width(R)
width(T )

|ψ′| � width(R)
width(T )

|ψ′|.

Thus, to obtain the estimate (7.7) it is enough to show that if ψ is the conformal
mapping of T onto a rectangle of width 1, taking vertices to vertices, then we have
that |ψ′| � 1 everywhere in T .

Now, the conformal map ψ from the tube T to the rectangle of width 1 can be
extended by Schwarz reflection across the “short ends” of the tube and rectangle to a
map ψ̃ from an infinite tube T̃ of width w0 to the infinite strip S = {x+ iy : 0 < y <
1}. Assume we have done this (to avoid separate arguments near the short ends).
The Koebe 1

4 -theorem, cf. [GM05] Corollary 4.4, then implies that a conformal map
ψ̃ : T̃ → S has derivative

|ψ̃′(z)| � dist(ψ̃(z), ∂S)
dist(z, ∂T̃ )

,

so it suffices to prove that the right hand side is uniformly bounded and bounded
away from zero.
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Let v be the imaginary part of ψ̃; it is a harmonic function on the infinite tube
T̃ with boundary values v = 1 on one boundary component (call it X1) and v = 0
on the other (call it X0). Then dist(ψ̃(z), ∂S) = min(v(z), 1 − v(z)) and it suffices
to prove the following implications:

dist(z, X0) → 0 =⇒ v(z) � dist(z, X0) (7.8)
dist(z, X1) → 0 =⇒ 1 − v(z) � dist(z, X1). (7.9)

We will prove (7.8) in detail; the estimate (7.9) follows from an essentially identical
argument.

To prove (7.8) we will show that for any point x ∈ X0 there exist functions ζx

and ξx defined on the segment Ix which passes through x and is orthogonal to ∂T
such that for all z ∈ Ix we have

ζx(z) ≤ v(z) ≤ ξx(z), (7.10)

and such that as dist(z, X0) � 0 the following estimates hold with constants inde-
pendent of x ∈ X0,

dist(z, X0) � ζx(z), (7.11)
ξx(z) � dist(z, X0), (7.12)

thus implying (7.8).

Figure 4: On the left are the domains of definition of ξ and ζ and their boundary values. A
special boundary point is marked with a white dot. Explicit computations show that ξ and
ζ vanish at this point and grow almost linearly on the interior segment normal to this point.
The dashed lines show level lines of the two functions. The righthand side of the figure shows
how these domains can be positioned with the special point at any boundary point of the
tube; this shows that v has the correct estimate on every normal segment crossing the tube,
hence on the whole tube
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The functions ξx and ζx will be the “transported versions” of harmonic functions
ξ and ζ which we define next, see also Figure 4.

First, let A =
{
z ∈ C : 1−w0

2 < |z| < 1+w0
2

}
, and define ξ : A → R to be the

harmonic function in A with boundary values

ξ(z) =

{
0 for |z| = 1−w0

2 ,

1 for |z| = 1+w0
2 .

(7.13)

The function ξ can be explicitly written as ξ(z) = (log 1+w0
1−w0

)−1log 2|z|
1−w0

. Then, as
z ∈ A approaches 1−w0

2 along the real axis, we have the estimate ξ(z) � dist(z, 1−w0
2 ),

which follows from the fact that the partial derivative of ξ at 1−w0
2 with respect the

first coordinate is positive [this is clear from the construction, but could also be
checked using the formula for ξ(z) given above].

Now, for a fixed x ∈ X0 there is a unique isometry rx of the plane such that
rx(1−w0

2 ) = x (i.e. the special point of A is mapped to x ∈ X0), and the circle
rx({|z| = 1−w0

2 }) is tangent to X0 at x ∈ X0 and is located outside of the (open)
tube T̃ . We denote Ax = rx(A) and define the harmonic function ξx on Ax by
ξx = ξ ◦ r−1

x . Then

v ≤ 1 = ξx on ∂Ax ∩ T̃

v = 0 ≤ ξx on ∂T̃ ∩ Ax,

therefore v ≤ ξx on the whole boundary of Ax ∩ T̃ . By the maximum principle,
v ≤ ξx on Ax ∩ T̃ , which give one side of (7.10).

From the behaviour of ξ near the special point 1−w0
2 = r−1

x (x) of A, we have that
as z approaches x along the normal segment to X0 the following estimates hold

ξx(z) = ξ(r−1
x (z)) � dist(r−1

x (z), r−1
x (x)) = dist(z, x) = dist(z, X0).

Therefore (7.11) holds as z approaches ∂X along the normal segment Ix and the
constants are independent of x, since they depend only on ∂1ξ(1−w0

2 ) (here ∂1 denotes
the partial derivative in the first coordinate).

To obtain the left hand inequality in (7.10) we define the second function ζ on
the cusped region B = {|z| < 1+w0

2 }\D0 where D0 is the (closed) disk of radius
(1−w0)/2 that is tangent to the outer circle at the point 1+w0

2 ∈ C and is contained
in {|z| < 1+w0

2 }. We set ζ to be the harmonic function on B such that ζ = 0 on
the boundary of the larger disk and ζ = 1 on the boundary of the smaller disk.
The dashed curves are circles and show the level lines of ζ. In Figure 4, the special
boundary point −1+w0

2 ∈ ∂B is marked as a white dot; it is opposite to the point
where the two boundary circles are tangent.

The function ζ can be computed explicitly by mapping the cusp region to the infi-
nite strip {0 < y < 1} by a Möbius transformation and the estimate ∂1ζ(−1+w0

2 ) > 0
clearly holds in this case as well. Indeed, since ζ is a Möbius transformation the
complex derivative ζ ′ (hence also partial derivatives) does not vanish in C. Also
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ζ(−1+w0
2 ) = 0 and ζ(z) > 0 for z ∈ B, so ∂1ζ is not negative at −1+w0

2 . Therefore
we have the ζ(z) � dist(z, −1+w0

2 ) as z approaches −1+w0
2 along the real axis.

Just like before, for x ∈ X0 there is an isometric copy Bx of the region B (i.e.
Bx = sx(B) where sx is an isometry of the plane), such that Bx ∩ T̃ �= ∅ and Bx is
tangent to T̃ at its special point s(−1+w0

2 ) = x ∈ X0. Next, defining ζx on Bx by
ζx = ζ ◦ s−1

x , we obtain that the boundary circle where ζx = 1 lies outside T̃ on the
other side of X1 (the boundary component of T̃ where v = 1). As above, it is easy
to check that ζx ≤ v on the intersection Bx ∩ T̃ and in particular, this is true for z
which are on the normal segment to X0 at x, which proves completely (7.10).

Finally, the estimate ζx(z) � dist(z, X0) is obtained from the corresponding
estimate for ζ(z) the same way as (7.11) followed for ξx.

Thus we proved (7.10)–(7.12) which in turn imply (7.8). The argument for (7.9)
that 1 − v(z) � dist(z, X1) is identical to the one above, so this proves the lemma.

As mentioned before, this completes the proof of Theorem 1.7.

Remark 7.3. The rounding of the tube T in the proof is not actually necessary. If
we leave the corners of T then the derivative of the conformal map of R to T will
tend to zero or ∞ at the corners, but will have uniform bounds on any subregion
that is bounded away from the corners. The next generation of the construction will
take place inside such a sub-region, and so the proof of the theorem would work
even without rounding the corners (however, rounding is easy and gives a cleaner
estimate).

Remark 7.4. The case when t is irrational follows from the rational case considered
above. Indeed, suppose 0 < t < 1 and ε > 0 are like in the statement of Theorem
1.7, and t is irrational. Then we may choose t < t′ < 1 and ε′ > 0 with t′ ∈ Q so
that

1 − ε′

t′ + 1
≥ 1 − ε

t + 1
,

e.g. if ε is small enough we may take t′ = t + ε(1 + t) and ε′ ≤ ε2. By the case
considered above there is an Ahlfors-t′ regular Cantor set S′ ⊂ R, such that for
every Borel subset A of R × S′ we have

dimHf(A)
dimHA

≥ 2(1 − ε′)
t′ + 1

≥ 2(1 − ε)
t + 1

.

Now, by a theorem of Mattila and Saaranen [MS09] there is an Ahlfors-t regular
subset S ⊂ S′, since t < t′. Thus, considering Borel subsets A of R × S ⊂ R × S′

completes the proof for the irrational values of t.

Proof of Corollary 1.8. Let d′ and η be as in the statement of the corollary. Without
loss of generality assume that 1 < d′ < 2. Let d = 2

d′ −1−η. Then 2
d+1 = d′

1− ηd′
2

> d′,

and we may therefore choose ε > 0 so that 2
d+1 − ε > d′.
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Theorem 1.7 implies that for every 0 < d < 1 there is a d-regular Cantor set
S ⊆ R and a quasiconformal mapping f of R2 satisfying inequality (1.14). That is,
for every y ∈ S,

dimHf(I × {y}) ≥ 2
d + 1

− ε > d′,

so that {y ∈ R : dimHf(I × {y}) > d′} ⊇ S. Since dimHS = d, it follows that

dimH{y ∈ R : dimHf(I × {y}) > d′} ≥ dimH(S) = d =
2
d′ − 1 − η. �

8 Proof of Theorem 1.9

Proof of Theorem 1.9. The idea is quite simple. We start by mapping horizontal
tubes to nearly horizontal tubes that oscillate. Inside these, we build thinner tubes
that oscillate on a smaller scale, and continue by induction, obtaining in the limit
a Cantor set of curves each of which oscillates at infinitely many scales, hence has
no rectifiable subarc. Using sufficiently many sufficiently thin tubes we can keep the
quasiconstant bounded while making the Hausdorff measure as large as we want.

The proof is essentially a sequence of pictures. First, choose a diffeomorphism φ
of the unit square Q = [0, 1]2 to itself of the form φ(x, y) = (x, ψ(x, y)) that is the
identity on the boundary, and translates the vertical segment V = {1

2} × [14 ,
3
4 ] up

by 1/8 to the segment {1
2}× [38 ,

7
8 ]. Thus segments of the form Sy = [0, 1]×{y} ⊂ Q

have curved images with the same endpoints as Sy, but deviate by at least 1
8 from

Sy for y ∈ [14 ,
3
4 ]. See Figure 5.

Let γ = φ(Sy) for y ∈ [14 ,
3
4 ]. Choose a large integer n and divide γ into subcurves

with endpoints zk = (xk, yk) where x = k
n , k = 0, 1, . . . , n. Let γn be the polygonal

path with these vertices. At each zk, k = 1, . . . , n−1, draw a segment perpendicular
to and above γ whose length is the same as the (k − 1)st segment in γn. The other
endpoint is denoted wk. Let γ̃ be the polygonal curve with vertices w0, . . . , wn. See
Figure 6.

Figure 5: Choose a smooth self-map of Q that is the identity on ∂Q, but causes horizontal
segments near the middle of Q to bend by a definite amount



GAFA QS DISTORTION OF AHLFORS REGULAR SUBSETS 415

Figure 6: We inscribe a polygonal curve γn in γ and add perpendicular segments. We then
connect the new vertices to form a path γ̃n that is almost parallel to γn

~1/n

Figure 7: Two adjacent squares are mapped to adjacent quadrilaterals that are almost
squares [with error O(1/n)]

Figure 8: Piecewise linear maps define a 1 + O( 1
n )-QC map from a rectangle to a tube

The reason we defined γ̃n as we did (and did not simply translate γn upwards),
is so that the region between the curves can be divided into quadrilaterals that are
very nearly squares. We will denote this region Tn and call it a “tube”. Since γ is
a smooth curve, adjacent segments of γn have angles that agree to within O(1/n);
thus adjacent perpendicular segments have angles that agree to within O(1/n). Thus
each of the quadrilaterals formed by γn, γ̃n and the segments joining their vertices
have all angles within O(1/n) of 90 degrees. See Figure 7.

By adding diagonals and using the unique piecewise linear map between corre-
sponding triangles, we get a quasiconformal map from a true square to each of our
quadrilaterals with dilatation bounded by O(1/n). Piecing these together gives us a
map from a 1 × 1

n rectangle to our tube Tn. See Figure 8.
By repeating the construction we can map several parallel straight tubes to

several curved tubes as in Figure 9. We assume there are �n tubes, all have width
�1/n and are vertically separated by �1/n. This, combined with the fact that
the edges of the tubes have bounded slope, implies that the piecewise linear map
previously defined on the union of tubes can be extended to a quasiconformal map
f̃n of Q to itself with uniformly bounded constant K (independent of n).
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Figure 9: Repeat the construction on several parallel tubes

Now we must repeat the construction at smaller scales, without letting the di-
latations blow up. However, this is quite simple. We construct a Cantor set as before,
with nested families I1 ⊃ I2 ⊃ . . . of intervals.

For any I ∈ Ik, define a subcollection of �nk+1 sub-intervals in the middle half of
I that have length |I|/nk+1 and are separated from each other by at least |I|/nk+1.
Doing this for each I ∈ Ik defines Ik+1.

Now, let Rk = {[0, 1] × I : I ∈ Ik} be the family of kth generation rectangles.
Each of these may be divided into squares, on which we apply a scaled copy of the
map f̃nk+1 , to obtain a K-quasiconformal map of Q to itself, which restricts to the
identity on Q\⋃ Rk, and is 1 + O( 1

nk+1
)-QC on

⋃ Rk+1. Denote this map by fnk
.

Now, let gk = fn1 ◦ · · · ◦ fnk
. Then gk is K + O( 1

n1
+ · · · + 1

nk
) quasiconformal,

as every point in
⋃ Rj\

⋃ Rj+1 is hit by some number of iterations of the identity,
then by a K-QC map, and then by successive 1 + 1

ni
quasiconformal maps, i < j.

Thus if we choose nk to increase so quickly that
∑

k n−1
k converges to a small

value, the dilatations will be uniformly bounded. In this case, we can take a limit
and obtain a map and a Cantor set S so that every segment [0, 1]×{y}, y ∈ S has a
definite oscillation near every point at infinitely many scales, and hence is nowhere
rectifiable.

The set S comes with a covering by the nested collections of intervals Ik. The
Hausdorff measure of S can be bounded from below in the usual way of defining
a measure on S by distributing mass from one of these intervals to all its children
equally. Since lim supn→∞ nh(δ/n) = ∞ for any fixed δ > 0, by choosing nk large
enough we can insure that

∑
h(|Ij |) ≥ 2h(|I|),

where the sum is over the Ik+1 of I ∈ Ik. A standard argument then shows that S
has infinite h-measure. �

9 Remarks and Open Questions

Many natural questions in the vein of our results still remain open. The following
question was suggested to us by Nages Shanmugalingam.
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Question 9.1. Let f : X → Y be a quasisymmetric mapping between Ahlfors D-
regular (D-Loewner) spaces, D > 1. Is it true that for a fixed d ∈ [0, D] and for
modD/d almost every Ahlfors d-regular set E ⊂ X, we have that f(E) is Ahlfors
d-regular as well?

This question is open even in R
N , except for d = N , which follows from a theorem

of Gehring and Kelly [GK74]. The case of d = D for more general metric spaces was
considered by Korte et al. [KMS12].

9.1 Families of translates. The questions below are formulated in the case of
the Euclidean space, but would also be interesting for Carnot groups.

How large is the collection of translates of a set E the dimension of which can
simultaneously jump up by a prespecified amount? To be more precise, let E ⊂ R

N

be a bounded Ahlfors d-regular set, d ∈ (0, N), and f a quasiconformal map of RN .
For d′ ∈ (d, N), we would like to estimate from above the Hausdorff dimension of
the points y s.t. dimHf(y + E) > d′?

Question 9.2. Suppose E ⊂ R
N is a bounded d-regular set. Is it true that for

d′ ∈ (d, N) and for every QC map f of RN we have

dimH{y ∈ R
N : dimHf(y + E) > d′} ≤ d

d′ N? (9.1)

To estimate the dimension of the set appearing in (9.1) we would like to use
Corollary 4.2 and a stronger version of Lemma 3.3, which we formulate in the case
of RN .

Recall from Section 3.7, that if y ∈ R
N and λ is a measure on R

N we denoted
by y∗λ the pushforward of λ by the translation by y, and for K ⊂ R

N we let
K∗λ = {y∗λ : y ∈ K}.

Question 9.3. Let p ≥ 1, 1 < D < N and K ⊂ R
N . Suppose that modp(K∗λ, μ) =

0, whenever μ is an upper D-regular measure on R
N . Is dimHK ≤ D?

By Corollary 4.2, an affirmative answer to Question 9.3 would imply an affirma-
tive answer to Question 9.2.

9.2 Sharpness for nonplanar mappings. Though Theorems 1.4 and 1.5 are
quite general, our constructions in Theorems 1.7 and 1.9 seem difficult to extend
beyond the planar case, as we do not have flexibility in constructing conformal
mappings in higher dimensions. This leads to the following questions:

Question 9.4. Does an analogue to Theorem 1.7 remain true in higher dimensions?
For example, given positive integers m, n, N = m + n ≥ 3, and t ∈ (0, n), is there
a t-regular subset S ⊆ R

n such that for each ε > 0, there is a quasiconformal map
f : RN → R

N , such that for every Borel set A ⊆ R
m × S,

dimH(f(A)) ≥ (1 − ε)
NdimH(A)

t + m
?
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Question 9.5. Suppose m, n, N are as before, and that

lim
t→0

h(t)
tn

= ∞. (9.2)

Is there a compact set S ⊆ [0, 1]n and a quasiconformal map f : RN → R
N so that

(1) The quasiconformal constant of f is bounded independent of h and S.
(2) S has infinite Hausdorff measure with respect to h (cf. Definition 2.2 below).
(3) f([0, 1]m × {y}) contains no m-rectifiable subset for any y ∈ S.

Recall that a set is m-rectifiable if it is the union of an Hn-nullset and a countable
family of Lipschitz images of subsets of Rm.

In the preceding question, one can consider other conditions in place of the
absence of rectifiable subsets. For example, one could still ask in higher dimensions
that the surfaces f([0, 1]m × {y}) contain no rectifiable curves.

An even stronger requirement would be that the surfaces can be parameterized
by a map satisifying |φ(x)−φ(y)| > η(|x−y|) for some η with η(t)/t → ∞ as t → 0”.
It is easy to see from the proof that our planar example in Theorem 1.7 has this
latter property.

In higher dimensions, examples of such highly non-rectifiable surfaces were con-
structed by David and Toro [DT99] and Bishop [Bis99].

9.3 Distortion by Sobolev mappings. We lastly point out that these ques-
tions may be, and have been, explored in other classes of mappings.

As mentioned before, frequency of dimension distortion of Sobolev mappings
f ∈ W 1,p(Rn, Y ) were studied in [BMT13] for p ≥ n. Dimension distortion in the
case 1 < p < n has been explored by Hencl and Honźık, cf. [HH12,HH15]. Sim-
ilar questions for more general source spaces, e.g. for the Heisenberg group, have
been considered by Balogh et al. [BMT14,BTW13,BTW16]. Hencl and Honźık also
considered dimension distortion for mappings in Triebel–Lizorkin spaces in [HH14].

As for results in the vein of Theorems 1.7 and 1.9, examples of mappings which
simultaneously expand large families of subspaces or subsets have been exhibited
in [BMT13,BTW13,HH12,HH14] in various contexts. In fact it was shown in these
works that such mappings are “generic” in some sense. We refer the reader to the
mentioned papers for more precise statements and definitions.

Even so, it is unclear to what extent our results extend to the Sobolev case. For
example, we do not know the answer to the following question.

Question 9.6. Suppose N ≥ 2 and 0 < d < N . Let f : RN → R
N be a continuous

Sobolev mapping, f ∈ W 1,p(RN ,RN ), p > N . Is it true that for D/d-almost every
Ahlfors d-regular set E ⊂ R

N we have dimHf(E) ≤ d?
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