Rotation Sets and Entropy

A Dissertation Presented
by
Jaroslaw Marcin Kwapisz

to

The Graduate School
in Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy
in
Mathematics

State University of New York
at
Stony Brook

August 1995



State University of New York
at Stony Brook

The Graduate School

Jaroslaw Marcin Kwapisz

We, the dissertation committee for the above candidate for the Doctor of
Philosophy degree, hereby recommend acceptance of the dissertation.

John Milnor
Distinguished Professor of Mathematics
Dissertation Director

Yair Minsky
Assistant Professor of Mathematics
Chairman of Defense

Mikhail Lyubich
Associate Professor of Mathematics

Folkert Tangerman
Visiting Assistant Professor
Department of Applied Mathematics and Statistics
Outside Member

This dissertation is accepted by the Graduate School.

Graduate School

ii



Abstract of the Dissertation
Rotation Sets and Entropy
by
Jaroslaw Marcin Kwapisz
Doctor of Philosophy
in
Mathematics
State University of New York at Stony Brook

1995

This thesis is concerned with the dynamics generated on the
two dimensional torus by a homeomorphism isotopic to the iden-
tity. For each rotation vector of such a map, we define the topo-
logical entropy at the rotation vector; this is a function having the
rotation set of the map for its natural domain and the topologi-
cal entropy of the map for its maximum. We show how the ideas
of the thermodynamical formalism aid the evaluation of this func-
tion. For maps that are pseudo-Anosov (relative to a finite set),
we demonstrate its strict convexity and real analyticity. We then
describe those Gibbs states that realize the topological entropy at

the rotation vector as their measure theoretic entropy.
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In the general case, we show that the topological entropy is
positive at the rotation vector that lies in the interior of the rotation
set. We prove that any such vector is, in fact, the common rotation
vector for points of a compact invariant set that carries positive
topological entropy.

Presumably, the entropy on this set can be made arbitrarily
close to the topological entropy at the corresponding rotation vec-
tor. We verify this for pseudo-Anosov maps and prove that, in gen-
eral, both entropies are explicitly estimated from below in terms of
the size of the rotation set and the relative distance of the vector
from the boundary. A key tool here is the theory of quasi-conformal
mappings.

Finally, we analyze the rotation sets arising in a model of a
resonantly kicked charged particle in a constant magnetic field.
This provides a physically interesting example to which our general

theorems apply.
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Introduction

This work originated from an attempt to understand certain aspects of
dynamics generated on a two-dimensional torus by a homeomorphism that is
isotopic to the identity. Our main object of study is the interplay between the
rotation set and the topological entropy. We put these two classical invariants
in the same context by using the ideas of the thermodynamical formalism, and
we find a qualitative relation between them by invoking the methods of the

theory of quasi-conformal mappings.

In what follows, we introduce the basic concepts, advertise our main re-
sults, and show how they are a continuation of the work by others. We tend
to be brief since a significant amount of expository material can be found in

the subsequent chapters.

Our favorite model of a two-dimensional torus T? is that obtained by
identifying points of R? which differ by a vector having integer coordinates.
The resulting projection 7 : R? — T? is a universal covering and we fix it once
and for all. The space of all homeomorphisms of T? that are isotopic to the
identity will be denoted by H(T?). If f : T? — T? is in H(T?) then it lifts to

F : R? — R? which commutes with the deck group, i.e. F(Z +v) = F(Z)+v



for all # € R2, v € Z?; we will write #(T?) for the space of all lifts of elements
of H(T?).

Note that a map F' € H(T?) is a C°-bounded perturbation of the identity
by ¢ = F —id : R?2 — R? which, being invariant under precompositions
with the deck translations, descends to a continuous function ¢r : T? —
R? that is called the displacement of F. Thus, for & € R? and z = 7(%),
F'(Z) — & = ¢p(z) + ... + ¢r(f"*(z)) and the set of all limit points of the
sequence (+(F™(Z) —Z))nen is bounded. This set is the rotation set of & under
F, denoted also by p(F, ).

For a point z € T?, the set p(F,Z) does not depend on the choice of
T € 7 '(z), so we can also write p(F,z). In the case when p(F,z) consists
of one point we call it the rotation vector of x. This happens, for example,
when z is periodic. More generally, if u is an ergodic probability measure for
f and z € T? is typical for u, then the Birkhoff ergodic theorem implies that
p(F,z) ={[ ¢rdu}.

The definition of p(F,z) is in the spirit of Poincare’s notion of the ro-
tation number for a circle homeomorphism — for definitions and historical
background one may consult [ALM93, Boy92, MZ89]. Much as in the case of
degree-one circle maps ([NPT83]), the set p(F, z) generally changes as we vary
Z. Unfortunately, the union Uzcgr2 p(F, Z) often fails to be compact. For this

reason, following [MZ89], we define the rotation set of F' as

U {l(F"(:%) _#) i€ R2}> C R2.

n>m ‘T

p(F) = ﬂd(

m>0

Without going into details, let us just note that other existing definitions of



the rotation set yield sets that are contained in the above and may at most lack

some points in the boundary. (These can not be the extremal points either.)
As the intermediate value theorem forces the rotation set for a degree-one

circle map to be an interval ([NPT83]), the following result is ultimately a

consequence of the Jordan simple curve theorem.
Theorem 0.0.1 ([MZ89]) If F € H(T?) then p(F) is convez.

Let us note that, while the definition of p(F') makes sense for non-invertible
maps F, it renders then a set that is a continuum but often lacks convexity
([MZ89)).

Theorem 0.0.1 makes one ask: Can any compact convex subset of R? be
realized as p(F) for some F € H(T?)? This question is still open. Even
deciding which line segments are rotation sets is not yet resolved. Given any
interval with rational slope passing through a point with rational coordinates
it is easy to find a homeomorphism that has the interval as its rotation set.
The construction in [FM90] implies that intervals with at least one rational
endpoint and irrational slope can be realized as well. Based on their results
for time-one maps of toral flows, Franks and Misiurewicz conjecture that these
are the two only possibilities ([FM90]). In the case of nonempty interior, it
is known that all polygons with vertices having rational coordinates can be
realized as rotation sets ([Kwa92]). There is also an example with (countable)
infinity of the extremal points ([Kwal).

While the basic nature of the rotation set is not fully understood, there is

a considerable number of results linking it to dynamical phenomena exhibited



by the map. The following theorem of Franks is a pillar of the progress in this

direction.

Theorem 0.0.2 ([Fra89]) If F € H(T?) and p € Z?, ¢ € N are such that
p/q € int(p(F)), then FU(z) = T + p for some T € R?. Moreover, if q and the
two coordinates of p have no common divisor, then q is the least j € N with

the property that F/ (%) — & € Z°.

Remark. If v is an extremal point of p(F'), then v = [ ¢ du for some ergodic
measure 4 ([MZ89]). Thus the assertion of the theorem is true also when p/q
is extremal, by Theorem 3.5 in [Fra88|.

In terms of the map f € H(T?) that is a projection of F, the above
theorem says that any vector v in the interior of p(F') with rational coordinates
is the rotation vector of a periodic point z = w(%) € T?. Moreover, the period
of this periodic point can be required to be equal to the smallest denominator
q in the representation v = p/q, where p € Z? g € N. (Such periodic points
are often called primitive.) Once again the assumption about invertibility of f
is relevant; Barge and Walker have a non-invertible example with no periodic
points and with the nonempty interior of the rotation set ([BW93]).

One reason why Franks’s result is important is that it facilitates applica-
tion of very powerful methods of the Thurston-Nilsen theory ([Thu88, FLP79,
Boy94]) to f € H(T?) with nonempty interior of the rotation set. Indeed,
by puncturing T? at the points of the orbits found by Theorem 0.0.2, one
gets a surface of negative Euler characteristic with a homeomorphism that,

not only does not have to be isotopic to the identity, but often is isotopic to



a pseudo-Anosov map (cf. Theorem 1.2.1). This trick, going back to Bowen
([Bow78a]), was applied by Llibre and MacKay and subsequently by Misi-

urewicz and Ziemian to prove, among other things, the following theorems.

Theorem 0.0.3 ([LM91]) If f € H(T?), F € H(T?) is its lift, then, for any

continuum C C int(p(F)), there is a point x € T? with p(F,z) = C.

Theorem 0.0.4 ([MZ91]) If f € H(T?) and F € H(T?) is its lift, then, for
any v € int(p(F)), there is an invariant set K C T? such that p(F,z) = v for
allz € K.

Thus nonempty interior of the rotation set implies uncountably many
invariant sets each with a different non-collinear rotation vector. Analogous
behavior for annulus homeomorphisms is exhibited by integrable twist maps;
however, on the torus (as with degree-one circle maps), it is a sure sign of

chaos.

Theorem 0.0.5 ([LM91]) If f € H(T?), F € H(T?) is its lift and intp(F) #

0, then the topological entropy hiop(f) of [ is positive.

For degree-one circle maps there exist explicit and sharp lower bounds for
the topological entropy in terms of the rotation set (JALM93]); this prompted
Llibre and MacKay to ask whether there is such a relation in the case of T2.
We give an answer to this question — a precise formulation of the result can
be found in the beginning of Chapter 1. Below, we give a simplified version

that is formally still a conjecture but approximates our theorem very well.



“Theorem” 1 (cf. Theorem 1.1.1) There ezist a universal constant C > 0
such that, if f € H(T?) and F € H(T?) is its lift, then

(1) hiop(f) > C'ln Area(p(F')), for p(F) that are not “small”;

() hiop(f) > C\/m, for p(F) that are not “large”.

Our estimate is not sharp. (Nevertheless, it captures the right asymptotics
for “large” rotation sets — see the example in Chapter 1.) We think of it more
as an evidence of the power of our method than an isolated result. The method
that we advocate takes over where Llibre and Mackay left off and exploits the
connection between the topological entropy and the quasi-conformal dilatation
of the underlying pseudo-Anosov map. This approach has a lot of potential
and ultimately should lead to better results.

The second main idea in this thesis is that of topological entropy at the
rotation vector. Once again our motivation was Theorem 0.0.5 which made us
ask: Ifint(p(F)) # 0, how much topological entropy is contributed by the points
with a particular rotation vector? We make the first step towards answering
this question. Namely, for a map f € H(T?) and its lift F' € H(T?), we define
for each v € p(F) the topological entropy at the rotation vector, denoted by
hEgg,(F ). We show that hEg%(F ) obeys a form of the thermodynamical formal-
tsm, which we then employ to give a complete analysis of the pseudo-Anosov

case and, ultimately, strengthen “Theorem” 1 to the following:

“Theorem” 2 (cf. Theorem 3.1.1) For some universal constant C > 0, if
f € H(T?) is a diffeomorphism, F € H(T?) is its lift and v € int(p(F)), then

there exists a compact invariant set K C T? such that p(F,z) = v, for all



r € K, and

WL (f) > hiop(f|x) > Cln Area(p(F)) - 7(v),

for p(F) that are not “small”,

W (F) = huop(f|x) > C\/Area(p(F)) - 7(v),

for p(F) that are not “large”.

The quantity T(v) is a certain measure of the “distance” of v from the boundary

of p(F).

Ultimately, one should be able to make the choice of the set K above so
that hyop(f|x) is arbitrarily close to hgg%( f). We prove this only for maps
that are pseudo-Anosov relative to a finite set (see [Boy94] for the definition).
Another important issue, which we resolve here only for that class of maps,
is the regularity of hEgI)) as a function of v. We have the following theorem

(summarizing Proposition 3.2.2 and Theorem 3.2.1).

Theorem 0.0.6 If f € H(T?) is pseudo-Anosov relative to a finite set and
F € H(T?) is its lift, then

(i) hggz, (F) is real-analytic and strictly concave on int(p(F));

(ii) for any v € int(p(F)), there exists a fully supported ergodic measure ()
such that the measure theoretic entropy h,w (f) = hgg%(F) and [ ¢p du® = v;
(111) for any v € int(p(F)) and n € (0,1), there exists a compact invariant
subset K of T? such that hyp(F|g) > nhgg%(F) and p(F,z) = {v} for all

z€e K.



Actually, there is more in our analysis than the above theorem spells out; for

example, hgg%(F ) can be explicitly calculated from the Markov partition.
The line of attack in proving the theorem is not original at all: we use

symbolic dynamics to reduce it to facts about subshifts of finite type. Still, our

discussion of subshifts of finite type contains some new results. In particular,

the following theorem may be useful in many applications.

Theorem 0.0.7 (cf. Theorem 2.2.4) Suppose o : A — A is a transitive sub-
shift of finite type and v : A — R? is locally constant. If v = [ du for some
invariant ergodic probability measure p, then, for any n € (0,1), there exists a

compact invariant set K such that hyop(o|x) > nhy(o) and

S 0(fi()) - no

1=0

sup
neN,zeK

< +00.

The above theorem for integer valued % and integer v coincides with the re-
sult in [MT92]. There, it is applied to calculate the minimal entropy of some
sequences of patterns of periodic orbits for one-dimensional maps. The dis-
cussion in [MT92] yields concrete formulas only for symmetric patterns. Our
methods (which are different) can be used to treat equally efficiently the gen-
eral case. In particular, the Gibbs states that we discuss realize the variational

principle in [MT92] thus answering the question posed there. !

As a tool for comprehending hﬁﬁ%, we develop (in Chapter 2) a weak but
quite general version of the thermodynamical formalism for a dynamical sys-

tem on a compact space with a continuous observable in R¢. Theorem 2.1.1

!The relation of my work to that of [MT92] was brought to my attention only

recently. I will give the details elsewhere.



plays the central role here by connecting the entropy h,gg, with the appropriate

pressure function. Even though this theorem can be viewed as a consequence
of the standard thermodynamical formalism ([Wal82]), the implication is not
trivial; to establish it, we generalize the variational principle for topological
entropy ([Wal82]) by making it sensitive to the averages of the observable (see
Theorem 2.1.2). This material should be thought of as just another realization
of the paradigm of the thermodynamical formalism ([Rue78, Bow75, Wal82]).
We hope that our presentation will help to absorb these ideas into the the-
ory of rotation sets (including the context of other surfaces than torus, see

[Fra94, Boy94].)

Let us also note that in dealing with hgg%, one can get pretty far using
elementary large deviation techniques. The inspiration for this approach comes
from a book by Ellis ([Ell85]). In Appendix A we use it to give a proof of the

thermodynamical formalism theorem (Theorem 2.1.1).

Finally, our last chapter is devoted to a concrete family of torus home-
omorphisms that are isotopic to the identity. The purpose of this discus-
sion is two-fold. For one, we wanted to give a concrete physical model that
satisfies the assumptions of our theorems. The other reason is mathemat-
ical: these are perhaps the simplest and most accessible analytically map-
pings exhibiting nonempty interior of the rotation set; even though stud-
ied from other points of view for quite some time, they somehow avoided
to this date theoretical analysis with the emphasis on their rotation sets

([LL93, ZZRSC86b, CSUZ87, ZZRSC86a]). We give the beginning of such



an analysis. In particular, we prove monotonicity of the rotation set for a
certain (physically) natural one-parameter family of torus maps. This may be

interesting since such examples were not known before.
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Chapter 1

An estimate of entropy for toroidal chaos

In this chapter we show that topological entropy can be estimated from
below by looking at the “size” of the rotation set. This “size” can be roughly
thought of as the area of the rotation set (but, in general, is not comparable

with it).

1.1 Statement of the result

Consider f € H(T?) and its lift F € H(T?). Assume that int(p(F)) # 0.
It was proved in [LM91] that f exhibits then toroidal chaos; in particular, f
has positive topological entropy hiop(f) > 0 (see Theorem 0.0.5). Our goal is
to provide a lower bound on the entropy in terms of the size of the rotation
set. To formulate the result, let us first explain how we measure the size of

the rotation set.

11



Definition 1.1.1 Let K C R? be conver and compact. If int(K) contains

three non-collinear points of Z?, then we define

A(K) := max{\/rirs : 71,72 € N and there exist p,v,w € Z? such that

p,p+1v,p+ rw € int(K) and are non-collinear},

Otherwise, we set

I(K) :=inf{\ € N : int(\K) contains three non-collinear points of Z*}.
Note that, for m € N, if A(K) > 0, then A(mK) > mA(K), and that
A(I(K)-K) > 1. (1.1)

Theorem 1.1.1 (Main Lower Bound ([Kwa93])) There exist universal con-

stants C, C' such that, for any f € H(T?) and its lift F € H(T?), we have
htop(f) Z C]Il+ A(p(F))’

huop (f) = C'/1(p(F)).

We think of the first estimate as significant for “large” p(F') and of the second

as significant for “small” p(F).

Remark. In fact, we will prove that if r; and ry realizing A(p(F’)) are both

greater than 5 then

1 1
hiop(f) > gln \/(rl —1)(re—1) — §1n4.

12



By considering the eighth iterate of F', this yields C = 1/27 and C' =1n2/54
— see Claim 1.4.1 and the discussion opening Section 1.4.

As indicated by the remark, our statement of the theorem is a compromise
between sharpness of the result and complexity of its formulation. It will be
clear from the proof that we are far from providing optimal estimates, so we
see no point in complicating the inequalities. Nevertheless, the theorem is
asymptotically sharp (up to a multiplicative constant) for “large” rotation

sets, as shown by the following example.

Example. Forn € N, define Uy, V,, € #(T?) by Vi (z,) := (z4+nsin(27y), ),
Upn(z,7y) := (z,y+nsin(27rz)), z,y € R. Consider F, :=V, oU, € H(T?) and
the corresponding f, € #(T?). The points (0,0), (3,0), (0, ;) have rotation
vectors (0,0), (0,n), (n,0) respectively, so A(p(F,,)) > n. On the other hand,
the maximal Lyapunov exponent dominates hop(fr) and is trivially bounded

by Insup ||V f,|| < In(27n) . In this way, we have

lim supIn (heop (fn)/A(p(Fn))) < 1.

One would like to have an example of a family {f.}cso, fe € H(T?),
with lifts {F.}¢>o having p(F) shrinking to a point, as € — 0, and such that
hiop(fe) - I(p(Fe)) < Const, for € > 0. This would mean that our estimate is
asymptotically sharp for “small” rotation set. No such example is known to
the author.

The rest of this chapter is devoted to the proof of the theorem. We isolate

the main steps into separate sections. Section 1.2 describes reduction to the

13



case of a pseudo-Anosov map. Section 1.3 explains how entropy is linked
with the quasi-conformal dilatation of conformal structures on T?. The very

estimates proving the theorem can be found in Section 1.4.

1.2 Comparison with pseudo-Anosov maps

We describe here a trick that allows one to pass from investigation of a
general map in H(T?) with nonempty interior of the rotation set to a pseudo-
Anosov map with approximately the same rotation set. Our version is only a
trivial extension of the original one in [LM91]. We use the notion of a pseudo-
Anosov map (of a surface) rel a finite invariant set. Referring the reader to
[Boy94| for an exposition, we only say here that, if f : S — S is a pseudo-
Anosov map rel a finite invariant set P, then it is a factor of a pseudo-Anosov
map ([Thu88, FLP79]) on the surface obtained by compactifying the ideal
boundary of S'\ P with circles. The factor map collapses the boundary circles
to the corresponding points of P and is injective otherwise. Thus the dynamics
of the two maps almost coincide. (In particular, they have the same topological

entropy ([Bow78a]).)

Theorem 1.2.1 Suppose that F € H(T?) and int(p(F)) # 0. Let f € H(T?)
be the map that lifts to F. If p' C int(p(F)) is a convex non-degenerate polygon
with vertices in Q2, then there exists a finite f-invariant set P C T? and a
pseudo-Anosov rel P map g € H(T?) that is isotopic to f rel P and has a lift
G € H(T?) with p' C p(G).



Remark. The above theorem is also true when p’ has some vertices on the
boundary of p(F’) as long as these are extremal points of p(F) (cf. the remark
after Theorem 0.0.2).

Pseudo-Anosov maps have minimal topological entropy in their isotopy

class ([Thu88, FLP79]), so

hiop(f) 2 hiop(g) > 0. (1.2)

Remark. Pseudo-Anosov maps not only minimize entropy but also have “the
simplest dynamics” in their isotopy class ([Han85, Boy10]). In particular, we
have p(G) C p(F). (For details and proofs see Theorem 3.3.1 and the corollary

after it.)

Proof of Theorem 1.2.1. Let vy, ..., v, € Q? be the vertices of o’ (or, equally
well, any finite set in Q? such that p' = conv {vy, ..., v}, where conv abbre-
viates convex hull). Write v; = p;/q;, where p; € Z?, ¢; € N and the two
components of p; and ¢; have no common divisor, all this for : = 1,...,m.
By Theorem 0.0.2, there exist x,...,2,, € R? such that F%(z;) = z; + p;,
1 =1,...,m. Let P be the union of the projections on the torus of the orbits
of Z1,...,xm. If g € H(T?) is isotopic to f rel P and G € H(T?) is the lift of ¢
equivariantly isotopic to F relative 7—!(P), then p’ = conv{vi, ..., v, } C p(G).
In particular, we can take for g the Thurston canonical representative of the
isotopy class of f relative P (see e.g. Th. 7.1 in [Boy94]). Following [LM91],
one can argue that g can not have any reducing curves, and so it is pseudo-
Anosov. Indeed, since a reducing curve must be non-peripheral, we have a

priori three possibilities: it is essential on T?, and then p(G) would have to

15



be contained in a line; it bounds a disk containing points of different orbits
in P, which would contradict the fact that the rotation vectors of these orbits
are different; it bounds a disk containing two or more points of one orbit in
P, which would force p; and ¢; to have a common divisor for some 7, contrary

to the assumption. Q.E.D.

1.3 Entropy and conformal structures

It is clear from the previous section that, to prove the Main Lower Bound,
we merely have to correlate the size of the rotation set with the topological
entropy for pseudo-Anosov maps. A natural first impulse is to try linking the
two via standard symbolic dynamics given by the Markov partitions. This
however leaves one with a task of understanding how topology of the torus
influences the structure of the corresponding subshifts of finite type. We pro-
pose here a different approach. Namely, we will take advantage of the fact that
the the entropy of the pseudo-Anosov map ¢ can be calculated by looking at
its quasi-conformal dilatation with respect to a preferred family of conformal
structures on T2 We explain this below. (Following [Alh66], we abbreviate

quasi-conformal to q.c.)

Denote by C(T? \ P) the set of all conformal structures on T? \ P. If
o€ C(T?\ P) and ¢ : T2\ P — T?\ P is a 0-q.c. map, then we write K,[t/]
for the (maximal) q.c. dilatation of ¥ ([Alh66]). (For conformal maps K =1.)

According to Bers (Ch. III, [Abi80]), there exists o, € C(T? \ P) solving the

16



following extremal problem
K, [9] = inf{K,[¢] : 0 € C(T*\ P), ¢ isotopic to g}. (1.3)

Moreover, o, is modeled around each boundary component of T?\ P on a
punctured disc (see Th. 3, §2, Ch. III, [Abi80]). Thus o, extends uniquely
through the punctures to a conformal structure on T? which, with no risk of

confusion, is also denoted by o,.

For the sake of giving a more intuitive picture, let us sketch an alterna-
tive (and more geometrical) way of finding o,. From the definition of pseudo-
Anosov map relative a finite set (see [Boy94]), there exists a pair of trans-
verse measured singular foliations F* and F* such that g(F*) = A~'F* and
g(F*) = AF", where A = exp hiop(g). The two foliations define a smooth
structure together with a flat Riemannian metric on the complement of the
set of singularities @ C T? (P C Q). This Riemannian metric naturally deter-
mines a conformal structure on T? \ Q. However, due to the form of F* and
F* at the singularities that is postulated by the definition, this structure has
removable singularities at points of () and so determines a unique conformal
structure o, on T?. From the action of g on F* and F“ one sees the q.c.

dilatation to be ([Abi80])

K,lg] = N = exp(2hiop(9))-

Putting this together with inequality (1.2) we get

h(f) > (1/2)In K, [g]. (1.4)

17



In our applications we will not use any a priori knowledge of 0,4, thus,

weakening (1.4), we state the following theorem.

Theorem 1.3.1 If f € H(T?) and P is a collection of primitive periodic

orbits with different non-collinear rotation vectors, then

hiop(f) > inf{(1/2) In K,[¢] : o € C(T?),

Y o-q.c. map of T? isotopic to f rel P}.

Let us note here a curious problem related to the above theorem.

Open Problem. If S is a compact Riemann surface and f : S — S is a q.c.

homeomorphism with q.c. dilatation K[f], is hwp(f) < (1/2) In K[f] ?

For a C'-smooth map, the answer is yes. Indeed, by the variational prin-
ciple for topological entropy ([Man87]), we just need to prove the following:
if p is an ergodic invariant measure, then h,(f) < In K[f]/2. Consider the
Lyapunov exponents x~ < x* of . By Ruelle’s inequality ([Man87]), we can
write h,(f) < max{0,x"} and h,(f) = h,(f™") < max{0,—x~}. Thus ei-
ther h,(f) = 0, and there is nothing to prove, or h,(f) < min{x*, —x7} <
(x™ — x7)/2. By looking at the derivative D f™(z) at a typical point = and
for large n, we get exp x*/expx~ < K]|f], which already implies our claim.
In the non-smooth case, there are estimates by Gromov with a non-optimal

multiplicative constant (|Gro87]).
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1.4 Proof of the Main Lower Bound

We have two inequalities to prove

hiop (f) = C'Iny A(p(F)), (1.5)

and
hiop(f) > C'/1(p(F)). (1.6)

In fact, (1.6) follows from (1.5). For a proof, set A :== I(p(F')) € N. Using
(1.1), we get A(p(F?)) = A(2Ap(F)) > 2. Application of (1.5) to f?* yields
2X hiop (f) = hiop(f?) > CIn2. The inequality (1.6) with C' = (C'ln2)/2
follows.

In the rest of this section we tackle (1.5). Let p,v,w € Z* and 71,79 € N
be as in the definition of A(p(F’)). Passing perhaps to the sixth iterate of F', we
may assume that 71,7y > 6. Also, it is easy to see that we can require that v, w
form a basis of Z? as a Z-module. By the theorem of Franks (Theorem 0.0.2),
for each of p,p + riv,p+ row € p(F) N Z?, there is a fixed point of f realizing
it as the rotation vector. Let P be the union of those three fixed points. By
Theorem 1.3.1, to estimate htop(f), we need to consider an arbitrary conformal
structure o € C(T?) and a o-q.c. map g : T? — T? which is isotopic to f
rel P. By the uniformization theorem ([Abi80]), the conformal torus (T2, o)
is biholomorphic to C/T', where T is a rank-two lattice in C. The map g lifts
to a map ¥ : C — C which is q.c. with respect to the standard conformal
structure on C with the q.c. dilatation K[¥] = K, [g]. Let e;,e; € I be the

vectors corresponding to the vectors v, w. After perhaps post-composing ¥
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with a deck transformation, the three fixed points in P lift to pg, p1,p2 € C

such that

U(po) = po, V(p1) =p1+rier, ¥(p2) = pa + roeo. (1.7)

Our task is to verify, from the above topological data on W, the following claim

which already implies (1.5).
Claim 1.4.1 (target estimate) If ri,7o > 6, then
1 1/3 1/3
K] > 2 (r = 1)/ (r2 = 1), (1.8)

The proof of the claim is rather technical. To better separate the ideas,
after necessary definitions, we formulate the key observations as separate Facts
and then prove them. All the pieces of the puzzle are put together in the final
argument at the end of this section.

For any ordered pair (a, b) of orthogonal vectors in C, we have the rect-
angle R = R(a,b) = {za+yb: 0 < z,y < 1}. For any s € [0,1], let
as[R] : [0,1] — R be given by «4[R](t) = ta + sb, and G4[R] : [0,1] — R
be given by fs[R|(t) = sa + tb. Thus we have two families of curves fill-
ing R: a-family A := {oy[R]}yef0,1], and b-family B := {3;[R]}z¢[0,1). Clearly,
OR = ap[R] U a1[R] U Bo[R] U B1[R]. We call the rectangle R fundamental for
[ if every orbit under of I intersects its interior exactly once. All the above
definitions extend in an obvious way to any translate of the rectangle R.

For a family G of rectifiable curves in C, we denote the extremal length

of G by A(G), i.e.

A(G) :=sup {L(p)2 : p:C — R measurable with //de:L'dy = 1} ’
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where
L(p) := inf{/7p|dz| : Y E g}.

For the Euclidean length of curve v we simply write {(7).

For the families A and B we have ([Alh66])
A(A) = |a*/|R], X(B) = [b]*/|R|, (1.9)

where |R| stands for the Euclidean area of R. Our estimation of K[¥] will be
based on the quasi-invariance of the extremal length, a property encapsulated

by the following inequality ([Alh66])
K[U] > AYG)/A(G). (1.10)

For G above we will take a-families and b-families of appropriate rectan-

gles. The following simple lemma plays a key role in finding “good rectangles”.

Lemma 1.4.1 Ifv,w € C are orthogonal, v € I' and R = R(v,w) is funda-

mental for I', then there exists z € C, for which R' := R + z satisfies
AMTA) > 1(Tag)?/|R | = 1(Tan)?/| R, (1.11)
ANTB) > U(T6o)*/|R| = 1(T6.)*/ IR, (1.12)
where A = {ay}, B = {0} are the a-family and b-family for R'.
Proof. First slide R along the line Rw to find ¢, such that

(T (a[R] + tow)) = inf{I(¥(ap[R] + tw)) : t € R}.
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This means that
I(Yap[R+ z]) = inf{{(Va) : a € a-family of R+ z}, (1.13)

where z = tow. Observe that (1.13) holds also for any z = tow + sv, s € R,
because for any s, s2 € R the curves oy [R + to + s;v], i = 1,2, project to the
same loop on the torus and so their images under ¥ have equal length. In this

way, if sliding along Rv we have found sy such that
L(YB[R+ 2]) =inf{l(VB) : B € b-family of R+ 2z}, z = tow + spv, (1.14)

we got both (1.13) and (1.14) satisfied for z = tow + sov. Set R' := R + z.
The inequalities in (1.11) and (1.12) follow from the definition of the extremal
length when one takes for p a multiple of the characteristic function of WR’
while remembering that |R'| = |PR'|. The equalities are trivial since o and

a1, as well as By and (1, project to the same arcs on the torus. Q.E.D.

Let 6 € [0,7) be the measure of the convex angle between e; and e,.

Fact 1.4.1 Fori,j € {1,2}, i # j, we have
8(leif? +sin? 0le; VK[U] > (1 — DPlesf? + (r; — 1) sin? Ole,
+ max{0,7;|e;|| cos O] — |e;| }%.
Proof. Let v := e; and w be the component of e; orthogonal to e;. Let R' be

as in Lemma 1.4.1. Due to (1.7), ¥(R') intersects R', R' + r;e;, R' + 1;¢e;, so

[(¥(OR')) > dist(R', R’ + r;e;) + dist(R', R' + r;¢;),
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and consequently, (using the Pythagorean theorem),

I(Y(OR")) > (ri—1)le (1.15)

+ ((ry = 1?06, sin® 6 + max{0, ry e | cos ] — [es]}?) .
Feeding (1.9), (1.11), (1.12) into (1.10), we obtain

(l&s|” +sin®Ole;P) K[¥] > eg]® - AM(WA)/A(A) + |e;|*sin® 0 - A(¥B)/A\(B)

I(¥ay)? |R) 5, 1(¥5)? |R]

> ;2 L+ |e;|*sin? 6
= VTR Yagp I R Ty
= 1(Tap)®+ (¥ 5)°

1
> §(l(lIla0)+l(\Ilﬂ0))2

1
= gl(\ll(aR'))Q.

This inequality put together with (1.15) proves Fact 1.4.1. Q.E.D.

Note that, if the lengths of e; and ey were “comparable”, Fact 1.4.1 would
yield an estimate similar to (1.8) of Claim 1.4.1. The following fact exhibits

one mechanism preventing the |e;| and |e;| from being too disproportional.

Fact 1.4.2 Ifd € (0,1) ande; =1, eo =dv/—1, [ =Z +d\/-1Z, then

PK[T] > (r, — 1)%

Proof. Let R' be the rectangle obtained by the application of Lemma 1.4.1
with v := 1 and w := dv/—1. Set v := U{f1 + kdv/—1 : k € Z}. Clearly,
v is a straight line cutting C in two half-planes. Denote by H~ the half-

plane containing R’ and by H* the one containing R’ + 1. The rectangle R’



is fundamental, so, by (1.7), there are gy,q; € R’ such that ¥(gy) = ¢o and

U(q1) = g1 + r1. Observe that, because go +1 = ¥(go+ 1) € U(H™"), we have
G =Y(qp) € V(H") and ¢ +1=T(g+1) &€ V(H),
and, because ¢; + 71 +1=U(¢; +1) € V(H™), also
@ +r=Y(q)€V(H") and ¢+ +1¢ U(H).

Thus straight line segments in C, [go,q0 + 1] and [¢1 + 71,¢1 + 1 + 1],
both intersect ¥(y) = d(¥(H~)). Consequently, if pr, is the orthogonal pro-
jection on the real axis R C C, then diam(pr,(¥7)) > 7 — 1. This, using

T-equivariance of U, yields
[(¥f1) > diam(pr, (¥6:)) = diam(pr,(¥7)) > r1 — 1.
Now we apply (1.9), (1.10) and (1.12) to get
K[¥] > MUB)/AB) > (¥B,)*/d* > (ry — 1)*/d?,

and we are done. Q.E.D.

Fact 1.4.3 Suppose that e; =1, e =lcosf + Isinfy/—1,1 € (0,1). If
sin” @ > (r; — 1)*/(32K[¥]),

then

K[¥] > i(rl — 1)Y3(ry — 1)1/3,
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Proof. Put d := [sinf. First assume that § = 7/2. Fact 1.4.1, applied with

i=1,7=2(ie. e; =1 and e; = dy/—1), gives us
8(1+d)K[¥] > (r; — 1)* + (ro — 1)%d*> > (rp — 1)°d”.

Inserting in the above inequality the estimate of d given by Fact 1.4.2, we

derive
82 K[WU] > (ry — 1)%(r; — 1)*/K[¥],
and finally,
K] > 1(r = 1)(ra — 1) (1.16)

In general, # # m/2 and then we consider ® := Ly o ¥ o L;', where
Ly : C — C is given by Ly(z + y+/—1) := x + cot 0y + y/—1 and transforms
the lattice Z + dv/—1Z to Z + (lcos @ + [sin0y/—1)Z. The map Ly is area-
preserving, so K[Ly] equals the largest eigenvalue of LjLy, where Lj is the

adjoint of Ly. The trace of LjLy is 2 + cot? f, so we have
K[Lg] <2+ cot’ 0.

Observe that (1.16) holds once W is replaced by ®. Since by sub-multiplicativity
of q.c. dilatation
K[¥] > K[®]/K[Le],

we get

K[V] > i(m —1)(ry — 1) /(2 + cot® 6)>. (1.17)

Our hypothesis on € can be written as

cot?f < sin™? 0 < 32K [¥]/(r; — 1)% (1.18)
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If cot?§ < 1, then, by (1.17) and using r1, 7, > 6, we see that

1 52/352/3 13 13
KW > (= D= 1) > (= )2 = 1)
1
> 1(7‘1—1)1/3(7'2—1)1/3.

If cot?§ > 1, then, by (1.17) and (1.18), we obtain

KW > (= 1)(r2 = 1)/(Beot? 6 > 1z (ra = 1)7(rs = 1)/ K],

which yields

r — 1) 1/3
K[\I/] > <%> (rl _ 1)1/3(7,2 _ 1)1/3

(11— 1)Y3(ry — 1)1,

| =

54 1/3
(4 .32. 322) (r1— 1)1/3(7“2 - 1)1/3 >

Q.E.D.

Conclusion of the proof of Claim 1.4.1. We may assume that |e;| > |es,
because otherwise one can switch the two. With the aid of a linear conformal
map we can further adjust e, es to e; := 1 and ey := [cosf + [sinfy/—1,

where [ € (0, 1]. For “large” 6, namely when
sin?@ > (r; — 1)%/(32K[¥]),

we are done by Fact 1.4.3. Assume then that 6 is “small”, that is
sin? @ < (r; — 1)%/(32K[¥]).

Apply first Fact 1.4.1 with ¢ = 1 and j = 2 to see that

16K[¥] > 8(1 + sin? 0 1) K[U] > (ry — 1)2,



and so sin?@ < 1/2. Thus, using r; > 6, we verify that

rilei]| cos O] — |eg] > 64/1 —sin?0 — 1 > 64/1/2 — 1 > 0,

and application of Fact 1.4.1, with ¢ = 2, j = 1, yields

8(I2 +sin? O)K[W] > (ry —1)%1* + (ry — 1)*sin® 0 + (r1] cos 8] — 1)?
> (rg —1)%% 4+ (ry — 1)® — 21| cos 8| (1.19)

> (ry =121+ (r = 1)/2,

where for the last inequality we used r; > 6 again. Thus, dropping (ry — 1)%/

and isolating 12, we get
> (ri—1)%/(2-8K[¥]) —sin®0 > (r; — 1)*/(32K[¥]) > sin’ 0,
and, applying (1.19) again, we derive

K] > (ry—1)%2/(161%) + (ry — 1)%/(320%)

> (ry—1)2/16 + (r; — 1)%/32
> =1 -1)
> Lo o, -1y,

4

Q.E.D.
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Chapter 2

Topological entropy at the asymptotic

average

Our ultimate goal in this work is to discuss topological entropy relative to
a vector in the rotation set. A large part of our discussion naturally fits in a
more general context, so we stray from the main course in this chapter. In the
first section we define topological entropy at the asymptotic average for a map
of a compact metrizable space with a continuous observable. We prove the
corresponding variational principle and use it for a rather weak version of the
thermodynamical formalism, which holds in this generality. Section 2.2 deals
with subshifts of finite type. Invoking the standard transfer matriz trick, we
give a real-analytic formula for the topological entropy at the asymptotic av-
erage. More importantly, we develop a technique that enables us to construct,
for any given asymptotic average, compact invariant sets “almost realizing”

the topological entropy at this asymptotic average.
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2.1 Relative variational principle and ther-
modynamical formalism

Consider a compact metrizable topological space X with metric d and a
dynamical system generated by a homeomorphism f : X — X. Moreover,
assume that a continuous function (called an observable ) ¢ : X — R? is
given. Our primary example will be a torus homeomorphism isotopic to the
identity with the displacement function of one of its lifts as the observable.

The rotation set becomes then a specialization of the set of asymptotic averages

p(f, @) defined by

o, 8) = N c1<u [(/m)Salf,)() 3 € X}) CR, (1)

m>0 n>m

where S,,(f, ¢) := ¢(z) + ... + ¢(f*(x)) is the Birkhoff sum (cf. [Zie95]).

The set p(f, ¢) is compact. Abstracting the proof of connectedness of the
rotation set in [MZ89], one can see that p(f, ¢) is connected for connected X.

The complexity of the dynamics detected by an asymptotic average in
p(f, ¢) may be measured by the associated topological entropy. In defining
this entropy one may follow a few paths leading to different invariants which
nevertheless coincide for the important examples of our primary concern (e.g.
for pseudo-Anosov homeomorphisms). Let us start with the most elementary
approach building directly on Bowen’s definition of topological entropy (see
[Wal82]).

Given S C X, we say that S is (e, n)-separated if, for every two different

z,y € S, we have d(f*(z), f*(y)) > ¢, for some k € {0,1,...,n — 1}. For a set
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E c R% and € > 0, we define
SE(f, 6,6,m) = max{#5 : $ C X (¢, n)-separated, V,es (1/n)Sa(f, 6)(z) € F},
and, under the convention that In 0 = —oo, we set

RE(f, ¢, €) := lim sup%ln sP(f, ¢,€,n) € {—o0} U[0, ).

The topological entropy associated with E is then
E o L B E
h’top(fa ¢) - ll_I;%h (f’ QS: 6)‘

Notice that h”(f, ¢,¢€), as a function of €, is decreasing, so the limit ac-
tually exists. Also, as suggested by the notation, hfgp( f,®) is a topological
invariant; it does not depend on the metric, nor is altered by replacing the

pair (f,¢) with a (™' o f o h,¢ o h), where h is a homeomorphism of X (cf.

E

Proposition 2.1.2). Actually, one can easily make A,

manifestly topologically
invariant by rephrasing its definition in terms of open covers, as it is done for
the usual topological entropy (see [Wal82]).

Also, h{s (f, ¢, €) is monotonic in F and, for two sets F, F' € R, we have

T (f,6) = max {h,(f,6), hio, (£, 0)}- (2.2)

E

Thus a bulk of information carried by Ay,

(f, ¢, €) is still recoverable from
topological entropy at the asymptotic average, which is defined as the following
function of v € R¢

Mep(f, 6) = lim b (f, 6).

where B, (v) is the open ball of radius r centered at v.
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Actually, if we regularize E — h”(f, ¢) by setting
hion (£, 0) = lim hugi ™ (f, ),
then v h,EZz, (f, ¢) is characterized by the relation hgfp) (f,¢) = max{hggz,( f,9):
v € E}, where F is a closed subset of R? (cf. Lemma A.0.1).
The following is a summary of basic properties of hg%( f, ®) that can be
easily derived from the definition — see also the appendix. In fact, part (ii)

below expresses the compatibility of hggz,( f,®) and p(f, ¢) that was one of the

axioms lying at the origin of hgg%(f, b).

Proposition 2.1.1 (basics) With the above definitions, we have
(i) —00 < higy(f,8) < huap(f), v € RY;

(ii) plf, 9) = {v € R* = hig) (£, 6) > 0};

(iii) there exists v, € R® such that hgg;)(f, }) = hiop(f);

(iv) hgg%,(f, @) is upper semi-continuous in v, i.e.
lim sup hig, (1, 8) = higy (1, 9)-

Proof of Proposition 2.1.1. Parts (i), (ii), (iv) require no comment. To see
(iii), note that (2.2) implies that, for any finite cover of p(f, ¢), there exists

an element E of the cover with h{

(f, @) = hiop(f). To nail down v, simply

consider finer and finer covers (cf. Lemma A.0.1). Q.E.D.

There are many properties of h§?p( f,®) that are directly analogous to
those of the topological entropy, and the proofs are typically just simple mod-
ifications of the standard ones. We mention here only those properties that

we will need in the further development.



Proposition 2.1.2 (Quotient Rule) Let (X,d) and (Y, e) be compact met-
ric spaces and ¢ : X — RL If f : X — X is a factor of g : Y — Y wia
h:Y — X (i.e. his continuous surjective and f oh = h o g) then, for any
E C RY b (f,¢) < hi),(9,¢0h). Consequently, hgg%,(f, 3) < htop(g,gbo h),

v € R4

Proof. Fix an arbitrary ¢ > 0. By uniform continuity of A, there is § > 0
such that e(y,y') < ¢ implies d(h(y), h(y')) < € for all y,y' € Y. Now, given
S C X which is (e, n)-separated with S, (f, ¢)(z) € E forz € S, form S’ C Y
by choosing a point from h~!(z) for each z € S. This set is (4, n)-separated
for g and, for y € S, S, (9,00 h)(y) = Su(f,d)(h(y)) € E. Since #S' = #S,
we get h¥(f, ¢,€¢) < h¥(g,¢ o h,8) < hE

top

(g9,¢ o h), which finishes the proof

because of arbitrariness of e. Q.E.D.

Proposition 2.1.3 (Power Rule) For any m € N and E C R?, we have

higp(F™, (1/m) S () = m - hig, (f, ).

In particular, for v € R4,
Biap (™, (1/m)Sim(9)) = m - hig) (£, 6).

Proof. This is a straightforward upgrade of the corresponding argument in
[Wal82]. We trace it for the sake of completeness. Fix E C R%. We will prove
that m - by (f, @) = hio, (f™, (1/m)Sm(f,#)). If S is an (e, n)-separated set

for f™, then it is (¢, nm)-separated for f. Moreover,

(1/n)Sa(f™, (1/m)Sm(f, 9)) () = (1/(mn))Smn(f, ¢)(z), (2.3)
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for any z € X. It follows that A (f™, (1/m)Sm(¢)) < m - h,(f, ¢). On
the other hand, for € > 0 there is § > 0 such that d(z,y) < ¢ forces
d(fi(z), fi(y)) < ¢ for 0 <i < m. Let S be a (d,n)-separated set for f™ max-
imal among those that satisfy (1/n)S,(f™, (1/m)Su,(f,¢))(x) € E for all z €
S. By the maximality and (2.3), for any y € X with (1/(mn))Sua(f, ) (y) €
E, there is x € S so that d(f*™(z), ff™(y)) < 6, 0 < k < n —1, and so
d(fi(z), fi(y)) < € 0 < i < mn — 1. Consequently, if S’ is an arbitrary
(2¢, mn)-separated set such that (1/(mn))Smn(f, ®)(x) € E, x € S', then it has
at most #S elements. By arbitrariness of S’, one gets hZ (f™, (1/m)Sn(¢),d) >

m - hE(f, d,2¢). Tt follows that hf (f™, (1/m)Spm(8)) > m-h (f,¢). QE.D.

The next theorem, in the spirit of thermodynamical formalism ([Rue78]),
is a powerful tool for calculating hggg,( f,®). The central role is played by the
restriction of the topological pressure functional P ([Wal82]) to the linear space
of functions {(t, #(-)) };crq4, where (-, -) is a scalar product in R Namely, for

every t € R%, we consider

P (f, 6) =

limlimsup (1/n)lnmax{>,cqexp(Sy(f, @)(x),t): S (& n)-separated} .

€20 n—oo
Note that pgg%,(f, @) = hiop(f) and that hyop(f) = +oo implies pg?p(f, ¢) = +o0
for all ¢ € R%. However, if hyop(f) < 400, then pgf))p(f, @) < +oo for all t € RY;
this is the situation we are mainly interested in.
Since P is a convex functional, pg?p( f, @) is a convex function of ¢. Con-

vexity will play a significant role in our considerations, so let us fix some



definitions before we go further. Our main reference is [Roc72]. For a convex
subset D C R%, denote by aff(D) its affine hull, i.e. the smallest affine subspace
of R? containing it. The interior of D with respect to the natural topology on
aff(D) will be called relative interior and denoted ri(D). If g : R¢ — (—00, +00]
is an arbitrary function, epi(g) := {(z,y) : y > g(x)} is the epigraph of g, and
the set dom(g) := {z € R?%: g(x) < +oc} is called the effective domain of g.
The closure of g is the function cl(g) defined by cl(g)(y) := liminf,_,, g();
it is the greatest lower semi-continuous function majorized by ¢, and the
epigraph of cl(g) is the closure of the epigraph of g. The convex conjugate
G : RY - [—o00,+00] is defined by g(y) := sup{(z,y) — g(z) : z € R?}.
The convex conjugate is a lower semi-continuous convex function. If g is
a convex function, we have g(y) = sup{(z,y) — g(z) : =z € ri(dom(g))}
(see [Roc72] p.104). Convex conjugacy has an involutive property; namely,
(§)" = cl(convex hull(g)), where convex hull (g) is the pointwise supremum of
all convex functions bounding ¢ from below. The epigraph of convex hull(g)
does not have to be equal to the convex hull of that of g. However, this is the
case when g is lower semi-continuous and has bounded effective domain (see
Proposition A.0.3 and its proof). Then also h := convex hull(g) is lower semi-
continuous and h coincides with g at the extremal points of the epigraph of h.
In particular, g(z) = h(x) at the ordinates x of those extremal points that lie
over ri(dom(h)) — those values of x are referred to as points of strict convexity
of h. Finally, if we assume that hyp(f) < 0o, then all the convex functions in

the following discussion are proper, i.e. they take values in (—o0, oo].
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Theorem 2.1.1 (thermodynamical formalism) If h,(f) < 00, then the
convex hull of v — —hgg%,(f, ®) is the convex conjugate v — ﬁgg%,(f, ®) of t —

pﬁ?p(f ,®). In particular,

—higy(f,8) > sup ((t,v) = piop(f. 9)) ,

teR4
and the equality holds at all points v where the right side is strictly conver.
Using (ii) of Proposition 2.1.1, we get the following straightforward corol-

lary.

Corollary 2.1.1 If hyop(f) < 00, then the convex hull of the set of asymptotic

averages p(f, @) is equal to the essential domain dom(ﬁgg%(f, ®)) of the convex
conjugate of 11, )

Theorem 2.1.1 may be viewed as a large deviations type result (see [E1I85]).
It was inspired by Theorem II 6.1 in [EII85]. In the appendix we give a broader
exposition together with an elementary proof. In this chapter we show Theo-
rem 2.1.1 as a byproduct of connecting hggz,( f, ¢) with the main body of ergodic
theory. The major link in the connection is the following improvement of the
variational principle for topological entropy ([Wal82]).

Denote by M(X, f) the set of all Borel probability measures invariant
under f and by £(X, f) the set of all those measures in M(X, f) that are

ergodic.

Theorem 2.1.2 (Relative Variational Principle) We have:

(i) for any closed conver set V C R4,

hop(f,0) < sup {bu(f) € MK, D), [ odue Vs
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(ii) for any open set U C RY,
WY (£, ) > sup {hu(f) weE(X,f), [pdue U} .

Thus, if we define (using the convention that sup ) = —o0)

W F.0)i=sup { () s € EX 1), [odu=0},  (24)

and
Bss(£,9) 1= sup { () s € MX. ), [ddu=v},  (23)

then we have the following corollary.
Corollary 2.1.2 For v € R%, we have

lim sup heeg (f, ¢) < hd(f, 6) < 1im SUp Aizyeas (f; ).
In particular,

cl (—Breas (£, 8)) = — limsup b, (f, ) = convex hull (—h{)(f, ).

Proof of Corollary 2.1.2. The inequalities follow immediately from the defini-
tions. To justify the second assertion, note that, since the metric entropy A, (f)
is affine as the function of u, —h% ...(f, ¢) is a convex function of v. From the
ergodic decomposition theorem, —hy,..s(f, ¢) is the convex hull of —hg, (£, ¢).

We are done because h,§§§,( f, ®) is pinched between the two. Q.E.D.

Also, by its convexity, —h?

Y eas(f, @) is continuous at all points v in the

relative interior of its effective domain, ri(p(f, ¢)); so, for those points, the

rightmost “limsup” in Corollary 2.1.2 is superfluous. Another instance when
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we do not need that “limsup” is when h,(f) is upper semi-continuous in

v

Y eas(fs @) is upper semi-continuous in v. This happens for

i because then h

expansive f ([Wal82]) and also for any f that is C*°-smooth ([New89]).

The following example shows that one can indeed have lim sup,_,,, hi, (f, @)

< (£, ).

Example. For (z;)icz € {1,2,3,4}%, (x,...,x;) is a parity block if xy, ..., z;
are all even or all odd. We call it maximal if x_1, x; 1 have the parity opposite

to that of z;, i = k, ..., . Consider a subshift (A, o) where
A={ze{1,2,3,4}%: £ has at most two maximal parity blocks}

and o shifts to the left: (0((2i)icz)); == ®iy1- The space A is compact and
invariant under o. Let the observable ¢ : A — R be given by ¢(z) := (—1)%.
One can easily verify that p(o,¢) = [—1,1]. All ergodic invariant measures
are supported on the union of Age, := {x € A : z; even for all i} and
Aodq := {x € A: z; odd for all i} because any recurrent point is contained in
one of the two sets. Nevertheless, hgg%,(a, ®) > In2. Indeed, for any n € 2NN,
consider points of A with maximal parity blocks of the form (..., z,/2—1) and
(€72, -..). They all have vanishing S, (o, ¢), and there are 2 - 2" such points
with pairwise different blocks of the first n symbols.
Perhaps a more interesting example is A := {2 € {1,2,3,4}%:
x has no two finite maximum parity blocks of equal length}.

We leave analysis of this example to the reader.



Corollary 2.1.3 If g is an ergodic equilibrium state for (tq, ¢), that is ([Rue78,

Bow75, Wal82])

Py (£,6) = huo () + (to, [ D),
then fO’f‘ Vo = f ¢ d,U'O; we have h’tvO) (fa ¢) = h’vmoaes(fa ¢) h’ggg(fa ¢) = h’uo (f)
In particular, if u, is an ergodic measure of maximal entropy, then v, :=

[ & du, satisfies hgg;)( [, @) = hiop(f) realizing thus the maximum of htop (f, 9).

Such a measure exists for C° maps due to the result by Newhouse ([New89]).

Proof of Theorem 2.1.1 from Theorem 2.1.2. From the variational principle

for topological pressure ([Wal82]) we have

ptop(f ¢)_Sup{ +/¢t d,u MEM(X f)}:
sup {(t, v) + Aineas(f, @) * v € dom (—hieos(f5 8))}-

Thus pgf))p(f, ®) = (—h? . (fs ¢))A, so, by the involutive property of “~” and by

Corollary 2.1.2, we have

(Blop (£, 8)) = (—htreas(£,8)) = cl(—hlens(f, #)) = convex hull (—h{s)(f, 8)) -

(We skipped “cl” before convex hull (—hﬁ;g,( f, QS)) because this function is al-

ready lower semi-continuous — see Proposition A.0.3.) Q.E.D.

Proof of Corollary 2.1.3. In the previous proof we got

ptop(f7 ¢) ( meas(f7 ¢))7 CAS Rd' (26)

38



Thus, combining trivial inequalities, we can write

( hgr?aes(f ¢)) hqrjl(l)aes(f’ ¢) hqejlgg(f’ d)) < _huo (f) =
(to, [ 6duo) = i) (£,0) < sup {(0) = plip(f, )} = Bep(f:6) =
el (=haes(f5 8)) -

In this way, cl (=A%, (f, @) = —hggg(f, ¢). By Corollary 2.1.2, —hgg,(f, ¢) is

pinched between the two, which finishes the proof. Q.E.D.

Remark. If ptop( f, ®) is differentiable at ¢y, then Corollary 2.1.3 is true with-
out the hypothesis that pg is ergodic. In fact, almost all measures v in the
ergodic decomposition of p satisfy then h,(f) = h,,(f) and [@ddv = [ ¢ dp.
Indeed, affine functions &, : ¢t — h,(f) + (¢, [ ¢dv) are all majorized by
ptop( f,¢) and, integrated with respect to v, yield &,, which is tangent to
ptop( f, @) at to. Since there is a unique tangent at ¢y, almost all £,’s must be
equal to &,, which implies our claim.

The following fact will be used numerous times ahead.

Proposition 2.1.4 (Quotient Rule) Let (X,d) and (Y,e) be compact met-
ric spaces and ¢ : X — R? be continuous. If f : X — X is a factor of
g:Y =Y wviah:Y — X (ie. his continuous surjective and foh =hog)
then, h?.(f,¢) < hY._(g,¢0h), v € R

erg erg

Proof. Let M(Y), M(X) be the spaces of the Borel probability measures on
Y and X respectively, both equipped with the weak*-topology. The map h

induces the push forward operator on measures, h, : M(Y) - M(X). Since,
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for v € M(Y, g), hn.)(f) < hu(G), it is enough to prove that h, maps £(Y, g)
surjectively onto £(X, f). This can be derived (via ergodic decomposition)
from the lemma 8.3 in [Man87]. We give a more elementary argument due
to Milnor. Fix an arbitrary p € £(X, f). Choose measures p, € M(X)
supported on finite sets and converging to u. By surjectivity of h, each atom
of u, has a preimage in Y; and, by taking those preimages with the obvious
weights, one easily gets v, € M(Y) such that h.(v,) = p,. Passing perhaps
to a subsequence, we can assume that v,’s converge to a measure v € M(Y).
Since h, is continuous, h,(v) = p. To make v invariant under g, replace v
with any limit point of the sequence of time averages ((1 /n) S0t gi(v))neN
— those averaged measures also map under h, to p. Thus we got v € M(Y, g)
such that h,(v) = p. This shows that a compact convex set C' := h;'(u) N
M(Y, g) is not empty; therefore, it has an extremal point n € M(Y,g). The
measure 77 must be ergodic. Indeed, if it were a nontrivial convex combination
of two other measures 7y, 17, € M(Y, g), then, by extremality of nin C, h,(n;) #
i, © = 1,2. This contradicts ergodicity of p because p = h,(v) is a convex

combination of h.(n;) and h. (). Q.E.D.

Proof of Theorem 2.1.2. We build on Misiurewicz’s proof of the variational
principle for topological entropy as found in [Wal82]. Basically, we need to
augment it with arguments that keep track of the averages of the observable.
This is trivial for the proof of (i). Then the natural measures (i.e. limits of
those equidistributed on the appropriate (e, n)-separated sets) have the right

averages, and we just quote [Wal82] claiming that their entropy is as required.
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Part (ii) is more involved; we are forced to interweave the proof from [Wal82]
with several arguments including application of Egoroff’s and Birkhoft’s the-

orems.

Proof of (i). We will show that, for any v > 0, there is p € M(X, f) with
[odp € V and h,(f) > hy,

top

(f,#) —v. Choose € > 0 so that hY(f,d,€) >
h:f)p(f, #)—~. From the definition of h¥ (f, ¢, €), there exists a sequence n;, € N,
nry — oo and (€, ng)-separated sets Ej such that limg ,oo(1/ng) In#E, =
hY(f,¢,€) and (1/ng)S,,(f,¢)(z) € V, for z € E;. Consider the uniform
atomic measures on Ej, call them dg,, and set py == (1/ng) Z?igl 6m, o f7.
Note that, by convexity and closedness of V, [ ¢ duy = [(1/n%) Sy, (f, ¢) ddg, €
V. Passing perhaps to the subsequence of (ny), we can assure that py’s weak*-
converge to some probability measure y. Clearly [¢dy € V. More impor-
tantly, Misiurewicz proves that h,(f) > limy_,o 1/n; In#E), (see part (2) of
the proof of Th.8.6., p. 189 in [Wal82]), so h,(f) > hV(f, ¢, €) > hi,(f, ) —.
Q.E.D.

Proof of (ii). We will show that: if hY

top

(f,¢) > 2 and p € M(X, f) is such

that
Jim (1/n)Su(f,0)(2) = 8= [ ddue U, (2.7)

for p-almost all z in X, then h,(f) < hg)p(f, ¢) +1In2 + 1. Clearly, (2.7) is
satisfied by ergodic p with [@¢du € U; however, unlike ergodicity, (2.7) is
invariant under replacing f and ¢ by the iterate f™ and by (1/m)Sn(f,®)

respectively. By considering arbitrarily high iterates and using the power rule

(Proposition 2.1.3), we conclude that h,(f) < h{ (f,¢).
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Let A = Ay, ..., A; be an arbitrary finite Borel partition of X. Choose
€ > 0 so that € < 1/(klnk). Using Egoroff’s theorem, we may find compact
sets B; C Aj, with u(A;\B;) <€, 1 < j <k, such that (1/n)S,(f, #) converges
uniformly to ¢ on every B;. Now, because of this uniform convergence and

openness of U and since ¢ € U, there is 0 < d < 1 such that

(1/m)Spm(f, ¢)(z) +2d-{¢(z) :z € X} C U, (2.8)

for any x € U§:1 Bj, and sufficiently large m € N.

Put By := X \U{B; : 1 < j < k} and introduce a partition B :=
{By, B1, ..., By}. Now, for 1 < j < k, we have B; C A,, so the entropy
H,(A/Bj) of A restricted to B, vanishes for those j’s. Also, by the trivial
estimate (see Corollary 4.2.1 p. 80 in [Wal82]), H,(A/By) < Ink. Thus we
get conditional entropy H,(A/B) = Yo<j<r b(B;)H (A/Bj) < p(Bo)Ink <

eklnk < 1. Consequently, (by (iv) of Th.4.12, p. 89 in [Wal82]) we have
hu(f, A) < h(f, B) + Hu(A/B) < hy(f, B) +1. (2.9)

For each n, let us split B" := V;-L:_& f7B into B} := {B € B": B C
ByN...N fla"l By} and By := B™ \ BY. Note that #B7 < (#B)"~l4" thus,

for sufficiently large n, we have
#By > $B" — (#B)"1 > (1/2)#B". (2.10)

Put K, := {z € X : (1/m)S,,(f,¢)(z) € U for all m > n}. We claim
that the union JBj} is contained in K,, for sufficiently large n. Indeed, if

r € A € By, then there is s, 0 < s < |dn], such that f*(z) € B; with j # 0.

42



Now, a simple estimate gives

1(1/m)Sm(f, @) (x) = (1/m)Sm (£, 6) (f* ()]

< 2[dn]sup|l¢(z)[l/m < 2dsup [|p(2)]],
zeX z€X

so, by the choice of d (see (2.8)), we have (1/m)S,,(f,¢)(z) € U.

Adopting Misiurewicz’s trick, consider C := { ByU By, ..., ByU By }. This is
an open cover of K, (also X). Write N(C", K,,) for the minimal cardinality of
a subfamily of C" := ?:_01 f7IC that covers K,, and let C,, be such a subfamily
with #C,, = N(C", K,,). By our claim, each B € BY lies in K,,; therefore, there

exists C € C, containing B. It is also clear from the definition of C that at

most 2" elements of By can fit into any fixed element of C,,. We conclude that
#By < N(C", K,,)2". (2.11)

By Th. 7.7 in [Wal82], if § is the Lebesgue number of C, then N(C", K,,) <
s(6/2,n, K,,), (where s(6/2,n, K,) is the maximal cardinality of an (§/2,n)-
separated subset of K,,). Note that every (4/2, n)-separated subset of K, has
the averages (1/n)S,(f,¢)(z) in U, for large n. Thus, for those n, we get
N(C", Ky) < s7(f,¢,6/2,n).

Now, combining (2.10), (2.11) and the last inequality, we get, for large n,
Hy(B") <In#B" < In(2#85) <1n (25" (f,4,5/2,n)).
Passing to the limit, first with n — oo then with § — 0, we obtain

hlt(f: B) S In2 + hil:{)p(fa (b)
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From (2.9), h,(f, A) < In2+ hZ (f) + 1, and by arbitrariness of A we

top

get h,(f) <In2+ kY (f,4) + 1, as promised. Q.E.D.

top

2.2 Topological entropy at the asymptotic av-

erage for subshifts of finite type

As an example of utilizing Theorem 2.1.1 to calculate hEgz,( f,®), we con-
sider the case of a transitive subshift of finite type with locally constant ob-
servable. This setting is exactly what we will need to analyze the case of

pseudo-Anosov maps in the next chapter.

In the first subsection, using standard techniques, we identify pgz)p( fi0)
with the leading positive eigenvalue of the appropriate transfer matriz. This
gives an explicit real analytic formula for hg% (f,®). We also note that hﬁzf,( f,0)
is realized as the metric entropy for the corresponding Gibbs state.

The second subsection is devoted to showing that, apart from having the
associated ergodic Gibbs state, each v € ri(p(f, ¢)) is the asymptotic average
for a compact invariant set with the topological entropy arbitrarily close to
hiap(f,9)-

In most of our formulations we restrict attention to v in ri(p(o, ¢)) since
ultimately (in the case of torus homeomorphisms) only such rotation vectors
will be considered. However, the case of v in the boundary of p(f, #) can be
reduced to that of v € ri(p(o,)) by passing to a smaller subshift of finite type

using the scaffold construction (taken from [MT91]). We briefly describe this
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trick in the last subsection and show how it relates to h,gz,( f,0).

For subshifts of finite type, the entropy hEg%,( f, @) contains much more
refined information that what is suggested by its definition. It can actually
be used to count the number of periodic orbits with a prescribed average of
the observable (]MT91]). This belongs to a topic that parallels the classical
theorems on the distribution of the prime numbers via the formalism of Zeta
functions. There is a large amount of published material on the subject, see

for example [PP90] and the references within.

2.2.1 Transfer matrix, Gibbs states, and explicit for-
mulas
Consider a transitive subshift of finite type ¢ : A — A with a locally con-

stant observable function 1 : A — R%. Without any loss of generality, we can

assume that there is an irreducible ((Wal82]) binary matrix A = (a;;)1<ij<n

and a Rd—valued matrix (d)i,j)lgi,]’SN such that A = {ac € {1, ceey N}Z DOy =

1, i € Z} and ¢ (x) = 1y, 4, for z € A. The metric d on A, that we shall use,
is given by d((xx), (yx)) := 27 ¥, where k is the closest to 0™ position at which
xy and y, differ.

A convenient representation of this setting is achieved by interpreting
points of A as bi-infinite paths in the transition graph G C {1,..., N}? with
vertices {1,..., N} and an edge (4, j) from ¢ to j whenever a;; = 1. By a path
ain G we understand amap « : {k,...,I—1} — G, where k,[ € ZU{—00, +00},

and «(i + 1) emanates from the endpoint vertex of (i), k < i <1 — 1. The
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number [ — k is the length of the path, denoted by I(«). A loop is a path
with the endpoint of a(l — 1) coinciding with the starting point of (k). The
loops visiting any vertex of G' at most once are called elementary. Clearly,
there is a finite number of the elementary loops in G. Each periodic orbit of
o determines uniquely a loop with the length equal to the period. To keep
track of the averages of v, each edge (i,7) € G is tagged with the vector weight
i ;. By >, we denote the sum of the weights along the edges of the path
a. If a is a loop, we write p(«) for the average (1/1(«)) Yo ¢. Transitivity of
o guarantees that any pair of vertices ¢, € G can be connected by a path 7;
in G. We will refer to the paths in a fixed collection {7; ;}(; jjec as connecting
paths and call ¢ := max{l(7;;) : 4,7} a connecting length of G.

The shift map o is expansive with the expansiveness constant ¢ = 1 (see
[Wal82]); therefore, in an analogous way to the usual topological entropy, one
can easily verify that hgg%,(o, 1) can be calculated on (1,n)-separated sets. If
S C A is (1,n)-separated, then it determines a collections of #S different
paths in G of length n — for a point (z;) € S, the corresponding path «
passes through zy, ..., z, and S, (o,9)(z) = X, 9. Clearly, every collection of
different paths of length n arises from a (1, n)-separated set in this way. Thus

we can write

hﬁ’g;(a, V) = 11_1)n limsup(1/n) In s%®) (5,4, 1,n) = (2.12)

n—oo

;g%lim sup(l/n)In#{a: apathin G, l(a) =n, (1/n)>_ v € B,(v)}.

Since every path can be extended to a loop by adding an appropriate
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connecting path, we have

hg%(a, ) = lim linmﬁs;}p(l/n) In#{a: aloopin G, l(a) =n, p(a) € B,(v)}.

(2.13)
One can even insist that all the loops above depart from an arbitrarily fixed
vertex. The “limsup” in (2.13) can not be replaced with “liminf” unless o is
mixing. This (slight) inconvenience is offset by the following simple fact (cf.

the example in Appendix A).

Fact 2.2.1 In the formula (2.12), one can replace lim sup with lim inf.

Proof. Take an arbitrary 0 < n < 1. We will show that with “liminf” we get
at least nhgg;(a, ¥). Fix v € R% and 7 > 0. By (2.13), there exist arbitrarily
large ny € N such that there is a collection I' of different loops of length ny
with cardinality #I' > exp (hggfy(a, Y)nen) and (1/n9) X, ¢ € B, ja(v), v € T
As noted above, we can assume that all these loops depart from a fixed vertex
of G so that we can concatenate them. For any n € N, set k := |n/ny|. By
considering all possible (#I')* concatenations of k-tuples from I'*, we conclude

that
sP O (g,0,1,n) > P20 (0,4, 1, kng) > (#T)* > exp (A (o, ) knon)

(where for the first inequality n must be sufficiently large). Taking the loga-

rithms and “lim inf” with n — oo finishes the proof. Q.E.D.

Combination of the results in the preceding section of this chapter with

the known facts about subshifts of finite type gives us the following theorem

47



— very much in the spirit of [Bow75, Rue78]. (A reader not familiar with the

Gibbs states may want to consult [Bow75].)

Theorem 2.2.1 Suppose that (as above) o : A — A is a transitive subshift
of finite type with observable 1 : A — RY that depends only on the first two
symbols. If A = (aij)1<ij<n is the corresponding binary matriz and G is the
corresponding transition graph with weights (;;)1<ij<n, then:

(i) p(o, @) is a convex polyhedron with vertices in
{p(a) : « is an elementary loop in G},

(11) —hgg%,(a, ¥) is convex continuous on p(o,) and strictly convexr and real
analytic on ri(p(o,));

(i11) pgf))p(a, ¥) = In(A(t)), where A(t) is the leading positive eigenvalue of the
transfer matrix A(t) = (a;jexp(t,¥ij))1<ij<n, t € RY;

(iv) ~higy (0, 9) = Blog(0, ), for v € xi(p(e, 9));

(1) hiop(0,9) = Big(0,9) = Bheas(0,9) = hyn (o), where v € ri(p(0, 1))
and 1 is the Gibbs measure corresponding to the function on A given by
x> (t, (), with t € RY uniquely determined by v = thg?p(a, 1Y) (where V;

is the gradient with respect to t).

Remark. The dimension of p(o, 1) may be lower than d. Thus real analyticity
in (ii) is with respect to the affine hull of p(o,). Nevertheless, even though
we have chosen not to do so, one can always assume that p(c,1) has the
dimension of the target space of ). This is achieved by replacing i with its

projection onto the affine hull of p(o, v).
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Remark. Let us add to (v) that, since # is locally constant, the Gibbs measure
is a Markov measure. More specifically, if u = (u;);=1,..x and v = (v;)i=1,..N
are the eigenvectors, corresponding to the eigenvalue A(¢), of A(t) and of the

* respectively, then this Markov measure is determined by a

transpose A(?)
unique stochastic vector proportional to (u;v;)i=1,.n and by the stochastic
matrix (AilA(t)i’jUj/’UZ‘)Z"J‘:L_._N (Cf P- 194 in [Wal82]) A]SO, Ui, V; > 0,

1=1,..., N, so this measure is supported on the whole A.

Remark. For a subshift of finite type that is not transitive, the entropy

hggz, (0,1) is the maximum of the entropies on the transitive components.

The terminology transfer matriz comes from statistical mechanics (see
[E1I85, Rue78]). Part (iii) of Theorem 2.2.1 is the essence of the transfer

matriz method (see [May91] for an exposition).

Proof of (i). This has been apparently realized by many; it is implicitly con-
tained in [Fri82b], mentioned in [Kwa92], and proved in the full generality in
[Zie95]. One way to argue is as follows. By transitivity, the rotation set is the
closure of the t-averages p(5) taken over all loops 3 in G. Thus it is enough
to see that, for every loop 3, the sum }°5 can be represented as a sum of
> o ¥’s for a number of elementary loops «. This can be done by induction
with respect to the length of 5. If 3 is not elementary, then certain vertex
v repeats at least twice and, by taking the two segments of 3 between two
different occurrences of v, one can “pinch” 3 to two shorter loops without

changing the sum of weights. Q.E.D.
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Proof of (iii). The topological pressure is given by

Plop(0,9) = lim (1/n)In (Z {exp (t, zaj@ : o path in G, I(e) = n}(2> 1,4)

or, in terms of loops, we can write (cf. (2.13) and [May91])

P (o,9) = lim sup(1/n) In (z {exp (t, zaj@ . aloop in G, l(a) = n}) .

(The convergence takes place for mixing ¢.) The right-hand side can be written
as

lim sup(1/n) In(trace(A(t)")) = In(A(t)),

n—oQ
where the matrix A(t) = (a;; exp(t, i ;) )1<ij<n, and A(t) is its leading positive

eigenvalue given by the Perron-Frobenius theorem ([Wal82]). Q.E.D.

Proof of (iv). Because A(t) is a non-negative irreducible matrix, the lead-
ing positive eigenvalue A(¢) is a simple root of the corresponding character-
istic polynomial, and so it depends real-analytically on ¢t € R¢. In this way
pgf,)p(o, 1) is smooth; and consequently, its convex conjugate is strictly convex
on the interior of the effective domain (see p. 253, [Roc72], cf. (2.15) below).
We are done by Theorem 2.1.1. ( The effective domain is equal to p(c, ) by

Corollary 2.1.1.) Q.E.D.

Proof of (v). Since by (iii) pgz)p(a, 1) is smooth, its convex conjugate ﬁggg,(a, )
can be calculated for v € ri (dom (ﬁg;(a, w))) as follows (cf. Th. 23.5,

[RocT72])

Brop(0,1)) = (v,1) — plop (0, ), (2.15)
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where t is uniquely determined by thg?p(a, ¥) = v. Moreover, we observed
while proving (iv) that p(o, %) = dom(pi (o, 1)).
Let 4 be the Gibbs state for (t,1)). According to Ruelle (see Th.1.22 in

[Bow75]) it is an (ergodic) equilibrium state, that is

Pioy(0,) = o (o /¢dﬂ U)

The affine function £ : ' = h,w (o) +(t', [ ¥ dp™) is majorized by the convex
function péf,)p(a, ) due to the variational principle, and, by the above equality,
it is actually tangent to pgf))p(o, 1). Comparison with (2.15) yields [ v du® =

and —h,w (o) = ptop( o,1%). We are done by (iv) and Corollary 2.1.3. Q.E.D.

Proof of (ii). While proving (iv) we observed strict convexity of ﬁggi,(a ) =

—hEZ%(U, 1Y), for v € ri(p(o,)). By (2.15) and real-analyticity of ptop(o ),
v hgzl)a(a, 1) is real-analytic on ri(p(o, v)).

Still, one needs to show convexity on the whole p(o, ). Then continuity
follows; indeed, —hggz,(a, 1) is lower semi-continuous by (iv) of Proposition
2.1.1, and, by Th. 10.2, p.84 [Roc72], it is upper semi-continuous as a convex
function on a polyhedron.

To demonstrate convexity, it is enough to show the following: if vy, vs €

p(o,) and v = vy /2 4 vy /2, then

hiap (0, 8) > (1/2)hioy) (0, %) + (1/2)hizy) (0, 9).

It is routine to extend this inequality to 2-adic convex combinations and then

(by upper semi-continuity of hggf,(a, 1)) to arbitrary convex combinations.
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Fix an arbitrary r > 0. By (2.12) and Fact 2.2.1, there are arbitrarily
large ng € N for which one can find two families I'; and I'y of paths ! in G,
with length ng, so that #I'; > exp ((hg;) (0,9) — r)no) and 3, ¥ € ngB,(v;)
for v € T';, © = 1,2. Moreover, we may assume that nyr exceeds the connecting
length t.

For each pair of paths (y1,72) in I'; x I'y we can find a connecting path T
so that v := 17y, is a path in G. At least #I'1#Iy/t of thus obtained paths

v will have the same length
n:=1(y) =2ny+ 1 < (14 7)2n, (2.16)

where [ := [(7). Let I" be a collection of those 74’s. Observe that, if v € T,

then

(1/n) 3 % € Byys(v),

where ¢ accounts for the contribution introduced by 7 and is smaller than r

for large ny. Thus we have
sPr(o,9p,1,n) > #I > exp ((hggi,) (0,9) — r)no) - exp ((h%ﬁf) (0,9) — r)no) /t.
By passing with 7ng to infinity, while keeping in mind (2.16), we get

higy (0, 9) > 201+ 7)) (ke (0, %) + hied) (0, 9) — 2r).

We are done by the arbitrariness of r. Q.E.D.

!These can be actually chosen to be all loops through a fixed vertex.



2.2.2 Observable shadowing with the right entropy

Let o, A, 1, and G be as in the preceding subsection. By (v) of Theorem
2.2.1, we know that, for any v in ri(p(o, 1)), there is an ergodic measure with
the metric entropy equal to hggl)o(a, ). That measure is supported on all of A
(see the remark after Theorem 2.2.1), and the support could not possibly be

smaller as shown by the following proposition.

Proposition 2.2.1 Suppose that v € ri(p(o,)). If K is a compact o-invariant

proper subset of A with p(o|x,v) = v, then hggz,(ah() < hg%,(o, ).
The proposition also demonstrates that the following theorem is optimal.

Theorem 2.2.2 For v € ri(p(0,v)) and 0 < n < 1, there exists a compact
o-invariant set K C A such that hiop(0|K) > nhg)p(a, ¥) and p(o|g,¥) = v.
In fact, K is such that, for some constant C, ||S,(0,¢)(z) —nv|| < C, z € K,

n € N.

This theorem, for the special case of ¢ with values in Z and v € Z, is
proved in [MT92]. Also, in [Zie95] it is shown how to find for each v € p(o, )
a compact invariant set K with p(o|x,®) = v. Our methods, developed
independently of [MT92, Zie95|, are different. Let us also note that, using the
scaffold construction of the next subsection, one can get a stronger result for
Prerg, see Theorem 2.2.4.

The proposition is simple, so we prove it first. We need the following

lemma.
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Lemma 2.2.1 If K is a compact, o-invariant proper subset of A, then, for

any t € R, we have pioy (0], ¥) < plap (0, ¥).

Proof of Proposition 2.2.1 from Lemma 2.2.1. Pick v € ri(p(o,1)). There is
the corresponding o € R¢ such that —h{”) o(o, ) = (v, o) — Pmp (a ), (see

(2.15)). Using Theorem 2.1.1 for the first inequality and the lemma for the

third, we obtain

—M&dmwzggwwwm%wmw»z

(v,t0) — P (o |k, 1) > (v, 10) — DA (0, 9) = —hie) (0, ).

Q.E.D.

Proof of Lemma 2.2.1. Let u be the Gibbs measure associated with (¢, ). Its
characteristic property is that there is a constant C' > 0 such that, for any

z = (x;)icz € A and n € N, ([Bow75])

C ' < p([alg)/ exp ((Su(0, ) (@), t) — nplop (0, 9)) < C, (2.17)

where [z]¢ :={y € A: y; =z, i =0,...,n — 1} is a n-cylinder. Since K is
proper and p is ergodic and supported on the whole A, we have p(K) =0. We
can contain K in a union of disjoint cylinders that total to arbitrarily small y
measure; more concretely, for sufficiently high ny € N, there exists a discrete
subset Ey, of A such that K C Uyeg,,[z]0° and p(Use,,[7]0°) < (100)~t
Now, for n € nygN, consider any (1,n)-separated subset of S C K. Any ng-

cylinder that is determined by ng consecutive symbols of a point in S must be
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one of [z]y°, © € E,,. This, together with (2.17), yields the following estimate

n/no
dexp(sn(a,w)(x),t) < I 5 enlSuln )@, <

n/no n/no
I Y Cullalie)exo (mlh(o, ) < (COL0C)™ exp (napl(e,1)))"™ .

Taking the logarithms and passing to the limit with n — oo, we get (by (2.14))

P (0 ]k, 1) < &) (0, ) + (1/n) In(1/10).

Q.E.D.

We turn our attention to Theorem 2.2.2 now. As most of proofs in this
section our argument hinges on concatenation of paths in G, however this
time we need an original approach to control the averages. Sacrificing the
efficiency of exposition, we take an opportunity to present a general technique
that easily yields trajectories in A that have an a priori prescribed behavior of
the averages. (See Lemma 2.2.2, ahead.)

We start with a simple characterization of convex polyhedra that may be
interesting by itself. (Below, for two sets A, B C R%, A + B stands for the

Minkowski sum, i.e. A+ B={a+b: a€ A, b€ B}.)

Theorem 2.2.3 (characterization of convex polyhedra) For a compact
convex p' C RY, the following are equivalent :

(i) p' is a polyhedron;

(i1) there exist m € N and wi,...,w, € p' such that p' + p' = U, wi + p'.
Moreover, the w;’s can be chosen so that they are convex combinations with

rational coefficients of the extremal points of p'.
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Proof of Theorem 2.2.3. To prove that (ii) implies (i), we just notice that, for
x,y € p': if the sum z + y is an extremal point of p' + p' = 2 - o', then both z
and y must be extremal and equal to each other. Thus m bounds from above
the number of extremal points of p’ what makes it a polyhedron.

To prove (ii) from (i), we first note that affine transformations of p’ do not
affect validity of (ii). Since every polygon with n vertices is an affine image
of the standard simplex A" = {x € R": z; > 0, Y z; = 1} C R", we may
consider only the case when p/ = A™.

We claim that
2-A" = J{w+ A" w=(wi,...,w,) €A", w; € (1/n)N, i =1,...,n}.

To get this, fix any =z = (x1,...,2,) € 2- A" Clearly 37 ;z; = 2, so we
see that >0, |nz;| > > (nx; —1) = 2n — n = n. Hence, we can choose
k; € N, 0 < k; < |nz;], i =1,...,n, such that 37, k; = n. Now, by setting
w; := ki/m and y; = x; —w;, 1 = 1,...,n, we get >0 ;w; = n/n =1 and

",y =2—1=1,s0 both w = (w;) and y = (y;) belong to A™. Clearly

r=w++y. Q.E.D.

The following “shadowing type result” is the consequence of Theorem

2.2.3 that we are interested in.

Corollary 2.2.1 Suppose that p' and w;’s are as in Theorem 2.2.3. If x :
R*™ — RY is piecewise C' with z(0) = 0 and 2'(t) € p/, t € R, then there
exists a sequence k € {1,..,m}N such that x(n) € we, + ... + Wy, _, + p', for all

n € N.
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Proof. We proceed by induction with respect to n. Since z'(s) € p/, by
convexity of o/, z(1) = [} 2'(s)ds € p' taking care of the case n = 1. For
the induction step, write z(n + 1) = z(n) + [ 2/(s)ds € z(n) + o’ and use
induction hypothesis to see that x(n+1) € wy, +...+wy,_, +p' +p. By (ii) of
Theorem 2.2.3, one can to find 1 < k, < mso that z(n+1) € we, +...+wx, +0-

Q.E.D.

Let us now explain how Corollary 2.2.1 renders orbits in A (or equivalently
paths in the graph G) with prescribed behavior of the Birkhoff averages of 1.

By transitivity, we can find loops 7y, ... 7,, all emanating from a common
arbitrarily chosen vertex iy, such that p' := conv{p(m), ..., p(n.) } approximates
p(o,1) as well as we wish. Now, let w;, i = 1,...,m, be as in (ii) of Theorem
2.2.3. Since w;’s are all rational convex combinations of the vertices, by taking
appropriate concatenations of n;’s, we can obtain loops [, ..., 8, so that w; :=
p(B), i = 1,...,m. Moreover, replacing each loop §; with its appropriate
multiple we can make all 3;’s of equal length /5. One can concatenate (3;’s at
will: if ¢ € N and x € {1,...,m}9, then B, := f,...0,, is a loop in G.

The following lemma is in fact much stronger than what we need for
Theorem 2.2.2. For a path £ in G, by & we understand its restriction to

{m,...,n — 1} (if it is well defined).

Lemma 2.2.2 If z : R — R? is piecewise C' with z(0) = 0 and 2'(t) € ¢/,

t € R, then there exists a bi-infinite path & in G following x, i.e.

< A = dlpdiam(p') + 2lp sup || ()|,
TEA

;jw = (z(n) — z(m))

o7



for alln < m, n,m € Z. Moreover, for n € [gN, the edge £(n) ends at the

verter 1p.

Clearly, the smoothness hypothesis is superficial.

Proof. By applying Corollary 2.2.1 to the rescaled path t — (1/ly)z(lot) twice,
once with time running forward (¢ > 0), once with time running backward

(t < 0), we get x € {1,..., M}% such that for any k,l € Z with k < [,

< 2diam(p').

— (1/lo)(z(lol) — z(lok))

Take for £ the infinite concatenation £ := S, = ...0¢_, Bxo B, --- - By multiplying
the above inequality by Iy, while remembering that w; = p(8;) = (1/ly) X5, %

we see that

fzzo

The above inequality for restrictions of £ to intervals between multiples of [
yields the result because, for m, n with |m—n| < lo, both || 2., | and ||z(n)—
z(m)|| are trivially bounded by losup,c, ||#(2)|| and Iy diam(p') respectively.
Q.E.D.

Proof of Theorem 2.2.2. We will construct a sequence of natural numbers

n; — oo and a sequence of (1, n;)-separated sets E; C A such that

#E; > exp(hiv) (o, ¥)nm;) (2.18)

and, for y € F;,
1Sk (0, ) (y) — kol < C, (2.19)
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where £ € N and C' is a constant independent on 7. Then the set K :=
cl(Ujen ien 0'(E;)) satisfies the assertion of Theorem 2.2.2. This is because
(2.19) is satisfied on a closed set of y € A and, if it holds for y, then it holds

for o(y),0%(y), -.. with C replaced by 2C.

Fix v € ri(p(o,7)). In constructing E; we will think of its points as
infinite paths in G. As in the discussion preceding Lemma 2.2.2, choose loops
B1, ...Bm so that v € ri(p'), where p' = conv{p(5,), ..., p(Bm)}. Recall that all
B;’s have a common starting vertex ig. Let § > 0 be rational and such that
1/(1+46) > /n. Take r > 0 satisfying v — By,/5(0) C p'. From the definition
of hggz,(a, ) rephrased as (2.13), find ny € N and a collection Sy of loops in
G, with length ny and starting at i, such that #S, > exp(hggz,(a, ¥)\/TM0)
and (1/ng) X, € B,(v) for any v € Sy. Require also that ng is large enough

so that

A = 4lpdiam(p') + 2l sup ||¥(z)]| < rno. (2.20)
€A

With no loss of generality one can assume that ngd € [(N.
Set n; :=1ing(1+46),1=1,2,....

Fix ¢+ € N, and choose 71, ...7; € Sy arbitrarily. With this data we will
associate a path ¢ of length n; and of the form ~;&72&s....7:&; , where &;’s will

be chosen so that

Y Y —nu

mé1-75&5

<rng, j=1,2, ... (2.21)
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We define §;’s inductively. We start with finding &;. Observe that, since

271 17b € nov + Bnor(o)a

(no(l +6)v—Y 7/;) /((5n0) € (ngdv + Byyr(0))/(6n0) = v+ B,/(0) C p'.

Consequently, there is a (linear) path z(t) € R4 0 < ¢ < dng, such that
7'(t) € p', t €[0,0n0], 2(0) = 0, 2(dno) = no(1 +d)v — 3, ¥. From Lemma

2.2.2, we get a path & such that [(&;) = dny and

< A< rng.

EZ Y — z(0ny)

Note that & is in fact a loop that starts (and ends) at the vertex ig, and so is 71;
thus we can concatenate the two. By the definition of z, 3>, +z(dng) —niv =
0, so from the above inequality we verify (2.21) for j = 1:

Zw—nlv

71é1

<

> ¥+ z(dng) — nyv

71

+ <rng. (2.22)

;w — xz(dng)

To get &1, having &, ...,§; already defined and satisfying (2.21), we
repeat the above procedure with a tiny modification. Observe that, since
Y1 ¥ € nov + By, (0), using (2.21) as the induction hypothesis, we get

(nj+1v - ¥ w) [ (6no) =

Y8172 6541

(nodv + (nov = D>_ )+ (nju— w)) /((5n0)

Yi+1 mé1y2--75€;

€ (6ngv + Baygr (0))/(6ng) = v — Boyy5(0) C p'.

As before, we conclude that there is a (linear) path z(t) € R4, 0 < t < dny,

such that z'(t) € o, t € [0,dn0], (0) = 0, £(0n0) = 1j41V — X501 V-
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From Lemma 2.2.2, we get a path &;;; such that {(§41) = dng and

For the concatenation v;&;...7;4+1&4+1 we have

Z Y —njpv|| <

7€t vi+1€+1

Z w + 33(577,0) — Nj41v +

Y161 41

Z Y — z(0nyg)

&1

< 0+ rny.

This ends the induction step.

The above procedure yields (#S;)¢ different paths ¢ of the form ¢ =
v1&1...7:&;, because we have that many choices of vy, ...,v; € Sy. To get from
each such ( a point of F;, just extend the path ( = y1&;...7:& to a bi-infinite

path. In this way, E; is indeed a (1, n;)-separated set with

BE, = (#50) > (exp(hZ)(0,)y/no))" = exp (h)(0, ¥)nir/M/ (1 + ).

By the choice of §, (2.18) follows. The (2.19), for k& < n;, is an immediate
consequence of (2.21) (with C' depending on ng). To get it right for all &,
one just has to exercise some care while extending (’s to the bi-infinite paths.

Namely, the semi-infinite paths that are concatenated to ¢ must follow z(t) :=

tv, as in Lemma 2.2.2. Q.E.D.

2.2.3 The scaffold of subshifts of finite type

The following discussion (based on [MT91]) explains how to use the re-

sults of the previous sections to learn about hﬁ’;;(a, ¢) and hg,(o,¢) even if



v € ri(p(o,)). Since p(o,1) is a convex polyhedron, we can think of p(o, 1)
as the total space of a polyhedral complex with strata p® (o,9),1=1,2,....d,
dim(p® (0,%)) = 4, where p{¥9(o,v) = {p(c,v)} and, inductively, p~ 1 (o, 1))
consists of all faces of polyhedrons in p* (o, ). (By a face of a k-dimensional
convex polyhedron we understand a maximal (k —1)-dimensional convex poly-
hedron contained in its relative boundary.) Fix a point v € p(o,1). The sup-
port of v in p(o,1) is the unique polyhedron in the complex that contains v
and is of least dimension among such, denote it by F. Observe that v € ri(F).
Let G*) be the graph obtained by the following pruning of G: an edge e
of G is left in G¥), if and only if there is a loop a in G passing through e
that satisfies p(a) € F. For the corresponding subshift of finite type we write
o AP — AU The collection of all thus obtained o)’s (as we vary
v in p(o,1)) together with the obvious inclusions between them forms what
is called in [MT91] a scaffold of subshifts of finite type. Note that subshifts

(F)

o’ need not to be transitive, but this adds only a trivial complication to the

considerations (recall the remark after Theorem 2.2.1).

A simple argument in [MT91] shows that any loop o in G) must have

p(a) € F. One can easily deduce then that

p(c™) ) = F.

It is also observed in [MT91] that any ergodic measure p for which [¢du € F

is supported on A¥); consequently,

Wy (0,1) = hi (o)1), for v € F. (2.23)

erg
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As a corollary, we get the following extension of Theorem 2.2.2 to v ¢

ri(p(o, 1))

Theorem 2.2.4 Let v € R? be such that herg(0,9) > 0 (i.e. v = [+dp, for
some ergodic probability measure ). For 0 < n < 1, there erists a compact
o-invariant set K C A such that hiop(0|x) > nhey(0,9) and p(o|k, ) = v.
In fact, K is such that, for some constant C, ||S,(o,v)(z) —nv|| < C, z € K,

n € N.

Proof. If v = [ du for an ergodic measure y, then v belongs to p(o, ). Let
F be the support of v in p(0o,%). If F is a point, then one can take for K the
whole subshift AU) because, by (2.23), hi,(0,¢) = hi,(c"), ). In general

erg

v € 1i(F), so, by (v) of Th. 2.2.1, ¥, (5,9) = A L(0F) 1), and we find

erg

K c A®) c A by applying Theorem 2.2.2 to the subshift o). Q.E.D.

The behavior of hEZj; upon passing from ¢ to the subshift o) is given by

the following proposition.
Proposition 2.2.2 For v € p(o,) with support F' C p(o,), we have
— high(0,1) = convex hull (—h{o) (0", 1)) . (2.24)

(If o) is transitive, then the conver hull is superfluous.) We will give

two proofs of the proposition.

Short proof. Recall that o is expansive making h%...(, ) upper semi-contin-

uous (cf. [Wal82]). Thus, since —htgp(a, 1) is convex, Corollary 2.1.2 yields

—hioy(0,1) = —hlens(0, ) = convex hull (—hy(0,)) .
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Using (2.23), we can write
—h2y(0,) = —h (0, 9) > =R (017, y) > —h{Z) (0, ¥).

Taking the convez hull of each function above finishes the argument. Q.E.D.

Note that ultimately the above proof owes its efficiency to nontrivial re-
sults of ergodic theory. For a reader ready to fend off superficial technicalities,
we supply the following argument unveiling elementary mechanism standing

behind the proposition.

Long elementary proof. Clearly h§§§,(a, ) > hg%(a(m, ®); and so, by convexity

of —hgg%,(o, ), we have —h!") (5,1) < convex hull (—hgg%(o(m,@b)). We will

)
P

prove the opposite inequality by showing that, for arbitrary 0 < n < 1,
—nhg%,(a, 1)) > convex hull (—hg; (o), ¢)) .

It is enough to consider the case when F' is a face of p(o,1). Let V be

the affine space spanned by F. Set
d := min {dist (p(@),V): Y ¢ €V, a elementary loop in G} )

When hggz)(o, ¥) = 0, there is nothing to prove. Otherwise, observe that

one can find § > 0 such that, for sufficiently large n € N,
ndN (n, 6n)#G°" exp (26n) < exp ((1 — n)hgzg)(a, w)n) : (2.25)

where N(k,m) is the binomial Newton symbol. Also, let W C F' be discrete

and such that the balls {Bs(w)}wew cover F = p(atf),4)).



Pick 0 < rg < § and k¢ € N so that:
if 7' is a path in G%) with I(y') > ko, then (1/1(7")) Xy % € Upew Bro(w),

and, for w € W,
5P (1) 4,1, k) < exp ((hian (0", 4) + 0)k) , for k > ko. (2.26)

(See the page 30 for definition of s% () (a(F) 4, 1,k).)

Now, take r > 0 small enough to have
Nr(ko+1)/d <6, (2.27)

where N is the number of vertices in G.

Consider for a while a fixed loop v in G of length I(y) = n and with
p(v) = (1/1(7)) =, ¥ € B:(v). We will show that “most” of 7 lies in G,

As described in the argument for (i) of Theorem 2.2.1, one can rearrange
the edges of v to get elementary loops ay, ..., a; such that 3° ¢ = S Y, U

Note that

dist (z " nv) _ Y landist(pla), V) > i plag) £ V).

Since v € F' C V, ¥, ¢ € By, (nv) implies that at most nr/d of o;’s have
p(a;) ¢ V. Since the length of an elementary loop is by definition less than
N, at most Nnr/d of the edges in v can belong to G \ G&). After deleting
these edges, the path 7 splits into at most n/Nr/d paths in G)| of which those
longer than kg are denoted by 71, ... 74, ¢ < nNr/d, in the order of appearance
along . The combined length of v;’s is greater than n — nNr/d —nNrky/d =

n —nNr(ky+1)/d > (1 — §)n, where we used (2.27) for the last inequality.
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One of the consequences is the following basic estimate

(1/zj:1 ) S — (1)

< ¢ := 2§ sup ||v(2)]- (2.28)
=1 i TEA

Furthermore, with each ~; associate w; € W chosen so that
<rg<éd,i=1,..q. (2.29)

) Su-u

This and (2.28) yield

q

(1 32 162) X o € By (o). (2.30

=1

We claim that relatively few loops v of length n as considered above can
share the same 7;’s (in the same order and positions along ) and also have a
coinciding vector of w;’s associated with ~;’s. Indeed, by basic combinatorics,
the number of possibilities for the choice of the deleted elements is bounded
by

nd N(n, nd) (#G)™

and the number of choices of w;’s by
N(n, #W) < exp(nd),

where the right most inequality holds for large n.

By definition of hgg%(a, ) (see (2.13)), there are arbitrarily large n € N
with at least exp((hggz,(a, 1) — 6)n) different v’s as considered above. The two
combinatorial estimates and “the pigeon-hole principle” guarantee that some
selection of w;’s and the deleted elements (and thus also of v;’s) is shared by

at least

exp ((hgg;(a, Y) — 5)n) /nd N(n, nd) (#G)™ exp(dn) > exp (hﬁzi, (o, w)nn)
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different +’s, where the inequality is due to the choice of d, see (2.25).
For each i =1, ...q, denote by S; a collection of all different ,’s showing in
those 7’s. The above estimate implies that #S;...#S, > exp (nhEgI))(a, ¢)n)

Also, by the choice of ry and kg and using (2.29), we get

#5; < exp ((hitg) (0™, 9) +0)l(3)), i =1,..q.

Consequently, after taking the logarithms and limsup with n — oo, we get

W) (o, 0 < (1/ imj)) S U (), 5) +

Jj=1

and thus, if w := (1/ Y1 l(’yj)) >0-1 1(7i)wi, then
—hggz,(a, ¥)n > convex hull (—h&,‘g (B, ¢)) — 4.

By (2.30), when § is shrunk to zero, w approaches v, and the desired inequality
follows by lower semi-continuity of the right side above in the argument w.

Q.E.D.



Chapter 3

Topological entropy at the rotation vector for

torus maps

The rotation set, in the case of torus homeomorphisms, is very far from
being a complete topological invariant; this makes sensible the search for finer
invariants. While the presence of a particular vector v in the rotation set
merely tells us that there is “some” dynamics with this asymptotic average
displacement, one may try to measure the abundance of those dynamics. Re-
alizing this philosophy, we associate with v the corresponding “topological
entropy”. We use quotation marks because, even though there is a well agreed
on definition of the topological entropy of a map ([Wal82]), there are many

ways of relativizing it to v. We will mainly use a simple topological concotion

v

erg» DOth of which are extensively

hg% and its measure theoretic counterpart h,
discussed in Chapter 2 and Appendix A. For the pseudo-Anosov maps, hgg%
and hg,, coincide and are explicitly calculable once we know the Markov par-

tition (Theorem 2.2.1). The pseudo-Anosov maps, our favorite examples, also

provide a way to give lower bounds for hEZI)D for a general map.
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In the first section, we define the relevant entropies and state the lower
bound they obey. In the second section, we translate the results of Section 2.2
to the case of the pseudo-Anosov maps. In the third section, combining the
main theorems of Chapter 1 and Chapter 2, we prove the lower bound. Last

section is devoted to a concrete example of a calculation of hgg%,.

3.1 Definitions and the main result

Recall that for f € #(T?) and its lift F € #(T?), F — id descends to
the displacement function ¢r : T? — R?. Note that p(F) = p(f, ¢r). More

generally, given an invariant set K C T?, we will write p(F|x) for p(f|x, ¢r)-

Definition 3.1.1 For v € R?, the topological entropy at the rotation vector v
18
B (F) := b (f, éw) € {—00} U[0, +00].

Simalarly, we have
heg(F) = hew(f, dr) € {—00} U[0, +oc].

Our ultimate goal in this chapter is to bound entropies hg,,(F') and hgg%, (F)
from below in terms of the “size” of the rotation set and the relative distance
of v to its boundary.

To this end, we state the following definition. For a convex compact

K C R? with int(K) # (), we define the tent function of K by

T (v) = inf {|la — v||/|la = b|]| : v € conv{a,b}, a,b € 0K}, v € int(K).
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Before we say more about the properties of 7 (v), we formulate our main

result. (For the definitions of A(-) and I(-), used below, see Section 1.1.)

Theorem 3.1.1 (Main Lower Bound) There are universal constants C' and
C'" such that, if f € H(T?) is a diffeomorphism, F € H(T?) is its lift and

v € int(p(F)), then
higy(F) > hiy(F) > max{C'ny A(p(F)),C"/T(p(F))} - 7y (v).  (3.1)
Moreover, there exists an invariant compact set A C T? such that

p(F|s) = {v}
and

hiop(f1a) = max{C'Iny. A(p(F)),C"/1(p(F))} - 7p(r) (v)- (3.2)

The proof of the theorem is given in Section 3.3; however, Section 3.2 is a
necessary prerequisite for it.
Let us now shed some light on 74 (v). First of all, it depends only on the

affine properties of K. There is however a trivial bound
Tk (v) > dist(v,0K) /diam(K).

The “infimum” in the definition of 7x(v) is achieved when a and b are
antipodal, meaning that there is a pair of parallel lines, one tangent to 0K
at a, and the other tangent to K at b. Indeed, by compactness of K and
continuity of the norm, there are a and b such that v € conv{a, b} and 74 (v) =
la — v||/||la — b||. Figure 3.1 below gives an idea of what would go wrong if a

and b were not antipodal.
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Figure 3.1: When a and b are not antipodal.

From Figure 3.1, note that ||a1 — v|| < |Jaa —v|| and ||jv — b1]| > ||v — be]|,
so [lar — wl|/[lv = bull < flaz — v[[/[lv = boll = lla — v[|/[lv = b]|. Thus [la; —

v||/ller — b1|| < |la —v||/||a — b||, a contradiction.

Finally, observe that 7x(v) is concave in v. In fact, we have

T (v) = inf {g(v) : g: K — R" concave with sup g(z) = 1} : (3.3)

zeK

(This is why we call 7x(v) the tent function of K.) For a proof, fix v € K. If
g: K — R* is concave with sup ¢ = 1, then one can take a,b € 0K such that

conv{a, b} contains v and a point w € K where g(w) = 1. By concavity,

lv — wll lv — bl
9(v) 2 g (W) + 7 - 0= [la = v[|/lla = bl = 7k (v).
[[w =] lw =]
On the other hand, if 74 (v) = ||a — v||/||a — b]|, then there is a g such that
g(v) < ||la—wv||/||la—b||; simply consider the two parallel tangent lines through

a and b and take g linear and constant on each of them.
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3.2 The central example: pseudo-Anosov maps

Throughout this section let f € H(T?) be a map that is pseudo-Anosov
rel a finite set P and let F : R? — R? be its lift to the universal cover. An
abundance of rotation sets is exhibited by such examples. Indeed, we know
that, given a convex polygon p’ with vertices in Q?, there is F' € H(T?) such
that p(F) = p' ([Kwa93]). By Theorem 1.2.1 and the subsequent remark, we
have G € H(T?) that is a lift of a pseudo-Anosov rel a finite set and has
p(G) =/

Effective treatment of hgg% (F) and Ay, (F) in the pseudo-Anosov case is

made possible by the method of symbolic dynamics.

Proposition 3.2.1 ([FLP79]) There exists a Markov partition R = {Ry, ...,
Ry} for f. If G is a graph with the set of vertices {1, ..., N} that has an edge
from i to j whenever f(R;)Nint(R;) # 0, then the subshift of finite type (A, o)
associated with G (see sec. 2.2) is mizing and factors onto f. More precisely,
for any x = (x;);cz € A the intersection N;ez f'(Ry,) consists of a single point,
denoted by p(x), and thus defined map p : A — T? has the following properties:
(i) poo = fop,

(ii) p is continuous and surjective,

(1) p is finite-to-one,

(iv) p is 1-1 onto a topologically residual set consisting of all the points which

full orbits never hit the boundary of the Markov partition.

The above proposition gives a rather complete description of the dynamics

of f in terms of the shift 0. To keep track of the averages of the observable ¢



in the symbolic model, we need to associate with every edge (7, j) of the graph
G a vector weight 1), ;, reflecting the displacement in the universal cover that
is inflicted on lifts of points in R; that are mapped into R;. One way to do
that (taken from [Kwa92]) is as follows. Select a point z; in each Markov box
Ri,i=1,.N. If (1,7) € G, then f(R;) Nint(R;) # 0, so there is a pair of
corresponding lifts such that F(R;) Nint(R;) # 0; define t; ; := Z; — Z;, where
% € R; and Zj € Rj are the lifts of 2; and z; respectively. This definition does

not depend on the choice of the lift R;. Also, recall that the weights v; ; can

be thought of as an observable ¢ : A — R? given by ¥((%i)icz) = Yuo.z:-
Claim 3.2.1 For x = (2;);cz € A and any n € N, we have

15n(f, ¢7)(p(2)) = Sn(o,¥)(2)]| < 2 diam(R).

In fact, ¢ o p and Y are cohomologous.

Proof. Having fixed a lift R,, of R,,, let R,, be the lift of R,, such that
21— 20 = Ygoz1, let Rm be the lift of R, such that 25 — 2 = 9y, 4,, etc. Thus
defined sequence ij ( =0,1,2...), by the definition of 1, has the following
property: if § € Ry, is a lift of ¢ = p(z), then F¥(q) € ij, j=0,1,2.... The
inequality follows because S, (f, ¢r)(q) = F™(§)—qG and S, (0, %) (x) = Zz, —Zz,,
whereas Z; € ij,j € N. Moreover, if u(z) := §—2Z,,, then prop—1) = uoo—u,

making ¢ o p and 1 cohomologous. Q.E.D.

Proposition 3.2.2 Suppose that F € H(T?) descends to f € H(T?) that is

pseudo-Anosov rel a finite set. If (A, 0) is the corresponding subshift of finite
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type and 1 is the corresponding observable on A, then

p(F) = p(f, or) = plo,¥),

and, for any v € int(p(F)),
Hiop(F) = hig (F) = higg (0,) = hisy (0, ). (3.4)

Moreover,
(i) there is a fully supported ergodic probability measure u*) such that by (f) =
RY.(F) and [ ¢p dp® = v, v € int(p(F)),

erg

(i1) h,gz, (F) is strictly concave and real analytic in v on int(p(F)).

Remark. In fact h?

erg

(F) = h¥,(0,9) for all v € p(F).

erg
Proof Proposition 3.2.2. Part (ii) follows from the main assertion by (ii) of
Theorem 2.2.1. The statement about the rotation sets follows easily from
(i) and (ii) of Proposition 3.2.1 coupled with Claim 3.2.1. To deal with the
entropies, consider an invariant o-ergodic probability measure v. It pushes
forward to p := p,(v), which is ergodic with respect to f; and [¢ dv = [ ¢rdpu
because 1 o p is cohomologous to ¢r. Moreover, if v is fully supported, then

we claim that
hu(f) = hy(0). (3.5)

This is standard. Observe that p is also fully supported; and, by ergodicity,
the full measure pu is carried on the invariant residual set on which p is 1-1.
Hence, the measure theoretical systems (T2, f, 1) and (A, o, v) are isomorphic

via p.



Now fix v € int(p(F)). Taking for v the Gibbs state averaging ¢ to v as

in (v) of Theorem 2.2.1, we see that (3.5) yields

ho (fo dF) > By (Frdr) > hu(f) = hu(0) = hy(0,%) = hish(0, ).

On the other hand, since f is a factor of o, hégf,(f, or) < hEg;(a, 1) (see
Proposition 2.1.4), so all the quantities above must be equal. This proves

(3.4), and we see that (") := p is as stipulated by (i). Q.E.D.

Proof of the remark. Since f is a factor of o we have hy, (f, ¢r) < hg, (0, )
(see Proposition 2.1.4). To prove the opposite inequality, take a o-ergodic
probability measure v with [¢dv = v and set p := p,(v). We need to show
that h,(f) > h,(c). Let E C T? be the full orbit of the union of the stable
boundaries and the unstable boundaries of the Markov boxes, denoted by OR*
and OR" respectively. If u(E) = 0, then h,(f) = h,(o) (as in the proof of
the proposition). Otherwise, by ergodicity, u(E) = 1. Since OR® is forward
invariant under f and OR" is backward invariant under f, we have either
w(OR?) = 1 or u(OR™) = 1. Say, we have the first case (for the other use ).
Then, h,(f) < hiop(f|ors) = 0, where the vanishing of the topological entropy
follows from the fact that OR?® is a collection of smooth arcs (cf. [Bow78b])
with the length strictly contracted by f ([FLP79]). Since p is finite-to-one
htop(0|p-1(ams)) = 0 (see Th. 17 in [BowT71]); thus h, (o) < hyop(o|p-1(a%s)) = 0.
Our claim follows. Q.E.D.

Using the scaffold construction (see the subsection 2.2.3 and Theorem 2.2.2),

one can verify the following: for v ¢ int(p(F)), if there are any measures
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realizing hgg%(a, 1), then they are the Gibbs states for the smaller subshift of

finite type o(f)

that corresponds to the support F of v in p(F). If v is such
a Gibbs state realizing hg,,(c,), then the argument above shows that p.(v)
realizes hy, (f, ¢r).

As a corollary of Theorem 2.2.2 we get the following.

Theorem 3.2.1 Suppose that f € H(T?) is pseudo-Anosov rel a finite set, F
is its lift and v € int(p(F)). For any 0 < n < 1, there is a compact set Q) C T?

invariant under f such that p(F|g) = {v} and hwp(flg) > nhé}’%(F).

Proof of Theorem 3.2.1. Take Q@ = p(K), where K C A is as in Theorem
2.2.2. The fact that p(F|q) = p(o|k, v) follows from Claim 3.2.1. The map p
is finite-to-one, so we have hiop(0|x) = htop(flg) (by Th. 17 in [Bow71] and

the fact that entropy on a finite set must be zero). Q.E.D.

Our focus on the case v € int(p(F)) is partially justified by the following

fact. !

Proposition 3.2.3 If f € H(T?) is pseudo-Anosov rel a finite set and F is

its lift, then int(p(F)) # 0.

Proof of Proposition 3.2.3. Passing to an iterate of F' and perhaps postcom-
posing it with a deck transformation, we can assume that F' has a fixed point
r = F(z) € R% Fix a Markov partition for f. Denote by R the lift of the

Markov box containing z. We will show that there are three non-collinear

!This is essentially due to Fried, compare Theorem H in [Fri82a].
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vectors in p(F). Think of T3 := R?/(2Z)?, a 4-to-1 covering of T? = R?/Z?.
The map F factors to fy : T3 — T2, which is also pseudo-Anosov rel a
finite set. By transitivity of the unstable foliation ([FLP79]), the unstable
leaf through the projection of x to T3 intersects the projections of int(R),
int(R) + (1,0), and int(R) + (0,1). It follows that, for some large n € N,
we have F™"(R) Nint(R) + ky # 0, F*(R) Nint(R) + k; + (0,1) # 0 and
F*"(R)Nint(R) + ko + (1,0) # 0, where k; € (2Z)?, i = 1,2, 3. This puts ky/N,
(k14(1,0))/N and (k2+(0,1))/N in the rotation set of F'. These three vectors
are not collinear because the vectors k; — ko + (1,0) and ko — ko + (0, 1) have
the corresponding coordinates of opposite parity and so can not be linearly

dependent. Q.E.D.

3.3 Proof of the main result

We have f € #(T?) with a lift F' € H(T?). Assume that int(p(F)) # 0;
otherwise, there is nothing to prove. Fix v € int(p(F')) and take arbitrary
e > 0. One can choose a convex polygon p' C int(p(F')) with vertices in Q? so
that A(p") = A(p(F)), I(p') = I(p(F)) and 7 (v) > Ty (v) — €. By Theorem
1.2.1, there is a finite set P (a union of primitive periodic orbits) and a map
g € H(T?) such that: f and g are isotopic rel P, g is pseudo-Anosov rel P, g
has a lift G € H(T?) with p(G) D 4.

The following theorem asserts that the dynamics of g are fully reflected
by f. It is a variation on Handel’s global shadowing result in [Han85| that is

most closely related to Theorem 3.2 in [Boy10]. (Also, this is the only place
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where we are forced to use smoothness of f. One should be able to remove

this obstacle.)

Theorem 3.3.1 If f € H(T?) is a diffeomorphism, P is a finite invariant
set and g : T2 — T? is pseudo-Anosov rel P and isotopic to f rel P, then
there is a compact invariant set Y C T? and a surjection h : Y — T? that is

homotopic to the inclusion map Y — T? and semi-conjugates f|y to g (i.e.

hofly =goh).

The map ¢ and the factor map A from the theorem can be lifted to
G € H(T?) and an equivariant H : 7 (V) — R2? respectively, so that

H o F|;-1y) =G o H. In particular, for € Y, we have

1Su(f, 8F) () = Sulg,Yaoh) (@)l < D:=2 sup [|H(y)—yll, n € N. (3.6)

yer—1(Y)

Indeed, if Z is a lift of z, the left side is equal to
[(F"(z) — &) = (G" o H(z) — H(Z))|| = [[F"(Z) — H o F"(Z) + H(Z) — .
W need the following easy corollaries, which proof we postpone.

Corollary 3.3.1 Under the assumptions of Theorem 3.3.1, we have:

(i) for any compact invariant Q C T?, the set W := h™'(Q) is compact in-
variant, p(Flw) = p(Glg) and hiop(flw) > hiop(9]Q);

(11) for any p € E(T?,q), there is v € E(T?, f), such that u = h,(v),
[ ¢cdp = [ ¢rdv and h,(f) > hu(9);

(iii) for any v € RY, hiep(F) > hish(G) and hi,(F) > hi,(G);

(i) p(G) C p(F).



Proof of Theorem 3.1.1. To prove (3.1) of the theorem, observe that, by (ii)
of Theorem 2.2.1, hEZi,(G) is a concave function of v; thus, from (3.3) and (iii)

of Proposition 2.1.1, we have

high(G) > sup{h{s)(G) : = € R?} - 7()(v) = huop(9) * To(cs) (v)-
Using Theorem 1.1.1 and (iii) of Corollary 3.3.1, we obtain

high(F) > high(G) > max{C Iny A(p(G)), C"/I(p(G))} - Ty (v),

and the analogous inequality for ig,. Because p' C p(G) C p(F) and 1) (v) >
To#)(v) — € (where € is arbitrary), the inequality (3.1) follows. The assertion
(3.2) is an immediate consequence of Theorem 3.2.1 via (i) of Corollary 3.3.1.

Q.E.D.

Proof of Corollary 3.3.1. Part (i): the equality of the rotation sets follows from
(3.6); the entropy assertion is standard ([Wal82]). Part (iii): use (3.6) to note
that, in calculating hEZL(F) and hg,,(F), one can use ¢g o h in the place of ¢r
and then recall the quotient rules — Proposition 2.1.2 and Proposition 2.1.4.
The part (ii) can be extracted from the proof of Proposition 2.1.4. The part

(iv) is immediate from (3.6). (It also follows from (iii) by (ii) of Proposition

2.1.1.) Q.E.D.

Proof of Theorem 3.3.1. We will show how to reduce the result to Theorem
3.2 (and its proof) in [Boy10].
We start with a construction taken from [Bow78a] and first used in a sim-

ilar context in [LM91]. Let M be the compact surface with boundary obtained



by blowing up the points of P to small circular discs and then by removing its
interiors. Denote by ¢ : M — T? a continuous map that collapses the bound-
ary circles of M to the corresponding points of P and is 1-1 elsewhere. Using
the derivative of f at points of P, one constructs f; : M — M that factors
to f viac,i.e. co fy = foc. Now, let gy : M — M be Boyland’s condensed
homeomorphism in the isotopy class of f; (see Case 5, p. 13 in [Boy10]). In
our case, ¢; is just a pseudo-Anosov map with some standardized behavior
at the boundary — it is called (in [Boyl0]) boundary-adjusted pA map. In
particular, g; factors to a map that is pseudo-Anosov rel P and (after perhaps
some conjugation) coincides with g, i.e. cog; = goc. Theorem 3.2 in [Boy10]
yields a compact invariant set Y7 C M and a surjective map hy : ¥ — M
(homotopic to the inclusion) such that hy o fj = g; o hy. The map hy needs

not to be continuous, however c o hy is.

Put Y = ¢(Y;). Because the map f; was obtained as a blow up of f, it
is a tautology to say that it is uniformly continuous on int(M) in the metric
induced from T2 by c : int(M) — T?. Now, one has to trace word by word
Boyland’s proof of uniform continuity of ¢ o hy on int(M) while substituting
in the place of the standard metric on int(M) the one induced by c. As a
result, we get uniform continuity of ¢ o hy in this new metric. It follows that

1

h:=cohioc™t:Y — T? is a well defined and continuous map. This map

has all the required properties. Q.E.D.
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3.4 Example

We calculate hﬁgg numerically for a concrete example of a pseudo-Anosov
map. This map is derived from a map in H(T?) via the method from Section
1.2 coupled with the Bestvina-Handel algorithm ([BH92]). Our discussion also
illustrates how results of Section 3.2 can directly bare on hgg; when dealing

with a single explicitly defined map.

Let H,V € H(T?) be given by
H(z,y) := (z + [sin(my)],y),

V(x,y) := (z,y + |sin(7z)]),

and let i and v be the corresponding maps in H(T?). Consider the composition
f:=wvoh € #(T?) and its lift F := VoH € H(T?). Note that F(0,0) = (0,0),
F(1/2,0) =(1/2,1), F(0,1/2) = (1,1/2), and F(1/2,1/2) = (3/2,3/2). Thus
the square @ := {(z,y) : 0 < z,y < 1} is contained in p(F). In fact, we have
p(F) = @ because, by writing ¢r = ¢g o h+ ¢, one can verify that the range
of the displacement function ¢ sits in Q).

Now, let P C T? consist of the three fixed points of f that have (0,0),
(1/2,0), (0,1/2) for their lifts. The isotopy class of f rel P is represented by
a map ¢ that is pseudo-Anosov rel P (cf. Theorem 1.2.1). To find out about
g, we use the algorithm by Bestvina and Handel.

The surface T2\ P deformation retracts to its spine consisting of the union
of the oriented loops «, 3,7,d, marked on Figure 3.2. To record the isotopy

classes of h,v, f, we postcompose them with the retraction and look at the

81



resulting transformation of the spine into itself. On Figure 3.2, the dotted
lines indicate the images of v and ¢ under the resulting action on the spine for
h. Alternatively, we write hy : v — Bya, § — B0, a+ 3, 3+ 3, where the

bar over an oriented path switches the orientation.

Figure 3.2: The map hx on the spine.

Similarly, for v, we get vy : a — day, 8+~ 067, v — 7, § — 4. For
the composition f = v o h, we get fz : a — day, B — 667, v — FB6ydary,
§ = YBdary.

It turns out that action of fx on the spine is not efficient; this means
that, as we apply fx repeatedly to arcs making up the spine, we get paths
that backtrack (see [BH92] for the definition). Bestvina and Handel describe
moves that transform the map fx and the spine leading to an efficient map
in a finite number of steps. The implementation of the algorithm, in our case,
involves nine steps and is more tedious then instructive, so we skip it. The
result is a graph contained in T? \ P (see Figure 3.3), which is a deformation

retract of T2\ P, and a transformation g; of this graph that is efficient.
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Figure 3.3: The efficient map g;.

The marked arcs are mapped by g¢; as follows: a — o' = a, b+— b = b,
cr— c = ghbh,d— d =cfe,e— e =ef, f— f =¢fg, g — ¢ = dae,
h+— h' = fgh. As described in [BH92|, the graph can be smoothed into a train
track that carries a pseudo-Anosov map g which deforms to g;. The Markov
boxes for g can be obtained by thickening the arcs ¢, d, e, f, g, h to rectangles.

Actually, Figure 3.3 depicts not only g but a certain lift G of g. To deter-

mine the rotation set p(G), we read off the figure the displacements under G:

a +— a
b — b+ (-1,1)
c = g+ (=1,1) h+(=1,1) b+ (=1,1) A+ (=1,1),

d — cfe,
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e — ef,
f = Ef—l—(—l,(]) g+(—1,1),
g — d+(-1,0)a+(-1,0) e+ (-1,0),

h — f4+(-1,0) g+ (-1,1) h+(-1,1).

Tying this with the material in Section 2.2, we draw the weighted transi-
tion graph of the corresponding subshift of finite type — see Figure 3.4. (For

clarity we skip weights (0,0).)

Figure 3.4: The transition graph.

It is apparent from this graph that (by Proposition 3.2.2 and (i) of Propo-

sition 2.2.1)

p(G) = conv{(0,0),(-1,0),(—=1,1)}.

Note that the map F' (that we started with) is equivariantly isotopic rel 7! (P)

to G + (1,0), not G. By Corollary 3.3.1, we have

W (F) > b (@), v e R
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To calculate hEZ;(G), we extract from the graph its transfer matriz, see

below. (The columns and rows, counted starting at the upper left corner,
correspond to ¢, d, e, f, g, h. We skip a and b because they do not correspond

to any Markov boxes.)

0 00 0 zy 2zy

0 00 =z zy =y

where x = exp(—s) and y := expt, (s,t) € R?. The characteristic polynomial

of Ais p(z,y, 2) := det(A — zI) and can be found to be equal to

p(z,y,2) = z*y? — dyz — 23?2 — atyPz + 22y 4+ PyL® + 2Py

5

6%y + 2t + zy2t + 2Pyt — 25 — 22° — xy® + 25

(u0)

Given a rotation vector (u,v) € int(p(G)), a way to find Ay, (G) is

through solving the following system of equations

p(x,y,z) = 0, (38)

op op

’UZ@(.’L‘,Q,Z) = xa_‘r(xay:z)a (39)



uz%(xayaz) = _yg_z(xayaz)' (310)
Provided the right solution (z,y, z) is taken, we have
hg;,u)(G) =In(z-2"-y ). (3.11)

Indeed, by (iii) of Theorem 2.2.1, p{? = Inz, where z is the leading

,t
P

positive root of the first equation. By (iv) of Theorem 2.2.1,
— hgg;)") (G) =sup{sv+tu—1Inz: st € R}, (3.12)

where the supremum is achieved when v = 9(Inz)/0s = —z(0z/0z)/z and
u=0(Inz)/0t = y(0z/dy)/z. This was used to obtain the two last equations
of the system by taking partial derivatives of the first one with respect to s,
for one, and with respect to t, for the other.

The system (3.8) may have many solutions. Continuation of a known
solution is a way to select the right one. For example, one can start with z =1
and y = 1 finding the leading positive root of p(1,1,2) to be approximately
2.6103. Thus

hiop(g) = max h(G) = In 2.6103.

The corresponding rotation vector, calculated from the measure of maximal

entropy (see (v) of Theorem 2.2.1), is
(Umamv umam) = (_2/37 1/3)

Changing (u,v) away from (Vmaz, Umaz ), We may follow hézg‘) (G). In this way,

using Maple, we obtained for example hE;I? 42,0-83333) -, 1.74690.
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Chapter 4

Rotation sets for the resonantly kicked linear

oscillator

As we have seen in the previous chapters, one can infer a lot about dy-
namics of a torus map whose rotation set has nonempty interior. We also
know that there is an abundance of such maps. (See the example in the sec-
tion 1.1, Proposition 3.2.3, also [Kwa92].) However, our examples so far were
constructed ad hoc to get the rotation set with specific properties. In this

chapter we consider a model arising from plasma physics.

4.1 The physical context

Consider a particle of mass M and charge e moving in R? filled with a
uniform vertical magnetic field of induction By. The force exerted by the field
on the particle is proportional to the vector product of its velocity and the
field. Thus the trajectories are curled into spirals with circular projections on

the horizontal plane. More precisely, if x,¥y,z € R are the coordinates of the
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particle (z being the vertical one), then the Newtonian equations of motion

are
B
Mi = 20y,
C
B
Mj = -2,
C
Mz = 0,

where ¢ is the speed of light. The vector of horizontal velocity (&, ¢) rotates
with the Larmor frequency w = eBy/cM. The three momenta: p, := M2,
py = My+ Mwz, and p, := M1 — Mwy, are conserved. This simple behavior
can change radically in the presence of an external electric field in the system.
We will restrict our attention to the case when the electric field is aligned with
the z-axis and does not depend on y, z coordinates (cf. [ZZRSC86b]). These
assumptions reduce the number of essential degrees of freedom to one since
the momenta p,, p, continue to be integrals of the motion. Furthermore, we
will require that the field is a “tight” wave packet with amplitude E(x,t) =

o o TE(z)0(t — Tn), where T > 0 is fixed, E(x) is 27 /k-periodic in z,
and 6(-) is the Dirac delta function. The meaning of the formula is that the
packet interacts with the particle by boosting its z-velocity by &7 E(x) every

T seconds. Thus, if (&,,¥,) is the horizontal velocity prior to the kick at the

time nT (n € Z), then

. . . 6T Dy — Myn .
(41, Unt1) = Ra (3371 + ME (yTw> ) yn) (4.1)

where R, is the rotation by the angle o = wT'. In this way, the analysis of the

physical model reduces to investigation of dynamics on R? generated by the
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mapping

F: (-Tna yn) = (djn—l—layn—l—l)-

This reduction was first carried out in [ZZRSC86b].

What makes the map F interesting is that (even for small amplitudes of
FE) numerical experiments and physical heuristic suggest that it exhibits tra-
jectories escaping towards the infinity with a nonzero “average acceleration”.
A significant physical consequence is an unbounded diffusion of plasma parti-
cles called also stochastical heating ([ZZRSC86b]): the particles increase their

kinetic energy (heat up) by exploiting the energy of the electric field.

In general, there are no rigorous arguments for the existence of the above
behavior. A lot of attention is thus devoted to resonant cases when « is rational
([ZZRSC86b, CSUZ87, ZZRSC86a]). Among those, the cases of choice are
a=7/2, a =7/3 or a = 21/3 — the only possibilities if we require that
some positive iterate of F' is a doubly-periodic map of R?, i.e. it commutes
with some faithful Z2-action on R2. Moding out by the Z2-action yields a torus
diffeomorphism isotopic to the identity. In terms of the torus map, the presence
of stochastical heating corresponds to a nontrivial rotation set. Indeed, in
view of (4.1), the rotation set can be interpreted as the totality of asymptotic

average accelerations exhibited by the particles (with fixed momentum p,).

In what follows we will analyze closer the case of a = 27/3. (The cases
a =7/3,7/2 can be treated analogously.) Our modest goal is to see that, for
rather high values of nonlinearity, the rotation set is indeed nontrivial. We

calculate it for special cases and provide crude estimate from below in the
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general case. In the case when ¢ is “saw-tooth-like”, we prove monotonicity
of the rotation set as a function of the amplitude of E (also for rather large
amplitudes). The more delicate part of our discussion is greatly simplified by
formulation of the problem in terms of a second order recurrence equation.
This simple reduction has not been taken up in this context before. We close
our discussion by mentioning a toy model in statistical mechanics governed by

the recurrence equation.

4.2 The mapping and its rotation set
The rotation Ry, /3 is linearly conjugated to the map
L: (u,v) — (u,—u—v), u,v € R.

By choosing the conjugacy that sends z-axis to u-axis and by rescaling the

variables, one conjugates F' (as prescribed by (4.1)) to G given by
G : (u,v) = L(u+ ¢(v), v) = (v,—u —v — ¢(v)), (4.2)

where ¢(v) = eT'/Mwk - E(—kv + =) is 2n-periodic. The third iterate of G
commutes with the translations of R? by vectors in (27Z)?, and so it factors
to a torus map

g3 : T2 = T2

Even though GG and g3 depend on the choice of ¢, we suppress this dependence
in the notation since it will be always clear which ¢ we are talking about.

From now on, if we do not state otherwise, ¢ is an arbitrary fixed continuous

90



function of period 27. However, we will remember that ¢ naturally comes

embedded in the two parameter family
bry(z) = Ko(z +n), z €R, (4.3)

where n € R and K > 0 correspond to the momentum p, and the strength of

the forcing respectively.

Fact 4.2.1 For anyn € R, replacing ¢(-) with a shifted function ¢(-+n)+3n
is equivalent to conjugating G by a translation (u,v) — (u —n,v —n). In

particular, the rotation set p(G®) of G* is unaltered by the shift.

For r € R, we will denote by Hex(r) the hexagon with vertices +(r,0),
+L(r,0) = £(0, —r), £L?(r,0) = (=7, 7). The following are the most basic

properties of the rotation set p(G?).

Proposition 4.2.1 If G is defined by (4.2), then
(i) p(G®) has a three-fold symmetry, namely p(G*) = L(p(G?)) = L*(p(G?));
(11) if ¢ is odd, then p(G®) = —p(G?);

(iii) p(G?) is contained in Hex(sup ¢ — inf @).

Proof of (i). Let @Q : R* — R? be given by

(u,v) = (u+ ¢(v), v),

so that G = L o Q. The displacement of a point p € R? under n + 1 iterates
of G is

G""(p) —p=LoQoG"(p) — LoG"(p)+ L(G"(p) —p) + Lp — p.
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The first and the last differences on the right side are bounded, so (1/(n + 1))
(G™*1(p) — p) is asymptotically equal to L ((1/n) (G™(p) —p)), as n — oc;
and thus p(G?) = L(p(G?)). Q.E.D.

Proof of (ii). Just note that if ¢ is odd, then @) commutes with central sym-

metry p — —p, and so does the whole map G. Q.E.D.

Proof of (iii). Write the displacement of p € R? under G* as follows
G*(p) —p=L(QoG(p) - G*(p)) + L*(Q o G(p) — G(p)) + L*(Q(p) - p).-

The arguments of L, L2, L3 = id, above, belong to a segment I with endpoints
(inf ¢, 0) and (sup ¢, 0), so G3(p) — p sits inside the algebraic (Minkowski) sum

L(I) + L*(I) + I, which equals Hex(sup ¢ — inf ¢). Q.E.D.

Proposition 4.2.1, (ii) can be sharp, as it is shown by the example below.

For convenience, we note the following first.

Fact 4.2.2 If (u,v) € R? satisfies ¢(—v —u — ¢(v)) = d(v) and v := ¢(v) —

d(u) € 27Z, then (u,v) is a lift of a fized point of g3 and p(G?, (u,v)) = (0,7).

Proof. We apply G to (u,v) three times

(u,0) = (v, —u—v—9(v))
= (cu—v—=¢),u+¢(v) - ¢(—v—u—¢(v)))
= (Fu—v=9(v),u) = (u,v+6(v) = ¢(u)).

Q.E.D.
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Actually, from the proof, one can see that the inverse of the fact is also true.

Example. Consider any ¢ normalized so that sup ¢ = K and inf ¢ = —K (see
Fact 4.2.1). By Fact 4.2.2, if there are uy, us, v1, vy such that ¢(v;) = ¢(vq) =
d(—v1 —up) = K and ¢(u1) = ¢(uz) = ¢(—ve — ug) = —K, we conclude that
both +(0,2K) are in the rotation set provided also K = 0 (mod 7). By (i) of
Proposition 4.2.1, the rotation set is then actually equal to Hex(2K). It is not
difficult to draw a graph of ¢ with the required placement of the maxima and
the minima. (Use for example u; = —7/2, up = —7/6, v; = 7/6, vo = 7/2.)
(One can see that any suitable ¢ has to attain one of its global extrema at

least three times per period.)

Another consequence of Fact 4.2.2 is the following very crude lower bound

on the rotation set.

Proposition 4.2.2 If | := sup ¢ —inf ¢ > 24w, then the triangle with vertices

L¥(0,1/2), i =1,2,3, is contained in the rotation set p(G®).

Proof. Using Fact 4.2.1, we can shift the graph of ¢ so that there are vy, ug
with ¢(vg) = sup ¢ > 127 and ¢(ug) = inf ¢ < —127. Now, as we push v con-
tinuously away from vy (in either direction), before ¢(v) drops below sup ¢/2,
the expression —2v — ¢(v) changes by at least —47 + 67 = 27, thus sweeping
the whole period. In particular, ¢(—2v — @(v)) sweeps, in the process, an
interval containing [inf ¢, inf ¢/2]; and so, by the intermediate value theorem,
there is v such that [/2 = sup ¢/2 — inf /2 < ¢(v) — ¢(—2v — ¢(v)) € 27Z.

Set u = —2v — ¢(v), and see that (u, v) satisfies the assumption of Fact 4.2.2,
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thus placing (0, ¢(v) — ¢(u)) in the rotation set. By (i) of Proposition 4.2.1,

L0, ¢(v) — ¢(u)), i = 1,2, are in the rotation set as well. Q.E.D.

4.3 Therecurrence, higher period orbits, mono-
tonicity

A convenient way of viewing a trajectory of a point (u,v) € R? under G
is to label it as a sequence (x)rez SO that o = u, 1 = v and (zg, Tpy1) =
G(zg_1,2k), for £ € Z. Tt is then characterized by the following recurrence
equation

Tp—1 + Tp + P(xk) + 211 =0, k € Z. (4.4)

For n € 3N, a periodic orbit of G of period n thus corresponds to x =
(zx)7=5 € R™ satisfying (4.4) with a cyclic indexing modulo n. For ¢ = 0, this
is when every point is fixed by G2, the two-dimensional space of solutions to

(4.4) is conveniently spanned by

e = (1,-1,0,1,-1,0,...,1,—1,0),
Se = (0,1,-1,0,1,—1,...,0,1,-1),

S?¢ = (~1,0,1,-1,0,1,...,—1,0,1),

where S : R® — R™ shifts the coordinates cyclically to the right, and S3e = e.
The orbits of G' corresponding to periodic orbits of g3 on the torus with
nonzero rotation vector come from (z)rez satisfying (4.4) together with the

periodicity condition Ty, —Zr = Vk (moa 3), Where vi, vo, v3 € 27Z, n € 3N. To



search for them, we may use the following scheme. (Below (z,y) := Y7 | z;y;,

for z,y € R™.)
Lemma 4.3.1 Forn € 3N, if z = (2)7Z; € R" satisfies
Ze—1 + 2k + ¢(2k) + 2641 = =&, 0 <k <n—1, (4.5)
where & € (2nZ)™ and the indexing is cyclic, then there is p € (21Z)?% satisfying
Pk—1+ P+ Prt1 = &k (mod n), k € Z, (4.6)

and the sequence Ty = Zg (mod n) + Pk S a solution to (4.4). The displacement

over a period is given by
Lhtn — Tn = <€1 Sk6>a k€ Za (47)

50 the corresponding rotation vector for G is (1/n)((§, e), (¢, Se)). Moreover,
one can obtain in this way all of (x;) € R% corresponding to orbits of G that

cover periodic orbits of g3 on the torus.

Proof. Solving (4.6) is straightforward: fix po, p; € 27Z and figure out the rest
of p;’s successively. That Tx = 21 (mod n) + px satisfy (4.4) follows from putting
together (4.5) and (4.6). To calculate the displacement, replace in (4.4) k with

k + 1 and subtract unaltered (4.4) to get

Tp43 — T = ¢($k+1) - ¢($k+2) = ¢(2k+1 (mod n)) - ¢(Zk+2 (mod n))' (4-8)

Sum over the range k, k + 3, ...,k + n to obtain

Tpyn — T = <(¢(Z] (mod n)))fi]”:_{_la Sk6> = <£7 Ske>>
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where we used the fact that <(Zj_1 (mod n)T2j (mod n)FZj+1 (mod n))fj,?ﬂ, S’“e> =
0. Now suppose that (zx)rez covers a periodic orbit of period n € 3N. Then
Thin — Tk =: Uk (mod 3) € 27Z, and, because both z;’s and the shifted se-
quence Tj,,’s satisfy (4.4), the sequence (Vi (moa 3))kez Obeys the linear equa-
ti0n Vk_1 (mod 3) T Vk (mod 3) + Vk+1 (mod 3) = 0. This makes & (mod n) =
—Zk—_1 (mod n) — Tk (mod n) — P(Tk (mod n)) = Tk+1 (mod n)» k¥ € Z, well defined.

To satisfy (4.5), set zx :== z¢, £ =0,...,n — 1. Q.E.D.

Solving (4.5) for large n is a daunting task regardless of our choice of ¢.
We thus have little hope that the rotation set can be calculated exactly for a
continuum of values of the parameters K and 7 in (4.3). A way to somehow
bridge the particular cases for which the rotation set is nontrivial leads through
monotonicity results as the one below.

We will call ¢ unimodal, if it has only two intervals of monotonicity over
its minimal period. We will refer to the endpoints of the maximal intervals of

monotonicity as critical points of ¢.

Proposition 4.3.1 For a piecewise-smooth unimodal and odd ¢ with D =
inf, |¢'(x)| > 6, the rotation set of G* corresponding to K¢ is nondecreasing
in K for K € [1,400). Actually, all periodic orbits of the torus map can be

continued as K increases.
The proof is based on the following “closing lemma”.
Lemma 4.3.2 Fiz e > 0 and suppose that z = (z;,)7—; € R" satisfies

Zp—1 + 2p + Ko(2k) + 2pp1 = =& + €,
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where €, € (—¢,¢€). If, for some open intervals I that are free of the critical

points of ¢ and contain z, k =0,....,n — 1, we have
d:=inf{|1+ K¢'(t)|: tely, 0<k<n—1}>2 (4.9)

and

Bd%C(zk + Kp(z)) C{z+ Ko(2): z € I}, (4.10)

then there is z* = (2;) € R™ such that 2} € Ij, and

o+ Ko(2) 42, =& 0<k<n—1. (4.11)

Proof. We obtain z* as the limit of a sequence of corrections of z, each di-
minishing the supremum of ¢;’s by a definite multiplicative factor A < 1. The
hypothesis (4.9) guarantees that z; + K¢(z) changes faster (in z;) than the
“coupling term” 2, 1 + 211, thus € can be effectively decreased by manipu-
lating z; only. The hypothesis (4.10) secures enough “maneuvering space” to
perform all infinitely many corrections. With this in mind, it will be conve-
nient to think of -%¢ as follows: fix k € (0,1) and let A =1 — k + 2x/d < 1,
then

d _ K

1 2
= = = 4.12
T3¢ /1—2/@/d6 FTE K€ + K€ + kX\%e + (4.12)

We describe the first correction. From (4.12), ke < ;%e, so, by (4.10),
Bie(zk + Ko(2x)) C {z+ Ko(2) : z € I} (4.13)
It follows that we can find 2z, € Iy, k =0, ...,n — 1, so that

\2k—1 + 2, + Ko(2},) + 2541 + &| = (1 — K)| €]

97



and

2 + Ko (z3,) — 2z — Ko(21)| = kler| < ke. (4.14)
The hypothesis (4.9) implies then that
K
2k — 2] < —lexl.
Putting the two inequalities together we get
2oy + 2, + Ko(2,) + 24 = =&k + €,

for some € such that

K K K

el < (1= )les] + Slexs| + Slewial < (1- 5 +25) e= e

d d d

In this way

e = ﬁ;@éc ] < Ae. (4.15)

To repeat the procedure leading from z = (z;) € R" to 2/ = (z;,) € R" with
2" as our new z, we need to verify (4.13) with z; and e replaced by z; and €

respectively. In view of (4.10) and (4.14), it suffices to check that

ke + ke < €.

d—2
This is however a consequence of (4.15) and (4.12). It should be clear now how

the series in (4.12) unfolds as we need to guarantee the possibility of carrying

out the infinitely many consecutive steps. Q.E.D.

Proof of Proposition 4.3.1. Fix K > 1. We want to prove that the rotation

set of G? corresponding to K¢ contains that corresponding to ¢. Note that,
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by (i) of Proposition 4.2.1, the rotation set is either equal to {(0,0)} or it has
nonempty interior. In the latter case, by Theorem 0.0.2, the rotation set is the
closure of the totality of the rotation vectors of periodic orbits. Consequently,
it is enough to show the following: for each periodic orbit of the torus map
generated by ¢, there is one with the same rotation vector for K¢. In view of
Lemma 4.3.1, it suffices to find, for z € R" satisfying (4.5), a point z* € R"
satisfying (4.11).

Let M := sup¢ = —inf ¢. Clearly, ¢ and K¢ have the same intervals of

monotonicity, K¢ has larger image, and

|K¢(z) — ¢(x)] < (K —1)M, for all z € R. (4.16)

Thus, if z € R" satisfies (4.5) for some £ € (27Z)", we can find for each z; a
point yj in the same interval of monotonicity such that K¢(yx) = ¢(zx). By

(4.16) and the assumption on the derivative

|2k — gk < (K = 1)M/(KD) < (K —1)M/(6K).

In this way

Yk—1 + Uk + Ko(Yr) + yer1 = =& + €,

with |ex| < e:=3(K —1)M/(6K) = (K —1)M/(2K).

We will use Lemma 4.3.2 to find z* € R" that obeys (4.11). The hypothe-
sis (4.9) is satisfied because d > D—1 > 5. Let I be the monotonicity interval
containing vy, that is Iy = [ck, ¢] where ¢, and ¢}, are the critical point of ¢

closest to yx. To verify hypothesis (4.10), observe that image under K¢ of any
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maximal interval of monotonicity extends exactly (K — 1) M beyond the end-
points of the corresponding image for ¢. This and the fact that |[K¢'| > KD

yield

|K(ck) +cx — Ko(yr) — vkl > [Ko(cr) — Ko(yr)| — lex — yu| >

Ko(a) = Kolwn)| (1 - 25) 2 (K = )M (1= 25)),

KD KD
and the analogous inequality for ¢,. Since Ze < DLIUCDM "4 gatisfy
(4.10), we need 2=LEDM < (g 1)M(1 — 1/(K D)). Dividing both sides

by (K — 1)M and setting D = 6, we get a stronger inequality 2= < 1 — ==,

which is true because K > 1. Q.E.D.

4.4 A mechanical toy-model

Finally, let us point out a mechanical toy-model governed by (4.4). For
(zx) € RZ, interpret each z;, k € Z, as the position of a unit mass particle
along the real axis. Let the particles interact by putting a Hookean string

between every two with consecutive indices. Also, subject the particles to a

_3
2

potential force with the potential U(x) = —32? — ®, where ® is the anti-
derivative of ¢. In the resulting mechanical model, the net force Fj exerted
on the k' particle is the sum of the potential force —U’(2;) = —3z, — &(2)
and the interaction forces (zx11 — 2x) and (2x_1 — 2x) from the two neighbors.

Thus we have

Fr = zp_1+ 2 + 2k01 + 0(21),
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and the solutions to (4.4) can be interpreted as the stationary configurations of
this mechanical system. The construction is somewhat parallel to one relating
twist maps on the annulus to the Aubry theory (see e.g. [Ban88, Ang90]).
However, for now, we have no interesting theorems that stem from this ap-

proach.



Appendix A

Elementary large deviations for topological

dynamics

We give a proof of Theorem 2.1.1 that is elementary, it makes no use of
ergodic theory. Our original inspiration for this approach stems from Theorem
I1.6.1 in [ElI85]. However, we present here a point of view not taken up in
[E1185] that yields a very simple argument for Theorem 2.1.1. It can also be
used to considerably simplify the proof of Theorem I1.6.1 in [ElI85].

Recall that we have f : X — X, where X is compact and f is continuous.
Also, the observable ¢ : X — R is a continuous function. Since f and ¢ will
be fixed thruought the rest of the appendix, we will suppress the dependence
on them in the most of our notation. In particular, we will write ¢,(z) for
Sa(f, ) (), that is ¢, (z) = ¢(z) + ... + ¢(f*(z)). For s € R% and n € N,
we have the Gibbs weight ascribed to every point x € X, namely pé(z) =
exp(pn(x), s). Given a finite set S C X, the Gibbs weight u(-) determines a
measure p7 supported on S and given by uf =Y ,cq s (x) - d,, where 6, is a

unit mass at x.
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We are interested in the limiting distribution of the averages of ¢ among
(¢, n)-separated orbits counted with respect to the Gibbs weights. (Theorem
2.1.1 pertains to the case s = 0.) The corresponding pressure function p® :

X — R (cf. free energy in [ElI85]) is given by

p(t) := hmhm sup(1/n) Insup {Z exp{(¢n (), tyus (z) : S (n,e)—separated}.

Observe that

p*(t) = p°(t + 5) = pis(f, 8), s,t € RY, (A.1)

and so, for the convex conjugate p°® of p°, we have
Pp°(2) =p°(2) — (z,5), s,2€R™ (A.2)

We should also note that replacing “limsup” with “liminf” in the definition
of p* yields the same quantity (see (viii) of Theorem 9.4 in [Wal82]).

For a set E C RY, we generalize hf,,(f, ) and introduce

Hi(E) = hmhm sup(1/n) Insup{w; (S) : S (€, n)-separated

n—oo

with ¢,(z)/n € E, forallz € S },

H’(E):= li_r}réligglf(l/n) Insup{p; (S) : S (¢, n)-separated
with ¢,(x)/n € E, for all z € S}.
Both H! (F) and H? (FE) take values in {—oco0} U [0, +00]. Clearly, if £ C

F C RY then Hi, (E) < Hi, (F). (Here H{ _ stands for either of Hf and

H?.) One can also easily verify that, for £, F C R¢,

H:(EUF) = max{H: (E), H: (F)}, (A.3)
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and if H2 (E) < H* (E U F), then H* (F) = H* (E U F), what implies
H*(E) < H* (EUF) < max{H’ (E), H* (F)}. (A.4)

Mimicking the way hg,),( f, @) arises from hZ

fop(f> @), we associate with H$

and H* the following entropies at z € R%

hi(z) = 11~1—I>% H(B,(2)),

h? (z) := lim H? (B,(z)).

r—0
Note that hd(z) = hgéz,(f, ¢), z € R% In general, h% # h® (see the example
ahead and Proposition A.0.2). The function z — A%, (2) is quite obviously
upper semi-continuous. Also, note that if D := conv{¢(z) : = € X}, then
(1/n)¢,(z) € D, x € X, n € N. Consequently, for E C R4, if END = ),
then

1/-(E) = —oo0. (A.5)
In particular, hi/f(z) = —o0, for z ¢ D. (Actually, one can take here D :=
p(f, ¢) — see Proposition 2.1.1.)

The dependence of —h? /7(2) on s is analogous to that of p®, namely
Y- (2) = (2, 8) + hg_/_(z), z,s € R% (A.6)

This is because, if r > 0 and S C X is a (¢, n)-separated set with (1/n)¢,(x) €

B.(z) for x € S, then
exp (—nr) < |u; (x)/ exp(nz, s)| <exp(nr), s € R4
and consequently,

exp (—2n7) < | exp(nz, s)iy (S)/1;,(S)] < exp (2nr).
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Lemma A.0.1 For any s € R,

(a) if U C R® is open, then
1) > sup{hi,_(2): 2 €U},
(b) if V .C R? is closed, then

H3 (V) <max{h’(z): z€ V}.

Proof. Part (a) is trivial. We prove (b) now. Let D be the convex hull
of the image of ¢. From (A.5), we see that Hi(V) = H}(V N D). Thus
we can assume that V' is compact. Now, set V; := V, and cover V|, with a
finite family A of its compact subsets of diameter less than 1. By (A.3), we
have Hf(Vp) = max{H{(A): A € A}; denote by V; an element of A such
that H (Vo) = H3(V1). Analogously, covering Vi with its compact subsets of
diameter less than 1/2, we get Vo, C V; with H3 (Vi) = H{ (V). By continuing
this procedure, we get a nested sequence of compact sets Vo5 D V3 D Vo D V...
with diameters diam(V,) < 1/n and H$(V,) = H5(V), n € N. Thus N,en Va
consists of a point, and one can easily verify that, if v is this point, then

H3 (v) > H (V). Q.E.D.

The following is a version of Theorem 2.1.1.

Proposition A.0.1 (equivalent of Theorem 2.1.1) If by, (f) < +00, then
(i) convex hull(—h%) = p°,

(ii) (—h) = p°.



Remark. Suppose that hip(f) = +o0o. Then p°(f) = +oo, t € R, so
pP’(z) = —o0, z € R4 Also H: (R%) = hyop(f) = +o00; and, from (b) of
Lemma A.0.1, one concludes that convex hull(—h%) is émproper (i.e. assumes
the value —o00). This implies that (—hg)A(t) = +o00, t € R? — (ii) is satisfied.
In contrast, (i) fails — even though convex hull(—h%)(z) = —oo, for z in the

relative interior of the essential domain (cf. Theorem 7.2 [Roc72]); it is o0

or finite outside of this interior.

Proof of Proposition A.0.1. First of all parts (i) and (ii) are equivalent: one
can derive the other by taking convex conjugates of both sides. In particular,
from (ii), after taking convex conjugates, we get (by the involutive property
of © — see the page 34) that cl(convex hull(—hS)) = p°. Since —hY is lower
semi-continuous and has bounded essential domain, we can drop “cl” to get
(i) (see Proposition A.0.3). We prove (ii) now.

Clearly p*(0) = H?

%/_(R7), and so we get from Lemma A.0.1 the following

(a) p*(0) > h5(2), s,z € R¢,
(b) p*(0) < sup{hi(z): z € R}

Making the dependence on s explicit (via (A.6) and (A.2)), write (a) as
p°(s) > (z, s)+h% (z). Optimizing over all z € R%, we get p°(s) > sup{(z, s) +
B (z): z€ R} = (—hi{)A(z). Similarly, (b) yields p°(s) < sup{(s, z)+h% () :

z € R, ie. p°(s) < k9 (s). Hence, A9 (s) = p°(s), what proves (ii). Q.E.D.

Simple considerations from convex analysis show that, in Proposition

A.0.1, the entropy h% can be replaced with h?. Recall that the set of subdif-
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ferentials of p® at ¢t € R? is given by
op*(t) :={z e R : p*(t') > p*(t) + (2, — t) for all ' € R?}.

If Op*(t) consists of a single point, then p® is differentiable at ¢t and Op(t) =

{Vp(t)}. The following is a convenient characterization (p. 218, [Roc72]):
P°(2) + p°(t) = (2,t) = z € Op°(t) =t € Ip°(2). (A7)

As a corollary, any gradient v := Vp*(t) is a point of strict convexity of ps.
(Actually, gradients v are exactly the points at which the epigraph epi(p®) is
exposed, i.e. there is a supporting hyperplane to epi(p®) that touches it only at
(v, p*(v)) — see Corollary 25.1.3, p. 243 in [Roc72].) The following proposition

explains the special role of the gradients in our context.
Proposition A.0.2 If p° is differentiable at s € R? and v := Vp°(s), then
— W (v) = =k (v) = 5°(v). (A8)

By Th. 18.6 p. 167 in [Roc72], the exposed points are dense among all
extremal points. This (using lower semicontinuity of —h% and p°) leads to the

following corollary strengthening Proposition A.0.1.

Corollary A.0.1 If hp(f) < 400, then convex hull(—h%) = p°.

Proof of Proposition A.0.2. As we have already said, p® is strictly convex at
v, and so —hY (v) = convex hull(—h%)(v) = p°(v). Now, by (A.7), v = Vp*(0)

is the unique point v such that

p*(0) = sup{(z,0) — p*(2) : z € R} = —p*(v).
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Thus, for any r > 0, max{—p’ (2) : z € B:(v)} < p*(0). However, Lemma
A.0.1 yields

H (R*\ B,(v)) < max{h’,(2) : z & B.(v)},

and, since (by Proposition A.0.1) h% (2) < —p% (2), we get
H{(R\ B,(v)) <p*(0) = H, (RY).

By (A.4), H*(B,(v)) = H*(R%) = p*(0), and so h® (v) = —p°*(v). Our claim
follows via (A.6) and (A.2). Q.E.D.

Remark. For readers familiar with [ElI85], it may be worthwhile to note
the following. When p°(t) is smooth, h}, (2) = —p°(z) and Lemma A.0.1
(with s = 0) becomes an analogue of Th. II.6.1 in [ElI85]. Our proof leads
along a different path than that of Ellis. We start with A%, , which are
almost tautologically the right entropy functions (cf. Def. 11.3.1, [ElI85]); and
then we show their relation to the free energy p°(t) as a manifestation of the
dual behavior of A% ,_ and p°(t) under variation of s (see (A.6), (A.2)). This
approach modifies in a straightforward way to Ellis’s setting yielding what

some may find to be a simpler and more natural proof of Th. I1.6.1.

The following example shows that, in general, h% # h®.

Example (cf. the example in the first section of Chapter 2). For
(2:)icz € {1,2,3,4,5,6}%, (zx, ..., ;) is a mod 3 block if xy, ..., z; are congruent
modulo 3. We call it maximal if zj_1, x;,1 are both not congruent modulo 3 to
Z;y © = k,...,I. The number [ — k 4 1 is referred to as the length of the block.

Fix an arbitrary unbounded subset of natural numbers A'. Consider a subshift



(A, 0), where

A={ze€{1,2,3,4,56}Z: z has at most three maximal parity blocks

each either infinite or with length in N}

and o shifts to the left: (o((;)icz)); == Zit1, ¢ € Z. The space A is easily seen

to be compact and ¢ invariant. Let the observable ¢ : A — R2 be given by

(

(1,0,0), if zo = 0 mod 3
¢(x) = 9 (0,1,0), if zo = 1 mod 3 -

(0,0,1), if zo = 2 mod 3

x

For n € 3N, one has a (1,n)-separated set S with cardinality 2" and
such that (1/n)¢,(z) = (1/3,1/3,1/3), z € S. Indeed, consider (z;) € A that
have (2o, ..., Tn/3-1), (Tn/3, - Tan3—1), (T2n/3s -y Tno1) as mod 3 blocks, where
there are 2/® possibilities for each block given a residue class mod 3. Thus,
h%(1/3,1/3,1/3) > In2. (Actually, we have equality since one can easily see
that hyp(0) = In2.) On the other hand, we claim that if NV is very sparse,
say N := {k!}ren, then h®(1/3,1/3,1/3) = —oo. Indeed, let n = k! — 1.
For x = (z;) € A, any maximal mod 3 block contained in (zo,...,2,_1) has
length not exceeding (k — 1)!. Thus at least one of the three coordinates of
(1/n)¢,(z) does not exceed (k — 1)!/n ~ 1/k. This makes (1/n)¢,(z) lie in
a definite distance from (1/3,1/3,1/3) for all z € A and infinitely many n of

the form n = k! — 1, k£ € N. Our claim follows.
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We finish with the following fact from convex analysis that we used nu-

merous times.

Proposition A.0.3 If f : RY — (—o0,+00] is lower semi-continuous and

dom(f) is bounded, then convex hull(f) is lower semi-continuous.

Proof. By lower semi-continuity, f has a finite infimum M € R. By considering
f — M in place of f, we may assume that f is non-negative.

Let K := epi(f) C R4, The essential domain dom(f) is the projection
of K on the R? of the arguments. It is enough to demonstrate that conv(K)
is closed, because then it is the epigraph of convex hull(f) (see the definitions
on p. 36 in [Roc72]).

Suppose that (z,,y,) € conv(K) and lim,_,00(2n, yn) = (2,7). We want
to show that (z,y) € conv(K). From the Caratheodory theorem ([Roc72]),
there are (wp i, tn;) € K and ap, Ay > 0, 5 oy, s = 1 such that

d+1
(2ns Yn) Zam- Wi tni) + (0, An)- (A.9)
Let B :={i: (tni)neN is unbounded}. Passing perhaps to a subsequence, we
can assume that, as n — oo, we have t,;, — t; € R, i € B; and additionally,
2w —2€RL N, > NER, Wpi — W; € R? and an; — o, 1 = 1,..n. Note
that there must be «; = 0 for ¢ € B; otherwise 7,,’s could not stay bounded.
Thus the sum on the right side below

Za,- w;, t;) 4+ (0, A),

i¢B
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is a convex combination, and 2’ = z. Also, ' < y because t,,; > 0. Since K

is closed, we have (w;,t;) € K, so (2/,y') € conv(K). It follows that (z,y) is

also contained in conv(K). Q.E.D.
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