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Well-versed in the expanses
that stretch from earth to stars,
we get lost in the space
from earth up to our skull.

Intergalactic reaches
divide sorrow from tears.
En route from false to true
you wither and grow dull.

— Wisława Szymborska, To My Friends1

Dedicated to my parents and grandparents,
who taught me to navigate ’the space from earth up to my skull’

1 Poems New and Collected, transl. Stanisław Barańczak and Clare Cavanagh, Harcourt Inc., 1998.
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The subject of this dissertation is a relationship between two classes of solutions to
elliptic differential equations on three-manifolds: monopoles and Fueter sections.
The main result is a description of a wall-crossing phenomenon for a signed
count of monopoles. As a corollary, we prove the existence of Fueter sections
with singularities. We also study monopoles and Fueter sections using methods
of complex geometry, on three-manifolds which are the product of a circle and
a surface. Finally, we discuss the relevance of our results to gauge theory on
higher-dimensional Riemannian manifolds with special holonomy.
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1I N T R O D U C T I O N

1.1 gauge theory and invariants of manifolds

Over the last thirty years, the study of the equations of gauge theory has led to
spectacular advances in low-dimensional topology. These developments trace
back to Donaldson’s construction of invariants of smooth 4–manifolds using
instantons—a special class of solutions to the Yang–Mills equations [Don83;
Don87; Don90]. Floer extended Donaldson’s ideas to 4–manifolds with boundary
and introduced invariants of 3–manifolds, which behave functorially with respect
to cobordisms, i.e. define a 3 + 1–dimensional topological field theory [Flo88;
Ati88a; Ati88b]. Surfaces can be incorporated in this theory as well, by considering
flat connections in dimension two.

dimension invariant type of invariant

4 Donaldson invariants number
3 Instanton Floer homology vector space
2 Fukaya category of moduli space category

The basic ideas behind Donaldson–Floer theory are:

1. The Donaldson invariants of a closed 4–manifold X are defined by integrat-
ing certain cohomology classes over the moduli space of instantons on X.
In the simplest situation when the moduli space is zero-dimensional, the
invariant is a signed count of instantons.

2. The instanton Floer homology groups of a closed 3–manifold Y are de-
fined by formally applying the construction of Morse homology to the
Chern–Simons functional—a functional on the infinite-dimensional space of
connections on Y, whose critical points are flat connections on Y, and whose
gradient flowlines correspond to instantons on the cylinder X = Y⇥R.

3. For a closed surface Z, the moduli space MZ of irreducible flat connec-
tions on Z is naturally a symplectic manifold [AB83]. For every symplec-
tic manifold there is an associated Fukaya category, whose objects are
Lagrangian submanifolds and morphisms spaces are constructed using
pseudo-holomorphic discs with boundary on such submanifolds; see, for
example, [Aur14; Smi15]. The Atiyah–Floer conjecture and its various refine-
ments relate the algebraic structures of the Fukaya category of MZ to the
instanton invariants of 3–manifolds admitting a Heegaard splitting along
Z [Ati88a; Sal95; DF18]. The conjecture is based on the observation that
instantons on X = Z⇥R2 give rise to pseudo-holomorphic discs in MZ.

There is a parallel topological field theory based on the Seiberg–Witten equation
on 4–manifolds and its dimensional reductions to 3–manifolds and surfaces
[Mor96; KM07; OS04]. It is natural to ask whether equations of gauge theory
other than the instanton and Seiberg–Witten equations can be used to construct

1



1.2 monopoles and quaternionic representations 2

invariants of manifolds. The subject of this dissertation fits into two new, quickly
developing lines of research whose goal is to extend the scope of applications of
gauge theory to geometry:

1. Beyond Yang–Mills & Seiberg–Witten. While most of research in mathematical
gauge theory so far focused on the Yang–Mills and Seiberg–Witten equa-
tions, physicists have long considered other interesting differential equations
on low-dimensional manifolds. These include the Kapustin–Witten equation,
which is expected to lead to new insights into the topology of 3–manifolds
and knots [KW07; Wit18], and the Vafa–Witten equation, which has links to
algebraic geometry [VW94]. There has been recently a surge in the study
of these and related equations, initiated by deep work of Taubes [Tau13b;
Tau13a; Tau14].

2. Beyond low dimensions. Many attractive features of Yang–Mills theory in low
dimensions generalize to manifolds of dimensions six, seven, and eight, pro-
vided that they are equipped with a Riemannian metric of special holonomy,
given by the Lie groups SU(3), G2, and Spin(7), respectively. Donaldson,
Thomas, and E. Segal [DT98; DS11] proposed to define invariants of special
holonomy manifolds using Yang–Mills theory, mimicking Donaldson–Floer
theory in low dimensions. Such invariants would be helpful in classifying
the existing millions of examples of special holonomy manifolds.

There is a rather surprising connection between these two topics, which was
discovered by Walpuski [Wal13; Wal17], building on ideas of Donaldson–Segal
[DS11] and Haydys [Hay12]. In the next three sections, we discuss two interesting
classes of solutions to elliptic differential equations on low-dimensional manifolds
and explain a conjectural relationship between them. We then relate this discus-
sion to higher-dimensional Yang–Mills theory. At the end of the introduction, we
summarize the main results proved in this dissertation.

1.2 monopoles and quaternionic representations

The discovery of the Seiberg–Witten equation gave mathematicians powerful
tools for studying low-dimensional manifolds. While originally Seiberg–Witten
theory concerned 4–manifolds, in this dissertation we focus on the simpler, 3–
dimensional version of the equation. Over a Riemannian 3–manifold M, equipped
with a spin structure and a U(1)–bundle, the Seiberg–Witten equation is

8

<

:

/DAF = 0,

FA = µ(F).
(1.2.1)

A solution, or a monopole, is a pair (F, A) consisting of a section F of the spinor
bundle, and a U(1)–connection A. Here, /DA denotes a twisted Dirac operator,
FA is the curvature of A, and µ(F) is a certain quadratic function of F. One
considers two solutions equivalent if they differ by a U(1)–gauge transformation.

It turns out that there is a broad class of partial differential equations whose
general form is the same as that of (1.2.1), and similarly for the 4–dimensional
version of the equation; see [Tau99; Pid04a; Hay08] and [Nak15, Section 6]. This
theory will be reviewed in Section 2.2. The main idea is that there exists such an



1.2 monopoles and quaternionic representations 3

equation for every choice of a compact Lie group G together with a quaternionic
representation r : G ! Sp(S). Here, Sp(S) denotes the group of quaternion-
linear isometries of a quaternionic vector space S. We call the resulting equation
the Seiberg–Witten equation associated with r and its solutions r–monopoles. A r–
monopole consists of a section F of a vector bundle on M whose fiber is S, and
a connection A on a fixed principal G–bundle on M. The pair (F, A) satisfies
equation (1.2.1), where now µ is obtained from the hyperkähler moment map—a
natural quadratic map associated with the representation r. One considers two
such pairs equivalent if they differ by a G–gauge transformation.

We recover the classical Seiberg–Witten equation by setting G = U(1), with r

being the standard representation on the space of quaternions H = C2. In fact,
almost every equation studied so far in mathematical gauge theory arises from
this construction or its 4–dimensional version.

Regarding all the applications of Seiberg–Witten theory to low-dimensional
topology, it is natural to wonder whether other Seiberg–Witten equations lead
to topological invariants. The expected dimension of the moduli space of r–
monopoles on a 3–manifold is zero, so one hopes to define a signed count
of solutions on any such manifold M, equipped with a spin structure and a
principal G–bundle. Ignoring various technical difficulties involved in defining
such a signed count, we expect to obtain an integer

n(M, p) = Â
r–monopoles [F,A]

sign(F, A), (1.2.2)

where the sum is taken over all gauge equivalence classes of r–monopoles and
sign(F, A) = ±1 is defined using an orientation procedure that will be explained
later. Here p denotes all continuous parameters of the equation (1.2.1), such as the
choice of a Riemannian metric on M, or its perturbations, for example holonomy
perturbations or abstract perturbations of the equation thought of as a Fredholm
map between Banach manifolds, cf. [DK90, Section 4.3.6], [KM07, Section 10]. We
are deliberately vague here about what p exactly is, as the details will depend
on r and M. The point is that we need to allow a sufficiently broad class of
parameters, P say, so that for a generic p 2P the moduli space of r–monopoles
is zero-dimensional, i.e. consists of isolated points. If the number of points is
finite, we can define n(M, p) and ask how it depends on the choice of p 2P .

Example 1.2.1. For G = SU(2) and S = {0}, r–monopoles are simply flat SU(2)–
connections. Taubes [Tau90] proved that, if M is a homology sphere, a signed
count of suitably perturbed flat SU(2)–connections is the Casson invariant of M.
A similar result is true when b1(M) > 1, except in this case it is more convenient
to consider flat SO(3)–connections on a non-trivial SO(3)–bundle in order to
avoid reducible solutions [Don02, Section 5.6], [Pou15].

Example 1.2.2. For the classical Seiberg–Witten equation, i.e. G = U(1) and
S = H, Meng and Taubes [MT96] showed that the number n(M, p) does not
depend on the choice of a generic p, provided that b1(M) > 1. In fact, n(M, p)
is equal to the sum of the coefficients of the Alexander polynomial of M, a
well-known topological invariant. The condition on b1 is necessary to exclude
reducible solutions, which spoil the invariance of n(M, p) as p varies.

Reducible solutions are likely to play an important role in the study of the
Seiberg–Witten equations associated with other quaternionic representations. It
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is possible that one cannot define sensibly the number n(M, p) for a general
3–manifold, as it is the case for the classical Seiberg–Witten equation, and the
right approach is to develop a more complicated theory involving reducibles,
such as equivariant Floer theories constructed using instantons [Flo88; Don02] or
classical Seiberg–Witten monopoles [KM07]. Details will depend, of course, on
the choice of G and r.

However, we will see that even when we ignore the issues related to reducibles,
we should not expect n(M, p) to be independent of p for more complicated
quaternionic representations. The reason is that, unlike in the two classical cases
described above, the moduli space of r–monopoles might be non-compact for
some choices of p. This is a completely new phenomenon, which was discovered
by Taubes [Tau13b; Tau13a] and studied further in [HW15; Tau16; Tau17]. In
order to understand it, we need to consider another elliptic differential equation.

1.3 fueter sections

Spinors in dimensions three and four are intimately related to the algebra of
quaternions H, which can be interpreted as the spinor space of R3. Under this
identification, the Dirac equation for a spinor on R3, i.e. a map s : R3 ! H, is

i
∂s
∂x

+ j
∂s
∂y

+ k
∂s
∂z

= 0. (1.3.1)

The quaternionic viewpoint allows us to generalize the Dirac equation to a
non-linear elliptic differential equation for sections of certain fiber bundles over
3–manifolds. (There is also a corresponding 4–dimensional equation.) We now
give an overview of this theory, referring to [Hay08; Hay12; Hay14a; HNS09;
Sal13; Wal15] and Section 2.5 for more details.

Let M be an oriented Riemannian 3–manifold, and let p : X ! M be a fiber
bundle whose fibers are hyperkähler manifolds. Suppose that we are given an
identification of the SO(3)–frame bundle of M with the SO(3)–bundle whose
fiber at a point x 2 M consists of all hyperkähler triples on p

�1(x), i.e. triples
(I, J, K) of orthogonal complex structures satisfying the quaternionic relations
I J = K, etc. In particular, every unit vector in Tx M—or, using the Riemannian
metric, every unit covector in T⇤x M—gives rise to a complex structure on p

�1(x).
This induces a bundle homomorphism

g : p

⇤TM⌦VX! VX,

where VX = ker p⇤ is the vertical subbundle of the tangent bundle of X. The map
g is a generalization of the Clifford multiplication for the spinor bundle. Suppose
also that we have a connection on p : X! M which preserves g.

Given this data, one defines the Fueter operator, a first order non-linear elliptic
operator acting on sections of X. For a section s : M ! X, the projection of the
differential ds : TM ! s⇤TX on the vertical subbundle VX ⇢ TX gives us a
section rs of T⇤M⌦ s⇤VX. The Fueter operator is defined by

F(s) = g(rs).
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Locally, if we choose an orthonormal frame of TM and denote by (I, J, K) the
corresponding family of hyperkähler triples on the fiber of X, the Fueter operator
is given by a formula generalizing (1.3.1):

F(s) = I(s)r1s + J(s)r2s + K(s)r3s.

A Fueter section is a solution to the equation F(s) = 0. This is a non-linear analogue
of the Dirac equation. Indeed, the spinor bundle is an example of X as above,
with the corresponding Fueter operator being the Dirac operator.

The relationship between Fueter sections and r–monopoles is based on the
hyperkähler quotient construction [Hit+87]. Recall that associated with every quater-
nionic representation r : G ! Sp(S) there is a moment map µ and the hyper-
kähler quotient of r is, by definition, X = µ

�1(0)/G. In general, X is a singular
variety stratified by hyperkähler manifolds; denote by X ⇢ X the top stratum.

A section F appearing in the Seiberg–Witten equation (1.2.1) associated with
r takes values in a vector bundle whose fiber is the quaternionic space S. By
perfoming the hyperkähler quotient construction fiber by fiber, we obtain a
bundle p : X ! M with fiber X. Similarly there is a subbundle X ! M whose
fiber is the hyperkähler manifold X. The geometric data required to formulate
the Seiberg–Witten equation equip X with the Clifford multiplication g and a
compatible connection. Thus, there is a corresponding Fueter operator F acting
on sections of X. If, as before, we denote by p all continuous parameters of the
Seiberg–Witten equation (a Riemannian metric, perturbations of the equation,
etc.), then F = Fp depends on p. As a result, solutions to the Fueter equation
Fp(s) = 0 may or may not exist depending on the choice of p.

The Fueter operator enters the analysis of the Seiberg–Witten equation in the
following way. A basic step in defining the number n(M, p) as in (1.2.2) is proving
compactness of the moduli space of r–monopoles. For the classical Seiberg–Witten
equation (i.e. G = U(1), S = H), this is done by establishing an a priori bound on
the L2–norm of the spinor F. For other choices of the quaternionic representation,
there is no such a priori bound. However, one can still prove that a sequence of
solutions (Fi, Ai) has a subsequence convergent modulo gauge, provided that
kFikL2 is bounded. Hence, any non-compactness phenomenon must be related
to kFikL2 going to infinity. With this observation in mind, it is natural to blow-up
the Seiberg–Witten equation by setting

bF = F/kFkL2 and # = kFk�1
L2 .

Equation (1.2.1) for (F, A) is then equivalent to the following equation for a triple
(#, bF, A) with # > 0:

8

>

>

>

<

>

>

>

:

/DA bF = 0,

#

2FA = µ(bF),

kbFkL2 = 1.

(1.3.2)

We are left with the task of analyzing sequences of solutions (#, bF, A) of
equation (1.3.2), with # ! 0. While such analysis turns out to be quite delicate



1.4 a conjectural picture 6

(more about this in the next section), by formally setting # = 0 in (1.3.2), we
obtain the following equation for a pair (bF, A):

8

>

>

>

<

>

>

>

:

/DA bF = 0,

µ(bF) = 0,

kbFkL2 = 1.

(1.3.3)

We therefore expect that the possible non-compactness of the moduli space of
r–monopoles is caused by solutions (bF, A) to (1.3.3). This equation is degen-
erate and not elliptic, even modulo gauge, because it contains no differential
equation on the connection A. However, Haydys proved that there is a natural
correspondence between gauge equivalence classes of solutions to (1.3.3) and
Fueter sections of X [Hay12, Theorem 4.6]

While the full statement of Haydys’ theorem, which we present in Section 2.5,
is somewhat involved, here is the basic idea. Recall that X = µ

�1(0)/G is the
fiber of X! M. Thus, every solution (bF, A) of (1.3.3) gives rise to a continuous
section s of X. In fact, two gauge equivalent solutions induce the same section
of X. Moreover, if the resulting section s takes values in the top stratum X ⇢ X,
then the Dirac equation obeyed by bF implies that s satisfies the Fueter equation.
Finally, Haydys proved that the connection A is, up to gauge, pulled back by s
from a certain natural G–connection on X. Thus, the correspondence (bF, A) 7! s
is a bijection between gauge equivalence classes of solutions to (1.3.3) (for which
s takes values in X) and Fueter sections of X.

The summary of this discussion is that we should expect the moduli space of
r–monopoles to be non-compact precisely for those choices of p for which there
exists a Fueter section of the bundle of hyperkähler quotients X.

1.4 a conjectural picture

We now discuss some open problems and conjectures about r–monopoles and
Fueter sections. While it might be overly optimistic to expect these conjectures
to hold, as stated, for all quaternionic representations and 3–manifolds, it is
reasonable to hope that they are true for a broad class of interesting examples.

Fix a closed, oriented 3–manifold M and a quaternionic representation r. We
consider the associated Seiberg–Witten equation under the following assumptions.

1. Transversality. We assume that there is a sufficiently large class P of param-
eters, or perturbations, of the Seiberg–Witten equation (1.2.1), so that for a
generic choice of p 2P the corresponding moduli space of irreducible so-
lutions is zero-dimensional, and for a generic path in P , the corresponding
one-parameter moduli space is a one-dimensional manifold with boundary.
The perturbations should be chosen in such a way that the compactness
statements stated below still hold for the perturbed equation. The space
P should contain at least the space of all Riemannian metrics on M, but
it can include also various additional terms added to (1.2.1), or abstract
perturbations. The details will depend on the equation. For example, in
Chapter 3 we define p 2P to be a triple consisting of a Riemannian metric
and a closed 2–form on M, and a connection on a certain bundle over M.
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2. Reducibles. We assume that M and r are chosen in such a way that all
solutions to the Seiberg–Witten equation are irreducible, i.e. have trivial
stabilizer in the gauge group, at least for all p outside a codimension two
subset of P .

3. Orientations. There is a standard way of orienting moduli spaces, discussed
in Section 2.4, using determinant line bundles. As we will see, given a
quaternionic representation r, there is a simple criterion to determine
whether the determinant line bundle for the corresponding Seiberg–Witten
equation is orientable. If this is the case, we equip all the moduli spaces
with an orientation, otherwise we will count solutions mod 2.

While (1) is a reasonable assumption, condition (2) will be violated in many
cases. As we have mentioned earlier, already for the classical Seiberg–Witten
equation over homology 3–spheres or for flat SU(2) connections over 3–manifolds
with b1 > 0, reducibles are known to cause serious difficulties. However, in this
dissertation we focus on the problem of compactness, which is independent of
reducibles, and so it is convenient to assume that condition (2) is satisfied. In
Chapter 3, we will consider an interesting example of a representation r, for which
(2) holds whenever b1(M) > 1, as for the classical Seiberg–Witten equation.

The first conjecture states in a precise way what it means for a sequence of
r–monopoles to converge to a Fueter section.

Conjecture 1.4.1 (Compactness). Let (Fi, Ai) be a sequence of r–monopoles with
respect to a sequence of parameters pi converging to p. Suppose that

lim
i!•
kFikL2 = •

and set bFi = F/kFikL2 .
There exist a closed, 1–rectifiable subset Z ⇢ M and a pair (bF, A) defined over M\Z

such that the following hold:

1. After passing to a subsequence and applying gauge transformations, (bFi, Ai)
converges to (bF, A) in C•

loc over M\Z.

2. (bF, A) satisfies the limiting equation (1.3.3) with respect to p over M\Z.

3. If s denotes a continuous section of X over M\Z induced from bF, then s extends
to a continuous section of X over all of M in such a way that

Z = s�1(X\X)

4. Over M\Z, the section s is smooth and obeys the Fueter equation with respect to p

Fp(s) = 0.

(Note that the equation makes sense because, by the third condition, s takes values
in the smooth fiber bundle X ⇢ X over M\Z.) Moreover, we have

Z

M\Z
|rs|2 < •.
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To summarize, we expect to be able to pass to the limit # ! 0 in equation
(1.3.2). However, the rescaled sequence (bFi, Ai) converges only outside a certain
1–dimensional set Z ⇢ M, called the singular set, along which the limiting Fueter
section s takes values in the singular strata of the hyperkähler quotient. A special
case is when Z is empty and s is a smooth section of X over M.

A version of Conjecture 1.4.1 was proved by Taubes for the Seiberg–Witten
equation associated with the adjoint representation

G = SU(2) and S = H⌦R su(2),

and for other, closely related equations on 4–manifolds, including the Vafa–Witten
and Kapustin–Witten equations [Tau13b; Tau13a; Tau14; Tau16; Tau17]. All later
developments on compactness for generalized Seiberg–Witten equations, includ-
ing the statement of Conjecture 1.4.1, have been inspired by Taubes’ work. Haydys
and Walpuski [HW15] established a similar compactness result for the Seiberg–
Witten equation with multiple spinors, corresponding to the representation

G = U(1) and S = H⌦C Cn.

We will discuss their work in detail in Chapter 3. Recent progress by Walpuski
and B. Zhang [WZ19] suggests that the currently available techniques might be
sufficient to prove Conjecture 1.4.1 for a broad class of representations.

Guided by these compactness results, we extend the definition of a Fueter
section so that it includes also singular Fueter sections, that is pairs (Z, s) consisting
of a 1–rectifiable subset Z ⇢ M and a continuous section s of X, satisfying
conditions (3) and (4) from Conjecture 1.4.1. We will say that a Fueter section is
smooth, or non-singular, if the set Z is empty. In this case, s is a smooth section of
a smooth fiber bundle X! M, and satisfies the Fueter equation everywhere.

While the compactness theorems and Conjecture 1.4.1 allow for the possibility
that Fueter sections appear as limits of r–monopoles, they actually do not guar-
antee that such sections exist. Indeed, one of the major problems in this subject is
that of the existence of Fueter sections. To state it more precisely, recall that the
Fueter operator Fp, just as the Seiberg–Witten equation, depends on the choice of
a parameter p 2P . Define W ⇢P to be the set of those p 2P for which there
exists a Fueter section (smooth or singular) with respect to p.

In what follows, we assume that the top stratum X of the hyperkähler quo-
tient has positive dimension. If X = X = {0}, as is the case for the classical
Seiberg–Witten equation, then the non-compactness phenomenon described in
Conjecture 1.4.1 never occurs.

Conjecture 1.4.2 (Codimension one). W is a subset of codimension one in P in the
following sense:

1. W is non-empty, closed, and nowhere dense in P .

2. For every pair p0, p1 2 P\W , a generic path in P connecting p0 and p1
intersects W at finitely many points. Moreover, around each of these points W is a
codimension one submanifold of P and the intersection is transverse.

This prediction is motivated by the following simple example. Suppose that
X is a quaternionic vector space, so that X is a vector bundle, and the Fueter
operator Fp = /Dp is a linear Dirac operator depending on p 2 P . Provided
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that the parameter space P is sufficiently large (for example, it consists of all
connections on X compatible with the Clifford multiplication), the set

W = {p 2P | dim ker /Dp > 0}

has codimension one and separates P into disjoint chambers. The intersection
number of a path g : [0, 1] ! P with W is given by the spectral flow of the
family of Dirac operators ( /D

g(t))t2[0,1]. In many cases, one can compute this
spectral flow using the Atiyah–Patodi–Singer theorem [APS76], and prove that
W is non-empty.

For a general, non-linear Fueter operator associated with a hyperkähler quo-
tient, a similar theory of spectral flow has not yet been developed. Nevertheless,
one expects the same picture to be true [DS11, Section 6.2]. The Fueter operator
Fp is a non-linear elliptic operator, whose linearization has index zero. However,
solutions to the Fueter equation always come in one-parameter families. Indeed,
the hyperkähler quotient X = µ

�1(0)/G inherits a rescaling action of R+ from
the representation space S. Thus, there is a free R+–action on the space of sections
of X, preserving the Fueter equation. As a result, the space of solutions up to
rescaling is locally given as the zero set of a Fredholm map of index �1, and, for
a sufficiently large class of perturbations P , we expect that a solution exists only
for p 2P from a codimension one subset.

The above discussion applies only to smooth Fueter sections, which are defined
over the entire 3–manifold M. For singular Fueter sections, the situation is much
more subtle, as the singular set Z is now part of a solution, and the usual methods
of Fredholm theory do not apply. The point is that, given a fixed subset Z ⇢ M,
the Fueter equation for a section of X over M\Z is not elliptic; its linearization
has infinite dimensional cokernel1. However, assuming that Z is a C1–embedded
curve which is allowed to move inside the ambient 3–manifold, R. Takahashi
[Tak15; Tak17] proved that the deformation theory of pairs (Z, s) up to rescaling
is described by a Fredholm problem of index �1. Takahashi considered the case
when the fiber of X is H/Z2, the hyperkähler quotient of H⌦ su(2) by SU(2),
which is relevant to the equations studied by Taubes. While Takahashi’s work
makes significant progress towards establishing Conjecture 1.4.2, the full proof of
the conjecture, in addition to considering general hyperkähler quotients, would
require dealing with Fueter sections for which the set Z is not smooth. Methods
of geometric measure theory are well-suited for this problem, as shown by work
of Taubes [Tau14] and B. Zhang [Zha17].

If Conjecture 1.4.1 and Conjecture 1.4.2 are true, then for every p 2P\W the
corresponding moduli space of r–monopoles is compact. Thus, modulo the usual
issues of transversality, reducibles, and orientations, we can define the signed
count of r–monopoles n(M, p) as in (1.2.2). However, since W is assumed to
be non-empty and of codimension one in P , the set P\W may have multiple
connected components. For p0, p1 2P\W from different components, any path
connecting p0 and p1 might intersect W . The next conjecture describes how each
intersection with W affects the moduli space of r–monopoles.

1 We assume here that the section is of Sobolev class W1,2, which follows from conditions (3) and (4)
in Conjecture 1.4.1. The situation is better when we allow the section, or its derivative, to blow-up
along Z, but such Fueter sections do not arise as limits of r–monopoles.
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Conjecture 1.4.3 (Wall-crossing). There exists a coorientation on the smooth part of W
such that for every generic pair p0, p1 2P\W and every generic path g : [0, 1]!P
connecting p0 with p1, the difference

n(M, p1)� n(M, p0)

is the intersection number of g with W with respect to that coorientation.

Apart from the discussion of orientations (which, as we will see in Chapter 3,
can be quite subtle) and assuming that the previous two conjectures are proved,
Conjecture 1.4.3 boils down to the following analytical result.

Conjecture 1.4.4 (Local wall-crossing). Suppose that p 2 W and W is a codimension
one submanifold of P in a neighborhood of p. Let s be a Fueter section with respect to p.

Then, for every path g : [�1, 1]!P such that g(0) = p and g is transverse to W
at 0, there exist a smooth family (#, bF

#

, A
#

) parametrized by # 2 (0, #0], and a smooth,
monotone function # 7! t(#) such that t(0) = 0 and

1. For every # 2 (0, #0], the triple (#, bF
#

, A
#

) is a solution to (1.3.2) with respect to
the parameter g(t(#)), so that (#�1

bF
#

, A
#

) is a r–monopole, i.e. satisfies (1.2.1).

2. As # ! 0, the sequence (bF
#

, A
#

) converges to the Fueter section s, outside the
singular set of s, in the sense described in Conjecture 1.4.1.

This statement can be seen as the converse to the compactness conjecture.
Indeed, Conjecture 1.4.1 asserts that every divergent sequence of r–monopoles
can be rescaled so that it converges to a Fueter section. Conversely, Conjecture 1.4.4
states that every Fueter section is the limit of a rescaled sequence of r–monopoles.

It follows from Conjecture 1.4.4 that the number of r–monopoles with respect
to the parameter g(t) changes by one as t crosses zero. That is: a r–monopole
appears or disappears at t = 0, depending on whether the reparametrization
# ! t(#) is increasing or decreasing. Thus, the change in the signed count of
r–monopoles caused by the Fueter section s is:

n(M, g(t))� n(M, g(�t)) = ±1,

for a small t > 0. The sign ± depends on the function # ! t(#) and the sign of
the r–monopole (#�1

bF
#

, A
#

) given by the global orientation of the moduli space.
A convenient way to package all these signs is by equipping the wall W with a
coorientation, and thus Conjecture 1.4.3 is a global version of Conjecture 1.4.4. A
satisfactory solution to this problem should express the intersection number of g

with W in terms of more familiar, topological or spectral data.
The above conjectures summarize what, in our opinion, are some of the main

problems in the study of r–monopoles and Fueter sections. The principal difficulty
in solving these problems is that the singular set Z of a Fueter section may be
a priori very irregular. Optimistically, one would hope that Z must be a finite
union of disjoint, smoothly embedded circles, at least for a generic choice of
p 2P . However, proving such a result will most likely require new insights from
geometric measure theory and the theory of elliptic differential equations.

In this thesis, we take a different path and develop part of the theory involving
only Fueter sections which are smooth (Chapter 2 and Chapter 3) or singular along
a 1–dimensional submanifold (Chapter 4). We summarize our main results in
Section 1.6, at the end of this chapter. Before doing so, it is worthwhile discussing
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some of the motivations for studying the Seiberg–Witten equations associated
with quaternionic representations. One can envision three different scenarios, in
which r–monopoles lead to new geometric insights.

Scenario 1. The simplest situation arises when the hyperkähler quotient associ-
ated with r consists of a single point, i.e. X = {0}. In this case, the moduli space
of r–monopoles is compact and, if there are no reducibles, the signed count of
r–monopoles is a topological invariant, as in Example 1.2.2 and Example 1.2.1.

One can consider also higher rank analogues of these examples, corresponding
to the choices G = U(n) or SU(n) and S = H⌦Cn or S = {0}. However, in these
cases one typically cannot avoid reducibles and one is forced either to consider
wall-crossing caused by reducibles, or to develop equivariant Floer theory. For
example, a detailed study of reducible solutions to a variant of the U(2) monopole
equation gives a formula relating the Casson invariant and the total Seiberg–
Witten invariant of 3–manifolds [Kro98; DG19] . In general, it is expected that
U(2) monopoles can be used to relate instanton Floer homology to its Seiberg–
Witten counterpart [KM10, Section 7.9]. This would be a 3–dimensional version of
Pidstrygach and Tyurin’s approach to Witten’s conjecture relating the Donaldson
and Seiberg–Witten invariants of 4–manifolds [PT95; FL98b].

A lesser-known equation arises for G = Sp(1) and S = H, with Sp(1) acting on
H by right quaternionic multiplication, preserving the left quaternionic structure
[Lim03; Ber19]. A peculiar feature of this theory is that the moduli spaces of Sp(1)
monopoles cannot be consistently equipped with orientations using determinant
line bundles; see Example 2.4.5. One can still hope to define an invariant, either
by counting solutions mod 2, or by building Floer homology groups over Z2.
Walpuski observed that the Sp(1) Seiberg–Witten equation admits a non-trivial
solution whenever M is a hyperbolic 3–manifold.

Scenario 2. While for a general quaternionic representation Fueter sections cannot
be ruled out, it might happen that we consider a situation in which there is a
distinguished, connected subset of parameters P0 ⇢P which intersects W along
a codimension two set. In this case, the number n(M, p) does not depend on the
choice of a generic p 2P0\W .

We will see an example of this situation in Chapter 4, for 3–manifolds of the
form M = S1 ⇥ S for a surface S. In general, if M is a Seifert fibration over
S, there is a distinguished subset P0 ⇢ P of parameters compatible with the
fibration. In particular, every p 2 P0 induces a Riemannian metric, and so a
complex structure, on S, and one expects that the corresponding moduli spaces of
r–monopoles and Fueter sections can be described in terms of complex-geometric
data on S. The complex version of Conjecture 1.4.2 is the statement that P0 \W
is a complex subvariety of P0 of complex codimension one. In this case, n(M, p)
should be independent of the choice of p 2 P0\W and computable using
algebraic geometry. The corresponding 4–dimensional theory of r–monopoles on
complex surfaces is potentially more interesting, as it might lead to deformation
invariants of complex surfaces, cf. [DGP18, Section 4].

There is also a variety of generalized Seiberg–Witten equations which are
expected to lead to new topological invariants of links and low-dimensional
manifolds, without any wall-crossing. These include the equation for flat SL(2, C)
connections on 3–manifolds [Tau13b], and its 4–dimensional relatives: the Vafa–
Witten equation [VW94; Mar10; Tau17] and the Kapustin–Witten equation [KW07;
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GU12; MW14; Wit18]. In each of these cases, smooth Fueter sections are easy to
understand; for example, in the SL(2, C) story they are simply harmonic 1–forms.
However, it is unclear how to rule out singular Fueter sections, and to extract a
topological invariant from the moduli spaces of solutions. One can speculate that
for each of these equations there is a distinguished family P0 of perturbations
which avoids W . This is known in one situation: following Witten’s proposal for
a gauge-theoretic construction of the Jones polynomial of a link in S3, one studies
the Kapustin–Witten equation on the half-cylinder S3 ⇥ (0, •) with its natural
metric. Since S3 has positive curvature, the Lichnerowicz–Weitzenböck formula
implies that there are no Fueter sections, smooth or singular, and the moduli
space of solutions with relevant boundary conditions is compact [Tau18].

There are many interesting interactions between the two pictures—complex and
topological—described above. For instance, Tanaka and Thomas [TT17a; TT17b]
defined the Vafa–Witten invariants of complex surfaces using algebraic geometry;
it would be interesting to find a gauge-theoretic analogue of their construction.
In dimension three, flat SL(2, C) connections are related to complex geometry via
the Atiyah–Floer picture, in which the moduli space of flat SL(2, C) connections
on a 3–manifold is interpreted as the intersection of two complex Lagrangians in
the hyperkähler moduli space of flat SL(2, C) connections on a Riemann surface.
Using this description and ideas from sheaf theory, Abouzaid and Manolescu
[AM19] defined an SL(2, C) analogue of instanton Floer homology.

Scenario 3. In general, there is no distinguished chamber in the space of pa-
rameters P , and the the signed count of r–monopoles n(M, p) depends on the
connected component of P\W containing p. In this case, the Seiberg–Witten
equation does not lead to a topological invariant. Nevertheless, in the next section
we will argue that the the wall-crossing phenomenon described in Conjecture 1.4.3
can still be used to extract some geometric information, for certain choices of the
quaternionic representation r. While the resulting Seiberg–Witten equation most
likely does not have applications in low-dimesional topology, we expect it to play
an important role in the study of higher-dimensional manifolds equipped with
Riemannian metrics with special holonomy.

1.5 gauge theory on g2 –manifolds

One motivation for studying r–monopoles and Fueter sections comes from higher-
dimensional Yang–Mills theory. We only briefly outline this relationship as it will
not be essential for understanding the results presented in this dissertation. The
reader can find more details in the references listed below, especially in [DT98;
DS11; Wal13; Don19].

Applications of Yang–Mills theory to low-dimensional geometry and topology
rely on the existence of special classes of connections satisfying the Yang–Mills
equations: flat connections in dimensions two and three, and instantons in dimen-
sion four. These connections obey a simpler, first order differential equation, for
which there is a good theory of moduli spaces of solutions.

There is no analogue of the instanton equation on a general higher-dimensional
Riemannian manifold. However, such analogues do exist whenever the holonomy
group of the Riemannian metric is one of the groups appearing in Berger’s list:

U(n), SU(n), Sp(n), Sp(n)Sp(1), G2, and Spin(7);
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see [RC98]. The theory of instantons is particularly rich in dimensions six, seven,
and eight, for manifolds with holonomy, respectively, SU(3), G2, and Spin(7)—
one of the groups related to the geometry of octonions. Riemannian 6–manifolds
with holonomy SU(3) are the famous Calabi–Yau three-folds, extensively studied
in algebraic geometry and string theory. The G2 and Spin(7) geometries, which
play an important role in a branch of theoretical physics called M–theory, are
less understood. There are by now many examples of such manifolds, of which,
however, there is still no systematic classification. For more information on
Berger’s list of holonomy groups and on special holonomy manifolds we refer to
the survey articles [Joy04; Bry06; Don19] and textbooks [GHJ03; Joy07].

In the seminal papers [DT98; DS11], Donaldson, Thomas, and E. Segal put
forward an idea of defining invariants of Riemannian manifolds with holonomy
SU(3), G2, and Spin(7), using the moduli spaces of instantons. For each of the
three geometries there is a separate instanton equation, but they are all related by
the natural inclusions

SU(3) ⇢ G2 ⇢ Spin(7).

Geometrically, if Z is a Calabi–Yau three-fold, then the cylinder Z⇥R is a G2–
manifold (in the sense that its holonomy group is contained in G2) and the
SU(3)–instanton equation on Z is a dimensional reduction of the G2–instanton
equation on Z⇥R. Similarly, if Y is a G2–manifold, then the cylinder Y⇥R is a
Spin(7)–manifold, and the G2–instanton equation on Y is a dimensional reduction
of the Spin(7)–instanton equation on Y⇥R. This relationship between the three
geometries leads to a conjectural topological field theory picture, analogous to
the one known from low dimensions:

dimension holonomy type of invariant

8 Spin(7) number
7 G2 vector space
6 SU(3) category

More precisely, one expects that:

1. For a closed Spin(7)–manifold X there are numerical invariants, analogues
of the Donaldson invariants of a 4–manifold, obtained by integrating certain
cohomology classes over the moduli spaces of Spin(7)–instantons on X.

2. For a closed G2–manifold Y there are Floer homology groups obtained by
formally applying the construction of Morse homology to a G2 analogue
of the Chern–Simons functional. Critical points of this functional are G2–
instantons on Y, and gradient flow-lines correspond to Spin(7)–instantons
on the cylinder X = Y⇥R.

3. For every Calabi–Yau three-fold Z there is a category obtained by apply-
ing formally the construction of the Fukaya–Seidel category [Sei08; Sei12;
Hay14b] to a holomorphic version of the Chern–Simons functional. The
construction of this category should involve critical points of this functional,
corresponding to SU(3)–instantons on Z, its real flow-lines, correspond-
ing to G2–instantons on Y = Z ⇥ R, and solutions to the Floer equation,
corresponding to Spin(7)–instantons on X = Z⇥R2.
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In each case, one should be able to decategorify an invariant to obtain a simpler
one, i.e. to obtain a number from a vector space, or a vector space from a category.
Thus far, only one of these putative invariants have been rigorously defined: a
decategorified version of the SU(3)–invariant. By the Donaldson–Uhlenbeck–Yau
theorem [Don85; UY86], SU(3)–instantons on Calabi–Yau three-folds correspond
to stable holomorphic vector bundles, which can be studied using methods of
algebraic geometry. In particular, while the moduli space of stable bundles is
typically non-compact, it embeds into the compact moduli space of semi-stable
sheaves, constructed by Gieseker [Gie77] and Maruyama [Mar77; Mar78]. Using
deformation theory of sheaves, Thomas [Tho00] developed a way of extracting a
numerical invariant of Calabi–Yau three-folds from the moduli spaces of semi-
stable sheaves. This was later refined by various authors to obtain homology
groups; see [Sze16] for an introduction to this rich subject. In the last twenty
years, the Donaldson–Thomas theory of counting semi-stable sheaves has been
a very active area of research in algebraic geometry, with deep connections to
representation theory, symplectic topology, and theoretical physics.

In G2 or Spin(7) geometry, the methods of sheaf theory are unavailable and
one tries to define the invariants using analysis. In what follows, we focus on the
problem of defining a decategorified, numerical version of the G2–invariant. The
most naive approach would be to simply count G2–instantons with signs, in the
same way one defines the Casson invariant of a 3–manifold as a signed count of
flat connections [Tau90]. More precisely, let Y be a compact G2–manifold. The
exceptional Lie group G2 can be defined as the stabilizer in SO(7) of a generic
3–form in L3R7. It follows that Y is equipped with a parallel (in particular, closed)
3–form f. A G2–instanton is a connection A on a principal bundle over Y whose
curvature form FA satisfies a 7–dimensional analogue of the instanton equation:

⇤(FA ^ f) = �FA.

The deformation theory of G2–instantons up to gauge equivalence is governed by
an elliptic operator of index zero. Thus, for a generic perturbation of the equation,
the moduli space of solutions consists of isolated points. One natural way of
perturbing the equation is to relax the condition for Y to have a Riemannian metric
of holonomy G2, and to consider instead tamed almost G2–structures introduced in
[DS11, Section 3]; one can use also holonomy perturbations. In any case, suppose
that we have a sufficiently large space of perturbations PY such that for a generic
choice of p 2 PY, the moduli space of perturbed G2–instantons consists of
isolated points. There is a natural way of prescribing signs to these points [Wal13,
Section 6.1], [JU19], and a naive definition of the invariant is

N0(Y, p) = Â
G2 instantons [A]

sign(A), (1.5.1)

where the sum is taken over all gauge equivalence classes of G2–instantons on a
fixed principal bundle on Y.

The main problem with this definition is that the moduli space of G2–instantons
might be non-compact, in which case (1.5.1) is an infinite sum. Even if the moduli
space is compact for a generic choice of p 2PY, it can still happen that for a path
g : [0, 1]!P connecting two such p0, p1, the moduli space with respect to g(t)
ceases to be compact for some t 2 (0, 1). If this is the case, we cannot conclude
from the usual cobordism argument that N0(Y, p0) = N0(Y, p1), and the number
(1.5.1) fails to define an invariant of the G2–manifold Y.
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The non-compactness of the moduli space is caused by the phenomenon
of bubbling, discovered by Uhlenbeck, which occurs when a sequence of G2–
instantons concentrates along a closed 3–dimensional subset M ⇢ Y, developing
along M a singularity in a way familiar from the study of instantons on 4–
manifolds [Uhl82; Pri83; Nak88; TT04]. Tian [Tia00] proved that M is a rectifiable
3–current and, if it is actually a smooth 3–dimensional submanifold, then it is
associative in the sense that the restriction of f to M is equal to the volume form of
M. Such submanifolds are calibrated in the sense of Harvey and Lawson [HL82];
in particular, they are minimal submanifolds whose volume depends only on the
homology class. Moreover, their deformation theory is governed by an elliptic
operator of index zero, so we expect that generically there are only finitely many
such submanifolds within a given homology class.

However, not every associative submanifold M ⇢ Y can be the bubbling locus
of a sequence of G2–instantons. By analyzing the G2–instanton equation in a
tubular neighborhood of such a submanifold, Donaldson and Segal conjectured
that M is a bubbling locus if and only if there exists a certain Fueter section on M
[DS11, Section 6.1], [Hay12], [Wal17, Section 4]. This Fueter section takes values
in the fiber bundle X! M whose fiber over a point x 2 M is the moduli space
of instantons on Nx = R4, the normal space to M at x. The idea is that such a
Fueter sections is a model for a G2–instanton in a tubular neighborhood of M,
which is highly concentrated along M.

The Fueter operator acting on the space of section of X depends on various
parameters, including the Riemannian metric on M induced from the embedding
M ⇢ Y, which, in turn, depend on the choice of p 2 PY. Thus, we have the
following three predictions analogous to the conjectures from the previous section:

1. Compactness. (cf. Conjecture 1.4.1) Given a sequence pi 2 PY converging
to p, and a sequence Ai of G2–instantons with respect to pi, which bubbles
along an associative submanifold M ⇢ Y, there exists a Fueter section of
the instanton bundle X! M with respect to p.

2. Codimension one. (cf. Conjecture 1.4.2) The set WY of those p 2PY for which
there exists an associative submanifold M ⇢ Y and a Fueter section of
X! M, has codimension one in PY. In particular, for a generic choice of
p 2PY, the moduli space of G2–instantons is finite and the signed count
N0(Y, p) of G2–instantons, as in (1.5.1), is well-defined.

3. Wall-crossing. (cf. Conjecture 1.4.3) When a path g : [0, 1]!PY intersects
the codimension one set WY, then N0(Y, g(t)) changes by ±1.

In reality, one has to consider also singular associatives and singular Fueter
sections (we will come back to this point). Even under the assumption that M is
smooth, the first conjecture has not yet been proved, which is a major gap in this
theory. A version of the third conjecture was proved by Walpuski [Wal17].

If these predictions are correct, then N0(Y, p), defined by (1.5.1), is not an
invariant of the G2–manifold Y as it can jump when we vary p. Walpuski [Wal13;
Wal17] proposed to compensate for such jumps by adding to (1.5.1) the signed
count of certain r–monopoles on M. The quaternionic representation r is chosen
so that the associated hyperkähler quotient is, via the famous ADHM construction
[Ati+78], the moduli space of anti-self-dual instantons on R4, and so in this case
r–monopoles are called ADHM monopoles. As explained in the previous section,
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the signed count of ADHM monopoles on M is not a topological invariant of M;
it can jump when we deform the Riemannian metric on M and other parameters
of the ADHM Seiberg–Witten equation. The point is that such jumps should
occur exactly when there exists a Fueter section of the instanton bundle X! M.
Thus, Walpuski proposed a new definition of the putative G2–invariant, which
takes under account not only G2–instantons but also associative submanifolds
and ADHM monopoles. Schematically,

N(Y, p) = Â
G2 instantons [A]

sign(A)

| {z }

N0(Y,p)

+ Â
associatives M

n(M, p) (1.5.2)

Here, the sum is taken over all gauge equivalence classes of G2–instantons on
a fixed principal bundle, and all associatives in Y within a certain finite range
of homology classes depending on the Chern classes of the bundle; n(M, p)
is the signed count of ADHM monopoles on M, as in (1.2.2), with respect to
the parameters, such as Riemannian metric etc., induced from p 2 PY via the
embedding M ⇢ Y. We refer to [DW17b, Section 6] for more details.

The wall-crossing conjectures for G2–instantons and ADHM monopoles would
imply the invariance of N(Y, p) under deformations of p. Indeed, given a path
in PY which starts at p0, crosses the wall WY exactly once, and ends at p1, we
would know that

N0(Y, p1)� N0(Y, p0) = ±1, and
n(M, p1)� n(M, p0) = ±1,

where M is the bubbling locus of the sequence of G2–instantons which concen-
trates as the path crosses WY. (We assume here that the path is short and the
associative M is unobstructed, so that it deforms inside Y as we vary p.) Thus,
modulo the question of orientations, the number N(Y, p) remains unchanged.

There are various difficulties in making this proposal rigorous. Far from be-
ing merely technical obstacles, these difficulties reflect important gaps in our
understanding of calibrated geometry and gauge theory, cf. [Don19, Section 3.5]

1. Singularities of associatives. In general, we cannot guarantee that the bubbling
locus M of a sequence of G2–instantons is a smooth submanifold. One
would optimistically hope that the bubbling locus is smooth for a generic
choice of p (for example, for a generic tamed almost G2 structure on Y).
Even then, associative submanifolds might form singularities as we vary p
in a one-parameter family. It is an important question in G2 geometry to
classify all generic singularities of one-parameter families of associatives
[Joy18]. Such singularities can lead to a change in the number and topology
of associatives, and, as a result, to possible wall-crossing phenomena for
the terms appearing in (1.5.2). However, it is possible that the sum of all the
terms is invariant under these transitions because of the gluing and surgery
formulae for the signed count of ADHM monopoles [DW17b].

2. Singularities of G2–instantons. In addition to bubbling, Uhlenbeck’s compact-
ness theorem allows for the possibility that a sequence of G2–instantons
develops singularities of codimension greater than four. This could lead
to interactions between smooth G2–instantons and G2–instantons with sin-
gularities; understanding such interactions requires developing a theory
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of deforming and smoothing singular G2–instantons, cf. [Wan16]. Even if
singular G2–instantons remain isolated from the smooth ones, one can envi-
sion a scenario in which a singular Fueter section on an associative M ⇢ Y
gives rise to a singular G2–instanton, via a gluing construction similar to
the one in [Wal17]. As this process would be accompanied by a change in
the number of ADHM monopoles, the sum (1.5.2) would have to include
also a signed count of singular G2–instantons in order to remain invariant.

3. Reducible ADHM monopoles. If M is a homology 3–sphere, then there is
an additional wall-crossing phenomenon for the signed count of ADHM
monopoles n(M, p), caused by reducible solutions. Unless one can guaran-
tee that there are no associatives homology 3–spheres inside Y, it is possible
that the G2–invariant (1.5.2) cannot be defined at all and one has to con-
struct a categorified version of the invariant. This problem is familiar from
gauge theory on 3–manifolds, where it can be solved within the frame-
work of equivariant Floer homology. (Floer homology groups of homology
3–spheres are infinitely generated and so one cannot define a decategori-
fied, numerical invariant by taking the rank of the group.) A candidate for
G2–Floer homology would be the homology of a complex generated by
G2–instantons, associatives, and ADHM monopoles, with differential count-
ing Spin(7)–instantons, Cayley cobordisms, and 4–dimensional ADHM
monopoles, inside the cylinder X = Y⇥R [DW17b].

We hope that this brief and rather speculative discussion convinces the reader
that defining enumerative invariants of G2–manifolds is an exciting and challeng-
ing project. Completing it will require a deeper understanding of G2–instantons,
associative submanifolds, and r–monopoles. The goal of this dissertation is to
make a contribution to the third subject, in particular by studying the relationship
between r–monopoles and Fueter sections.

1.6 summary of the results

Chapter 2: Monopoles and Fueter sections

This chapter is based on the articles [DW17a] and [DW17b, Section 5] written in
collaboration with Thomas Walpuski.

After reviewing the general theory of r–monopoles and Fueter sections, we
prove the main theorems in Section 2.7 and Section 2.8. These theorems establish
Conjecture 1.4.4 under the assumption that the Fueter section s is smooth. In the
final Section 2.2, we introduce the Seiberg–Witten equations associated with the
quaternionic representations appearing in the ADHM construction of instantons.
As explained earlier, solutions to this equation, ADHM monopoles, are expected
to play an important role in defining enumerative invariants of G2–manifolds.

Chapter 3: Fueter sections with singularities

This chapter is based on the article [DW17c] written in collaboration with Thomas
Walpuski, and incorporates also a small part of [Doa17b].

We extend the results of the previous chapter to develop a theory of counting
monopoles with two spinors. These are solutions to the Seiberg–Witten equation
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with two spinors, one of the ADHM Seiberg–Witten equations2. The main result
is a wall-crossing formula, Theorem 3.5.7, which proves Conjecture 1.4.3 for
this equation under the assumption that there exist no singular Fueter sections
along the path g. As an application, we prove Theorem 3.1.7, which asserts the
existence of singular Fueter sections with values in H/Z2 on every 3–manifold
M with b1(M) > 1. Such singular Fueter sections are examples of harmonic Z2
spinors defined by Taubes [Tau14]. In particular, Theorem 3.1.7 produces the first
examples of singular harmonic Z2 spinors which are not obtained by means of
complex geometry. In Section 3.11 we discuss the significance of our wall-crossing
formula to gauge theory on G2–manifolds.

Chapter 4: ADHM monopoles on Riemann surfaces

This chapter is based on [Doa17b; Doa17a], apart from the Section 4.2, which is
taken from [DW17b, Section 7.4], written in collaboration with Thomas Walpuski.

The discussion of Chapter 2 and Chapter 3 shows that a complete theory
of counting ADHM monopoles must incorporate singular Fueter sections and
compactifications of the moduli spaces. While such a general theory is yet to
be developed, the purpose of Chapter 4 is to focus on examples. We do this by
studying ADHM monopoles on Riemannian 3–manifolds of the form M = S1⇥S
for a Riemann surface S. We show that in this case all ADHM monopoles are
pulled back from S and correspond to certain holomorphic data on S.

In the special case of the Seiberg–Witten equation with two spinors, we con-
struct two compactifications of the moduli space, one using gauge theory and one
using algebraic geometry, and we prove that they are homeomorphic. Two aspects
of this result shed light on the general problem of compactifying the moduli space
for an arbitrary 3–manifold. First, our construction involves refining the compact-
ness theorem of Haydys and Walpuski [HW15] in the case M = S1 ⇥ S. Second,
we show that there are topological and analytical obstructions for a harmonic Z2
spinor to appear in the compactification. As a corollary, we construct examples
of harmonic Z2 spinors which are not limits of any sequence of monopoles with
two spinors. Our discussion of compactness provides a model of what should
be proved for a general 3–manifold. Note, in particular, that for any 3–manifold
M, the behaviour of a sequence of monopoles with two spinors converging to
a harmonic Z2 spinor singular along Z ⇢ M is in a small neighborhood of Z
modelled on the S1–invariant situation described here.

Finally, we show that for a generic choice of S1–invariant parameters of the
Seiberg–Witten equation with two spinors over M = S1 ⇥ S, harmonic Z2 spinors
do not exist and the moduli space is a compact Kähler manifold. After a pertur-
bation it splits into isolated points which can be counted with signs, yielding a
number independent of the initial choice of the S1–invariant parameters. This
shows that the number n(M, p) is well-defined in this case and independent of p,
as long as p is pulled back from S. We compute this number for surfaces of low
genus and construct many explicit examples of monopoles with two spinors and
harmonic Z2 spinors using algebraic geometry.

2 In general, there is an ADHM Seiberg–Witten equation for every pair (k, n) corresponding to the
charge and rank of instantons on R4. The classical Seiberg–Witten equation corresponds to k = 1,
n = 1, while the Seiberg–Witten equation with two spinors corresponds to k = 1, n = 2.
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A key difficulty in studying generalized Seiberg–Witten equations arises from the
non-compactness issue caused by a lack of a priori bounds on the spinor. This
phenomenon has been studied in special cases by Taubes [Tau13b; Tau13a; Tau16],
and Haydys and Walpuski [HW15]. To focus on the issue of the spinor becoming
very large, one passes to a blown-up Seiberg–Witten equation. The lack of a priori
bounds then manifests itself as the equation becoming degenerate elliptic when
the norm of the spinor tends to infinity. However, a theorem of Haydys allows us
to reinterpret the limiting equation as a non-linear version of the Dirac equation,
known as the Fueter equation.

In this chapter, we review the general theory of Seiberg–Witten and Fueter
equations and develop Fredholm deformation theory describing the local Kuran-
ishi structure of moduli spaces of solutions to both equations. The main result,
proved in Section 2.7, asserts that the two deformation theories can be glued
together, yielding a Kuranishi space with boundary, whose interior consists of
monopoles, solutions to Seiberg–Witten equations, and boundary of Fueter sec-
tions, up to rescaling. This leads to a description, in Section 2.8, of a wall-crossing
phenomenon for monopoles, whose signed count can change when we vary
parameters of a Seiberg–Witten equation.

Finally, we discuss the Seiberg–Witten equations associated with the quater-
nionic representations appearing in the ADHM construction of instantons. Solu-
tions to these equations, ADHM monopoles, play a crucial role in the Haydys–
Walpuski program outlined in the introduction.

references . Apart from some minor changes, the content of this chapter is
the same as that of the article [DW17a]. The discussion of ADHM monopoles
follows [DW17b, Section 5]. Both of these articles were written in collaboration
with Thomas Walpuski.

2.1 hyperkähler quotients of quaternionic representations

Definition 2.1.1. Let H = Rh1, i, j, ki be the division algebra of quaternions.
Denote by Im H = Rhi, j, ki the subspace of imaginary quaternions.

A quaternionic Hermitian vector space is a real vector space S together with a
linear map g : Im H ! End(S) and a Euclidean inner product h·, ·i such that
g makes S into a left module over H, and i, j, k act by isometries. The unitary
symplectic group Sp(S) is the subgroup of GL(S) preserving g and h·, ·i.

Let G be a compact, connected Lie group.

Definition 2.1.2. A quaternionic representation of G is a Lie group homomorphism
r : G ! Sp(S) for some quaternionic Hermitian vector space S.

Suppose that a quaternionic representation r : G ! Sp(S) has been chosen. By
slight abuse of notation, we also denote the induced Lie algebra representation by

19
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r : g! sp(V). We combine r and g into the map ḡ : g⌦ Im H! End(S) defined
by

ḡ(x ⌦ v)F := r(x)g(v)F.

The map ḡ takes values in symmetric endomorphisms of S. Denote the adjoint of
ḡ by ḡ

⇤ : End(S)! (g⌦ Im H)⇤.

Proposition 2.1.3. The map µ : S! (g⌦ Im H)⇤ defined by

µ(F) :=
1
2

ḡ

⇤(FF⇤) (2.1.1)

with F⇤ := hF, ·i is a hyperkähler moment map, that is, it is G–equivariant, and

h(dµ)Ff, x ⌦ vi = hg(v)r(x)F, fi

for all x 2 g and v 2 Im H.

This is a straightforward calculation. Nevertheless, it leads to an important con-
clusion: there is a hyperkähler orbifold naturally associated with the quaternionic
representation.

Definition 2.1.4. We call F 2 S regular if (dµ)F : TFS! (g⌦ Im H)⇤ is surjective.
Denote by Sreg the open cone of regular elements of S.

By Hitchin et al. [Hit+87, Section 3(D)], the hyperkähler quotient

X := Sreg///G :=
⇣

µ

�1(0) \ Sreg
⌘

/G

is a hyperkähler orbifold. For convenience, in this dissertation we will always
assume that X is, in fact, a hyperkähler manifold, i.e. that G acts freely on
µ

�1(0) \ Sreg. It will be important later that X is a cone; that is, it carries an
isometric free R+–action induced from the scalar multiplication on S.

For future reference, let us recall some technical details of the construction and
main properties of the hyperkähler quotient.

Proposition 2.1.5 (Hitchin et al. [Hit+87, Section 3(D)]). If r : G ! Sp(S) is a
quaternionic representation such that G acts freely on µ

�1(0) \ Sreg, then the following
hold:

1. The space X = Sreg///G is manifold.

2. Denote by p : µ

�1(0) \ Sreg ! X the canonical projection. Set

H := (ker dp)? \ T(µ�1(0) \ Sreg) and

N := H? ⇢ TS|
µ

�1(0)\Sreg .

For each F 2 µ

�1(0) \ Sreg, (dp)F : HF ! T[F]X is an isomorphism, and

NF = im (r(·)F� ḡ(·)F : g⌦H! S) . (2.1.2)

3. For each F 2 µ

�1(0) \ Sreg, g preserves the splitting S = HF �NF.
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4. There exist a Riemannian metric gX on X and a Clifford multiplication

gX : Im H! End(TX)

such that

p⇤gX = h·, ·i and p⇤gX = g.

5. gX is parallel with respect to gX; hence, X is a hyperkähler orbifold—which is
called the hyperkähler quotient of S by G.

Remark 2.1.6. More generally, µ

�1(0)/G can be decomposed into a union of
hyperkähler manifolds according to the conjugacy class of the stabilizers in G;
see Dancer and Swann [DS97, Theorem 2.1].

The following summarizes the algebraic data required to write a Seiberg–Witten
equation.

Definition 2.1.7. A set of algebraic data consists of:

1. a quaternionic Hermitian vector space (S, g, h·, ·i),
2. a compact, connected Lie group G together with an Ad–invariant inner

product on the Lie algebra g of G,

3. a quaternionic representation r : G ! Sp(S) such that G acts freely on
µ

�1(0) \ Sreg.

While the group G and its quaternionic representation r are the main objects of
interest, in what follows, it will be convenient to consider also the following as
part of algebraic data:

4. a compact, connected Lie group H containing G as a normal subgroup,
together with an Ad–invariant inner product on the Lie algebra h of H
extending the inner product on g,

5. an extension of r : G ! Sp(S) to a quaternionic representation H ! Sp(S)
(which, for simplicity, we will also denote by r).

Given such algebraic data, the group K = H/G is called the flavor symmetry group.

The groups G and K play different roles: G is the structure group of the
equation, whereas K consists of any additional symmetries, which can be used to
twist the setup or remain as symmetries of the theory. On first reading, the reader
should feel free to assume for simplicity that H = G⇥ K, or even that H = G
and K is trivial.

2.2 seiberg–witten equations

Let M be a closed, connected, oriented 3–manifold.

Definition 2.2.1. A set of geometric data on M compatible with a set of algebraic
data as in Definition 2.1.7 consists of:

1. a Riemannian metric g,
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2. a spin structure s, thought of as a principal Sp(1)–bundle s! M together
with an isomorphism T⇤M ⇠= s⇥Sp(1) Im H,

3. a principal H–bundle Q! M, and

4. a connection B on the principal K–bundle

R := Q⇥H K.

Remark 2.2.2. The following observation is due to Haydys [Hay14a, Section 3.1].
Suppose there is a homomorphism Z2 ! Z(H) such that the non-unit in Z2 acts
through r as �1. Set Ĥ := (Sp(1)⇥H)/Z2. All of the constructions in this section
go through with s⇥Q replaced by a Ĥ–principal bundle Q̂. This generalization
is important when formulating the Seiberg–Witten equation in dimension four,
since not every oriented 4–manifold admits a spin structure. (Recall that every
oriented 3–manifold admits a spin structure.) In the classical Seiberg–Witten
theory, this corresponds to endowing the manifold with a spinc structure rather
than a spin structure and a U(1)–bundle.

Suppose that a set of geometric data as in Definition 2.2.1 has been fixed.
Left-multiplication by unit quaternions defines an action q : Sp(1)! O(S) such
that

q(q)g(v)F = g(Ad(q)v)q(q)F

for all q 2 Sp(1) = {q 2 H : |q| = 1}, v 2 Im H, and F 2 S. This can be used to
construct various vector bundles and operators as follows.

Definition 2.2.3. The spinor bundle is the vector bundle

S := (s⇥Q)⇥Sp(1)⇥H S.

Since T⇤M ⇠= s⇥Sp(1) Im H, it inherits a Clifford multiplication g : T⇤M! End(S).

Definition 2.2.4. Denote by A (Q) the space of connections on Q. Set

AB(Q) := {A 2 A (Q) : A induces B on R}.

AB(Q) is an affine space modeled on W1(M, gP) with gP denoting the adjoint
bundle associated with g, that is,

gP := Q⇥Ad g.

If the structure group of the bundle Q can be reduced from H to G / H, then gP
is the adjoint bundle of the resulting principal G–bundle P; hence the notation.
For example, if H = G⇥ K, then such a reduction P exists. In general, P might
not exist but traces of it do—e.g., its adjoint bundle and its gauge group.

Definition 2.2.5. Every A 2 AB(Q) defines a covariant derivative rA : G(S)!
W1(M,S). The Dirac operator associated with A is the linear map

/DA : G(S)! G(S)

defined by

/DAF := g(rAF),

where g : T⇤M⌦S! S is the bundle version of the Clifford multiplication.
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Definition 2.2.6. The hyperkähler moment map µ : S! (Im H⌦ g)⇤ induces a
map

µ : S! L2T⇤M⌦ gP

since, using the Riemannian metric, (T⇤M)⇤ ⇠= L2T⇤M.

Denoting by

v : gQ ! gP

the projection induced by h! g, we are finally in a position to state the equation
we wish to study.

Definition 2.2.7. The Seiberg–Witten equation associated with the chosen geometric
data is the following system of differential equations for (F, A) 2 G(S)⇥AB(Q):

/DAF = 0 and
vFA = µ(F).

(2.2.1)

Definition 2.2.8. A r–monopole is a solution (F, A) of the Seiberg–Witten equation
(2.2.1) associated with a quaternionic representation r : G ! Sp(S), or, more
precisely, with a choice of algebraic data as in Definition 2.1.7 and compatible
geometric data as in Definition 2.2.1. In a context in which this data is fixed, we
will call (F, A) simply a monopole.

Most of the well-known equations of mathematical gauge theory on 3– and
4–manifolds can be obtained as a Seiberg–Witten equation.1

Example 2.2.9. S = H and r : U(1)! H acting by right-multiplication with eiq

leads to the classical Seiberg–Witten equation in dimension three.

Example 2.2.10. Let G = U(n) and S = H⌦C Cn, where the complex structure on
H is given by right-multiplication by i. Let r : U(n)! Sp(H⌦C Cn) be induced
from the standard representation of U(n). The corresponding Seiberg–Witten
equation is the U(n)–monopole equation in dimension three. The closely related
PU(2)–monopole equation on 4–manifolds plays a crucial role in Pidstrigach
and Tyurin’s approach to proving Witten’s conjecture relating Donaldson and
Seiberg–Witten invariants; see, e.g., [PT95; FL98a; Tel00].

In both of the above examples we have µ

�1(0) = {0} and the corresponding
hyperkähler quotient X = Sreg///G is empty. As we will see in Section 2.5,
the condition µ

�1(0) = {0} implies compactness for the corresponding moduli
spaces of solutions; this observation is due to Witten.

Example 2.2.11. Let G be a compact Lie group, g = g, and fix an Ad–invariant
inner product on g. S := H⌦R g is a quaternionic Hermitian vector space, and
r : G ! Sp(S) induced by the adjoint action is a quaternionic representation. The
moment map µ : H⌦R g! (Im H⌦ g)⇤ is given by

µ(x) =
1
2
[x, x]

= ([x2, x3] + [x0, x1])⌦ i + ([x3, x1] + [x0, x2])⌦ j + ([x1, x2] + [x0, x3])⌦ k

1 In fact, if we allow the Lie groups and the representations to be infinite-dimensional, we can also
recover (special cases of) the G2– and Spin(7)–instanton equations [Hay12, Section 4.2].
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for x = x0⌦ 1+ x1⌦ i + x2⌦ j + x3⌦ k 2 H⌦R g. Set H := Sp(1)⇥G and extend
the above quaternionic representation of G to H by declaring that q 2 Sp(1) acts
by right-multiplication with q⇤.

Taking Q to be the product of the chosen spin structure s with a principal
G–bundle, and choosing B such that it induces the spin connection on s, (2.2.1)
becomes

d⇤Aa = 0,
⇤dAa + dAx = 0, and

FA = 1
2 [a ^ a] + ⇤[x, a].

for x 2 G(gP), a 2 W1(M, gP) and A 2 A (P). If M is closed, then integration by
parts shows that every solution of this equation satisfies dAx = 0 and [x, a] = 0;
hence, A + ia defines a flat GC–connection. Here GC denotes the complexification
of G.

In the above situation, we have µ

�1(0)/G ⇠= (H ⌦ t)/W where t is a the
Lie algebra of a maximal torus T ⇢ G and W = NG(T)/T is the Weyl group
of G. However, since each x 2 µ

�1(0) has stabilizer conjugate to T, we have
µ

�1(0) \ Sreg = ?, and the hyperkähler quotient Sreg///G is empty.

The Seiberg–Witten equation is invariant with respect to gauge transformations
which preserve the flavor bundle R.

Definition 2.2.12. The group of restricted gauge transformations is

G (P) := {u 2 G (Q) : u acts trivially on R}.

G (P) is an infinite dimensional Lie group with Lie algebra W0(M, gP). If Q has
a reduction to a principal G–bundle P, then G (P) is isomorphic to the gauge
group of P.

The restricted gauge group G (P) acts on G(S)⇥AB(Q) preserving the space
of solutions of (2.2.1). The main object of our study is the space of solutions
to (2.2.1) modulo restricted gauge transformations. This space depends on the
geometric data chosen as in Definition 2.2.1. The topological part of the data, the
bundles s and H, will be fixed. The remaining parameters of the equations, the
metric g and the connection B, will be allowed to vary.

Definition 2.2.13. Let Met(M) be the space of Riemannian metrics on M. The
parameter space is

P := Met(M)⇥A (R).

Definition 2.2.14. For p = (g, B) 2P , the Seiberg–Witten moduli space is

MSW(p) :=

(

[(F, A)] 2 G(S)⇥AB(Q)
G (P)

: (F, A) satisfies (2.2.1)
with respect to g and B

)

.

The universal Seiberg–Witten moduli space is

MSW :=
⇢

(p, [(F, A)]) 2P ⇥ G(S)⇥A (Q)
G (P)

: [(F, A)] 2MSW(p)
�

.
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The Seiberg–Witten moduli spaces are endowed with the quotient topology
induced from the C•–topology on the spaces of connections and sections.

In the upcoming sections of this chapter, we discuss the questions:

1. Is MSW(p) a smooth manifold for a generic choice of p 2P?

2. If MSW(p) is smooth, is it orientable?

3. Is MSW(p) compact?

4. How does MSW(p) depend on the choice of p 2P?

2.3 deformation theory of monopoles

The purpose of this section is to describe the structure of MSW in a neighborhood
of a solution c of (2.2.1) for some p 2 P . As we will momentarily see, the
deformation theory of (2.2.1) at (p, c) is controlled by a differential graded Lie
algebra (DGLA). Associated with this DGLA is a self-adjoint elliptic operator
Lp,c, which can be understood as a gauge fixed and co-gauge fixed linearization
of (2.2.1); a precise definition is given below. These operators equip MSW with a
real line bundle det L such that for each (p, [c]) 2MSW we have a distinguished
isomorphism

(det L)(p,[c])
⇠= det ker Lp,c ⌦ (coker Lp,c)

⇤.

The fact that the operators Lp,c are Fredholm allows us to construct finite dimen-
sional models of MSW by standard methods of Fredholm differential topology.
This construction is summarized in the following result.

Proposition 2.3.1. If c0 is a solution of (2.2.1) for p0 2P and c0 is irreducible,2 then
there is a Kuranishi model for a neighborhood of (p0, [c0]) 2MSW; that is: there are an
open neighborhood of U of p0 2P , finite dimensional vector spaces I = ker Lp0,c0 and
O = coker Lp0,c0 of the same dimension, an open neighborhood I of 0 2 I, a smooth
map

ob : U ⇥I ! O,

an open neighborhood V of (p0, [c0]) 2MSW, and a homeomorphism

x : ob�1(0)! V ⇢MSW,

which maps (p0, 0) to (p0, [c0]) and commutes with the projections to P . Moreover, for
each (p, c) 2 im x, there is an exact sequence

0! ker Lp,c ! I dIob��! O! coker Lp,c ! 0

such that the induced maps det Lp,c ! det(I)⌦ det(O)⇤ define an isomorphism of line
bundles det L ⇠= x⇤(det(I)⌦ det(O)⇤) on im x ⇢MSW.

Corollary 2.3.2. If Lp0,c0 is invertible, then the projection MSW ! P is a local
homeomorphism at (p0, [c0]). In particular, [c0] is then an isolated point of MSW(p0).

2 In the sense of Definition 2.3.5 given below. There is a natural generalization of Proposition 2.3.1 to
the case when c0 is reducible. Then the stabilizer of c0 in the gauge group acts on U and O and ob can
be chosen to be equivariant, cf. [DK90, Section 4.2.5]. In this thesis we focus on irreducible solutions.
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In the remaining part of the section we set the deformation theory of monopoles
and prove Proposition 2.3.1. We begin with the Seiberg–Witten DGLA. In order
to simplify the notation, assume for the remaining part of this section that a
parameter p 2 P has been fixed. Thus, we will suppress it from the notation,
writing Lc instead of Lp,c and so on. However, keep in mind that most of the
operators discussed below depend on p.

Definition 2.3.3. Denote by L• the graded real vector space given by

L0 := W0(M, gP),

L1 := G(S)�W1(M, gP),

L2 := G(S)�W2(M, gP), and

L3 := W3(M, gP).

Denote by J·, ·K : L• ⌦ L• ! L• the graded skew-symmetric bilinear map defined
by

Ja, bK := [a ^ a] for a, b 2 W•(M, gP),

Jx, fK := r(x)f for x 2 W0(M, gP) and f 2 G(S) in degree 1 or 2,

Ja, fK := �ḡ(a)f for a 2 W1(M, gP) and f 2 G(S) in degree 1,
Jf, yK := �2µ(f, y) for f, y 2 G(S) in degree 1, and
Jf, yK := � ⇤ r

⇤(fy

⇤) for f 2 G(S) in degree 1 and y 2 G(S) in degree 2.

Given c = (F, A) 2 G(S) ⇥ AB(Q), define the degree one linear map d

• =
d

•
c : L• ! L•+1 by

d

0
c(x) :=

 

�r(x)F
dAx

!

,

d

1
c(f, a) :=

 

� /DAf� ḡ(a)F
�2µ(F, f) + dAa

!

, and

d

2
c(y, b) := ⇤r⇤(yF⇤) + dAb.

Proposition 2.3.4. The algebraic structures defined in Definition 2.3.3 determine a
DGLA which controls the deformation theory of the Seiberg–Witten equation; that is:

1. (L•, J·, ·K) is a graded Lie algebra.

2. If c = (F, A) is a solution of (2.2.1), then (L•, J·, ·K, d

•
c ) is a DGLA.

3. Suppose that c = (F, A) is a solution of (2.2.1). For every ĉ = (f, a) 2 L1,
(F + f, A + a) solves (2.2.1) if and only if it is a Maurer–Cartan element, that
is, dcĉ+ 1

2Jĉ, ĉK = 0.

While part (3) is a straightforward calculation, the verification of (1) and (2) is
somewhat lengthy. Since it does not play an important role in what follows, we
refer to [DW17a, Appendix B].

Definition 2.3.5. Let c 2 G(S)⇥AB(Q) be a solution of (2.2.1). We call

Gc := {u 2 G (P) : uc = c}
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the group of automorphisms of c. Its Lie algebra is the cohomology group H0(L•, dc);
H1(L•, dc) is the space of infinitesimal deformations, and H2(L•, dc) the space of
infinitesimal obstructions.

We say that c is irreducible if Gc = 0, and unobstructed if H2(L•, dc) = 0.

Remark 2.3.6. H3(L•, dc) has no immediate interpretation, but it is isomorphic
to H0(L•, dc), since the complex (L•, dc) is self-dual. The latter also shows that
H1(L•, dc) is isomorphic to H2(L•, dc).

The operators

d̃

0
c := d

0
c : W0(M, gP)! G(S)�W1(M, gP),

d̃

1
c := (idS � ⇤) � d

1
c : G(S)�W1(M, gP)! G(S)�W1(M, gP), and

d̃

2
c := � ⇤ � d

2
c � (idS � ⇤) : G(S)�W1(M, gP)! W0(M, gP)

satisfy

(d̃0
c)
⇤ = d

2
c and (d1

c)
⇤ = d

1
c .

It follows that the operator

Lc : G(S)�W1(M, gP)�W0(M, gP)! G(S)�W1(M, gP)�W0(M, gP)

defined by

Lc :=

 

d̃

1
c d̃

0
c

d̃

2
c 0

!

=

0

B

B

@

� /DA 0 0
0 ⇤dA dA

0 d⇤A 0

1

C

C

A

+

0

B

B

@

0 �ḡ(·)F �r(·)F
�2 ⇤ µ(F, ·) 0 0
�r

⇤(·F⇤) 0 0

1

C

C

A

is formally self-adjoint and elliptic.

Definition 2.3.7. We call Lc the linearization of the Seiberg–Witten equation at c.

If c is a solution of (2.2.1), then Hodge theory identifies H1(L•, dc)� H0(L•, dc)
with ker Lc and H2(L•, dc) � H3(L•, dc) with coker Lc. The fact that (L•, dc) is
self-dual (up to signs) manifests itself as Lc being formally self-adjoint. After
gauge fixing and co-gauge fixing, we can understand (2.2.1) as an elliptic PDE as
follows.

Proposition 2.3.8. Given

c0 = (F0, A0) 2 G(S)⇥AB(Q),

define Q : G(S)�W1(M, gP)�W0(M, gP)! G(S)�W1(M, gP)�W0(M, gP) by

Q(f, a, x) :=

0

B

B

@

�ḡ(a)f
1
2 ⇤ [a ^ a]� ⇤µ(f)

0

1

C

C

A

,
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ec0 2 G(S)�W1(M, gP)�W0(M, gP) by

ec0 :=

0

B

B

@

� /DA0 F0

⇤vFA0 � ⇤µ(F0)

0

1

C

C

A

,

and set

swc0(ĉ) := Lc0 ĉ+ Qc0(ĉ) + ec0 .

There is a constant s > 0 depending on c0 such that, for every ĉ = (f, a, x) 2
G(S)�W1(M, gP)�W0(M, gP) satisfying k(f, a)kL• < s, the equation

swc0(ĉ) = 0

holds if and only if c0 + (f, a) satisfies (2.2.1) and the gauge fixing condition

d⇤A0
a� r

⇤(fF⇤0) = 0 (2.3.1)

as well as the co-gauge fixing condition

dA0 x = 0 and r(x)F0 = 0;

moreover, if c0 is infinitesimally irreducible (that is: H0(L•, dc0) = 0), then x = 0.

The proof requires a number of useful identities for µ which are collected in
the next proposition. We refer to [DW17a, Proposition B.4] for a straightforward
but rather tedious derivation of these identities.

Proposition 2.3.9. For all A 2 A (Q) and f, y 2 G(S) we have

dAµ(f, y) = � ⇤ 1
2

r

⇤ (( /DAf)y⇤ + ( /DAy)f⇤) (2.3.2)

and

d⇤Aµ(f, y) = ⇤µ( /DAf, y) + ⇤µ( /DAy, f)

� 1
2

r

⇤ ((rAf)y⇤)� 1
2

r

⇤ ((rAy)f⇤) .
(2.3.3)

Proof of Proposition 2.3.8. Setting F := F0 + f and A := A0 + a, the equation
swc0(ĉ) = 0 amounts to

/DAF + r(x)F0 = 0,
vFA + ⇤dA0 x = µ(F), and

d⇤A0
a� r

⇤(fF⇤0) = 0.

Since

dAµ(F) = � ⇤ r

⇤ (( /DAF)F⇤)

by (2.3.2), applying dA to the second equation above and using the first equation
we obtain

d⇤A0
dA0 x + r

⇤ ((r(x)F0)F⇤0)� ⇤[a ^ ⇤dA0 x] + r

⇤ ((r(x)F0)f
⇤) = 0.
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Taking the L2 inner product with x0, the component of x in the L2 orthogonal
complement of ker dc0 and integrating by parts yields that

kdA0 xk2
L2 + kr(x)F0k2

L2 = h⇤[a ^ ⇤dA0 x], x0iL2 � hr(x)F0, r(x0)fiL2 .

The right-hand side can be bounded by a constant c > 0 (depending on c0) times

k(a, f)kL•

⇣

kd⇤A0
xk2

L2 + kr(x)F0k2
L2

⌘

.

Therefore, if k(a, f)kL• < s

:= 1/c, then

dA0 x = 0 and r(x)F0 = 0.

It follows that ĉ+ (f, a) satisfies (2.2.1).
Since x 2 H0(L•, dc0), it vanishes if c0 infinitesimally irreducible.

The following standard observation shows that imposing the gauge fixing
condition (2.3.1) is mostly harmless, as long as we are only interested in small
variations ĉ; c.f. [DK90, Proposition 4.2.9].

Remark 2.3.10. In what follows we denote by Wk,pG(S) the space of sections
of S of Sobolev class Wk,p. We use similar notations for spaces of connections,
gauge transformations, and differential forms.

Proposition 2.3.11. Fix k 2 N and p 2 (1, •) with (k + 1)p > 3. Given

c0 = (F0, A0) 2Wk+1,pG(S)⇥Wk+2,pAB(Q),

there is a constant s > 0 such that if we set

Uc0,s :=
n

ĉ 2 B
s

(0) ⇢Wk+1,pG(S)⇥Wk+2,pW1(M, gP) : d⇤A0
a� r

⇤(fF⇤0) = 0
o

,

then the map

Uc0,s/Gc0 3 [ĉ] 7! [c0 + ĉ] 2 Wk+1,pG(S)⇥Wk+2,pAB(Q)

Wk+3,pG (P)

is a homeomorphism onto its image; moreover, Gc0+ĉ is the stabilizer of ĉ in Gc.

For ĉ = (f, a, x) and (F, A) = c = c0 + (f, a), we have

(dswc0)ĉ =

0

B

B

@

� /DA 0 0
0 ⇤dA dA0

0 d⇤A0
0

1

C

C

A

+

0

B

B

@

0 �ḡ(·)F �r(·)F0

�2 ⇤ µ(F, ·) 0 0
�r

⇤(·F⇤0) 0 0

1

C

C

A

.

In particular, (dswc0)0 agrees with Lc0 . The following proposition explains the
relation between (dswc0)ĉ and Lc for c = (F, A, 0) + ĉ.

Proposition 2.3.12. In the situation of Proposition 2.3.11, if ĉ 2 Uc0,s and c = c0 + ĉ,
then there is a t > 0 and a smooth map fc0,c : B

t

(c)! B
s

(0) which maps Uc,t to Uc0,s,
commutes with the projection to

⇣

Wk+1,pG(S)⇥Wk+2,pAB(Q)
⌘.⇣

Wk+3,pG (P)
⌘

,
and satisfies

(df)�1
c (dswc0)ĉ(df)c = (dswc)0 = Lc.
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Finally, we prove Proposition 2.3.1. The method of proof is standard, c.f. [DK90,
Section 4.2]. Fix k 2 N and p 2 (1, •) with (k + 1)p > 3. Given p = (g, B) 2P ,
set

M
k,p
SW(p) :=

(

[(F, A)] 2 Wk+1,pG(S)⇥Wk+2,pAB(Q)

Wk+3,pG (P)
: (F, A) satisfies (2.2.1)

with respect to g and B

)

,

and define M
k,p
SW accordingly. It is a consequence of elliptic regularity for Lc and

Proposition 2.3.11, that the inclusion MSW ⇢ M
k,p
SW is a homeomorphism. This

together with Proposition 2.3.8 and Proposition 2.3.11 implies that if (p0, [ĉ0]) 2
MSW is irreducible, then there is a constant s > 0 and an open neighborhood U
of p 2 P such that if B

s

(0) denotes the open ball of radius s centered at 0 in
Wk+1,pG(S)�Wk+2,pW1(M, gP)�Wk+2,pW0(M, gP), then

{(p, ĉ) 2 U⇥ B
s

(0) : swp,c0(ĉ) = 0} 3 (p, [(f, a, x)]) 7! (p, [c+ (f, a)]) 2MSW

is a homeomorphism onto its image. Here we use subscripts to denote the
dependence of Lc0 , Q, ec0 , and swc0 on the parameter p 2 P . The proof of
Proposition 2.3.1 is completed by applying the following result to swp,c0 with
I = ker Lp0,c0 and O = coker Lp0,c0 .

Lemma 2.3.13. Let X and Y be Banach spaces, let U ⇢ X be a neighborhood of 0 2 X,
let P be a Banach manifold, and let F : P⇥U ! Y be a smooth map of the form

F(p, x) = L(p, x) + Q(p, x) + e(p)

such that:

1. L is smooth, for each p 2 P, Lp := L(p, ·) : X ! Y is a Fredholm operator, and
we have supp2PkLpkL(X,Y) < •,

2. Q is smooth and there exists a cQ > 0 such that, for all x1, x2 2 X and all p 2 P,
we have

kQ(x1, p)�Q(x2, p)kY 6 cQ (kx1kX + kx2kX) kx1 � x2kX , (2.3.4)

and

3. e : P! Y is smooth and there is a constant ce such that kekY 6 ce.

Let I ⇢ X be a finite dimensional subspace and let p : X ! I be a projection onto
I. Let O ⇢ Y be a finite dimensional subspace, let P : Y ! O be a projection onto
O, and denote by i : O ! Y the inclusion. Suppose that, for all p 2 P, the operator
L̄p : O� X ! I �Y defined by

L̄p :=

 

0 p

i Lp

!

is invertible, and suppose that cR := supp2PkL̄�1
p kL(Y,X) < •.

If ce ⌧cR ,cQ 1, then there is an open neighborhood I of 0 2 I, an open subset
V ⇢ P⇥U containing P⇥ {0}, and a smooth map

x : P⇥I ! X
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such that, for each (p, x0) 2 I ⇥ P, (p, x(p, x0)) is the unique solution (p, x) 2 V of

(idY �P)F(p, x) = 0 and px = x0. (2.3.5)

In particular, if we define ob : P⇥I ! O by

ob(p, x0) := PF(p, x(p, x0)),

then the map ob�1(0)! F�1(0) \V defined by

(p, x0) 7! (p, x(p, x0))

is a homeomorphism. Moreover, for every (p, x0) 2 P⇥I and x = x(p, x0), we have
an exact sequence

0! ker ∂xF(p, x)! I
∂x0 ob(p,x0)������! O! coker ∂xF(p, x)! 0;

which induces an isomorphism det ∂xF ⇠= det I ⌦ (det O)⇤.

This is result is essentially a summary of the discussion in [GW13, Section 5];
see also [DK90, Proposition 4.2.4] or [DW17a, Lemma 3.1].

2.4 orientations

For the purpose of counting solutions to (2.2.1) orientations play an important
role. Recall that if the moduli space MSW is smooth, then it can be oriented using
a trivialization of the determinant line bundle det L, if such a trivialization exists.
The following is a useful criterion to check whether det L can be trivialized over
the configuration space P ⇥ G(S)⇥A (Q)/G (P) and, consequently, over MSW.

Proposition 2.4.1. Suppose that algebraic data as in Definition 2.1.7 and compatible
geometric data as in Definition 2.2.1 have been fixed. Let rG : G ! Sp(S) be the
restriction of the quaternionic representation r : H ! Sp(S) to G / H. Denote by
c2 2 BSp(S) the universal second Chern class. If (BrG)

⇤c2 2 H4(BG, Z) can be written
as

(BrG)
⇤c2 = 2x + a1y2

1 + · · ·+ aky2
k (2.4.1)

with x 2 H4(BG, Z), y1, . . . , yk 2 H2(BG, Z), and a1, . . . , ak 2 Z, then

det L!P ⇥ G(S)⇥A (Q)
G (P)

is trivial.

Proof. The parameter space P is contractible; hence, it is enough to fix an element
p 2 P and prove that det L is trivial over the second factor. We need to show
that if (ct)t2[0,1] is a path in G(S)⇥AB(Q) and u 2 G (P) is such that uc1 = c0,
then the spectral flow of (Lct)t2[0,1] is even. The mapping torus of u : Q! Q is a
principal H–bundle Q over S1 ⇥M, and the path (ct)t2[0,1] induces a connection
A on Q. Over S1 ⇥M we also have an adjoint bundle gP and the spinor bundles
S+ and S� associated with Q via the quaternionic representation r : H ! Sp(S).
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According to Atiyah–Singer–Patodi, the spectral flow of (Lct)t2[0,1] is the index of
the operator L = ∂t � Lct which can be identified with an operator

L : G(S+)�W1(S1 ⇥M, gP)! G(S�)�W+(S1 ⇥M, gP)�W0(S1 ⇥M, gP).

In our case, L is homotopic through Fredholm operators to the sum of the Dirac
operator /D+

A : G(S+)! G(S�) and the Atiyah–Hitchin–Singer operator d+
A �d⇤A

for gP. The index of the Atiyah–Hitchin–Singer operator is �2p1(gP) and thus
even. To compute the index of the Dirac operator, observe that the vector bundle
V := Q⇥

r

S inherits from S the structure of a left-module over H and that

S± = /S± ⌦H V,

where /S± are the usual spinor bundles of S1⇥M with the spin structure induced
from that on M and we use the structure of /S± as a right-modules over H. S± is
a real vector bundle: it is a real form of /S± ⌦C V. Therefore, the complexification
of /D+

A is the standard complex Dirac operator on /S± twisted by V. By the
Atiyah–Singer Index Theorem,

index /D+
A =

Z

S1⇥M
Â(S1 ⇥M)ch(V)

=
Z

S1⇥M
ch2(V) = �

Z

S1⇥M
c2(V).

The classifying map fV : S1 ⇥M! BSp(S) of V is related to the classifying map
fQ : S1 ⇥M! BG of Q through

fV = BrG � fQ,

and

c2(V) = f ⇤Vc2 = f ⇤Q(BrG)
⇤c2.

Since the intersection form of S1 ⇥ M is even, the hypothesis implies that the
right-hand side of the above index formula is even.

Remark 2.4.2. If G is simply–connected, then the condition (2.4.1) is satisfied if
and only if the image of

(rG)⇤ : p3(G)! p3(Sp(S)) = Z

is generated by an even integer. To see this, observe that BG is 3–connected; hence,
by the Hurewicz theorem, H4(BG, Z) = p4(BG) ⇠= p3(G) and Hi(BG, Z) = 0 for
i = 1, 2, 3. The same is true for Sp(S), and we have a commutative diagram

H4(BG, Z) H4(BSp(S), Z)

p3(G) p3(Sp(S)).

(BrG)⇤

⇠= ⇠=
(rG)⇤

The group H4(BG, Z) is freely generated by some elements x1, . . . , xk. Let x1, . . . , xk

be the dual basis of H4(BG, Z) = Hom(H4(BG, Z), Z). Likewise, H4(BSp(S), Z)
is freely generated by the unique element z satisfying hc2, zi = 1. We have

(BrG)
⇤c2 =

k

Â
i=1
h(BrG)

⇤c2, xiixi (2.4.2)
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and

h(BrG)
⇤c2, xii = hc2, (BrG)⇤xii.

Therefore, the coefficients in the sum (2.4.2) are all even if and only if the image
of (BrG)⇤ is generated by 2mz for some m 2 Z.

Example 2.4.3. The hypothesis of Proposition 2.4.1 holds when S = H⌦C W for
some complex Hermitian vector space W of dimension n and rG is induced from
a unitary representation G ! U(W); as is the case for the representations leading
to the classical Seiberg–Witten and U(n)–monopole equations, see Example 2.2.9
and Example 2.2.10. To see that (BrG)

⇤c2 is of the desired form, note that if E is a
rank n Hermitian vector bundle, then the corresponding quaternionic Hermitian
bundle obtained via the inclusion U(n)! Sp(n) is H⌦C E = E� Ē and

c2(H⌦C E) = c2(E� Ē) = 2c2(E)� c1(E)2.

Example 2.4.4. The hypothesis of Proposition 2.4.1 is also satisfied when S =
H⌦R W for a real Euclidean vector space W, and rG is induced from an or-
thogonal representation G ! SO(W); as is the case for the equation for flat
GC–connections, see Example 2.2.11. To see that (BrG)

⇤c2 is of the desired form,
note that if E is a Euclidean vector bundle of rank n, then the associated quater-
nionic Hermitian vector bundle is H⌦R E and

c2(H⌦R E) = �2p1(E).

If two quaternionic representations satisfy the hypothesis of Proposition 2.4.1,
then so does their direct sum. Therefore, the previous two examples together
show that det L is trivial for the ADHM Seiberg–Witten equation, which will be
discussed in Section 2.9.

Example 2.4.5. In general, det L need not be orientable. If S = H and G = H =
Sp(1) acts on S by right multiplication, then it is easy to see that the gauge
transformation of the trivial bundle Q = S3 ⇥ SU(2) induced by S3 ⇠= SU(2)
gives rise to an odd spectral flow.

2.5 fueter sections and the haydys correspondence

Unless µ

�1(0) = {0}, the projection map MSW !P is not expected to be proper.
In particular, the moduli space MSW(p) might fail to be compact for some p 2P .
This potential non-compactness phenomenon is related to the lack of a priori
bounds on F for (F, A) a solution of (2.2.1). With this in mind, we blow-up the
equation (2.2.1); cf. [KM07, Section 2.5] and [HW15, Equation (1.4)].

Definition 2.5.1. The blown-up Seiberg–Witten equation is the following differential
equation for (#, F, A) 2 [0, •)⇥ G(S)⇥AB(Q):

/DAF = 0,

#

2
vFA = µ(F), and
kFkL2 = 1.

(2.5.1)
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The non-compactness of MSW(p) can be understood by analyzing sequences of
solutions of the above equation for which # tends to zero. Precisely understanding
the limits of such sequences is one of the central challenges in this subject. From
work of Taubes [Tau13b] and Haydys and Walpuski [HW15] we expect that the
compactification of MSW(p) will contain solutions of (2.5.1) with # = 0 which are
possibly singular along a one-dimensional subset of M. This work leads to the
following compactness conjecture for Seiberg–Witten equations. Set

Sreg := (s⇥Q)⇥Sp(1)⇥H Sreg,

where Sreg ⇢ S is the set of regular elements introduced in Definition 2.1.4.

Conjecture 2.5.2. Let (#i, Fi, Ai) be a sequence of solutions to (2.5.1) such that #i ! 0.
Then there exist

1. a closed, 1–rectifiable set Z ⇢ M of finite 1–dimensional Hausdorff measure,

2. a pair (F•, A•) 2 G(M\Z,Sreg)⇥AB(M\Z, Q)

such that, after passing to a subsequence, (Fi, Ai)! (F•, A•) modulo gauge in C•
loc

on M\Z, and (F•, A•) satisfies (2.5.1) with # = 0 on M\Z.

In general, F• cannot be extended to a continuous section of S over all of
M. However, one expects that the induced section of the bundle of hyperkähler
quotients µ

�1(0) \Sreg/G extends to a continuous section of µ

�1(0)/G, which
is defined over all of M and takes values in the singular strata of the hyperkähler
quotient along Z ⇢ M, cf. Remark 2.1.6.

In Section 2.9 we will discuss some cases for which a version of Conjecture 2.5.2
has been proved. The appearance of a singular set Z poses significant problems
in developing compactness theory for MSW(p). However, for the remaining part
of this section, let us ignore this difficulty and focus on understanding solutions
(F, A) to (2.5.1) with # = 0, assuming that Z is empty, that is:

1. F and A are defined over the entire 3–manifold M,

2. F takes values in Sreg.

Definition 2.5.3. The partially compactified Seiberg–Witten moduli space is

MSW(g, B) :=

(

(#, [(F, A)]) 2 [0, •)⇥ G(S)⇥AB(Q)
G (P)

:
(#, F, A) satisfies (2.5.1)
with respect to g and B;
if # = 0, then F 2 G(Sreg)

)

.

Likewise, the universal partially compactified Seiberg–Witten moduli space is

MSW :=
⇢

(p, #, [(F, A)]) 2P ⇥ [0, •)⇥ G(S)⇥A (Q)
G (P)

: (#, [(F, A)]) 2MSW(p)
�

.

The partially compactified Seiberg–Witten moduli spaces are also naturally
topological spaces. The formal boundary of MSW is

∂MSW :=
�

(p, 0, [(F, A)]) 2MSW
 

,

and the map

MSW\∂MSW !MSW, (p, #, [(F, A)]) 7! (p, [(#�1F, A)])

is a homeomorphism. This justifies the term “partially compactified”.
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Remark 2.5.4. The space MSW(g, B) need not be compact, since the actual com-
pactification should include also solutions of the limiting equation with a possibly
non-empty singular set Z. In fact, even the space ∂MSW need not be compact
[Wal15]. One should think of MSW(g, B) as a subset of the actual compactification,
which is yet to be defined. We return to this issue in Chapter 4.

For # = 0, equation (2.5.1) appears to be a degenerate partial differential
equation. However, since F 2 G(Sreg), this equation can be understood as an
elliptic PDE as follows.

Definition 2.5.5. The bundle of hyperkähler quotients p : X! M is

X := (s⇥ R)⇥Sp(1)⇥K X.

Its vertical tangent bundle is

VX := (s⇥ R)⇥Sp(1)⇥K TX,

and g : Im H! End(S) induces a Clifford multiplication g : p

⇤TM! End(VX).

Definition 2.5.6. Using B 2 A (R) we can assign to each s 2 G(X) its covariant
derivative rBs 2 W1(M, s⇤VX). A section s 2 G(X) is called a Fueter section if it
satisfies the Fueter equation

F(s) = FB(s) := g(rBs) = 0 2 G(s⇤VX). (2.5.2)

The map s 7! F(s) is called the Fueter operator.3

The linearized Fueter operator (dF)s : G(s⇤VX)! G(s⇤VX) is a formally self-
adjoint elliptic differential operator of order one. In particular, it is Fredholm of
index zero. However, the space of solutions to F(s) = 0, if non-empty, is never
zero-dimensional. The reason is that the hyperkähler quotient X = Sreg///G
carries a free R+–action inherited from the vector space structure on S. This
induces a fiber-preserving action of R+ on X. One easily verifies that, for l 2 R+

and s 2 G(X),

F(ls) = lF(s). (2.5.3)

As a result, R+ acts freely on the space of solutions to (2.5.2) which shows that
Fueter sections come in one-parameter families. At the infinitesimal level, this
shows that every Fueter section is obstructed.

Definition 2.5.7. The radial vector field v̂ 2 G(X, VX) is the vector field generating
the R+–action on X.

Differentiating (2.5.3) shows that if s is a Fueter section, then v̂ � s 2 G(s⇤VX)
is a non-zero element of ker(dF)s.

Note that every section of F 2 G(Sreg) satisfying µ(F) = 0 gives rise to a
section s of X, via the projection p : µ

�1(0)! X = µ

�1(0)/G. A theorem of Hay-
dys [Hay12, Section 4.1] asserts that the map F 7! s induces a homeomorphism
between the moduli space of solutions to (2.5.1) with # = 0 and the space of
sections of X satisfying the Fueter equation. The next two propositions explain
in detail Haydys’ theorem and its proof. In what follows, we use the notation
introduced in Proposition 2.1.5.

3 In the following, we will suppress the subscript B from the notation.
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Proposition 2.5.8. Given a set of geometric data as in Definition 2.2.1, set

X := Sreg///G and X := (s⇥ R)⇥Sp(1)⇥K X.

Denote by p : Sreg \ µ

�1(0)! X the canonical projection.

1. If s 2 G(X), then there exist a principal H–bundle Q together with an isomorphism
Q⇥H K ⇠= R and a section F 2 G(Sreg) of

Sreg := (s⇥Q)⇥Sp(1)⇥H Sreg

satisfying

µ(F) = 0 and s = p �F.

Q and Q ⇥H K ⇠= R are unique up to isomorphism, and every two lifts F are
related by a unique gauge transformation in G (P).

2. Suppose B 2 A (R). If F 2 G(Sreg) satisfies µ(F) = 0, then there is a unique
A 2 AB(Q) such that rAF 2 W1(M,HF). In particular, for this connection

p⇤( /DAF) = F(s).

3. The condition p⇤( /DAF) = F(s) characterizes A 2 AB(Q) uniquely.

Proof. Part (1) is proved by observing that the lifts exists locally and that the
obstruction to the local lifts patching defines a cocycle which determines Q; see
[Hay12] for details.

We prove (2). For an arbitrary connection A0 2 AB(Q) and for all x 2 M, we
have

(rA0 F)(x) 2 T⇤x M⌦ TF(x)(S
reg \ µ

�1(0)).

By Proposition 2.1.5(2) there exists a unique a 2 W1(M, gP) such that

rA0+aF 2 W1(M,HF).

The assertion in (2) now follows from the fact that for s = p � F we have
p⇤(rA0 F) = rBs and the definitions of /DA and F.

We prove (3). If a 2 W1(M, gP) and A + a also satisfies this condition, then we
must have

ḡ(a)F = 0.

This is impossible because F 2 G(Sreg), that is, (dµ)F is surjective; hence, its
adjoint ḡ(·)F is injective.

Proposition 2.5.9. Given a set of geometric data as in Definition 2.2.1, let

R := Q⇥H K, X := (s⇥ R)⇥Sp(1)⇥K X, and Sreg := (s⇥Q)⇥Sp(1)⇥H Sreg.

The map

G(µ�1(0) \Sreg)/G (P)! G(X)

[F] 7! p �F

is a homeomorphism onto its image.
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Proof. Fix F0 2 G(µ�1(0) \Sreg) and set s0 := p �F0 2 G(X). Given 0 < s ⌧ 1,
for every F 2 G(µ�1(0)\Sreg) with kF�F0kL• < s, there is a unique u 2 G (P)
such that

uF ? im
�

r(·)F0 : G(gP)! G(S)
�

;

moreover, for every k 2 N,

kuF�F0kCk .k kF�F0kCk .

Thus, it suffices to show that the map
(

F 2 G(µ�1(0) \Sreg) : kF�F0kL• < s and
F ? im

�

r(·)F0 : G(gP)! G(S)
�

)

! G(X)

is a homeomorphism onto its image. This, however, is immediate from the
Implicit Function Theorem and the fact that the tangent space at F0 to the former
space is G(HF0) and the derivative of this map is the canonical isomorphism
G(HF0)

⇠= G(s⇤0VX) from Proposition 2.1.5(2).

In the situation of Proposition 2.5.8, we have |F| = |v̂ � s|. The preceding results
thus imply the following.

Corollary 2.5.10. Let R be a principal K–bundle. Set X := R⇥K X and

MF := {(p, s) 2P ⇥ G(X) : F(s) = 0 and kv̂ � skL2 = 1}.

The map

‰
Q

∂MSW,Q !MF

defined by

(p, [(F, A)]) 7! (p, p �F)

is a homeomorphism. Here, the disjoint union is taken over all isomorphism classes of
principal H–bundles Q with isomorphisms Q⇥H K ⇠= R.

For future reference, we include here also three technical results about lifting
infinitesimal deformations of Fueter sections to sections of S. These results, which
can be seen as an infinitesimal version of the Haydys correspondence, will be
important for studying deformation theory of Fueter sections.

Proposition 2.5.11. For F 2 G(µ�1(0)\Sreg), set s := p �F and let A 2 AB(Q) be
as in Proposition 2.5.8. The isomorphism p⇤ : G(HF)! G(s⇤VX) identifies pHrA : W0(M,HF)!
W1(M,HF) with rB : W0(M, s⇤VX)! W1(M, s⇤VX).

Proof. If (Ft) is a one-parameter family of local sections of µ

�1(0) \Sreg with

(∂tFt)|t=0 = f,

At are as in Proposition 2.5.8, and a = (∂t At)|t=0, then we have

∂t

⇣

pHFt
rAt Ft

⌘

�

�

�

t=0
= (∂tpHFt

)
�

�

�

t=0
rA0 F0 + pHF0

(r(a)F0) + pHF0
(rA0 f).

The first term vanishes because rA0 F0 2 G(HF0), and the second term vanishes
because of Proposition 2.1.5(2).
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If F 2 G(µ�1(0) \Sreg), then the induced splitting S = HF �NF given by
Proposition 2.1.5(2) need not be parallel for A as in Proposition 2.5.8.

Definition 2.5.12. The second fundamental forms of the splitting HF � NF are
defined by

II := pNrA 2 W1(M, Hom(HF,NF)) and

II⇤ := �pHrA 2 W1(M, Hom(NF,HF)).

We decompose the Dirac operator /DA according to S = HF �NF as

/DA =

 

/DH �gII⇤

gII /DN

!

(2.5.4)

with

/DH := g(pHrA) : G(HF)! G(HF) and
/DN := g(pNrA) : G(NF)! G(NF).

The following result helps to better understand the off-diagonal terms in (2.5.4).

Proposition 2.5.13. Suppose F 2 G(µ�1(0) \Sreg) and /DAF = 0. Writing f 2
G(NF) as

f = r(x)F + ḡ(a)F

for x 2 G(gP) and a 2 W1(M, gP), we have

�gII⇤f = 2
3

Â
i=1

pH

⇣

r(a(ei))rA
ei

F
⌘

.

Here (e1, e2, e3) is a local orthonormal frame.

Proof. Since rF 2 W1(M,HF) and /DAF = 0, we have

�gII⇤(r(x)F + ḡ(a)F0) =
3

Â
i=1

g(ei)pH

⇣

r(x)rA
ei

F + ḡ(a)rA
ei

F
⌘

=
3

Â
i=1

pH

⇣

(g(ei)ḡ(a) + ḡ(a)g(ei))rA
ei

F
⌘

= 2
3

Â
i=1

pH(r(a(ei))rA
ei

F).

Proposition 2.5.14. The isomorphism p⇤ : G(HF)! G(s⇤VX) identifies the linearized
Fueter operator (dF)s : G(s⇤VX)! G(s⇤VX) with /DH : G(HF)! G(HF).

Proof. The linearized Fueter operator is given by

(dF)sŝ = g(rBŝ)

The assertion thus follows from Proposition 2.1.5(4) and Proposition 2.5.11.
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2.6 deformation theory of fueter sections

The main result of this section is a Kuranishi description of the space of Fueter
sections.

Proposition 2.6.1. Let s0 2 G(X) be a Fueter section with respect to p0 = (g0, B0) 2
P . Denote by c0 2 G(Sreg)⇥A (P) a lift of s0. There exist an open neighbourhood U
of p0 2P , an open neighborhood

I
∂

⇢ I
∂

:= ker(dF)s0 \ (v̂ � s)?

of 0, a smooth map

ob
∂

: U ⇥I
∂

! coker(dF)s0 ,

an open neighborhood V of ([p0, c0]) 2 ∂MSW, and a homeomorphism

x
∂

: ob�1
∂

(0)! V ⇢ ∂MSW

which maps (p0, 0) to (p0, 0, [c0]) and commutes with the projections to P .

Since ∂MSW ⇠= MF through the Haydys correspondence, this result has a
straightforward proof using Lemma 2.3.13, which makes no reference to the
Seiberg–Witten equation. However, this is not the approach we take because our
principal goal, which will be achieved in the next chapter, is to compare the
deformation theory of Fueter sections with that of solutions of the Seiberg–Witten
equation. Thus, in the remaining part of this section we construct the Kuranishi
model by analyzing equation (2.5.1) with # = 0 rather than the Fueter equation.
The main difficulty in this construction is that (2.5.1) is not an elliptic equation
for # = 0, even modulo gauge; indeed, it does not include a differential equation
for the connection A.

Fix k 2 N and p 2 (1, •) with (k + 1)p > 3. Let

∂M
k,p
SW =

8

>

>

>

>

<

>

>

>

>

:

(p, [(F, A)]) 2P ⇥ Wk+1,pG(S)⇥Wk,pA (Q)

Wk+1,pG (P)
:

A induces B,
(F, A) satisfies (2.5.1)
with # = 0,

and kFkL2 = 1

9

>

>

>

>

=

>

>

>

>

;

.

By the Haydys correspondence ∂M
k,p
SW is homeomorphic to M

k,p
F , the universal

moduli space of normalized Wk+1,p Fueter sections of X. Consequently, for ` 2 N
and q 2 (1, •) with ` > k and q > p, the inclusions ∂M

`,q
SW ⇢ ∂M

k,p
SW ⇢ ∂MSW are

homeomorphisms; see also Proposition 2.6.5.

Proposition 2.6.2. Assume the situation of Proposition 2.6.1. For p 2P , set

X0 := Wk+1,pG(S)�Wk,pW1(M, gP)�Wk,pW0(M, gP)

and Y := Wk,pG(S)�Wk+1,pW1(M, gP)�Wk+1,pW0(M, gP)�R,
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and define a linear map Lp,0 : X0 ! Y, a quadratic map Qp,0 : X0 ! Y, and ep,0 2 Y
by

Lp,0 :=

0

B

B

B

B

@

� /DA0 �ḡ(·)F0 �r(·)F0

�2 ⇤ µ(F0, ·) 0 0
�r

⇤(·F⇤0) 0 0
2h·, F0iL2 0 0

1

C

C

C

C

A

,

Qp,0(f, a, x) :=

0

B

B

B

B

@

�ḡ(a)f
� ⇤ µ(f)

0
kfk2

L2

1

C

C

C

C

A

, and ep,0 :=

0

B

B

B

B

@

� /DA0 F0

�µ(F0)

0
kF0k2

L2 � 1

1

C

C

C

C

A

,

respectively.4
There exist a neighborhood U of p0 2P and s > 0, such that, for every p 2 U and

ĉ = (f, a, x) 2 B
s

(0) ⇢ X0, we have

Lp,0ĉ+ Qp,0(ĉ) + ep,0 = 0 (2.6.1)

if and only if x = 0 and (F, A) = (F0 + f, A0 + a) satisfies

/DAF = 0 and µ(F) = 0 (2.6.2)

as well as

kFkL2 = 1 and r

⇤(FF⇤0) = 0.

Remark 2.6.3. The above proposition engages in the following abuse of notation.
If A0 2 AB(Q) and B0 2 A (R), then b = B0 � B 2 W1(M, gR). Since Lie(K) =
g? ⇢ h we have a map W1(M, gR) ! W1(M, gQ) and can identify A0 2 AB(Q)
with “A0” = A0 + b 2 AB0(Q).

Together with (the argument from the proof of) Proposition 2.5.9 we obtain the
following.

Corollary 2.6.4. Assume the situation of Proposition 2.6.1. With U ⇢P and s > 0 as
in Proposition 2.6.2, the map

{(p, ĉ) 2 U ⇥ B
s

(0) satisfying (2.6.1)}! ∂MSW

defined by

(p, f, a, x) 7! (p, [(F0 + f, A0 + a)])

is a homeomorphism onto a neighborhood of [c0].

Proof of Proposition 2.6.2. If ĉ = (f, a, x) satisfies (2.6.1), then F = F0 + f and
A = A0 + a satisfy

/DAF + r(x)F0 = 0, µ(F) = 0, and r

⇤(fF⇤0) = 0.

4 The term ep,0 vanishes for p = p0.
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Hence, by Proposition 2.3.9,

0 = dAµ(F) = �r( /DAFF⇤) = r

⇤(r(x)F0(F0 + f)) = R⇤F0
RF0 x +O(|x||f|)

with

RF0 := r(·)F0.

Since F0 is regular, RF0 is injective, and it follows that x = 0 if |f| . s⌧ 1 and
p is sufficiently close to p0.

Proof of Proposition 2.6.1. Denote by i : coker(dF)s0
⇠= coker /DH ! G(H) the in-

clusion of the L2 orthogonal complement of im /DH. Denote by p0 : G(H)! I
∂

the
L2 orthogonal projection onto I

∂

= ker(dF)s0 \ (v̂ � s)? ⇢ ker /DH
⇠= ker(dF)s0 .

Define

/̄DH : coker(dF)s0 � G(H)! I
∂

�R� G(H)

by

/̄DH :=

0

B

B

@

0 p0

0 �2h·, F0iL2

i

/DH

1

C

C

A

.

Set

X̄0 := coker(dF)s0 �Wk+1,pG(H)

�Wk+1,pG(N)

�Wk,pW1(M, gP)�Wk,pW0(M, gP) and

Ȳ := I
∂

�R�Wk,pG(H)

�Wk,pG(N)

�Wk+1,pW1(M, gP)�Wk+1,pW0(M, gP).

(2.6.3)

Define the operator L̄p,0 : X̄0 ! Ȳ by

L̄p,0 :=

0

B

B

@

� /̄DH gII⇤ 0
�gII � /DN �a 0

0 �a⇤ 0

1

C

C

A

(2.6.4)

with a : W1(M, gP)�W0(M, gP)! G(N) defined by

a(a, x) := ḡ(a)F0 + r(x)F.

The operator /̄DH is invertible because
 

p0

�2h·, F0iL2

!

is essentially the L2 orthogonal projection onto ker /DH. It can be verified by a
direct computation that L̄p0,0 is invertible and its inverse is given by

0

B

B

@

� /̄D�1
H 0 � /̄D�1

H gII⇤(a⇤)�1

0 0 �(a⇤)�1

a�1
gII /̄D�1

H �a�1 a�1 /DN(a⇤)�1 + a�1
gII /̄D�1

H gII⇤(a⇤)�1

1

C

C

A

. (2.6.5)
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After possibly shrinking U, we can assume that L̄p,0 is invertible for every p 2 U.
Since Qp,0 is a quadratic map and

kQp,0(f, a, x)kY = kḡ(a)fkWk,p + kµ(f)kWk+1,p + kfk2
L2

. kakWk,pkfkWk+1,p + kfk2
Wk+1,p ,

(2.6.6)

Qp,0 satisfies (2.3.4); hence, we can apply Lemma 2.3.13 to complete the proof.

In the following regularity result, we decorate X0 and Y with superscripts
indicating the choice of the differentiability and integrability parameters k and p.

Proposition 2.6.5. Assume the situation of Proposition 2.6.1. For each k, ` 2 N and
p, q 2 (1, •) with (k + 1)p > 3, ` > k, and q > p, there are constants c, s > 0 and an
open neighborhood U of p0 in P such that if p 2 U and ĉ 2 B

s

(0) ⇢ Xk,p
0 is solution of

Lp,0ĉ+ Qp,0(ĉ) + ep,0 = 0,

then ĉ 2 X`,q
0 and kĉk

X`,q
0

6 ckĉk
Xk,p

0
.

Proof. Provided U is a sufficiently small neighborhood of p0 and 0 < s ⌧ 1, it
follows from Banach’s Fixed Point Theorem that (0, ĉ) is the unique solution in
B

s

(0) ⇢ X̄k,p of

L̄p,0(0, ĉ) + Qp,0(ĉ) + ep,0 =

 

pĉ

0

!

,

and that there exists a (o, d̂) 2 B
s

(0) ⇢ X̄`,q such that

L̄p,0(o, d̂) + Qp,0(d̂) + ep,0 =

 

pĉ

0

!

.

Since X̄`,q ⇢ X̄k,p and k(o, d̂)kX̄k,p 6 k(o, d̂)kX̄`,q 6 s, it follows that (o, d̂) = (0, ĉ)
and thus ĉ 2 X̄`,q and kĉkX`,q 6 s. From this it follows easily that kĉkX`,q 6
ckĉkXk,p .

2.7 gluing kuranishi models

In Section 2.3 we constructed Kuranishi models for the universal Seiberg–Witten
moduli space MSW. Similarly, in Section 2.6 we constructed Kuranishi models
for the universal moduli space of Fueter sections ∂MSW. In this section, we build
Kuranishi models for the universal partially compactified moduli space MSW
centered at points of ∂MSW (see Definition 2.5.3 for the relevant definitions).

Unlike the previous results, this construction is not a standard application of
the Inverse Function Theorem in Banach spaces. The difficulty arises from the
fact that the (gauge fixed and co-gauged fixed) linearization of (2.5.1) appears to
become degenerate as # approaches zero. The Haydys correspondence, however,
indicates that one can reinterpret (2.5.1) at # = 0 as the Fueter equation; in
particular, as a non-degenerate elliptic PDE. One can think of the main result of
this section, Theorem 2.7.1 below, as a gluing theorem for the Kuranishi model
described in Proposition 2.3.1 with a Kuranishi model for the moduli space of
Fueter sections divided by the R+–action.
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Theorem 2.7.1. Let p0 = (g0, B0) 2 P and c0 = (F0, A0) 2 G(Sreg)⇥AB(Q) be
such that (p0, 0, [c0]) 2 ∂MSW. Denote by s0 = p � F0 2 G(X) the corresponding
Fueter section of X. Set

I
∂

:= ker(dF)s0 \ (v̂ � s)? and O := coker(dF)s0 .

Let r 2 N.
There exist an open neighborhood I

∂

of 0 2 I
∂

, a constant #0 > 0, an open neighbor-
hood U ⇢P of p0, a C2r�1 map

ob : U ⇥ [0, #0)⇥I
∂

! O,

an open neighborhood V of (p0, 0, [c0]) 2MSW, and a homeomorphism

x : ob�1(0)! V ⇢MSW

such that the following hold:

1. There are smooth functions

ob
∂

, cob1, . . . , cobr : U ⇥I
∂

! O

such that for all m, n 2 N0 with m + n 6 2r we have
�

�

�

rm
U⇥I

∂

∂

n
#

⇣

ob� ob
∂

�Âr
i=1 #

2i
cobi

⌘

�

�

�

C0
= O(#2r�n+2).

2. The map x commutes with the projection to P ⇥ [0, •) and satisfies

x(p0, 0, 0) = (p0, 0, [c0]).

3. For each (p, c) 2 im x \MSW, the solution c is irreducible; moreover, it is unob-
structed if dIob is surjective.

Remark 2.7.2. The neighborhoods I
∂

and U may depend on the choice of r.

In the remaining part of this section we prove Theorem 2.7.1, whose hypotheses
we will assume throughout.

Fix k 2 N and p 2 (1, •) with (k + 1)p > 3. Let

M
k,p
SW =

(

(p, #, [(F, A)]) 2P⇥R+⇥Wk+1,pG(S)⇥Wk+2,pA (P)
Wk+3,pG (P)

: (#, F, A) satisfies (2.5.1)

)

.

For ` 2 N and q 2 (1, •) with ` > k and q > p, the inclusions M
`,q
SW ⇢ M

k,p
SW ⇢

MSW are homeomorphisms; see also Proposition 2.7.9.

2.7.1 Reduction to a slice

Proposition 2.7.3. Let c0 = (F0, A0) 2 G(Sreg)⇥A (P) and p0 2 P . For p 2 P ,
set

X
#

:= Wk+1,pG(S)�Wk+2,pW1(M, gP)�Wk+2,pW0(M, gP)
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and

k(f, a, x)kX
#

:= kfkWk+1,p + k(a, x)kWk,p + #krk+1(a, x)kLp + #

2krk+2(a, x)kLp .

There exist a neighborhood U of p0 2 P and constants s, #0, c > 0 such that the
following holds. If p 2 U, ĉ = (f, a) 2 X

#

, and # 2 (0, #0] are such that

kĉkX
#

< s,

then there exists a Wk+3,p gauge transformation g such that (f̃, ã) = g(c0 + ĉ)� c0
satisfies

k(f̃, ã)kX
#

< cs,

and

#

2d⇤A0Bã� r

⇤(f̃F⇤0) = 0. (2.7.1)

Proof. To construct g, note that for g = ex with x 2Wk+3,pW0(M, gP) we have

f̃ = r(x)F0 + r(x)f +m(x) and ã = a� dA0 x � [a, x] + n(x).

Here n and m denote expressions which are algebraic and at least quadratic in x.
The gauge fixing condition (2.7.1) can thus be written as

l
#

x + d
#

x + q
#

(x) + e
#

= 0.

with

l
#

:= #

2DA0B + R⇤F0
RF0 , d

#

:= #

2d⇤A0B[a, ·] + r

⇤(r(·)fF⇤0),

q
#

(x) := #

2d⇤A0Bn(x) + r

⇤(m(x)F⇤0), e
#

:= �#

2d⇤A0Ba� r

⇤(fF0).

Denote by G
#

the Banach space Wk+3,pW0(M, gP) equipped with the norm

kxkG
#

:= kxkWk+1 + #krk+2
xkLp + #

2krk+3
xkLp . (2.7.2)

Since F0 is regular, the operator R⇤F0
RF0 is positive definite; hence, for #⌧ 1, the

operator

l
#

: G
#

!Wk+1,pW0(M, gP)

is invertible and kl�1
#

kL(G
#

,Wk+1,p) is bounded independent of #. Since

kd
#

kL(G
#

,Wk+1,p) . s⌧ 1,

l
#

+ d
#

: G
#

! Wk+1,pW0(M, gP) will also be invertible with inverse bounded in-
dependent of # and s. Since the non-linearity q

#

: G
#

!Wk+1,pW0(M, gP) satisfies
(2.3.4) and ke

#

k . s ⌧ 1, it follows from Banach’s Fixed Point Theorem that,
for a suitable c > 0, there exists a unique solution x 2 Bcs

(0) ⇢ G
#

to (2.7.2).
This proves the existence of the desired gauge transformation, and local unique-
ness. Global uniqueness follows by an argument by contradiction, cf. [DK90,
Proposition 4.2.9].
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Proposition 2.7.4. Let c0 = (F0, A0) be a lift of a Fueter section s0 2 G(X) for
p0 2P . Fix # > 0 and p 2P . Define a linear map Lp,# : X

#

! Y and a quadratic map
Qp,# : X0 ! Y by

Lp,# :=

0

B

B

B

B

@

� /DA0 �g(·)F0 �r(·)F0

�2 ⇤ µ(F0, ·) ⇤#2dA0 #

2dA0

�r

⇤(·F⇤0) #

2d⇤A0
0

2hF0, ·iL2 0 0

1

C

C

C

C

A

and

Qp,#(f, a, x) :=

0

B

B

B

B

@

�ḡ(a)f
1
2 #

2 ⇤ [a ^ a]� ⇤µ(f)
0
kfk2

L2

1

C

C

C

C

A

,

respectively. With ep,0 as in Proposition 2.6.2 set

ep,# := ep,0 + #

2(0, ⇤vFA0 , 0).

There exist a neighborhood U of p0 2P and s > 0 such that ĉ = (f, a, x) 2 B
s

(0) ⇢
X

#

satisfies

Lp,# ĉ+ Qp,#(ĉ) + ep,# = 0 (2.7.3)

if and only if x = 0, (A, F) = (A0 + a, F0 + f) satisfies

/DAF = 0, #

2
vFA = µ(F), and kFkL2 = 1,

and

#

2d⇤A0
a� r

⇤(fF⇤0) = 0. (2.7.4)

Proof. We only need to show that x vanishes, but this follows from the same
argument as in the proof of Proposition 2.6.2 because dAFA = 0.

Corollary 2.7.5. There exist #, s > 0 such the map

{(p, #, f, a, x) 2P ⇥U ⇥ (0, #0)⇥ B
s

(0) satisfying (2.7.3)}!MSW

defined by

(p, #, f, a, x) 7! (p, #, [(F0 + f, A0 + a)])

is a homeomorphism onto the intersection of MSW with a neighborhood of ([c0], p0, 0) in
MSW.

2.7.2 Inverting L̄p,# for small #

For every # > 0, define the Banach space (X̄
#

, k·kX̄
#

) by

X̄
#

:= coker(dF)s0 �Wk+1,pG(S)�Wk+2,pW1(M, gP)�Wk+2,pW0(M, gP)

with norm

k(o, ĉ)kX̄
#

:= |o|+ kĉkX
#

,



2.7 gluing kuranishi models 46

and the Banach space (Ȳ, k·kȲ) by

Ȳ := I
∂

�R�Wk,pG(S)�Wk+1,pW1(M, gP)�Wk+1,pW0(M, gP)

with the obvious norm. Let /̄DH : coker(dF)s0 �Wk+1,pG(S)! I
∂

�R�Wk,pG(S)
be as in the Proof of Proposition 2.6.1. Define L̄p,# : X̄

#

! Ȳ by

L̄p,# :=

0

B

B

@

� /̄DH gII⇤ 0
�gII � /DN �a

0 �a⇤ #

2
dA0

1

C

C

A

(2.7.5)

with

dA0 :=

 

⇤dA0 dA0

d⇤A0
0

!

.

Proposition 2.7.6. There exist #0, c > 0, and a neighborhood U of p0 2 P such that,
for all p 2 U and # 2 (0, #0], L̄p,# : X̄

#

! Ȳ is invertible, and
�

�

�

L̄�1
p,#

�

�

�

6 c.

The proof of this result relies on the following two observations.

Proposition 2.7.7. For i = 1, 2, 3, let Vi and Wi be Banach spaces, and set

V :=
3
M

i=1
Vi and W :=

3
M

i=1
Wi.

Let L : V !W be a bounded linear operator of the form

L =

0

B

B

@

D1 B+ 0
B� D2 A+

0 A� D3

1

C

C

A

.

If the operators

D1 : V1 !W1,
A� : V2 !W3, and

Z := A+ � (D2 � B�D�1
1 B+)A�1� D3 : V3 !W2

are invertible, then there exists a bounded linear operator R : W ! V such that

RL = idW .

Moreover, the operator norm kRk is bounded by a constant depending only on kLk,
kD�1

1 k, kA�1� k, and kZ�1k.
Proposition 2.7.8. There exist #0, c > 0 such that for # 2 (0, #0], the linear map

z
#

:= a+ #

2
⇣

/DN + gII /D�1
H gII⇤

⌘

(a⇤)�1
dA0

acting between the spaces

Wk+2,pW1(M, gP)�Wk+2,pW0(M, gP)!Wk,pG(N)

is invertible, and

kz�1
#

(a, x)kWk,p + #krk+1z�1
#

(a, x)kLp + #

2krk+2z�1
#

(a, x)kLp 6 ck(a, x)kWk,p .
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Proof of Proposition 2.7.6. It suffices to prove the result for p = p0, for then it
follows for p close to p0.

Recall that

X̄
#

= coker(dF)s0 �Wk+1,pG(H)

�Wk+1,pG(N)

�Wk+2,pW1(M, gP)�Wk+2,pW0(M, gP),

Ȳ = I
∂

�R�Wk,pG(H)

�Wk,pG(N)

�Wk+1,pW1(M, gP)�Wk+1,pW0(M, gP),

and L̄p0,# can be written as
0

B

B

@

� /̄DH gII⇤ 0
�gII � /DN �a

0 �a⇤ #

2
dA0

1

C

C

A

with

dA0 =

 

⇤dA0 dA0

d⇤A0
0

!

.

The operators

/̄DH : coker(dF)s0 �Wk+1,pG(H)! I
∂

�R�Wk,pG(H)

and

a⇤ : Wk+1,pG(N)!Wk+1,pW1(M, gP)�Wk+1,pW0(M, gP)

are both invertible with uniformly bounded inverses, and by Proposition 2.7.8
the same holds for z

#

, provided #⌧ 1. Thus, according to Proposition 2.7.7, L̄p0,#
has a left inverse R

#

: Ȳ0 ! X̄
#

whose norm can be bounded independent of #.
To see that R

#

is also a right inverse, observe that Lp0,# is a formally self-
adjoint elliptic operator and, hence, Lp0,# : X

#

! Y is Fredholm of index zero.
Consequently, L̄p0,# is Fredholm of index zero. The existence of R

#

shows that
ker L̄p0,# = 0 and thus coker L̄p0,# = 0. By the Open Mapping Theorem, L̄p0,# has
an inverse L̄�1

p0,#. It must agree with R
#

since R
#

= R
#

L̄p0,# L̄�1
p0,# = L̄�1

p0,#.

Proof of Proposition 2.7.7. The left inverse of L can be found by Gauss elimination,
as in the Proof of Proposition 2.6.1. In fact, the exact formula for L is not needed;
the point is that the only operators that we need to invert in the process of
Gaussian elimination are exactly D1, A, and Z. The calculation is elementary but
unenlightening, and we refer an interested reader to [DW17a, Proof of Proposition
6.1].

Proof of Proposition 2.7.8. It suffices to show that the linear maps z̃
#

:= a⇤z
#

are
uniformly invertible. A short computation using Proposition 2.3.9 shows that

z̃
#

= #

2
d

2
A0

+ a⇤a+ #

2e
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where e is a zeroth order operator which factors through Wk+1,p ! Wk+1,p.
Since F0 is regular, a⇤a is positive definite and, hence, for # ⌧ 1, a⇤a+ #

2
d

2
A0

is
uniformly invertible. Since #⌧ 1, #

2e is a small perturbation of order # and thus
z̃

#

is uniformly invertible.

The above analysis yields the following regularity result, in which we dec-
orate X

#

and Y with superscripts indicating the choice of the differentiability
and integrability parameters k and p. The proof is almost identical to that of
Proposition 2.6.5, and will be omitted.

Proposition 2.7.9. For each k, ` 2 N and p, q 2 (1, •) with (k + 1)p > 3, ` > k, and
q > p, there are constants c, s, #0 > 0 and an open neighborhood U of p0 in P such that
if # 2 (0, #0], p 2 U, and ĉ 2 B

s

(0) ⇢ Xk,p
#

is solution of

Lp,# ĉ+ Qp,#(ĉ) + ep,# = 0,

then ĉ 2 X`,q
#

and kĉk
X`,q

#

6 ckĉk
Xk,p

#

.

2.7.3 Proof of Theorem 2.7.1

Since Qp,# is quadratic and

kQp,#(f, a, x)kY 6 kḡ(a)fkWk,p + #

2k[a ^ a]kWk+1,p + kµ(f)kWk+1,p + kfk2
L2

. kakWk,pkfkWk+1,p

+
⇣

kakWk,p + #krk+1akLp + #

2krk+2akLp

⌘2
+ kfk2

Wk+1,p ,

Qp,# satisfies (2.3.4), and because of Proposition 2.7.6 we can apply Lemma 2.3.13

to construct a smooth map ob� : U ⇥ (0, #0) ⇥ I
∂

! coker(dF)s0 and a map
x� : ob�1(0) !MSW which is a homeomorphism onto the intersection of MSW
with a neighborhood of [(A0, F0)]. (There is a slight caveat in the application of
Lemma 2.3.13: the Banach space X

#

does depend on p and # and Y depends on p.
The dependence, however, is mostly harmless as different values of p and # lead
to naturally isomorphic Banach spaces.) For what follows it will be important to
know that maps ob� and x� are uniquely characterized as follows: for p in the
open neighborhood U of p0 2P , d in the open neighborhood I

∂

of 0 2 I
∂

, and
# 2 (0, #0), there is a unique solution c̄ = c̄(p, #, d) 2 B

s

(0) ⇢ X̄
#

of

L̄p,# c̄+ Qp,#(c̄) + ep,# = d 2 I
∂

⇢ Ȳ; (2.7.6)

ob�(p, #, d) is the component of c̄(p, #, d) in coker(dF)s0 and if ob�(p, #, d) = 0
and ĉ denotes the component of c(p, #, d) in X

#

, then x�(p, #, d) = c0 + ĉ. (Similar,
setting # = 0 yields ob

∂

and x
∂

.)
We define ob : U ⇥ [0, #0)⇥I

∂

! coker(dF)s0 by

ob(·, #, ·) =
8

<

:

ob�(·, #, ·) for # 2 (0, #0)

ob
∂

(·, ·) for # = 0,

and x : ob�1(0)!MSW by

x(·, #, ·) =
8

<

:

x�(·, #, ·) for # 2 (0, #0)

x
∂

(·, ·) for # = 0.
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In order to prove Theorem 2.7.1 we need to understand the regularity of ob near
# = 0; in other words: we need to understand how ob� and ob

∂

fit together.
Let k 2 N and p 2 (1, •) be the differentiability and integrability parameters

used in the definition of X̄
#

. If necessary, shrink U and I
∂

and decrease s so
that the proof of Proposition 2.6.1 goes through and Proposition 2.6.2 holds
with differentiability parameter k + 2r + 2 and integrability parameter p. Observe
that X̄k+2,p

0 ⇢ X̄
#

and the norm of the inclusion can be bounded by a constant
independent of #.

Proposition 2.7.10. For every (p, d) 2 U ⇥I
∂

, there are c̄0(p, d) 2 X̄k+2r+2,p
0 and

ĉi(p, d) 2 X̄k+2(r�i)+2,p
0 (for i = 1, . . . , r) depending smoothly on p and d, such that,

for m, n 2 N with m + n 6 2r,

c̃(p, #, d) := c̄0 +
r

Â
i=1

#

2i ĉi

satisfies
�

�

�

rm
U⇥I

∂

∂

n
#

(c̄(p, #, d)� c̃(p, #, d))
�

�

�

X̄
#

= O(#2k+2�n). (2.7.7)

Proof. We construct c̃ by expanding (2.7.6) in #

2. To this end we write

L̄p,# = L̄p,0 + #

2`p, Qp,#,= Qp,0 + #

2qp, and ep,# = ep,0 + #

2êp,

with

`p :=

0

B

B

@

0
0

dA0

1

C

C

A

, qp(f, a, x) :=

0

B

B

@

0
0

1
2 ⇤ [a ^ a]

1

C

C

A

, and êp :=

0

B

B

@

0
0

⇤vFA0

1

C

C

A

.

Observe that `p : X̄`,p
0 ! Ȳ`�2,p is a bounded linear map and qp : X̄`,p

0 ! Ȳ`�2,p

is a bounded quadratic map.

Step 1. Construction of c̄0 and ĉi.

By Banach’s Fixed Point Theorem, there is a unique solution c̄0 2 B
s

(0) ⇢
X̄k+2r+2,p

0 of

L̄p,0c̄0 + Qp,0(c̄0) + ep,0 = d 2 I
∂

⇢ Ȳk+2r+2.

Moreover, c̄0 actually lies in B
s/2(0) ⇢ X̄k+2r+2,p

0 provided U and I
∂

have been
chosen sufficiently small. We have

L̄p,# c̄0 + Qp,0(c̄#

) + ep,# � d = #

2r0(p, d) 2 Ȳk+2(r�1)+2,p.

with

r0(p, d) := `pc̄0 + qp(c̄0) + êp.

Since s ⌧ 1, the operator L̄p,0 + 2Qp,0(c̄0, ·) : X̄k+2(r�i)+2,p
0 ! Ȳk+2(r�i)+2,p

0 is
invertible for i = 1, . . . , r.5 Recursively define ri(p, d) 2 Ȳk+2(r�i�1)+2,p by

#

2i+2ri := L̄p,# c̄
i
#

+ Qp,0(c̄
i
#

) + ep,# � d

5 Here we engage in the slight abuse of notation to use the same notation for a bilinear map and its
associated quadratic form.
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with

c̃(#, p, d) := c̄0 + #

2ĉ1 + · · ·+ #

2i ĉi,

and define ĉi+1 2 X̄k+2(r�i�1)+2
0 to be the unique solution of

L̄p,0ĉi+1 + 2Qp,0(c̄0, ĉi+1) = ri.

Clearly, c̄0, ĉ1, . . . , ĉr depend smoothly on p and d.

Step 2. We prove (2.7.7).

We have

L̄p,# c̄#

+ Qp,#(c̄#

)� L̄p,# c̃�Qp,#(c̃) = �#

2k+2r (2.7.8)

with r = rr as in the previous step. Both c̄ and c̃ are small in X̄
#

; hence, it follows
that

kc̄� c̃kX̄
#

= O(#2k+2).

To obtain estimates for the derivatives of c̄� c̃, we differentiate (2.7.8) and obtain
an identity whose left-hand side is

L̄p,0rm
∂

n
#

(c̄� c̃) + 2Qp,0 (c̄,rm
∂

n
#

(c̄� c̃)) + 2Qp,0 (c̄� c̃,rm
∂

n
#

c̃)

and whose right-hand side can be controlled in terms of the lower order deriva-
tives of d̂k

#

. This gives the asserted estimates.

From Proposition 2.7.10 it follows that x is a homeomorphism onto its image
and that the estimate in Theorem 2.7.1(1) holds with cobi denoting the component
of ĉi in coker(dF)s0 . This expansion implies that ob is C2r�1 up to # = 0.

2.8 a wall-crossing phenomenon

The main application of Theorem 2.7.1—and our motivation for proving it—is to
understand wall-crossing phenomena for signed counts of solutions to Seiberg–
Witten equations arising from the non-compactness phenomenon mentioned in
Section 2.5. This phenomenon, for one particular example of a Seiberg–Witten
equation, will be studied in greater detail in the next chapter, and the result
described below will play a crucial role in this study.

In the generic situation of Theorem 2.7.1, one expects to have ker(dF)s0 =
Rhv̂ � s0i. In this case, if {pt = (gt, Bt) : t 2 (�T, T)} is a 1–parameter family in P ,
then (for T ⌧ 1) one can find a 1–parameter family {(st) 2 G(X) : t 2 (�T, T)}
of sections of X and l : (�T, T)! R with l(0) = 0 such that

Ft(st) = l(t) · v̂ � st.

Theorem 2.8.1. In the situation above and assuming l̇(0) 6= 0, for each r 2 N, there
exist #0 > 0 and C2r�1 maps t : [0, #0)! (�T, T) and c : [0, #0)! G(Sreg)⇥A (Q)
such that an open neighborhood V of (0, 0, [c0]) in the parametrized Seiberg–Witten
moduli space
⇢

(t, #, [(F, A)]) 2 (�T, T)⇥ [0, •)⇥ G(S)⇥A (Q)
G (P)

: (#, [(F, A)]) 2MSW(pt)

�
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is given by

V = {(t(#), #, [c(#)]) : # 2 [0, #0)}.

If c(#) = (F(#), A(#)), then there is f 2 G(S) such that

F(#) = F0 + #

2
f + O(#4),

and with

d

:= hf, /DA0 fiL2

we have

t(#) =
d

l̇(0)
#

4 + O(#6).

For # 2 (0, #0), c(#) is irreducible; moreover, if d 6= 0, then c(#) is unobstructed.

Remark 2.8.2. In the situation of Theorem 2.8.1, there is no obstruction to solving
the Seiberg–Witten equation to order #

2—in fact, a solution can be found rather
explicitly. The obstruction to solving to order #

4 is precisely d.

If MSW is oriented (that is: det L!MSW is trivialized) around (p0, [c0]), then
identifying ker(dF)s0 = coker(dF)s0 = Rhv̂ � si determines a sign s = ±1. If
d 6= 0, then contribution of [c(#)] should be counted with sign �s · sign(d); as
is discussed in Section 2.4. However, sign(d/l̇(0)) also determines whether the
solution c(#) appears for t < 0 or t > 0. Thus, the overall contributions from
sign(d) cancel.

t

# �1

(a) l̇(0) > 0, s = +1, d > 0

t

#

+1

(b) l̇(0) > 0, s = +1, d < 0

Figure 2.1: Two examples of wall-crossing.

This is illustrated in Figure 2.1, which depicts two examples of wall-crossing.
More precisely, it shows the projection of

S

t2(�T,T) MSW(pt) on the (t, #)-plane.
In both cases we assume l̇(0) > 0 and s = +1. Figure 2.1a represents the case
d > 0, in which a solution c(#) with sign sign(c(#)) = �s · sign(d) = �1 is born
at t = 0. Figure 2.1b represents the case d < 0, in which sign(c(#)) = +1 and the
solution dies at t = 0. In both cases, as we cross from t < 0 to t > 0 the signed
count of solutions to the Seiberg–Witten equation changes by �1.

Proof of Theorem 2.8.1. The first part of Theorem 2.8.1 follows directly from Theo-
rem 2.7.1, since in this situation

ob(#, t) = l̇(0) · t + O(t2) + O(#2)
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because ob
∂

(t) = l̇(0) · t + O(t2). The second part requires a more detailed
analysis to show that

ob(#, t) = l̇(0) · t� d#

4 + O(t2) + O(#6).

To establish the above expansion of ob, we solve

L̄
#

(o
#

, ĉ) + Q
#

(ĉ) +

0

B

B

B

B

@

0
0

#

2 ⇤vFA0

0

1

C

C

C

C

A

= 0

by formally expanding in #

2. Inspection of (2.6.5) shows that the obstruction to
being able to solve L0ĉ = (y, b, h) is

�p

�

y + gII(a⇤)�1(b, h)
�

where p denotes the L2–orthogonal projection onto ker /DH. In the case at hand,
ker /DH = RhF0i, and we have

hF0, gII⇤(a⇤)�1(b, h)iL2 =
3

Â
i=1
hF0, g(ei)rei (a

⇤)�1(b, h)iL2

=
3

Â
i=1
hg(ei)rei F0, (a⇤)�1(b, h)iL2 = 0

since a : W1(M, gP) � W0(M, gP) ! G(N) and thus (a⇤)�1 also maps to G(N).
Thus the obstruction reduces to

�hF0, yiL2 .

By (2.6.5), the solution to L0(f, a, x) = (0, ⇤vFA0 , 0) is

f = � /D�1
H gII⇤c� c, and

(a, x) = a�1 /DNc + a�1
gII /D�1

H gII⇤c
(2.8.1)

with

c

:= (a⇤)�1 ⇤vFA0 . (2.8.2)

Setting ĉ0 := #

2(f, a, x), we have

#

4d̂1 := L̄
#

(0, ĉ0) + Q
#

(ĉ0) + (0, 0, #

2 ⇤vFA0 , 0) = O(#4).

The component of d̂1 in G(S) is

�ḡ(a)f.

Using ḡ(a)F0 2 G(N) and r(gP)F ? c, we find that the obstruction to being able
to solve L0(f1, a1, x1) = d̂1 is

o := hF0, ḡ(a)fiL2 = hḡ(a)F0, fiL2

= �hḡ(a)F0, ciL2

= �ha(a, x), ciL2

= �h /DNc + gII /D�1
H gII⇤c, ciL2

= �h /DNc, ciL2 + h /D�1
H gII⇤c, gII⇤ciL2 .
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Comparing this with

h /DA0 f, fiL2 = h /DA0 /D�1
H gII⇤c + /DA0 c, /D�1

H gII⇤c + ciL2

= h( /DH + gII) /D�1
H gII⇤c + ( /DN � gII⇤)c, /D�1

H gII⇤c + ciL2

= hgII⇤c, /D�1
H gII⇤ciL2 + hgII /D�1

H gII⇤, ciL2

+ h /DNc, ciL2 � hgII⇤c, /D�1
H gII⇤ciL2

= �h /D�1
H gII⇤, gII⇤ciL2 + h /DNc, ciL2

= �o
completes the proof.

2.9 adhm monopoles

The main example of a Seiberg–Witten equation that we will consider is the
ADHMr,k Seiberg–Witten equation. According to the Haydys–Walpuski program
described in the introduction, this equation should play an important role
in gauge theory on G2–manifolds. More precisely, we expect solutions of the
ADHMr,k Seiberg–Witten equation to play a role in counter-acting the bubbling
phenomenon along associative submanifolds discussed in [DS11; Wal17]. This
equation arises from the general construction discussed in Section 2.2 for the
following quaternionic representation.

Example 2.9.1. The ADHMr,k representation is given by the quaternionic vector
space

S = HomC(Cr, H⌦C Ck)�H⇤ ⌦R u(k)

with a quaternionic action of

G = U(k) / H = SU(r)⇥ Sp(1)⇥U(k).

The group SU(r) acts on Cr in the obvious way, U(k) acts on Ck in the obvious
way and on u(k) by the adjoint representation, and Sp(1) acts on the first copy of
H trivially and on the second copy by right-multiplication with the conjugate.

Accoding to Atiyah et al. [Ati+78], if r > 2, then the hyperkähler quotient
Sreg///G is the moduli space of framed SU(r) ASD instantons of charge k on R4,
and µ

�1(0)/G is its Uhlenbeck compactification. If r = 1, then µ

�1(0)\ Sreg = ?,
and µ

�1(0)/G = Symk H := Hk/Sk by Nakajima [Nak99, Example 3.14].

Let us write down the equations explicitly.

Remark 2.9.2. Below we consider a slight generalization of the construction from
Section 2.2, allowing for a choice of a so-called spinU(k) structure rather than
a spin structure together with a U(k)–bundle, cf. Remark 2.2.2. Thus, equation
(2.9.3), introduced below, is more general than the Seiberg–Witten equation (2.2.1)
associated with the ADHMr,k representation.

Definition 2.9.3. Let M be an oriented Riemannian 3–manifold. Consider the Lie
group

SpinU(k)(n) := (Spin(n)⇥U(k))/Z2.
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A spinU(k) structure on M is a principal SpinU(k)(3)–bundle together with an
isomorphism

w⇥SpinU(k)(3) SO(3) ⇠= SO(TM). (2.9.1)

The spinor bundle and the adjoint bundle associated with a spinU(k) structure w are

W := w⇥SpinU(k)(3) H⌦C Ck and gH := w⇥SpinU(k)(3) u(k)

respectively. The left multiplication by Im H on H⌦Ck induces a Clifford multipli-
cation g : TM! End(W).

A spin connection on w is a connection A inducing the Levi-Civita connec-
tion on TM. Associated with each spin connection A there is a Dirac operator
/DA : G(W)! G(W).

Denote by A s(w) the space of spin connections on w, and by G s(w) the re-
stricted gauge group, consisting of those automorphisms of w which act triv-
ially on TM. Let v : Ad(w) ! gH be the map induced by the projection
spinU(k)(3)! u(k).

Example 2.9.4. If s is a spin structure on M with spinor bundle /S and H is a rank
k Hermitian vector bundle, then the principal Spin(n)⇥U(k)–bundle s⇥ Fr(H )
induces naturally a spinU(k) structure w on M (here Fr(H ) is the frame bundle
of H ). The corresponding spinor bundle and adjoint bundle are, respectively:

W = /S ⌦C H and gH = u(H ).

Any U(k)–connection on H gives rise to a connection in A s(w) and, conversely,
every element of A s(w) arises in this way. The restricted gauge group G s(w) can
be identified with the gauge group G (H ) of U(k)–gauge transformations.

If M is spin (e.g. if M is an oriented 3–manifold), then every spinU(k) structure
arises in the way just described, although not uniquely.

Definition 2.9.5. Let M be an oriented 3–manifold. The geometric data needed to
formulate the ADHMr,k Seiberg–Witten equation are:

• a Riemannian metric g,

• a spinU(k) structure w with the corresponding spinor bundle W,

• a Hermitian vector bundle E of rank r with a fixed trivialization LrE = C
and an SU(r)–connection B,

• an oriented Euclidean vector bundle V of rank 4 together with an isomor-
phism

SO(L+V) ⇠= SO(TM) (2.9.2)

and an SO(4)–connection C on V with respect to which this isomorphism
is parallel.

Remark 2.9.6. If Y is a G2–manifold and M ⇢ Y an associative submanifold,
then its normal bundle V = NM/Y admits a natural isomorphism (2.9.2) and we
can take C to be the connection induced by the Levi-Civita connection. In this
context, the bundle E should be the restriction to M of a bundle on the ambient
G2–manifold and B should be the restriction of a G2–instanton. Observe that
when r = 1, the bundle E and the connection B are necessarily trivial.
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The above data makes both Hom(E, W) and V ⌦ gH into Clifford bundles over
M; hence, there are Dirac operators

/DA,B : G(Hom(E, W))! G(Hom(E, W))

and

/DA,C : G(V ⌦ g)! G(V ⌦ g).

The ADHMr,k Seiberg–Witten equation involves also two quadratic moment maps
defined as follows. If Y 2 Hom(E, W), then YY⇤ 2 End(W). Since L2T⇤M⌦ gH

acts on W, there is an adjoint map (·)0 : End(W) ! L2T⇤M ⌦ gH . Define
µ : Hom(E, W)! L2T⇤M⌦ gH by

µ(Y) := (YY⇤)0.

If x 2 V ⌦ g, then [x ^ x] 2 L2V ⌦ gH . Denote its projection to L+V ⌦ gH

by [x ^ x]+. Identifying L+V ⇠= L2T⇤M via the isomorphism (2.9.2), we define
µ : V ⌦ g! L2T⇤M⌦ gH by

µ(x) := [x ^ x]+

Definition 2.9.7. Given a choice of geometric data as in Definition 2.9.5, the
ADHMr,k Seiberg–Witten equation is the following partial differential equation for
(Y, x, A) 2 G(Hom(E, W))⇥ G(V ⌦ gH )⇥A s(w):

/DA,BY = 0,
/DA,Cx = 0, and

vFA = µ(Y) + µ(x).
(2.9.3)

A solution of this equation is called an ADHMr,k monopole.

The moduli space of ADHMr,k monopoles might be non-compact. As in the
previous section, to analyze this phenomenon, one considers the corresponding
limiting equation, that is the # = 0 version of (2.5.1)

Definition 2.9.8. The limiting ADHMr,k Seiberg–Witten equation the following
partial differential equation for (Y, x, A) 2 G(Hom(E, W))⇥ G(V⌦ gH )⇥A s(w)

/DA,BY = 0,
/DA,Cx = 0, and

µ(Y) + µ(x) = 0.
(2.9.4)

together with the normalization k(Y, x)kL2 = 1.

The ADHMr,k Seiberg–Witten equation (2.9.3) and the corresponding limiting
equation are preserved by the action of the restricted gauge group G s(w).

Example 2.9.9. Suppose that r = k = 1. A spinU(1) structure is simply a spinc

structure and

vFA =
1
2

Fdet A.
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Also, gH = iR; hence, /DA,C is independent of A and µ(x) = 0. The ADHM1,1
Seiberg–Witten equation is thus simply

/DAY = 0 and
1
2

Fdet A = µ(Y),

the classical Seiberg–Witten equation for (Y, A), together with the Dirac equation

/DCx = 0.

If M ⇢ Y is an associative submanifold in a G2–manifold and V = NM/Y its
normal bundle, then /DC is the Fueter operator, which controls the deformation
theory of M; see [DW17b, Definition 2.18] In particular, x must vanish if M is an
unobstructed associative submanifold.

(There is a variant of (2.9.3) in which x is taken to be a section of V ⌦ g�H with
g�H denoting the trace-free component of gH . For r = k = 1, this equation is
identical to the classical Seiberg–Witten equation. However, from the viewpoint
of G2–geometry, it is more natural to consider (2.9.3).)

For larger values of r and k, little is currently known about the moduli spaces
of ADHMr,k monopoles and their compactifications. For r = 1, the equations
resemble in many ways the equation for flat GC connections from Example 2.2.11,
studied extensively by Taubes [Tau13b]. Based on his work, and on a general-
ization of the Haydys correspondence, Walpuski and the author of this thesis
proposed a conjecture describing limits of ADHM1,k monopoles [DW17b, Sec-
tion 5.4]. When r = 1, there is no background bundle E and connection B and,
according to Remark 2.9.6, the ADHM1,k equation is expected to play a role in
constructing an enumerative theory based associative submanifolds (without
G2–instantons). The purpose of the article [DW17b] is to develop formal aspects
of such a theory.

In this thesis, we focus on the equations corresponding to r > 1 and k = 1. As
in Example 2.9.9, in this case W is the spinor bundle of a spinc structure and the
equation decouples into

/DA,BY = 0 and
1
2

Fdet A = µ(Y),

for a pair (Y, A) 2 G(Hom(E, W))⇥A s(w), and the Dirac equation for the field
x. The first equation was studied by Bryan and Wentworth [BW96] and Haydys
and Walpuski [HW15]. Building on the work of Haydys and Walpuski, in the
next chapter we develop a theory of counting solutions of this equation, in the
case r = 2, and study how the signed count of solutions changes when we vary
the parameters of the equation.
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In the previous chapter, we studied the relation between r–monopoles and
Fueter sections. This led to the discovery of a wall-crossing phenomenon for
r–monopoles, described by Theorem 2.8.1. In this chapter, we study the wall-
crossing phenomenon in detail for the Seiberg–Witten equation with two spinors,
which is closely related to the ADHM2,1 Seiberg–Witten equation introduced
earlier. The main result is a wall-crossing formula, stated in Theorem 3.5.7, which
describes the change in the signed count of monopoles with two spinors caused by
(non-singular) Fueter sections. As an application, we prove Theorem 3.1.7, which
asserts the existence of singular Fueter sections with values in H/Z2 on every
3–manifold with b1 > 1. Such singular Fueter sections are examples of harmonic
Z2 spinors, as defined by Taubes [Tau14]. In particular, Theorem 3.1.7 produces
the first examples of singular harmonic Z2 spinors which are not obtained by
means of complex geometry.

The wall-crossing phenomenon is related to an observation made by Joyce
[Joy17, Section 8.4] which points out potential issues with the Donaldson–Segal
program for counting G2–instantons. We discuss this in Section 3.11.

references . This chapter is based almost entirely on the article [DW17c]
written in collaboration with Thomas Walpuski. In order to increase readability,
we removed some technical details related to compactness and orientations,
providing references to the relevant sections of the article. The discussion of
transversality and reducibles in Section 3.2 is taken from [Doa17b].

3.1 existence of harmonic z2 spinors

The notion of a harmonic Z2 spinor was introduced by Taubes [Tau14] as an
abstraction of various limiting objects appearing in compactifications of moduli
spaces of flat PSL2(C)–connections over 3–manifolds [Tau13b] and solutions to
the Kapustin–Witten equation [Tau13a], the Vafa–Witten equation [Tau17], and
the Seiberg–Witten equation with multiple spinors [HW15; Tau16]. All of these
equations are examples of Seiberg–Witten equations associated with quaternionic
representations. In this chapter, we focus on the last of these examples.

Definition 3.1.1. Let M be a closed Riemannian manifold and S a Dirac bundle
over M.1 Denote by /D : G(S)! G(S) the associated Dirac operator. A Z2 spinor
with values in S is a triple (Z, l, Y) consisting of:

1. a proper closed subset Z ⇢ M,

2. a Euclidean line bundle l! M\Z, and

3. a section Y 2 G(M\Z, S⌦ l)

1 A Dirac bundle is a bundle of Clifford modules together with a metric and a compatible connection;
see, [LM89, Chapter II, Definition 5.2].

57
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such that |Y| extends to a Hölder continuous function on M with |Y|�1(0) = Z
and |rY| 2 L2(M\Z). We say that (Z, l, Y) is singular if l does not extend to a
Euclidean line bundle on M. A Z2 spinor (Z, l, Y) is called harmonic if

/DY = 0

holds on M\Z.

Remark 3.1.2. Taubes [Tau14] proved that if the dimension of M is 3 or 4, then Z
has Hausdorff codimension at least 2. More recently, Zhang [Zha17] proved that
Z is, in fact, rectifiable.

Remark 3.1.3. If l extends to a Euclidean line bundle on M, then S⌦ l extends to
a Dirac bundle on M and Y extends to a harmonic spinor defined on all of M
which takes values in S⌦ l and vanishes precisely along Z.

Remark 3.1.4. Away from the subset Z, a harmonic Z2 spinor can be interpreted
as a Fueter section of the bundle (S\{0})/Z2 whose fiber is the hyperkähler man-
ifold (Hr\{0})/Z2, with r = rankH S. By the third condition in Definition 3.1.1,
this section extends to a continuous section, defined over all of M, of the bundle
S/Z2 whose fiber is a singular hyperkähler variety Hr/Z2. The resulting section
takes values in the singular stratum {0} ⇢ Hr/Z2 precisely along Z. Thus, a
singular harmonic Z2 spinor is an example of a singular Fueter section.

We know from Chapter 2 that non-singular (that is: defined over the entire
3–manifold) Fueter sections play an important role in the study of Seiberg–Witten
equations associated with quaternionic representations. The goal of this chapter
is to argue that singular Fueter sections do exist and that we should expect them
to play a similar role.

The harmonic Z2 spinors appearing as limits of flat PSL2(C)–connections over
a 3–manifold M take values in the bundle R� T⇤M equipped with the Dirac
operator

/D =

 

0 d⇤

d ⇤d

!

.

The harmonic Z2 spinors appearing as limits of the Seiberg–Witten equation
with two spinors in dimension three take values in the Dirac bundle

S = Re(S⌦ E).

This bundle is constructed as follows. Denote by S the spinor bundle of a spin
structure s on the 3–manifold M. Denote by E a rank two Hermitian bundle with
trivial determinant line bundle L2

CE and equipped with a compatible connection.
Both S and E are quaternionic vector bundles and thus have complex anti-linear
endomorphism jS, jE satisfying j2S = �idS and jE = �idE; see also Section 3.3.
These endow the complex vector bundle S ⌦ E with a real structure: s⌦ e :=
jss⌦ jEe. The C–linear Dirac operator acting on G(S⌦ E) preserves G(Re(S⌦ E))
and gives rise to an R–linear Dirac operator acting on G(Re(S⌦ E)).

Henceforth, we specialize situation described in the previous paragraph. The
Dirac operator on Re(S⌦ E), and thus also the notion of a harmonic Z2 spinor,
depends on the choice of a Riemannian metric on M and a connection on E.
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Definition 3.1.5. Let Met(M) be the space of Riemannian metrics on M and
A (E) the space of SU(2) connections on E. The space of parameters is

P := Met(M)⇥A (E)

equipped with the C• topology. Given a spin structure s on M and p 2P , we
denote by /Ds

p the corresponding Dirac operator on G(Re(S⌦ E)). We will say
that a triple (Z, l, Y) is a harmonic Z2 spinor with respect to p if it satisfies the
conditions of Definition 3.1.1 with /D = /Ds

p.

Question 3.1.6. For which parameters p 2P does there exist a singular harmonic
Z2 spinor with respect to p?

The answer to this question for non-singular harmonic Z2 spinors (that is:
harmonic spinors) is well-understood. Let W s be the set of p 2 P for which
dim ker /Ds

p > 0. It is the closure of W s
1 , the set of p for which dim ker /Ds

p = 1.
Moreover, W s

1 is a cooriented, codimension one submanifold of P and W s\W s
1

has codimension three. (See Proposition 3.10.2 and Proposition 3.10.6.) The in-
tersection number of a path (pt)t2[0,1] with W s

1 is given by the spectral flow of
the path of operators ( /Ds

pt)t2[0,1], defined by Atiyah, Patodi, and Singer [APS76,
Section 7]. Therefore, along any path with non-zero spectral flow there exists a
parameter p? such that dim ker /Ds

p?
> 0. Moreover, if the path is generic,2 then

the kernel is spanned by a nowhere vanishing spinor (because dim M < rank S;
see Definition 3.5.1 and Proposition 3.9.1).

By contrast, little is known about the existence of singular harmonic Z2 spinors.
The only examples known thus far have been obtained by means of complex
geometry, on Riemannian 3–manifolds of the form M = S1 ⇥ S for a Riemann
surface S; see [Tau13b, Theorem 1.2] in the case S = R� T⇤M and Chapter 4 in
the case S = Re(S⌦ E). We remedy this situation by proving—in a rather indirect
way—that 3-manifolds abound with singular harmonic Z2 spinors.

Theorem 3.1.7. For every closed, connected, oriented 3–manifold M with b1(M) > 1
there exist a p? 2P and a singular harmonic Z2 spinor with respect to p?. In fact, there
is a closed subset Wb ⇢ P and a non-zero cohomology class w 2 H1(P\Wb, Z) with
the property that if (pt)t2S1 is a generic loop in P\Wb and

w([pt]) 6= 0,

then there exists a singular harmonic Z2 spinor with respect to some p? in (pt)t2S1 .

Remark 3.1.8. The definition of Wb is given in Definition 3.10.1 and the precise
meaning of a generic loop is given in Definition 3.5.1 and Proposition 3.2.4.

Remark 3.1.9. Theorem 3.1.7 suggests that on 3–manifolds the appearance of
singular harmonic Z2 spinors is a codimension one phenomenon—as is the
appearance of harmonic spinors. This is in consensus with the work of Takahashi
[Tak15; Tak17], who proved that the linearized deformation theory of singular
harmonic Z2 spinors with Z = S1 is an index zero Fredholm problem (or index
minus one, after scaling is taken into account).

2 Generic means from a residual subset of the space of objects in question. A subset of a topological
space is residual if it contains a countable intersection of open and dense subsets. Baire’s theorem
asserts that a residual subset of a complete metric space is dense.
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Remark 3.1.10. The assumption b1(M) > 1 has to do with reducible solutions to
the Seiberg–Witten equation with two spinors. We expect a variant of the theorem
to be true for b1(M) 2 {0, 1} as well. In this case, one also has to take into account
the wall-crossing caused by reducible solutions which was studied in classical
Seiberg–Witten theory by Chen [Che97] and Lim [Lim00].

The proof of Theorem 3.1.7 relies on the wall-crossing formula for n(p), the
signed count of solutions to the Seiberg–Witten equation with two spinors. The
number n(p) is defined provided p is generic and there are no singular harmonic
Z2 spinors with respect to p. The wall-crossing formula, whose precise statement
is Theorem 3.5.7, can be described as follows. Let W s

1,? be the set of p 2 P for
which ker /Ds

p = RhYi with Y nowhere vanishing, and let W1,? be the union of all
W s

1,? for all spin structures s. There is a closed subset Wb ⇢P , as in Theorem 3.1.7,
such that W1,? is a closed, cooriented, codimension one submanifold of P\Wb.
If (pt)t2[0,1] is a generic path in P\Wb and there are no singular harmonic Z2
spinors with respect to any pt with t 2 [0, 1], then the difference

n(p1)� n(p0)

is equal to the intersection number of the path (pt)t2[0,1] with W1,?. In particular,
if (pt)t2S1 is a generic loop whose intersection number with W1,? is non-zero,
then there must be a singular harmonic Z2 spinor for some p? in (pt).

Remark 3.1.11. Although the wall-crossing for n(p) does occur when the spec-
trum of /Ds

p crosses zero, the contribution of a nowhere vanishing harmonic spinor
to the wall-crossing formula is not given by the sign of the spectral crossing but
instead by the mod 2 topological degree of the harmonic spinor, as in Defini-
tion 3.5.6. Therefore, the wall-crossing formula is not given by the spectral flow.
This should be contrasted with the wall-crossing phenomenon for the classical
Seiberg–Witten equation caused by reducible solutions, as in Remark 3.1.10. In-
deed, the wall-crossing described in this paper is a result of the non-compactness
of the moduli spaces of solutions and as such it is a new phenomenon, with no
counterpart in classical Seiberg–Witten theory.

The cohomology class w 2 H1(P\Wb, Z) in Theorem 3.1.7 is defined by inter-
secting loops in P\Wb with W1,?. We prove that w is non-trivial, by exhibiting
a loop (pt)t2S1 on which w evaluates as ±2. In particular, P\Wb is not simply-
connected and we can take (pt)t2S1 to be a small loop linking Wb.

3.1.1 Notation

Here is a summary of various notations used throughout this chapter:

• We use w to denote a spinc structure. The associated complex spinor bundle
is denoted by W. The determinant line bundle of W is det W = L2

CW.

• For every p = (g, B) in the parameter space P and for every connection
A 2 A (det W) we write

/DA,p : G(Hom(E, W))! G(Hom(E, W))

for the C–linear Dirac operator induced the connection B on E as well as the
spinc connection on W, determined by A and the Levi–Civita connection of
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g. We will suppress the subscript p from the notation when its presence is
not relevant to the current discussion.

• We use s (possibly with a subscript: s0, s1, etc.) to denote a spin structure
on M . The associated spinor bundle is denoted by Ss.

• For every p = (g, B) 2P we write

/Ds
p : G(Re(Ss ⌦ E))! G(Re(Ss ⌦ E))

for the R–linear Dirac operator induced by the spin connection on Ss,
associated with the Levi–Civita connection of g, and the connection B on E.

3.2 the seiberg–witten equation with two spinors

Let M be a compact, oriented 3–manifold and let E! M be a Hermitian vector
bundle of rank two, with a fixed trivialization of the determinant line bundle
L2

CE = C. Fix a spinc structure w and denote its spinor bundle by W. Set

Z := ker
⇣

d : W2(M, iR)! W3(M, iR)
⌘

. (3.2.1)

Definition 3.2.1. Let p = (g, B) 2 P and h 2 Z . The h–perturbed Seiberg–
Witten equation with two spinors is the following differential equation for (Y, A) 2
G(Hom(E, W))⇥A (det W):

/DAY = 0 and
1
2

FA + h = µ(Y).
(3.2.2)

Here /DA = /DA,p is the C–linear Dirac operator on Hom(E, W) and

µ(Y) = µp(Y) := YY⇤ � 1
2
|Y|2 idW

is a section of isu(W) which is identified with an element of W2(M, iR) using the
Clifford multiplication. Both equations depend on the choice of p and the second
equation depends also on the choice of h.3

Let G (det W) be the gauge group of det W. For (p, h) 2P ⇥Z , we denote by

Mw(p, h) :=
⇢

[Y, A] 2 G(Hom(E, W))⇥A (det W)
G (det W)

: (Y, A) satisfies (3.2.2)
with respect to p and h

�

the moduli space of solutions to (3.2.2).

As discussed in Section 2.3, the infinitesimal deformation theory of (3.2.2)
around a solution (Y, A), is controlled by the linear operator

LY,A = LY,A,p : G(Hom(E, W))�W1(M, iR)�W0(M, iR)

! G(Hom(E, W))�W1(M, iR)�W0(M, iR)

3 While the equation (3.2.2) makes sense for any h 2 W2(M, iR), it is an easy exercise to show that the
existence of a solution implies that dh = 0. Thus, we consider only h 2 Z .
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defined by

LY,A,p :=

 

� /DA,p �aY,p

�a⇤Y,p dp

!

(3.2.3)

with

d = dp :=

 

⇤d d
d⇤

!

and aY = aY,p :=
⇣

ḡ(·)Y r(·)Y
⌘

.4 (3.2.4)

Here ḡ is the Clifford multiplication by elements of T⇤M ⌦ iR and r is the
linearized action of the gauge group: pointwise multiplication by elements of iR.
The Hodge star operator ⇤ and ḡ both depend on p, but we have suppressed this
dependence in the notation.

Definition 3.2.2. We say that a solution (Y, A) of (3.2.2) is irreducible if Y 6= 0,
and unobstructed if LY,A,p is invertible.

If (Y, A) is irreducible and unobstructed, then it represents an isolated point in
Mw(p, h); see Section 2.3.

Remark 3.2.3. If all solutions are irreducible, but possibly obstructed, the exis-
tence of local Kuranishi models constructed in Proposition 2.3.1 allows us to
equip Mw(p, h) with the structure of a real analytic space. Indeed, since the
Seiberg–Witten equation involves only linear and quadratic operations, we can
choose the Kuranishi map ob = ob(p, h, ·) to be analytic. Thus, Mw(p, h) is
locally homeomorphic to the real analytic set V = ob�1(0). As we vary ob and V,
the rings of analytic functions O/I(V) glue to a globally defined structure sheaf
making Mw(p, h) into a real analytic space; see [FM94, Sections 4.1.3-4.1.4] for a
detailed construction of the real analytic structure on the moduli space.

Proposition 3.2.4. If b1(M) > 0, then for every (p, h) from a residual subset of P ⇥Z
all solutions to (3.2.2) are irreducible and unobstructed.

Remark 3.2.5. The same statement is true for the Seiberg–Witten equation with n
spinors obtained by replacing E by an SU(n)–bundle. The proof is the same as in
the case n = 2.

The proof of Proposition 3.2.4 requires discussing transversality and reducibles.

3.2.1 Transversality

The first step in proving Proposition 3.2.4 is to show the following statement
using the Sard–Smale theorem.

Proposition 3.2.6. For every (p, h) from a residual subset of P ⇥Z all irreducible
solutions to (3.2.2) are unobstructed.

Proof. Consider the universal Seiberg–Witten map

Ŝ : P ⇥Z ⇥ G(Hom(E, W))⇥A (det W)! G(Hom(E, W))⇥W1(M, iR)

(p, h, Y, A) 7! ( /DA,pY, ⇤
✓

1
2

FA + h � µ(Y)

◆

).
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The Seiberg–Witten equation is equivariant with respect to the action of the gauge
group G (det W), and so Ŝ descends to a smooth map between the corresponding
quotient spaces. Denote this map by S. The zero set of the resulting map is the
moduli space Mw(p, h).

In what follows we replace P and Z by the spaces of Ck parameters and
differential forms. We also replace the spaces of smooth connections and sections
with their Sobolev completions. Thus, S can be considered as a smooth Fredholm
map between Banach manifold. If we can show that its derivative is surjective at
all irreducible solutions [Y, A], then Proposition 3.2.6 will follow, with P and Z
equipped with the Ck topology. The corresponding statement for the C• topology
follows then using standard arguments, cf. [MS12, Theorem 3.1.5].

The partial derivative of S at (p, h, [Y, A]) obtained by varying [Y, A] with p
and Z fixed can be identified with the operator LY,A,p given by (3.2.3). Note that
this operator acts on the space

G(Hom(E, W)�W1(M, iR)�W0(M, iR),

where the last factor appears because we have divided both the domain and
codomain of Ŝ by the action of the gauge group (in other words, we have
introduced gauge fixing and gauge co-fixing conditions). We will prove that
dS(p,h,[Y,A]) is surjective by showing that an element (ŷ, â, x̂) of the above space
which is L2–orthogonal to the image of dS(p,h,[Y,A]) is necessarily zero. Such an
element is, in particular, in the kernel of LY,A,p, which is equivalent to

/DA,pŷ + ḡ(â)Y + r(x̂)Y = 0,

⇤µ(Y, ŷ) + ⇤dâ + dx̂ = 0,
r

⇤(Y⇤ŷ) + d⇤ â = 0.

(3.2.5)

Applying d⇤ to the second equation above and using formula (2.3.2) from Propo-
sition 2.3.9, we arrive at

d⇤dx̂ + r

⇤(Y⇤r(x̂)Y) = 0.

which, after taking the L2 inner product with x̂, implies dx̂ = 0 and r(x̂)Y = 0.
Since Y 6= 0 by the assumption that [Y, A] is irreducible, we have x̂ = 0. Similarly,
applying d to the second and third equation above and using formula (2.3.3) from
Proposition 2.3.9, and taking the L2 inner product with â, we arrive at

dâ = 0, d⇤ â = 0, and ḡ(â)Y = 0,

which implies â = 0. Thus, (3.2.5) simplifies to

/DA,pŷ = 0,

⇤µ(Y, ŷ) = 0,
r

⇤(Y⇤ŷ) = 0.

(3.2.6)

The partial derivative of S at (p, h, [Y, A]) obtained by varying B in the param-
eter p = (g, B) 2P is given by

b 7! ḡ(b)Y,
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where b 2 W1(M, su(E)) is a variation of B, and ḡ denotes the Clifford multipli-
cation combined with the action of su(E) on E. Thus, the condition that (ŷ, 0, 0)
is L2–orthogonal to the image of dS(p,h,[Y,A]) implies

hḡ(b)Y, ŷiL2 = 0 (3.2.7)

for all b 2 W1(M, su(E)). We will prove that this implies ŷ = 0. Suppose by
contradiction that ŷ is not identically zero. By the unique continuation theorem
for harmonic spinors [Bär97, Corollary 3], the set {|ŷ| > 0} is open and dense in
M. The same is true for Y and so there exists x 2 M such that |Y(x)| > 0 and
|ŷ(x)| > 0. Hence, we can find b(x) 2 T⇤x M⌦ su(Ex) such that

hb(x)Y(x), ŷ(x)i > 0.

This is an elementary fact of linear algebra; see Proposition 3.2.7 below. Using
a bump function, we extend b(x) to b 2 W1(M, su(E)) violating (3.2.7). The
contradiction shows that ŷ = 0 and so dS(p,h,[Y,A]) is surjective. The statement of
the proposition follows then from the Sard–Smale theorem.

Proposition 3.2.7. Let n > 2 and Vn = Cn be the standard representation of SU(n).
For every pair of non-zero v, w 2 V2 ⌦Vn there is b 2 su(2)⌦ su(n) such that

hbv, wi > 0.

Proof. The proof is similar to that of [Ang96, Theorem 1.5]. Let e1, . . . , en be an
orthonormal basis of Vn. Write v and w as

v =
n

Â
i=1

vi ⌦ ei and w =
n

Â
i=1

wi ⌦ ei,

for vi, wi 2 V2. Likewise, denoting by s1, s2, s3 the standard basis of su(2), we can
write b as

b =
3

Â
k=1

sk ⌦ bk

for some bk 2 su(n), so that

hbv, wi =
3

Â
k=1

Â
i,j
hskvi, wjihei, bkeji.)

Suppose by contradiction that (bv, w) = 0 for all b 2 su(2)⌦ su(n). In particular,
setting bk to be elementary off-diagonal anti-Hermitian matrices, we see that for
k = 1, 2, 3 and i 6= j

hskvi, wji � hskvj, wii = 0,

hskvi, wji+ hskvj, wii = 0.

Hence,

hskvi, wji = 0

for k = 1, 2, 3 and i 6= j. Suppose without loss of generality that v1 6= 0.
Then s1v1, s2v1, s3v1 are linearly independent over R and thus span V2 over
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C. It follows that wj = 0 for j = 2, 3, . . . n. On the other hand, setting bk =
diag(1,�1, 0, . . . , 0) 2 su(n), we obtain that for k = 1, 2, 3

hskv1, w1i = 0,

which shows that w1 = 0 and so w = 0, yielding a contradiction.

Remark 3.2.8. The proof of Proposition 3.2.6 shows that if LY,A,p fails to be
invertible at a solution [Y, A], then its kernel consists of solutions ŷ to (3.2.6).

3.2.2 Reducible solutions

The moduli space Mw(p, h) might contain reducible solutions at which it develops
singularities. In this paper we focus on the favourable case when reducibles can
be avoided. As in the classical setting [Lim00, Lemma 14], this is guaranteed by
the condition b1(M) > 0.

Proposition 3.2.9. The subset of those (p, h) 2P ⇥Z for which Mw(p, h) contains
a reducible solution is contained in a closed affine subspace of codimension b1(M).

Proof. If (Y, A) is a reducible solution of (3.2.2), then FA = 2h and passing to the
de Rham cohomology we obtain

[h] = �pic1(w) 2 H2(M, iR).

Consider the affine subspace of Z given by

V = {h 2 Z | [h] = �pic1(w)} .

In other words, V is the preimage of �pic1(w) under the projection p : Z !
H2(M, iR) associating to each closed form its de Rham class. The map p is linear
and surjective. It is also continuous because by the Hodge decomposition theorem
it is continuous with respect to the Wk,2–topology for all k. Therefore, V is a closed
affine subspace of codimension dim H2(M, iR) = dim H1(M, iR) = b1(M).

Proposition 3.2.4 follows immediately from Proposition 3.2.6 combined with
Proposition 3.2.9.

3.2.3 Orientations

For every (p, h) as in Proposition 3.2.4, the moduli space Mw(p, h) is a zero-
dimensional manifold, that is: a collection of isolated points. It follows from
the general discussion of Section 2.4 that there is a consistent way of orienting
each of the points in the moduli space. Since orientations play an important role
in what follows, below we discuss in detail the orientation procedure for the
Seiberg–Witten equation with two spinors.

Proposition 3.2.10. Let (Yt, At, pt)t2[0,1] be a path in G(Hom(E, W))⇥A (det W)⇥
P The value of the spectral flow

SF
⇣

(LYt ,At ,pt)t2[0,1]

⌘

2 Z

only depends on (Y0, A0, p0) and (Y1, A1, p1).



3.2 the seiberg–witten equation with two spinors 66

Remark 3.2.11. If (Dt)t2[0,1] is a path of self-adjoint Fredholm operators with D0

or D1 not invertible, we define SF
⇣

(Dt)t2[0,1]

⌘

:= (Dt + l)t2[0,1] for 0 < l ⌧ 1.
This convention was introduced by Atiyah, Patodi, and Singer [APS76, Section 7].

Proof of Proposition 3.2.10. Since the spectral flow is homotopy invariant, this is a
consequence of the fact that G(Hom(E, W))⇥A (det W)⇥P is contractible.

Definition 3.2.12. For (Y0, A0, p0) and (Y1, A1, p1) 2 G(Hom(E, W))⇥A (det W)⇥
P , we define the orientation transport

OT ((Y0, A0, p0), (Y1, A1, p1)) := (�1)SF((LYt ,At ,pt )t2[0,1]),

for path (Yt, At, pt)t2[0,1] from (Y0, A0, p0) to (Y1, A1, p1).

Remark 3.2.13. The orientation transport can be alternatively defined using the
determinant line bundle of the family of Fredholm operators (LY,A,p) as (Y, A, p)
varies in G(Hom(E, W)) ⇥A (det W) ⇥P . This point of view is explained in
detail in [DW17c, Appendix B].

Since the spectral flow is additive with respect to path composition, we have

OT ((Y0, A0, p0), (Y2, A2, p2))

= OT ((Y0, A0, p0), (Y1, A1, p1)) · OT ((Y1, A1, p1), (Y2, A2, p2)) .
(3.2.8)

Proposition 3.2.14.

1. For every (A0, p0) and (A1, p1) 2 A (det W)⇥P , we have

OT((0, A0, p0), (0, A1, p1)) = +1.

2. For every (Y, A, p) 2 G(Hom(E, W))⇥A (det W)⇥P and every u 2 G (det W),
we have

OT((Y, A, p), (u · Y, u · A, p)) = +1.

Proof. Observe that

L0,Ai ,pi = /DAi ,pi � dpi

where /DAi ,pi is a complex-linear Dirac operator on Hom(E, W) and dpi is defined
in (3.2.4). Let (At, pt)t2[0,1] be a path in A (det W) ⇥P joining (A0, p0) and
(A1, p1). The spectral flow of ( /DAt ,pt)t2[0,1] is even because the operators /DAt ,pt
are complex linear. The spectral flow of (dpt)t2[0,1] is trivial because the dimension
of the kernel of dpt is 1 + b1(M) and does not depend on t 2 [0, 1]. This proves
item 1. To prove item 2, choose a path (Yt, At)t2[0,1] from (Y, A) to (u · Y, u · A).
The spetral flow SF(LYt ,At) can be computed to be even using a theorem of
Atiyah–Patodi–Singer [APS76, Section 7], in the same way as in the proof of
Proposition 2.4.1.

Proposition 3.2.14 and (3.2.8) show that the following definition is independent
of any of the choices being made.

Definition 3.2.15. For [Y, A] 2Mw(p, h), we define

sign[Y, A] := OT((0, A0, p0), (Y, A, p)),

for any choice of (A0, p0) 2 A (det W)⇥P .
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3.2.4 Counting solutions: unobstructed case

As we will see, if (p, h) is generic, and under the assumption that there are no
harmonic Z2 spinors with respect to p, then Mw(p, h) is a compact, oriented,
zero-dimensional manifold, that is: a finite set of points with prescribed signs.

Definition 3.2.16. Suppose that (p, h) 2P ⇥Z is chosen so that all solutions to
(3.2.2) are irreducible and unobstructed, and there are no harmonic Z2 spinors
with respect to p. In this situation, we define

nw(p, h) := Â
[Y,A]2Mw(p,h)

sign[Y, A], (3.2.9)

the signed count of solutions to the Seiberg–Witten equation with two spinors.

3.2.5 Counting solutions: Zariski smooth case

Sometimes we face a situation in which the moduli space Mw(p, h) consists of
obstructed solutions but nevertheless has the structure of a smooth manifold.

Definition 3.2.17. The moduli space Mw(p, h) is said to be Zariski smooth if it
consists of irreducible solutions and for every [Y, A] 2Mw(p, h) there the map
ob(p, h, ·) constructed in Proposition 2.3.1 is zero.

Proposition 3.2.18. If Mw(p, h) is Zariski smooth, then it is a disjoint uniont of smooth
manifolds (of possibly different dimensions). The space ker LY,A,p is the tangent space
to Mw(p, h) at [Y, A]. Similarly, the spaces coker LY,A,p form a vector bundle over
Mw(p, h), as the point [Y, A] varies. We call this vector bundle the obstruction bundle
and denote by O. The obstruction bundle is isomorphic, as an unoriented real vector
bundle, to the cotangent bundle TMw(p, h).

The proof is standard and we omit it. Thanks to this proposition, we can extend
the definition of nw(p, h) to the case when Mw(p, h) is Zariski smooth.

Definition 3.2.19. Suppose that (p, h) 2 P ⇥Z is chosen so that the moduli
space Mw(p, h) is Zariski smooth and there are no harmonic Z2 spinors with
respect to p. Let U ⇢ P ⇥Z be a neighborhood of (p, h) with the property
that for all (p0, h

0) 2 U , the moduli space Mw(p0, h

0) is compact and consists of
irreducible solutions; it follows from Proposition 3.2.9 and Theorem 3.4.1 below
that such U exists. Choose (p0, h

0) 2 U so that all solutions in Mw(p0, h

0) are in
addition unobstructed. We then define

nw(p, h) := nw(p0, h

0)

where the right-hand side is as in Definition 3.2.16.

The next proposition shows that the above definition does not depend on the
choice of (p0, h

0), and gives two equivalent definition of nw(p, h) in the Zariski
smooth case. Observe that when Mw(p, h) is Zariski smooth, the orientation
procedure described earlier equips the obstruction bundle O!Mw(p, h) with
a relative orientation, that is: a preferred trivialization of the real line bundle
det(TMw(p, h))⌦ det(O)⇤.

Proposition 3.2.20. Let (p, h) and (p0, h

0) be as in Definition 3.2.19.
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1. If s is any transverse section of O!Mw(p, h), then

n(p0, h

0) = Â
x2s�1(0)

sign(x),

where sign(x) is obtained using the relative orientation on O!Mw(p, h).

2. Suppose that all components of Mw(p, h) are orientable and orient them arbitrarily.
The relative orientation on O!Mw(p, h) makes O into an oriented real vector
bundle. If e(O) is the Euler class of O, then

n(p0, h

0) =
Z

Mw(p,h)
e(O).

The proof is an easy application of the Poincaré–Hopf index theorem, the
Gauss–Bonnet theorem, and [FM94, Lemma 3.3].

3.3 computation of the hyperkähler quotient

The Seiberg–Witten equation with two spinors is the Seiberg–Witten equation
associated with the standard representation of U(1) on the quaternionic vector
space Hom(C2, H) In this section we describe H/Z2 as the hyperkähler quotient
associated with this representation. This construction provides a connection be-
tween harmonic Z2 spinors and Seiberg–Witten monopoles with two spinors, and
we will use it in the discussion of compactness and the Haydys correspondence
in Section 3.4.

Set

S := HomC(C2, H)

with H considered as a complex vector space whose complex structure is given
by right-multiplication with i. S is a quaternionic Hermitian vector space: its
H–module structure arises by left-multiplication. The action of U(1) on S given
by r(eiq)Y = eiqY is a quaternionic representation with associated moment map

µ(Y) = YY⇤ � 1
2
|Y|2 idH.

The standard complex volume form W = e1 ^ e2 2 L2(C2)⇤ and the standard
Hermitian metric on C2, define a complex anti-linear map J : C2 ! C2 by

�hv, Jwi = W(v, w).

This makes C2 into a H–module.

Proposition 3.3.1. We have

Sreg///U(1) =
⇣

Re(H⌦C C2)\{0}
⌘

/Z2.

Here the real structure on H⌦C C2 is given by q⌦ v := qj⌦ Jv.

Proof. The complex volume form W defines a complex linear isomorphism
(C2)⇤ ⇠= C2; hence, we can identify S ⇠= H ⌦C C2. We will further identify
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C2 with H via (z, w) 7! z + wj. With respect to this identification the complex
structure is given by left-multiplication with i and J becomes left-multiplication
by j. If we denote by H+ (H�) the quaternions equipped with their right (left)
H–module structure, then we can identify S with

H+ ⌦C H�.

In this identification the action of U(1) is given by

r(eiq)q+ ⌦ q� = q+eiq ⌦ q� = q+ ⌦ eiqq�,

and the moment map becomes

µ(q1 ⌦ 1 + q2 ⌦ j) = �i⌦ 1
2
(q1iq̄1 + q2iq̄2) 2 iR⌦ Im H.

If µ(q1 ⌦ 1 + q2 ⌦ j) = 0, then

q1iq̄1 = �q2iq̄2. (3.3.1)

This implies that |q1| = |q2|. Unless q1 and q2 both vanish, there is a unique
p 2 H satisfying

|p| = 1 and q1 = q2 p.

From (3.3.1), it follows that

pi = �ip;

hence, p = jeif for some f 2 R. It follows that, for any q 2 R,

q1eiq = q2eiq · jei(f+2q).

Since

q1 ⌦ 1 + q2 ⌦ j = �q2 j⌦ 1 + q1 j⌦ j,

the real part of H+ ⌦C H� consists of those q1 ⌦ 1 + q2 ⌦ j with

q1 = �q2 j.

Consequently, the U(1)–orbit of each non-zero q = q1 ⌦ 1 + q2 ⌦ j intersects
Re(H+ ⌦C H�) twice: in ±r(ei(�f/2+p/2))q.

3.4 compactness of the moduli space

In general, Mw(p, h) might be non-compact; and even if it is compact for given
(p, h), compactness might still fail as (p, h) varies. As explained in Section 2.5,
this can only happen when, along a sequence of solutions to (3.2.2), the L2–
norm of the spinors goes to infinity. The following result, which is a version of
Conjecture 2.5.2 for the Seiberg–Witten equation wth two spinors, describes in
which sense one can still take a rescaled limit in such a situation.

Theorem 3.4.1 ([HW15, Theorem 1.5]). Let (pi, hi) be a sequence in P ⇥Z which
converges to (p, h) in C•. Let (Yi, Ai) be a sequence of solutions of (3.2.2) with respect to
(pi, hi). If lim supi!•kYikL2 = •, then after rescaling Ỹi = Yi/kYikL2 and passing
to a subsequence the following hold:
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1. The subset

Z :=

(

x 2 M : lim sup
i!•

|Ỹi(x)| = 0

)

is closed and nowhere-dense. (In fact, Z has Hausdorff dimension at most one
[Tau14, Theorem 1.2].)

2. There exist Y 2 G(M\Z, Hom(E, W)) and a connection A on det W|M\Z satis-
fying the limiting equation

/DAY = 0 and µ(Y) = 0 (3.4.1)

on M\Z with respect to p. The pointwise norm |Y| extends to a Hölder continuous
function on all of M and

Z = |Y|�1(0).

Moreover, A is flat with monodromy in Z2.

3. On M\Z, up to gauge transformations, Ỹi weakly converges to Y in W2,2
loc and Ai

weakly converges to A in W1,2
loc . There is a constant g > 0 such that |Ỹi| converges

to |Y| in C0,g(M).

We expect that the convergence (Ỹi, Ai)! (Y, A) can be improved to C•
loc on

M\Z; cf. [Doa17a, Theorem 1.5]. In Section 3.6, we will see that this is indeed the
case if Z is empty.

The following proposition will give us a concrete understanding of solutions
to the limiting equation (3.4.1) which are defined on all of M, that is: for which
the set Z is empty. It is a special case of the Haydys correspondence discussed in
Section 2.5.

Proposition 3.4.2 (cf. [HW15, Appendix A]). If (Y, A) 2 G(Hom(E, W))⇥A (det W)
is a solution of (3.4.1) and Y is nowhere vanishing, then:

1. det W is trivial; in particular, w is induced by a spin structure,

2. after a gauge transformation we can assume that A is the product connection and
there exists a unique spin structure s inducing w and such that Y takes values in
Re(E⌦ Ss) ⇢ G(Hom(E, W)). Here Ss is the spinor bundle of s.

3. Y lies in the kernel of /Ds
p : G(Re(Ss ⌦ E))! G(Re(Ss ⌦ E)).

Moreover, any nowhere vanishing element in ker /Ds
p for any spin structure s inducing

w gives rise to a solution of (3.4.1).

Remark 3.4.3. The set of spin structures is a torsor over H1(M, Z2) while the
set of spinc structures is a torsor over H2(M, Z). If b : H1(M, Z2) ! H2(M, Z)
denotes the Bockstein homomorphism in the exact sequence

· · ·! H1(M, Z2)
b�! H2(M, Z) 2⇥�! H2(M, Z)! · · · ,

then the set of a all spin structures s inducing the spinc structure w is a torsor
over ker b. The set of all spinc structures w with trivial determinant is a torsor
over ker 2⇥, the 2–torsion subgroup of H2(M, Z).
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Proof of Proposition 3.4.2. Fix a spin structure s0 and a Hermitian line bundle L
which induce w; in particular, W = Ss0 ⌦ L and A induces a connection A0 on L.
By Proposition 3.3.1,

HomC(C2, H)///U(1) =
⇣

Re(H⌦C C2)\{0}
⌘

/Z2;

hence, Y gives rise to a section s 2 G(X) with

X = (Re(Ss0 ⌦ E)\{0})/Z2

satisfying the Fueter equation. In this case it means simply that local lifts of s to
Re(H⌦C C2) satisfy the Dirac equation. Recall from Section 2.5 that the Haydys
correspondence asserts that:

• any s 2 G(X) can be lifted; that is: there exist a Hermitian line bundle L,
Y 2 G(Hom(E, Ss0 ⌦ L)) = G(Hom(E, W)), as well as A0 2 A (L) satisfying
(3.4.1), and

• L is determined by s up to isomorphism and any two lifts of s are related
by a unique gauge transformation in G (L).

We claim that s can be, in fact, lifted to a section Ỹ 2 G(Re(E⌦ Ss0)⌦ l) for
some Euclidean line bundle l. To see this, cover M with a finite collection of
open balls (U

a

) and trivialize Re(Ss0 ⌦ E) over each U
a

. On U
a

the section s is
given by a smooth function U

a

! (R4\{0})/Z2 which can be lifted to a map
Ỹ

a

: U
a

! R4\{0}. Over the intersection U
a

\U
b

of two different balls U
a

, U
b

,
we have Ỹ

a

= f
ab

Ỹ
b

for a local constant function f
ab

: U
a

\U
b

! {�1,+1}. The
collection ( f

ab

) is a Čech cocycle with values in Z2 and defines a Z2–bundle on
M. Let l be the associated Euclidean line bundle, The collection of local sections
(Ỹ

a

) defines a section Ỹ 2 G(Re(Ss0 ⌦ E)⌦ l) as we wanted to show.
Set L̃ := l⌦R C. By Proposition 3.3.1,

Re(E⌦ Ss0)⌦ l ⇢ µ

�1(0) ⇢ Hom(E, Ss0 ⌦ L̃) = Hom(E, W);

and if Ã 2 A (L̃) denotes the connection induced by the canonical connection on
l, then /DÃỸ = 0.

It thus follows from the Haydys correspondence that L ⇠= l⌦R C and, after
this identification has been made and a suitable gauge transformation has been
applied, Y = Ỹ and A0 = Ã. This shows that det W = L2 is trivial and w is
induced by the spin structure s obtained by twisting s0 with l.

Definition 3.4.4. Denote by Preg ⇢P the subset consisting of those p for which
the real Dirac operator, introduced at the end of Section 3.1,

/Ds
p : G(Re(Ss ⌦ E))! G(Re(Ss ⌦ E)) (3.4.2)

is invertible for all spin structures s. Set

Q := P ⇥Z ,

and denote by

Qreg ⇢ Q

the subset consisting of those (p, h) for which p 2Preg and every solution (Y, A)
of (3.2.2) with respect to (p, h) is irreducible and unobstructed.
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The next proposition follows from Proposition 3.2.4 and [Ang96, Theorem 1.5;
Mai97, Theorem 1.2].

Proposition 3.4.5. If b1(M) > 0, then Qreg is residual in Q.

Proposition 3.4.6. If (p, h) 2 Qreg and there are no singular harmonic Z2 spinors
with respect to p, then Mw(p, h) is compact. In particular, nw(p, h) 2 Z as in (3.2.9)
is defined.

Proof. By hypothesis we know that there are no singular harmonic Z2 spinors. By
the definition of Preg there are also no harmonic spinors. It thus follows from
Theorem 3.4.1 and Proposition 3.4.2 that Mw(p, h) is compact.

3.5 wall-crossing and the spectral flow

In the absence of singular harmonic Z2 spinors, we can define nw(p, h) for every
(p, h) 2 Qreg. However, Qreg is not path-connected and nw(p, h) does depend
on the path-connected component of Qreg in which (p, h) lies. We study the
wall-crossing for nw(p, h) by analyzing the family of moduli spaces Mw(pt, ht)
along paths of the following kind.

Definition 3.5.1. Given p0, p1 2 Preg, denote by Preg(p0, p1) the space of
smooth paths from p0 to p1 in P such that for every spin structure s:

1. the path of Dirac operators
�

/Ds
pt

�

t2[0,1] has transverse spectral flow and

2. whenever the spectrum of /Ds
pt crosses zero, ker /Ds

pt is spanned by a nowhere
vanishing section Y 2 G(Re(E⌦ Ss)).

Given (p0, h0), (p1, h1) 2 Qreg, denote by Qreg�(p0, h0), (p1, h1)
�

the space of
smooth paths (pt, ht)t2[0,1] from (p0, h0) to (p1, h1) in Q such that (1) and (2) hold
and, moreover:

1. For every t0 2 [0, 1], every solution (Y, A) of (3.2.2) is irreducible and either
it is unobstructed (that is, the linearized operator LY,A is invertible) or else
coker LY,A has dimension one and is spanned by

p

0

B

B

@

d
dt

�

�

�

�

t=t0

0

B

B

@

� /Dpt ,AY
⇤(FA + ht � µpt(Y))

0

1

C

C

A

1

C

C

A

where p : G(Hom(E, W))�W1(M, iR)�W0(M, iR) ! coker LY,A denotes
the L2–orthogonal projection.

2. For any Y as in (2) with kYkL2 = 1, denote by
n⇣

Y
#

= Y + #

2
y + O(#4), A

#

; t(#) = t0 + O(#2)
⌘

: 0 6 #⌧ 1
o

the family of solutions to

/DA
#

,pt(#)
Y

#

= 0,

#

2
✓

1
2

FA
#

+ ht(#)

◆

= µpt(#) (Y#

), and

kY
#

kL2 = 1
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obtained from Theorem 2.8.1. Define also

d(Y, pt0 , ht0) := h /DA0,pt0
y, yiL2 .

We require that d(Y, pt0 , ht0) 6= 0 for all t0 at which the spectrum of /Ds
pt

crosses zero and Y is as in (2).

Condition (1) is necessary since the wall-crossing formula will involve the
spectral flow of /Ds

pt . In particular, it guarantees that dim ker /Ds
pt > 0 for only

finitely many t 2 (0, 1). Condition (2) ensures that the harmonic Z2 spinors
produced by Theorem 3.1.7 are indeed singular. Condition (1) is used to show
that the union of all moduli spaces Mw(pt, ht) as t varies from 0 to 1 is an oriented
smooth 1–manifold (i.e., a disjoint union of circles and intervals) with oriented
boundary Mw(p1, h1) [�Mw(p0, h0).5 Finally, condition (2) ensures that we can
use the local model from Theorem 2.8.1to study the wall-crossing phenomenon.

The following result shows that a generic path from (p0, h0) to (p1, h1) satisfies
the conditions in Definition 3.5.1. Its proof is postponed to Section 3.9.

Proposition 3.5.2. Given (p0, h0), (p1, h1) 2 Qreg, the subspace Qreg�(p0, h0), (p1, h1)
�

is residual in the space of all smooth paths from (p0, h0) to (p1, h1) in Q.

The next three sections are occupied with studying the wall crossing along
paths in Qreg�(p0, h0), (p1, h1)

�

. In order to state the wall-crossing formula, we
need the following preparation.

Proposition 3.5.3. Denote by s a spin structure inducing the spinc structure w and by
A the product connection on det W. If Y is a nowhere vanishing section of Re(Ss ⌦ E),
then the following hold:

1. Let aY be the algebraic operator given by (3.2.4). The map

ãY := |Y|�1aY : (T⇤M�R)⌦ iR! Im(Ss ⌦ E)

is an isometry. Here, Im(Ss ⌦ E) denotes the imaginary part of Ss ⌦ E defined
using the real structure on Ss ⌦ E.

2. Denote by /DIm the restriction of /DA,p to Im(Ss ⌦ E) ⇢ Hom(E, W) and define
the operator dY : W1(M, iR)�W0(M, iR)! W1(M, iR)�W0(M, iR) by

dY := ã⇤Y � /DIm � ãY.

For each t 2 [0, 1], the operator

dt
Y := (1� t)dY + td

is a self-adjoint and Fredholm.

Proof. The fact that ãY is an isometry is a consequence of

a⇤YaY = |Y|2 (3.5.1)

which in turn follows from the following calculation valid for all (a, x) and (b, h)
in W1(M, iR)�W0(M, iR):

haY(a, x), aY(b, h)i = hḡ(a)Y + r(x)Y, ḡ(b)Y + r(h)Yi
= |Y|2(ha, bi+ hx, hi).

5 Here �Mw(p0, h0) is the same space as Mw(p0, h0), but all the orientations are reversed.
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Since

/DImaY(a, x) = /DIm(ḡ(a)Y + r(x)Y)

= ḡ(⇤da)Y + r(d⇤a)Y + ḡ(dx)Y

� ḡ(a) /DReY + r(x) /DReY� 2
3

Â
i=1

r(a(ei))rei Y

= aYd(a, x)� 2
3

Â
i=1

r(a(ei))rei Y,

(3.5.2)

we have

dY = d+ eY

with eY a zeroth order operator depending on Y and its derivative. This implies
that dt

Y is a Fredholm operator. By construction dt
Y is self-adjoint.

Definition 3.5.4. In the situation of Proposition 3.5.3, define

s(Y, p) := (�1)b1(M) · (�1)SF((�dt
Y)t2[0,1]).

Remark 3.5.5. The operator dY only depends on Y up to multiplication by a
constant in R⇤; hence, the same holds for s(Y, p).

Definition 3.5.6. For a pair of nowhere vanishing sections Y, F 2 G(Re(Ss ⌦ E))
we define their relative degree deg(Y, F) 2 Z as follows. Choose any trivializations
of E and Ss compatible with the SU(2) structures. In the induced trivialization of
Re(Ss ⌦ E) the sections Y/|Y| and F/|F| are represented by maps M! S3. Set

deg(Y, F) := deg(Y/|Y|)� deg(F/|F|).
This number does not depend on the choice of the trivializations.

Theorem 3.5.7. Let (pt, ht)t2[0,1] 2 Qreg�(p0, h0), (p1, h1)
�

. For each spin structure
s inducing the spinc structure w, denote

• by {ts1, . . . , tsNs
} ⇢ [0, 1] the set of times at which the spectrum of /Ds

pt crosses
zero6

and, for each i = 1, . . . , Ns, denote

• by c

s
i 2 {±1} the sign of the spectral crossing of the family ( /Ds

pt) at tsi and

• by Ys
i a nowhere vanishing spinor spanning ker /Ds

pt .

If there are no singular harmonic Z2 spinors with respect to pt for any t 2 [0, 1], then

nw(p1, h1) = nw(p0, h0) + Â
s

Ns

Â
i=1

c

s
i · s(Ys

i , ptsi ) (3.5.3)

or, equivalently,

nw(p1, h1) = nw(p0, h0) +Â
s

c

s
1 · s(Ys

1, pts1 ) ·
Ns

Â
i=1

(�1)i+1 · (�1)deg(Ys
1,Ys

i ). (3.5.4)

Here the sums are over all spin structures s inducing w.
6 This set is finite by Definition 3.5.1item 1.
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Remark 3.5.8. In particular, Theorem 3.5.7 implies that nw(p, h) does not depend
on h.

The proof of the (3.5.3) proceeds by analyzing the 1–parameter family of moduli
spaces

W :=
[

t2[0,1]

Mw(pt, ht).

By Definition 3.5.1(1), W is an oriented, one-dimensional manifold with oriented
boundary

∂W = Mw(p0, h0) [�Mw(p1, h1).

If W were compact, then it would follow that nw(p1, h1) = nw(p0, h0). However,
W may be non-compact.

3.6 compactification of the cobordism

Set

W :=
⇢

(t, #, [Y, A]) 2 [0, 1]⇥ [0, •)⇥ G(Hom(E, W)⇥A (det W)
G (det W)

: (⇤)
�

with (⇤) meaning that:

• the differential equation

/DA,pt Y = 0,

#

2
✓

1
2

FA + ht

◆

= µpt(Y), and

kYkL2 = 1

(3.6.1)

holds and

• if # = 0, then Y is nowhere vanishing.

Equip W with the C•–topology. We have a natural embedding W ,!W given by
(t, [Y, A]) 7! (t, #, [Ỹ, A]) with #

:= 1/kYkL2 and Ỹ := Y/kYkL2 .

Proposition 3.6.1. W is dense in W.

Proof. If (t0, #, [Y, A]) 2 W\W, then # = 0. It follows from Definition 3.5.1 and
Theorem 2.8.1, that there are is a family {(Y

#

, A
#

; t(#)) : 0 6 #⌧ 1} of solutions
to

/DA
#

,pt(#)
Y

#

= 0 and

#

2
✓

1
2

FA
#

+ ht(#)

◆

= µpt(#) (Y#

)

with (Y
#

, A
#

) converging to (Y, A) in C• and t(#) converging to t0 as # tends to
zero. Consequently, W is dense in W.

That W is compact does not follows from Theorem 3.4.1; it does, however,
follow from the next result.
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Proposition 3.6.2. Let (pi, hi) be a sequence in P ⇥Z which converges to (p, h) in
C•. Let (#i, Yi, Ai) be a sequence of solutions of

/DAi ,pi Yi = 0,

#

2
✓

1
2

FAi + hi

◆

= µpi (Yi), and

kYikL2 = 1

(3.6.2)

with limi!• #i = 0. If the set

Z :=

(

x 2 M : lim sup
i!•

|Yi(x)| = 0

)

is empty, then, after passing to a subsequence and applying gauge transformations,
(Yi, Ai) converges in C• to a solution (Y, A) 2 G(Hom(E, W))⇥A (det W) of

/DA,pY = 0, µp(Y) = 0, and kYkL2 = 1.

Proposition 3.6.3. W is compact.

Proof assuming Proposition 3.6.2. We need to show that any sequence (ti, #i, [Yi, Ai])
in W has a subsequence which converges in W. If lim inf #i > 0, then this a con-
sequence of standard elliptic estimates and Arzelà–Ascoli. It only needs to be
pointed out that #i cannot tend to infinity, because otherwise there would be a
reducible solution to (3.2.2) which is ruled out by Definition 3.5.1(1).

If lim infi!• #i = 0, then Theorem 3.4.1 asserts that a gauge transformed subse-
quence of (Yi, Ai) converges weakly in W2,2

loc ⇥W1,2
loc outside Z. If Z is non-empty,

then the limit represents a singular harmonic Z2 spinors. However, by assumption
there are no singular harmonic Z2 spinors; hence, Z is empty and Proposition 3.6.2
asserts that a gauge transformed subsequence of (Yi, Ai) converges in C•.

The proof of Proposition 3.6.2 is somewhat technical and we omit it. It relies
on elliptic regularity and a priori estimates on Y and the curvature of A, under
the assumption that |Y| is bounded below by a positive constant; see [DW17c,
Section 5] for details.

3.7 orientation at infinity

Suppose that (t0, 0, [Y0, A0]) 2 W\W is a boundary point in W. By Proposi-
tion 3.4.2, there exists a spin structure s inducing the spinc structure w such
that Y0 2 G(Re(Ss ⌦ E)) ⇢ G(Hom(E, W)), /Ds

pt0
Y0 = 0, and A0 is trivial. By

Definition 3.5.1(1), there exists a unique solution {Yt : |t� t0|⌧ 1} to

/Ds
pt Yt = l(t)Yt and kYtkL2 = 1

with Yt0 = Y0. Moreover, l is a differentiable function of t near t0 whose
derivative, to be denoted by l̇, satisfies l̇(t0) 6= 0. In this situation, the proof of
Theorem 2.7.1 in Section 2.7 shows that for any choice of r 2 N there exist t ⌧ 1
and #0 ⌧ 1, a Cr map

ob : (t0 � t, t0 + t)⇥ [0, #0)! R,



3.7 orientation at infinity 77

an open neighborhood V of (t0, 0, [Y0, A0]) 2W, and a homeomorphism

x : ob�1(0)! V

such that:

1. x commutes with the projection to the t– and #–coordinates.

2. The restriction ob|(t0�t,t0+t)⇥(0,#0) is smooth and has expansion

ob(t, #) = l̇(t0) · (t� t0)� d#

4 + O
⇣

(t� t0)
2, #

6
⌘

,

∂

#

ob(t, #) = �4d#

3 + O
⇣

(t� t0)
2, #

5
⌘

,
(3.7.1)

with d = d(Y0, pt0 , ht0) as in Definition 3.5.1(2). In particular, since by
assumption d 6= 0, the equation ob(t, #) = 0 can be solved for t:

t(#) = t0 +
d

l̇(t0)
#

4 + O(#6). (3.7.2)

3. If (t, #) 2 (t0 � t, t0 + t)⇥ (0, #0] satisfies ob(t, #) = 0 and

x(t, #) = (t, #, [Y
#

, A
#

])

then [#�1Y
#

, A
#

] is a solution of the Seiberg–Witten equation (3.2.2). We will
prove below that this solution is unobstructed; that is, the operator

L
#

�1Y
#

,A
#

,pt(#)

is invertible.

It follows from the above that

ob�1(0) =
��

t(#), #

�

: # 2 [0, #0)
 

.

Therefore, W is a compact, oriented, one–dimensional manifold with boundary,
that is: a finite collection of circles and closed intervals. Its oriented boundary is

∂W = Mw(p1, h1)�Mw(p0, h0) [
�

W\W�

.

It follows from (3.7.2) that, if d/l̇(0) > 0, then as t passes through t0 a solution
to (3.2.2) is created. If d/l̇(0) < 0, then as t passes through t0 a solution to
(3.2.2) is annihilated. The solution that is created/annihilated at t0 contributes
sign[#�1Y

#

, A
#

] to the signed count of solutions. Consequently, for t ⌧ 1, we
have the local wall-crossing formula

nw(pt+t

, ht+t

) = nw(pt0�t

, ht0�t

)+ sign(l̇(t0)) sign(d) sign[#�1Y
#

, A
#

]. (3.7.3)

The main result of this section determines the last two factors in the above
formula.

Proposition 3.7.1. In the above situation, for #⌧ 1, the solution [#�1Y
#

, A
#

] is unob-
structed and

sign(d) sign[#�1Y
#

, A
#

] = s(Y0, pt0) (3.7.4)

with s(Y0, pt0) as in Definition 3.5.4. In particular, the local wall-crossing formula
(3.7.3) can be written in the form

nw(pt0+t

, ht0+t

) = nw(pt0�t

, ht0�t

) + sign(l̇(0)) s(Y0, pt0). (3.7.5)
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The proof of Proposition 3.7.1, which can be found in [DW17c, Section 6], is
one of the most technical parts of [DW17c]. We omit it in this thesis, as it is quite
involved. The proof consists of several steps. Some of them are rather standard
and amount to tracing definitions or calculating various spectral flows. The crucial
part is relating the determinant line bundle used in orienting the Seiberg–Witten
moduli spaces to the glued Kuranishi model constructed in Section 2.7. We
should stress that Proposition 3.7.1 is crucial for proving the existence of singular
harmonic Z2 spinors, as the final argument requires knowing exactly the signs
appearing in the wall-crossing formula.

3.8 proof of the wall-crossing formulae

This section will conclude the proof of Theorem 3.5.7. The local wall-crossing
formula (3.7.3) and Proposition 3.7.1 directly imply the wall-crossing formula

nw(p1, h1) = nw(p0, h0) + Â
s

Ns

Â
i=1

c

s
i · s(Ys

i , ptsi ). 3.5.3

In order to prove (3.5.4), we need to relate s(Y0, p0) to s(Y1, p1) for two different
nowhere vanishing spinors Y0 and Y1 and two parameters p0 and p1.

Proposition 3.8.1. Let (pt)t2[0,1] be a path in P . If Y0 and Y1 are two nowhere
vanishing sections of Re(E⌦ Ss), then

s(Y1, p1) = s(Y0, p0) · (�1)SF(� /Ds
pt ) · (�1)deg(Y0,Y1). (3.8.1)

Here deg(Y0, Y1) denotes the relative the degree of Y0 and Y1 as in Definition 3.5.6.

Proof. Suppose first that deg(Y0, Y1) = 0 so that we can find a path (Yt)t2[0,1] of
nowhere vanishing sections from Y0 to Y1. It follows from Definition 3.5.4 that

s(Y1, p1) = s(Y0, p0) · (�1)SF(�dYt ).

The spectral flow along the path of operators �dYt is identical to that of the path
of operators

�ãY0 � dYt � ã⇤Y0
. (3.8.2)

Consider the homotopy of paths

(t, s) 7! �ãYst � dYt � ã⇤Yst
.

It is well-defined since Yt is nowhere vanishing for t 2 [0, 1]. For s = 0 it gives us
the path (3.8.2) whereas for s = 1 we obtain

�ãYt � dYt � ã⇤Yt
= � /Ds

pt .

Since the spectral flow is a homotopy invariant, we have SF(�dYt) = SF(� /Ds
pt)

which proves (3.8.1) if deg(Y0, Y1) = 0.
It remains to deal with the case deg(Y0, Y1) 6= 0. By the above, we can assume

that pt = p for all t 2 [0, 1]. Since s(Y1, p) and s(Y2, p) are defined using
the spectral flow from dY0 and dY1 respectively to a given elliptic operator
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(see Definition 3.5.4), it follows that for any path of elliptic operators (dt)t2[0,1]
connecting dY0 and dY1 we have

s(Y1, p) · s(Y0, p) = (�1)SF(�dt).

By work of Atiyah–Patodi–Singer [APS76, Section 7], the spectral flow SF(�dt) is
equal to the index of an elliptic operator D on S1 ⇥M constructed as follows. Set
V := (T⇤M�R)⌦ iR and define an isometry f : V ! V by

f := ã⇤Y0
ãY1

By the definition of f , we have

dY1 = f�1 � dY0 � f .

Let V! S1 ⇥M be the vector bundle obtained as the mapping torus of f ; that
is, V = V ⇥ [0, 1]/ ⇠ where ⇠ denotes the equivalence relation (v, 0) ⇠ ( f (v), 1).
If, as before, (dt)t2[0,1] is a family of elliptic operators connecting dY0 and dY1 ,
then the operator ∂t � dt on the pull-back of V to [0, 1]⇥M, with t denoting the
coordinate on [0, 1], gives rise to a first order elliptic operator D on V! S1 ⇥M
whose index equals SF(dt) = �SF(�dt). We compute this index as follows. Under
the isomorphism ãY0 between V and Re(Ss ⌦ E) the operator dY0 corresponds
to /Ds

p. Moreover, under this isomorphism, the complex-linear extension of f
corresponds to an isomorphism of Ss ⌦ E given by a gauge transformation g of
degree deg(Y0, Y1) of the SU(2)–bundle E (this is because in a local trivialization
f is given simply by right-multiplication by a quaternion-valued function). Thus,
the complexification of V is isomorphic to S+

s ⌦ E where S+
s is the positive

spinor bundle of S1 ⇥ M and E is obtained by gluing E ! [0, 1] ⇥ M along
{0, 1}⇥M using g. The complexification DC of the operator D corresponds in
this identification to the Dirac operator on S+

s twisted by a connection on E. By
the Atiyah–Singer Index Theorem,

indexDC =
Z

S1⇥M
Â(S1 ⇥M)ch(E) = �

Z

S1⇥M
c2(E) = �deg(Y0, Y1).

The real index of D is equal to the complex index of DC and we conclude that

s(Y1, p) · s(Y0, p) = (�1)SF(�dt) = (�1)deg(Y0,Y1).

This completes the proof of this proposition.

Recall that ts1, . . . , tsNs
2 (0, 1) are the times at which the spectrum of /Ds

pt crosses
zero. The crossing is transverse with intersection sign c

s
i 2 {±1}. The next result

relates c

s
i to c

s
1.

Proposition 3.8.2. For all i 2 {1, . . . , Nw}, we have

c

s
i · (�1)SF(� /Ds

pt :t2[ts1,tsi ]) = (�1)i+1 · c

s
1.

Remark 3.8.3. In the above, the operator� /Ds
pt is not invertible for t 2 {ts1, . . . , tsNs

}.
According to Remark 3.2.11, the spectral flow from ts1 to tsi is defined as the spec-
tral flow of the family (� /Ds

pt + lid)t2[ts1,tsi ]
for any number 0 < l⌧ 1.
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Proof. By induction it suffices to consider the case i = 2. The case i = 2 can be
verified directly case-by-case as follows:

c1 c2 SF c1 · c2 · (�1)SF

+1 +1 �1 �1
+1 �1 2 �1
�1 +1 0 �1
�1 �1 1 �1

Here SF = SF
�� /Ds

pt : t 2 ⇥

ts1, ts2
⇤�

.

Combining the two preceding propositions shows that (3.5.3) can equivalently
be written as follows:

nw(p1, h1) = nw(p0, h0) +Â
s

c

s
1 · s(Ys

1, pts1 ) ·
Ns

Â
i=1

(�1)i+1 · (�1)deg(Ys
1,Ys

i ). 3.5.4

This completes the proof of Theorem 3.5.7.

3.9 transversality for paths

The purpose of this section is to prove Proposition 3.5.2.

Proposition 3.9.1. For any p0, p1 2 Preg, the subspace Preg(p0, p1) is residual in
the space of all smooth paths from p0 to p1 in P .

Proof. The proof is an application of the Sard–Smale theorem. We will work with
Sobolev spaces of sections and connections of class Wk,p such that (k� 1)p > 3.
The statement for C• spaces follows then from a standard argument; see, for
example, [MS12, Theorem 3.1.5].

Since there are only finitely many spin structures on M, it suffices to consider
the conditions (1) and (2) in Definition 3.5.1 for a fixed spin structure s. Set

X := P(p0, p1)⇥ [0, 1]⇥ G(Re(Ss ⌦ E)\{0})
R⇤

and V := P(p0, p1)⇥ [0, 1]⇥ G(Re(Ss ⌦ E)\{0})⇥ G(Re(Ss ⌦ E))
R⇤ .

V is a vector bundle over X. Define a section s 2 G(V) by

s

⇣

(pt)t2[0,1], t⇤, [Y]
⌘

:=
⇣

(pt)t2[0,1], t⇤, [(Y, /Dpt⇤Y)]
⌘

.

We can identify a neighborhood of [Y] 2 G(Re(Ss ⌦ E)\{0})/R⇤ with the L2–
orthogonal complement Y? ⇢ G(Re(Ss ⌦ E). This gives us a local trivialization
of V in which s can be identified with the map

s

⇣

(pt)t2[0,1], t⇤, y

⌘

=
⇣

(pt)t2[0,1], t⇤, /Dpt⇤ (Y + y)
⌘

for all y 2 Y?.

In particular, for a fixed path (pt)t2[0,1], the map s((pt)t2[0,1], ·) defines a Fred-
holm section of index zero, since y 7! /Dpt(Y+y) has index �1 and dim[0, 1] = 1.

Let x :=
⇣

(pt)t2[0,1], t⇤, [Y]
⌘

2 X and denote by dxs the linearization of s at x
(and computed in the above trivialization). We will prove that dxs is surjective
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provided s(x) = 0. If F 2 Vx = G(Re(Ss ⌦ E)) is orthogonal to the image of dxs,
then it follows that

hḡ(b)Y, FiL2 = 0 for all b 2 W1(M, su(E)). (3.9.1)

Since Y is harmonic, its zero set must be nowhere dense. Clifford multiplication
by T⇤M ⌦ su(E) on Re(Ss ⌦ E) induces a isomorphism between T⇤M ⌦ su(E)
and trace-free symmetric endomorphisms of Re(Ss ⌦ E). With this in mind it
follows from (3.9.1) that Y = 0. This proves that dxs is surjective.

It follows that s

�1(0) is a smooth submanifold of X and the projection map
p : s

�1(0) ! P(p0, p1) is a Fredholm map of index zero. The kernel of dp

at x 2 s

�1(0) can be identified with the kernel of the linearization of s in the
directions of [0, 1] and G(Re(Ss ⌦ E)\{0})/R⇤. Writing down this linearization
explicitly, we see that the condition ker dp(x) = {0} implies that Y spans ker /Dpt⇤
and t⇤ is a regular crossing of the spectral flow of ( /Dpt). On the other hand, since
p is a Fredholm map of index zero, ker dp(x) = {0} is equivalent to x being a
regular point of p. By the Sard–Smale theorem, the subspace of regular values
of p is residual; hence, the set of those (pt)t2[0,1] in P(p0, p1) for which the
condition (1) in Definition 3.5.1 holds is residual.

To deal with condition (2) in Definition 3.5.1, we consider the vector bundle

W := P(p0, p1)⇥ [0, 1]⇥ G(Re(Ss ⌦ E)\{0})⇥ G(Re(Ss ⌦ E))⇥ Re(Ss ⌦ E)
R⇤

over X⇥M and define a section t 2 G(W) by

t

⇣

(pt)t2[0,1], t⇤, [Y], y
⌘

:=
⇣

(pt)t2[0,1], t⇤, [(Y, /Dpt⇤Y, Y(y))]
⌘

.

For a fixed path (pt)t2[0,1], the map t((pt)t2[0,1], ·) defines a Fredholm section of

index �1. Note that for x :=
⇣

(pt)t2[0,1], t⇤, [Y]
⌘

2 X and y 2 M the condition
t((pt)t2[0,1], x, y) = 0 is equivalent to /Dpt⇤Y = 0 and Y(y) = 0. We prove that
the linearization of t is surjective at any (x, y) satisfying these equations. If
(F, f) 2 W(x,y) = G(Re(Ss ⌦ E)) ⇥ Re(Ss ⌦ E)y is orthogonal to the image of
(dt)(x,y), then (3.9.1) holds and, moreover,

h /Dpt⇤ (Y + y), FiL2 + hy(x), fi = 0 for all y 2 Y? (3.9.2)

Since /Dpt⇤Y = 0 and Y(y) = 0, (3.9.2) holds in fact for all y 2 G(Re(Ss⌦ E)) and
we conclude that /Dpt⇤Y = 0. Plugging this back into (3.9.2) yields hy(x), fi = 0
for all y, which implies that f = 0. As before (3.9.1) implies that F = 0.

It follows that t

�1(0) is smooth and the projection r : t

�1(0)!P(p0, p1) is
a Fredholm map of index �1; in particular, the preimage of a regular value must
be empty. It follows that the paths (pt)t2[0,1] 2P(p0, p1) for which condition (2)
in Definition 3.5.1 holds is residual.

To address condition (2) in Definition 3.5.1 we compute d(Y, p, h).

Proposition 3.9.2. Let (pt)t2[0,1] 2 P(p0, p1), let (ht)t2[0,1] be a path in Z , let
t0 2 (0, 1), and let Y be a nowhere vanishing section of Re(Ss ⌦ E) spanning ker /Ds

pt0
and satisfying kYkL2 = 1. There is a linear algebraic operator

fpt0 ,Y : W2(M, iR)! W2(M, iR)
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such that

d(Y, pt0 , ht0) =
Z

M
|Y|�2hd ⇤ ht0 + fY,pt0

ht0 , ht0i (3.9.3)

with d(Y, pt0 , ht0) is as in Definition 3.5.1(2).

Proof. If we denote by
n⇣

Y
#

= Y + #

2
y + O(#4), A

#

; t(#) = t0 + O(#2)
⌘

: 0 6 #⌧ 1
o

the family of solutions to

/DA
#

,pt(#)
Y

#

= 0,

#

2
✓

1
2

FA
#

+ ht(#)

◆

= µpt(#) (Y#

), and

kY
#

kL2 = 1

obtained from Theorem 2.8.1, then

d = d(Y, pt0 , ht0) = h /DA0,pt0
y, yiL2 .

The connection A = A0 corresponding to Y is flat; see Proposition 3.4.2. For the
unperturbed equation we would have t(#) = 0. Since we consider the perturbed
equation, however, h enters into the computation of d. More precisely, by (2.8.1)
and (2.8.2), we have

y = � /D�1
Re gII⇤n� n with n

:= (a⇤Y)�1 ⇤ h.

By (3.5.1), we have

n = |Y|�2
ḡ(⇤h)Y.

Denote by pRe the projection onto Re(Ss ⌦ E). From Proposition 2.5.13 we
know that for any a 2 W1(M, iR)

�gII⇤ḡ(a)Y =
3

Â
i=1

pRe

⇣

r(a(ei))rA
ei

Y
⌘

= 0.

It follows that

y = �n = |Y|�2
ḡ(⇤h)Y.

Set

a := |Y|�2 ⇤ h.

Since

/DAḡ(a)Y = ḡ(⇤da)Y + r(d⇤a)Y� 2
3

Â
i=1

r(ai)riY,
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we have

d =
Z

M
h /DAḡ(a)Y, ḡ(a)Yi

=
Z

M
hḡ(⇤da)Y, ḡ(a)Yi+ hr(d⇤a)Y, ḡ(a)Yi

� 2
3

Â
i=1
hr(ai)riY, ḡ(a)Yi.

The first term in the integral is

|Y|2h⇤da, ai = hd ⇤
⇣

|Y|�2
h

⌘

, hi.

The second term vanishes. Therefore,

d =
Z

M
|Y|�2hd ⇤ h, hi+ |Y|�2hf1h, f2hi

for linear operators f1, f2 : W2(M, iR)! G(Re(Ss ⌦ E)) of order zero. Set fY,p =
f⇤2f1.

Proposition 3.9.3. For (Y, p, h) 2 G(Re(Ss ⌦ E))⇥P ⇥Z such that Y is nowhere
vanishing, define d(Y, p, h) by formula (3.9.3). For each (Y, p), the set

Z reg(Y, p) = {h 2 Z : d(Y, p, h) 6= 0}
is open and dense in Z .

Proof. Replace all the spaces in question by their completions with respect to
the Wk,p norm for any k and p satisfying (k � 1)p > 3. We will prove the
statement with respect to the Sobolev topology; the corresponding statement for
C• spaces follows then from the Sobolev embedding theorem and the fact that d

is continuous with respect to any of these topologies.
By Proposition 3.9.2,

(dd)
h

[ĥ] =
Z

M
|Y|�2h2d ⇤ h + f̄Y,ph, ĥi,

where

f̄Y,ph = (fY,p + f⇤Y,p)h � 2d(log|Y|) ^ ⇤h
is a linear algebraic operator. Thus, the derivative of d vanishes along the set
Zcrit(Y, p) of solutions h to the linear elliptic differential equation

dh = 0,
d ⇤ h + ⇤f̄Y,ph = 0.

Zcrit(Y, p) a closed, finite-dimensional subspace of Z . By the Implicit Function
Theorem, away from Zcrit(Y, p), the zero set of d(Y, p, ·) is a codimension one
Banach submanifold of (the Sobolev completion of) Z . Hence, the set

Z reg(Y, h) \ (Z \Zcrit(Y, h))

is dense. Since d is continuous, Z reg(Y, h) is open.
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Proof of Proposition 3.5.2. Let Q3 be the subspace of paths from (p0, h0) to (p1, h1)
satisfying Definition 3.5.1(1). The proof of Proposition 3.2.6 shows that Q3 is
residual.

Denote by Q1,2 the space of paths from (p0, h0) to (p1, h1) satisfying conditions
(1) and (2) in Definition 3.5.1. By Proposition 3.9.1, Q1,2 is residual in the space
of paths from (p0, h0) to (p1, h1). Let Q1,2,4 ⇢ Q1,2 be the space of paths from
(p0, h0) to (p1, h1) also satisfying Definition 3.5.1(2). Elementary arguments show
that Q1,2,4 is open in Q1,2 and we will shortly prove that Q1,2,4 is dense in Q1,2.
A set which is open and dense in a residual set is itself residual. It follows that
Q1,2,4 is residual; hence, so is Qreg�(p0, h0), (p1, h1)

�

= Q1,2,4 \Q3.
To prove that Q1,2,4 is dense in Q1,2, suppose that (pt, ht)t2[0,1] 2 Q1,2. There

are finitely many times 0 < t1 < . . . < tn < 1 for which the kernel of /Dpti
is non-trivial. For i = 1, . . . , n, denote by Yi a section spanning ker /Dpti

. By
Proposition 3.9.3, for any s > 0, there are closed forms a1, . . . , an such that

d(Yi, pti , hti + ai) 6= 0 and kaikL• 6 s

for every i = 1, . . . , n. Let (at)t2[0,1] be a path of closed forms such that ati = ai for
i = 1, . . . , n and katkL• 6 s for all t 2 [0, 1]. The path (pt, ht + at)t2[0,1] satisfies
conditions (1), and (2) in Definition 3.5.1 because these only depend on (pt)t2[0,1].
It also satisfies (2) by construction. We conclude that (pt, ht + at)t2[0,1] 2 Q1,2,4.
Since s is arbitrary, it follows that Q1,2,4 is dense in Q1,2.

3.10 proof of the existence of singular harmonic Z2 spinors

In this section we prove Theorem 3.1.7. We begin with defining the set Wb
appearing in its statement.

Definition 3.10.1. Given a spin structure s, set

W s :=
n

p 2P : dim ker /Ds
p > 0

o

,

W s
1,? :=

n

p 2P : ker /Ds
p = RhYi with Y nowhere vanishing

o

,

W s
1,? :=

n

p 2P : ker /Ds
p = RhYi and Y has a single non-degenerate zero

o

and

W s
b := W s\W s

1,?.

A zero x 2 Y�1(0) is non-degenerate if the linear map (rY)x : Tx M! Re(S⌦
E)x has maximal rank (that is, rank three). Set

W :=
[

s

W s, Wb :=
[

s

W s
b , and W1,? :=

[

s

W s
1,?\Wb.

Here the union is taken over all spin structures s.

Proposition 3.10.2. W s
1,? is a closed, codimension one submanifold of P\W s

b . It carries
a coorientation such that the following holds. Let (pt) be a path in P\W s

b with p0, p1 2
P\W s which intersects W s

1,? transversely. Denote

• by {t1, . . . , tN} ⇢ (0, 1) the finite set of times at which the spectrum of /Ds
pt crosses

zero, i.e., pt 2 W s
1,?

and, for each i = 1, . . . , N, denote
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• by ci 2 {±1} the sign of the spectral crossing at ti and

• by Yi a nowhere vanishing spinor spanning ker /Dpt .

The intersection number of (pt) with W s
1,? is

N

Â
i=1

ci · s(Yi, pti ).

Proof. Let p0 2 W s
1,?. Let Y0 2 ker /Ds

p0
be such that kY0kL2 = 1. It follows from

the Implicit Function Theorem that, for some open neighborhood U of p0 2P ,
there is a unique smooth map U ! R⇥ G(Re(S⌦ E)),

p 7! (l(p), Yp)

such that

l(p0) = 0 and Yp0 = Y0

as well as

/Ds
pYp = l(p)Yp and kY0kL2 = 1. (3.10.1)

It follows from the Implicit Function Theorem and the openness of the non-
vanishing condition that for U sufficiently small, we have

U \W s
1,? = l

�1(0).

Since

(dp0 l)(0, b) = hḡ(b)Y, YiL2 (3.10.2)

and Clifford multiplication induces an isomorphism from T⇤M⌦ su(E) to trace-
free symmetric endomorphisms of Re(S⌦ E), l is a submersion provided U is
sufficiently small. Hence, W s

1,? is a codimension one submanifold. To see that
W s

1,? is closed, observe that (pi) is a sequence on W s
1,? with pi ! p 2 P , then

p 2 W s and thus either in W s
1,? or W s

b .
The above argument goes through with

W s
1 = {p 2P : dim ker /Ds

p = 1}

instead of W s
1,?. Define a coorientation of W s

1 by demanding that the isomorphism

dpl : TpP/TpW s
1 ! R

is orientation-preserving. This coorientation has the following property. If (pt)t2[0,1]
is a path in P such that dim ker /Ds

pt 6 1, dim ker /Ds
pt = 0 for t = 0, 1, then the

intersection number of (pt)t2[0,1] with W s
1 is precisely the spectral flow of /Ds

pt .
Therefore, we call this coorientation the spectral coorientation. W s

1,? is an open sub-
set of W s

1 . Thus it inherits the spectral coorientation; however, this coorientation
does not have the desired property.

If p 2 W s
1,? and Yp spans ker /Ds

p, then Yp is nowhere vanishing and Defini-
tion 3.5.4 defines s(Yp, p) 2 {±1}. By Proposition 3.8.1, the s(Yp, p) depends
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only on p 2 W s
1,?; moreover, p 7! s(Yp, p) is locally constant on W s

1,?. The twisted
spectral coorientation on W s

1,? is defined by demanding that the isomorphism

s(Yp, p) · dpl : TpP/TpW s
1,? ! R

is orientation-preserving. By definition, for any path (pt) as in the statement of
the proposition, the intersection number of (pt) with W s

1,? with respect to the
twisted spectral coorientation is

N

Â
i=1

ci · s(Yi, pti ).

Theorem 3.10.3. In the above situation, the following hold.

1. The cohomology class w 2 H1(P\Wb, Z) = Hom(p1(P\Wb), Z) defined by
W1,? together with the coorientation from Proposition 3.10.2 is non-trivial.

2. If (p0, h0) 2 Qreg and (pt, ht) is a loop in Qreg�(p0, h0), (p0, h0)
�

, then (pt) is
a path in P\Wb and if w([pt]) 6= 0, then there is exists a harmonic Z2 spinor
with respect to some pt.

Proof of Theorem 3.1.7 assuming Theorem 3.10.3. The union of the projections of the
subsets Qreg�(p0, h0), (p0, h0)

�

to P(p0, p0), as (p0, h0) ranges over Qreg, is a
residual subset of the space of all loops in P . This shows that the loops in P\Wb
which have a lift to Qreg�(p0, h0), (p0, h0)

�

are generic among all loops in P\Wb.
For such loops Theorem 3.10.3 applies and thus Theorem 3.1.7 follows.

The idea of the proof that w 6= 0 is to exhibit a loop (pt) in P\Wb on which
w evaluates non-trivially. More precisely, we will construct such a loop which
intersects W s

1,? in two points as illustrated in Figure 3.1, which cannot be joined
by a path in W s

1,?; however, they are joined by a path in W s
1 passing through W s

1,?
in a unique point.

While the coorientation on W s
1 is preserved along this path, the one on W s

1,?
is not. Consequently, the intersection number of the loop with W s

1,? is ±2. The
above situation can be arranged so that (pt) does not intersect W s̃

1,? for any other
spin structure s̃. It follows that

w([pt])± 2 6= 0.

If (p0, h0) 2 Qreg and (pt, ht) is a loop in Qreg�(p0, h0), (p0, h0)
�

and w([pt]) 6=
0, then there is exists a singular harmonic Z2 harmonic spinor with respect to
some pt for otherwise

w([pt]) = 0

by Theorem 3.5.7.

Remark 3.10.4. This and the work of Takahashi [Tak15; Tak17] indicate the
presence of a wall WZ2 ⇢P caused by singular harmonic Z2 spinors as depicted
in Figure 3.1. In light of the above discussion it is a tantalizing question to ask:

Can the harmonic Z2 spinors, whose abstract existence is guaranteed by
Theorem 3.10.3, be constructed more directly by a gluing construction?
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W s
1,?

WZ2?
W s

1,?

w = +2

+1

+1

Figure 3.1: A loop linking W s
1,? and pairing non-trivially with w.

We plan to investigate this problem in future work.

Proof of Theorem 3.10.3. To prove (2), note that if (p0, h0) 2 Qreg and (pt, ht) is a
loop in Qreg�(p0, h0), (p0, h0)

�

and w([pt]) 6= 0, then there is exists a singular
harmonic Z2 spinor with respect to some pt for otherwise

n(p0, h0) = n(p0, h0) + w([pt])

by Theorem 3.5.7. Here

n(p, h) = Â
w

nw(p, h)

and we sum over all spinc structures w with trivial determinant.
In order to prove (1) we will produce a loop pairing non-trivially with w. The

existence of such a loop is ensured by the following result provided we can
exhibit a point p? 2 W s

1,?.

Proposition 3.10.5. Given p? 2 W s
1,? and an open neighborhood U of p? 2 P , there

exists a loop (pt)t2S1 in U \ (P\W s
b ) such that:

1. p1/4, p3/4 2 W s
1,?, and pt 2P\W s

1 for all t /2 {1/4, 3/4},

2. if Y1/4 and Y3/4 denote spinors spanning /Ds
p1/4

and /Ds
p3/4

, then

deg(Y1/4, Y3/4) = ±1;

and

3. the spectral crossings at p1/4 and p3/4 occur with opposite signs.

In particular, the intersection number of (pt)t2[0,1] with W s
1,? with respect to the coorien-

tation from Proposition 3.10.2 is ±2.

Proof. Let Y? 2 ker /Ds
p?

and x? 2 M be such that kY?kL2 = 1 and Y?(x?) = 0.
Let f 2 G(Re(Ss ⌦ E)) be such that

im((rY?)x?) + Rhf?(x?)i = Re(Ss ⌦ E)x? ,
|f?(x?)| = 1, and rf(x?) = 0.
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We can assume that U is sufficiently small for the Implicit Function Theorem to
guarantee that there is a unique smooth map U ! R⇥ G(Re(Ss ⌦ E))⇥M⇥R,

p 7! (l(p), Yp, xp, n(p))

such that

l(p?) = 0, Yp? = Y?, and xp? = x?

as well as

/Ds
pYp = l(p)Yp Yp(xp) = n(p)f?(xp), and kY0kL2 = 1. (3.10.3)

As before

U \W s
1 = l

�1(0).

Set

N := n

�1(0).

This is the set of those p 2 U for which the eigenspinor with smallest eigenvalue
has a unique zero which is also non-degenerate.

From the proof of Proposition 3.10.2 we know that U \W s
1 is a codimension

one submanifold. We will now show that N is a codimension one submanifold
as well and that it intersects U \W s

1 transversely in U \W s
1,?, see Figure 3.2.

Knowing this, the existence of a loop (p)t2S1 with the desired properties follows
easily because crossing N changes the relative degree by ±1. Indeed, let t0
be a time at which the path crosses N and let # be a small positive number.
Consider the path of eigenspinors (Ypt) for t 2 [t0 � #, t0 + #] as introduced in
(3.10.3). For t 6= t0, each of the spinors is nowhere vanishing and Ypt0

has a single
non-degenerate zero. Thus, deg(Ypt0�#

, Ypt0+#

) = ±1.

W s
1

N
W s

1,?

pt

Figure 3.2: W s
1 and N intersecting in W s

1,?.

We will show that dp?n|Tp?W s
1

is non-vanishing. This implies both that N is
a codimension one manifold and that it intersects U \ W s1 transversely. For
p̂ = (0, b) 2 Tp?P to be determined, set

lt := l(p? + tp̂), Yt := Yp?+tp̂, xt := xp?+tp̂, and nt := np?+tp̂
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as well as

l̇

:=
d
dt

�

�

�

�

t=0
lt, Ẏ :=

d
dt

�

�

�

�

t=0
Yt, ẋ :=

d
dt

�

�

�

�

t=0
xt, and ṅ

:=
d
dt

�

�

�

�

t=0
nt.

Differentiating (3.10.3) we obtain

ḡ(b)Y? + /Ds
p?

Ẏ = l̇Y?, Ẏ(x?) + (rY?)x? ẋ = ṅf(x?), and hY?, ẎiL2 = 0.

From this it follows that

l̇ = hḡ(b)Y?, Y?iL2 ,
/Ds

p?
Ẏ = ḡ(b)Y? � hḡ(b)Y?, Y?iL2 Y?, and

ṅ = hẎ(x?), f(x?)i.
(3.10.4)

Suppose we can arrange a choice of b such that

1. hḡ(b)Y?, Y?iL2 = 0,

2. /Ds
p?

Ẏ vanishes in a neighborhood of x?.

3. hẎ(x?), f(x?)i 6= 0, and

4. hY?, ẎiL2 = 0.

In this situation it would follow that

l̇ = 0 but ṅ 6= 0;

that is

p̂ = (0, b) 2 Tp?W
s

1 and dp?n(b) 6= 0.

It remains to find such a b. To begin with, observe that we can certainly find Ẏ
with the above properties by solving the Dirac equation in a neighborhood of x?
subject to the constraint (3) and then extending to all of M so that (4) holds. Fix
such a choice of Ẏ. Clifford multiplication by T⇤M⌦ su(E) on Re(Ss⌦ E) induces
a isomorphism between T⇤M⌦ su(E) and trace-free symmetric endomorphisms
of Re(Ss ⌦ E). Since /Ds

p?
Ẏ vanishes in a neighborhood of x? and Y? vanishes

only at x?, one can find b 2 W1(M, su(E)) such that

hḡ(b)Y?, Y?iL2 = 0 and ḡ(b)Y? = /Ds
p?

Ẏ.

This completes the proof.

It remains to exhibit a point p? 2 W s
1,? for some spin structure s but such

that p? /2 W s̃ for every other spin structure s̃. This requires the following two
propositions as preparation.

Proposition 3.10.6. Let k 2 {2, 3, . . .}. The subset

W s
k := {p 2P : dim ker /Ds

p = k} ⇢P

is contained in a submanifold of codimension three. Moreover, W s
k \W s

1 = W s
k .
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Proof. Let p0 2 P such that dim ker /Ds
p0

= k. Choose an L2–orthonormal basis
{Yi} of ker /Ds

p0
. For a sufficiently small neighborhood U of p0, by the Implicit

Function Theorem, there exists a unique smooth map U ! G(Re(Ss ⌦ E))�k ⇥
S2Rk

p 7! �

Y1,p, . . . , Yk,p, L(p) = (lij(p))
�

such that

Yi,p0 = Yi and L(p0) = 0

as well as

/Ds
pYi,p =

k

Â
j=1

lijYj,p and hYi,p, Yj,piL2 = dij.

(It follows from the fact that /Ds
p is symmetric, that lij = lji.) We have

U \W s
k = L�1(0)

We will show that dL : Tp0U ! S2Rk has rank at least three. This will imply that
W s

k has codimension at least three.
Suppose Y2 = f Y1 for some function f 2 C•(M). It follows that

0 = /Ds
p0

Y2 = g(r f )Y1

This in turn implies that f is constant because Y1 is non-vanishing on an dense
open subset of M. However, this is non-sense because hYi, YjiL2 = dij. It follows
that there is an x 2 M such that Y1(x) and Y2(x) are linearly independent.
Clifford multiplication induces an isomorphism from T⇤M⌦ su(E) to trace-free
symmetric endomorphisms of Re(Ss ⌦ E). Therefore, given any (µij) 2 S2R2, we
can find p̂ = (0, b) 2 Tp0U such that

hḡ(b)Yi, YjiL2 = µij for i, j 2 {1, 2}.

Since

dp0 L(p̂) =
�hḡ(b)Yi, YjiL2

� 2 S2Rk,

it follows that dp0 L has rank at least three.
It follows from the above that, for any p0 2 W s

k , there exists an arbitarily
close p 2 P with 0 < dim ker /Ds

p < k. From this it follows by induction that
W s

k \W s
1 = W s

k .

Proposition 3.10.7. If s1, s2 are two distinct spin structures, then W s1
1 and W s2

1
intersect transversely.

Proof. Let p 2 W s1
1 \W s2

1 . Denote by Y1 and Y2 spinors spanning ker /Ds1
p and

ker /Ds2
p respectively. The spin structures s1 and s2 differ by twisting by a Z2–

bundle l. This bundle corresponds to a double cover p : M̃ ! M and upon
pulling back to the cover the spin structures s1 and s2 both correspond to the
same spin structure s̃. Let Ỹi = p

⇤Yi for i = 1, 2 be the lifts of Y1, Y2 to M̃. The
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natural involution s on Ss̃ ! M̃ acts as �1 on Ỹ1 and as +1 on Ỹ2. In particular,
we have

hỸ1, Ỹ2iL2 = hs(Ỹ1), s(Ỹ2)iL2 = h�Ỹ1, Ỹ2iL2 = �hỸ1, Ỹ2iL2 ;

hence, hỸ1, Ỹ2iL2 = 0. After renormalization, we can assume that hỸi, ỸjiL2 = dij.
It follows from the argument used in the proof of Proposition 3.10.6 that there is
an x 2 M such that, for x̃ 2 p

�1(x), Ỹ1(x̃) and Ỹ2(x̃) are linearly independent.
Let l

s1 and l

s2 be the local defining functions for the walls W s1
1 and W s2

1
respectively, defined via (3.10.1) in the proof of Proposition 3.10.2. The derivative
of l

si in the direction of b 2 W1(M, su(E)) is given by (3.10.2):

dpl

si (0, b) = hḡ(b)Yi, YiiL2 =
1
2
hḡ(p⇤b)Ỹi, ỸiiL2 .

Since Ỹ1(x̃) and Ỹ2(x̃) are linearly independent, there exists b(x) 2 Tx M⌦ su(Ex)
such that

ḡ(p⇤b(x))Ỹ1(x̃) = 0 and ḡ(p⇤b(x)))Ỹ2(x̃) = Ỹ2(x̃)

We extend b(x) to a section b 2 W1(M, su(E)) such that

dpl

s1(0, b) = 0 but dpl

s2(0, b) 6= 0.

This shows that derivatives of the local defining functions of W s1
1 and W s2

1 are
linearly independent; hence, the walls intersect transversely.

Finally, we are in a position to construct p? 2 W s
1,?. Fix a spin structure s as

well as p0 = (g0, B0) and x? 2 M such that g0 and B0 are flat on a small ball
around a point x? 2 M. Choose local coordinates (y1, y2, y3) around x? and a
local trivialization of Re(Ss ⌦ E) in which g0 is given by the identity matrix and
B0 is the trivial connection. Let Y 2 G(Re⌦Ss) be any section which is nowhere
vanishing away from x? and around x? agrees with the map R3 ! H given by

(y1, y2, y3) 7! 2iy1 � jy2 � ky3.

In particular, Y has a single non-degenerate zero at x? and satisfies /Ds
pY = 0 in a

neighborhood of x?. Using the same argument as in the proof of Proposition 3.10.5,
we find b 2 W1(su(E)) vanishing in a neighborhood of x? and such that for
p? = (g0, B0 + b) we have

0 = /Ds
p?

Y = /Ds
p0

Y + ḡ(b)Y.

This shows that Y is harmonic with respect to p?. If dim ker /Dp? > 1, then
Proposition 3.10.6 and the argument from Proposition 3.10.5 can be used to
slightly perturb p? to arrange that dim ker /Dp? = 1 and any spinor spanning
/Dp? has a non-degenerate zero (close to x?). Similarly, Proposition 3.10.6 and
Proposition 3.10.7 can be used to ensure that there are no non-trivial harmonic
spinors with respect to p? for any other spin structure s̃.

3.11 relation to gauge theory on g2 –manifolds

Donaldson and Thomas [DT98, Section 3] suggested that one might be able
to construct G2 analogues of the Casson invariant/instanton Floer homology
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associated to a natural functional whose critical point are G2–instantons. One key
difficulty with this proposal is that G2–instantons can degenerate by bubbling
along associative submanifolds. Donaldson and Segal [DS11, Section 6] explain
that this bubbling could be caused by the appearance of (nowhere vanishing)
harmonic spinors of Re(E⌦ S) over associative submanifolds. In particular, the
signed count of G2–instantons can jump along a one-parameter family. Donaldson
and Segal propose to compensate this jump with a counter-term consisting of a
weighted count of associative submanifolds.

Joyce [Joy17, Example 8.5] poses the following scenario. Consider a one–
parameter family of G2–manifolds {(Y, ft) : t 2 [0, 1]} together with an SU(2)–
bundle E where:

• there is a smooth family of irreducible connections (At)t2[0,1] 2 A (E)[0,1]

such that At is an unobstructed G2–instanton with respect to ft for each
t 2 [0, 1],

• there are no relevant associatives in (Y, ft) for t 2 [0, 1/3) [ (2/3, 1], and

• there is an obstructed associative P1/3 in (Y, f1/3), which splits into two
unobstructed associatives P±

t in (Y, ft) for t 2 (1/3, 2/3), and which then
annihilate each other in an obstructed associative P2/3 in (Y, f2/3).

According to [Wal17, Theorem 1.2] a regular crossing of the spectral flow of family
of Dirac operators /D±

t : G(Re(E|P±
t
⌦ /SP±

t
))! G(Re(E|P±

t
⌦ /SP±

t
)) causes a jump

in the signed count of G2–instantons; however, the sign of this jump has not
been analyzed.7 Donaldson and Segal [DS11, Section 6] and Joyce [Joy17, Section
8.4] suggest that this is the only source of jumping phenomena. The difference
in the spectral flows of the Dirac operators /D±

t is a topological invariant, say
k 2 Z, which may be non-zero. [Joy17, Section 8.4] thus concludes that passing
from t < 1/3 to t > 2/3 the signed number of G2–instantons should change by
k · |H1(P1/3, Z2)|; and, since there are no associatives for t 2 [0, 1/3) [ (2/3, 1],
no counter-term involving a weighted count of associatives could compensate
this jump.

It is proposed in [HW15] that the weight associated with each associative 3-
manifold should be the signed count of solutions to the Seiberg–Witten equation
with two spinors. The loop of associatives can equivalently be seen as a path of
parameters (pt)t2[0,1] on a fixed 3–manifold P, with p1 gauge equivalent to p0.
Therefore, one can ask how n(pt) varies in this scenario. Suppose that b1(P1/3) >
1. Assuming there are no harmonic Z2 spinors along the path (pt)t2[0,1], a jump
in n(pt) would occur precisely when the spectrum of one of the Dirac operators
/Ds

pt crosses zero. If the wall-crossing formula for n(pt) were given by the sum of
the spectral flows of ( /Ds

pt)t2[0,1], then we would have arrive a contradiction just
like in Joyce’s argument:

0 6= k · |H1(P, Z2)| = n(p1)� n(p0) = 0

since p1 and p0 are gauge equivalent. However, the conclusion of our work is
that:

7 To be more precise, the jump occurs in the signed count of G2–instantons on a bundle E0, which is
related to E by c2(E0) = c2(E) + PD[P] with [P] = [P1/3] = [P±

t ] = [P2/3].
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1. The wall-crossing for n(pt) caused by harmonic spinors is not given by the
spectral flow.

2. There exist singular harmonic Z2 spinors which cause additional wall-
crossing.

It is possible that the same happens for the signed count of G2–instantons. To
evaluate the viability of the proposal in [HW15] it is important to answer the
following questions.

Question 3.11.1. What is the sign of the jump in the number of G2–instantons
caused by a harmonic spinor?

Question 3.11.2. Do singular harmonic Z2 spinors cause a jump in the number
of (possibly singular) G2–instantons?



4A D H M M O N O P O L E S O N R I E M A N N S U R FA C E S

We have seen that for a general quaternionic representation r, the moduli space
of r–monopoles can be non-compact. In Chapter 2 we constructed its partial
compactification consisting of r–monopoles and Fueter sections with values in
the hyperkähler quotient associated with r. However, the existence result of
Chapter 3 shows that the full compactification should include also Fueter sections
which are singular along 1–dimensional sets. In particular, one expects that
there is an analogue of the wall-crossing phenomenon, described in the previous
chapters, which involves such singular Fueter sections. A precise construction
of the full compactification of the moduli space of r–monopoles is a central
open problem in the study of the Seiberg–Witten equations associated with
quaternionic representations.

The purpose of Chapter 4 is to focus on examples, which give us new insights
into the general problem of constructing such a compactification. Specifically, we
study ADHM monopoles on Riemannian 3–manifolds of the form M = S1 ⇥ S
for a compact Riemann surface S.

In Section 4.1 we prove that for any quaternionic representation r, all irreducible
r–monopoles on S1 ⇥ S are pulled back from solutions of a vortex-type equation
on S. In Section 4.2 we apply this theorem to the ADHM Seiberg–Witten equations.
This establishes a Hitchin–Kobayashi correspondence between ADHM monopoles
on S1 ⇥ S and certain holomorphic objects on S satisfying a stability condition. It
turns out that such holomorphic objects on Riemann surfaces have been already
studied in algebraic geometry under the name of ADHM bundles.

In Section 4.3 we specialize further to the Seiberg–Witten equation with two
spinors. In this setting we construct an isomorphism, in the category of real
analytic spaces, between the moduli space M of monopoles with two spinors
and the moduli space Mhol of the holomorphic data appearing in the Hitchin–
Kobayashi correspondence. Section 4.4 is devoted to the problem of compactifying
these moduli spaces. We construct two compactifications M ⇢ M and Mhol ⇢
M

hol, using gauge theory and complex geometry respectively, and prove that
the isomorphism M ⇠= Mhol extends to a homeomorphism M ⇠= M

hol.1 A
consequence of this result is that M is a compact analytic spaces containing the
original moduli space M as a Zariski open, dense subset.

In Section 4.5 and Section 4.6 we consider the problem counting monopoles
with two spinors on M = S1⇥S. This involves studying the existence of harmonic
Z2 spinors. We show that for a generic choice of S1–invariant parameters of the
Seiberg–Witten equation with two spinors, harmonic Z2 spinors do not appear
and M = M. Moreover, in this case M is a compact Kähler manifold. This
manifold is often of positive dimension, because monopoles in M are obstructed
in the sense of deformation theory from Section 2.3 After a small perturbation,

1 In Chapter 2, we used the symbol M to denote the partial compactification. Throughout this chapter
we use the same symbol for a larger space containing also certain singular harmonic Z2 spinors. This
should not cause any confusion as the partial compactification from Chapter 2 never appears in this
chapter.

94
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which is no longer S1–invariant, all monopoles in M become unobstructed and the
moduli space splits into isolated points. These points can be counted with signs,
yielding a number independent of the initial choice of S1–invariant parameters
of the Seiberg–Witten equation. In Section 4.7 we compute the resulting signed
count of monopoles with two spinors when S has genus zero, one, and two. In
addition, we construct many explicit examples of monopoles with two spinors
and harmonic Z2 spinors using complex geometry.

From the viewpoint of higher-dimensional gauge theory, the case M = S1 ⇥ S
considered in this chapter is relevant to the study of G2–manifolds of the form
X = S1 ⇥ Z. Here Z is a Calabi–Yau 3–fold and S is embedded in Z as a
holomorphic curve. G2–instantons over S1 ⇥ Z correspond to Hermitian–Yang–
Mills connections on Z and so one expects that there is a relationship between
monopoles on S1 ⇥ S and Hermitian–Yang–Mills connections on Z whose energy
is highly concentrated around S. By the Donaldson–Uhlenbeck–Yau theorem,
Hermitian–Yang–Mills connections correspond to stable holomorphic vector
bundles. Thus, the results of this chapter can be seen as the first step towards a
gauge-theoretic interpretation of local Donaldson–Thomas invariants in algebraic
geometry [OP10; Dia12b]; see also [DW17b, Section 7] for more details on the
relationship between ADHM monopoles and Donaldson–Thomas theory.

references This chapter is a rewritten version of the article [Doa17b], in-
corporating also some material from [Doa17a]. Section 4.2 is based on [DW17b,
Section 7.4], written in collaboration with Thomas Walpuski.

4.1 a dimensional reduction

Let S be a compact, connected surface and let M = S1 ⇥ S. In this section, we
study Seiberg–Witten equations on M under the assumption that the parameters
of the equations are invariant in the S1–direction. The main result of this section
is Theorem 4.1.12 below. The classical Seiberg–Witten equation was studied in the
S1–invariant setting by Morgan, Szabó, and Taubes [MST96], Mrowka, Ozsváth,
and Yu [MOY97], and Muñoz and Wang [MW05].

In what follows we will use the notation and definitions introduced in Sec-
tion 2.2. Suppose that a set of algebraic data as in Definition 2.1.7 was chosen.
Equip M with a set of compatible geometric data as in Definition 2.2.1, which is
pulled back from S in the following sense.

Definition 4.1.1. A set of geometric data (g, s, Q, B) as in Definition 2.2.1 is pulled
back from S if

1. the Riemannian metric g is the product of the standard metric on S1 and a
Riemannian metric gS on S,

2. the spin structure s is induced from a spin structure on S,

3. the principal H–bundle Q! M is pulled back from a bundle on S,

4. the connection B is pulled back from a connection on S.

Remark 4.1.2. We could work under the weaker assumption that only the prin-
cipal K–bundle R ! M is pulled back from S. In Theorem 4.1.12 below we
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prove that this assumption and the existence of an irreducible solution of the
Seiberg–Witten equation implies that Q! M must be pulled back from S.

Recall that a choice of a spin structure on S is equivalent to a choice of a
Hermitian line bundle K1/2 together with a U(1) connection and an isomorphism
(K1/2)⌦2 with K = L1,0T⇤S, the canonical bundle of the Riemann surface (S, g).
The corresponding spin structure s on M = S1 ⇥ S is isomorphic, as a principal
Sp(1)–bundle, to the pull back of the Sp(1)–bundle on S associated with K�1/2

via the standard inclusion U(1) ⇢ Sp(1). The spinor bundle of s is the pull back
of the rank two complex vector bundle K1/2 � K�1/2.

Remark 4.1.3. To keep the notation simple, when it is not likely to cause confu-
sion, we will use the same symbols K1/2, Q, B, and so on, for the corresponding
bundles and connections on S and their pull backs to M.

In the situation at hand, the generalized spinor bundle S over M, introduced
in Definition 2.2.3, is pulled back from the following bundle over S:

S = (K�1/2 ⇥Q)⇥U(1)⇥H S.

The action of unit quaternions Sp(1) on the quaternionic vector space S rotates
the sphere of complex structures, with U(1) ⇢ Sp(1) being the stabiliser of i;
thus, S is a complex vector bundle. Consider the quaternionic vector bundle
V = Q⇥H S; then

S = V ⌦C K�1/2,

where the complex structure on V is given by i. The remaining part of the
quaternionic structure is encoded in an anti-linear involution j : V ! V. Taking
the tensor product of j with the anti-linear map K1/2 ! K�1/2 given by the
metric, we obtain an anti-linear isomorphism

s : V ⌦ K1/2 ! V ⌦ K�1/2.

We define similarly a map going in the opposite direction, also denoted by s, so
that s

2 = �1. Equivalently, s can be seen as a map

s : S⌦ K ! S

which is a two-dimensional manifestation of the Clifford multiplication.
Next, we relate sections and connections on M to those on S.

Definition 4.1.4. Denote by AB(M, Q) the space of connections on Q ! M
inducing the connection B on R, as in Definition 2.2.4. Denote by AB(S, Q) the
analogous space of connections on Q ! S. Using the pull back operation, we
interpret AB(S, Q) as a subset of AB(M, Q).

Let t 2 [0, 1] be the coordinate on S1 in M = S1 ⇥ S. Any connection AM 2
AB(M, Q) can be uniquely written in the form

AM = A(t) + b(t)dt

for one-periodic families A(t) of connections in AB(S, Q) and sections b(t) of
the adjoint bundle gP introduced in Definition 2.2.4. The subset AB(S, Q) ⇢
AB(M, Q) consists of those AM for which b(t) = 0.
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Likewise, any section F 2 G(M,S) can be identified with a one-periodic family
F(t) 2 G(S,S). Thus, G(S,S) embeds into G(M,S) as sections independent of
t. Finally, the group of restricted gauge transformations G (S, P), defined as in
Definition 2.2.12, is naturally a subgroup of G (M, P).

Definition 4.1.5. An S1–invariant configuration is an element of

G(S,S)⇥AB(S, Q) ⇢ G(M,S)⇥AB(M, Q).

Proposition 4.1.6. If two S1–invariant configurations differ by g 2 G (M, P), then
g 2 G (S, P). In particular,

G(S,S)⇥AB(S, Q)
G (S, P)

is a submanifold of

G(M,S)⇥AB(M, Q)
G (M, P)

.

The Dirac operator on M can be expressed in terms of the Dolbeault operator on
S. Consider the simplest case M = R3 = R⇥C and S = H. Denoting coordinates
on R⇥C by t and z = x + iy, we have for a map F : R3 ! H

/DF = i
∂F
∂t

+ j
∂F
∂x

+ k
∂F
∂y

=
∂F
∂t

+ j
✓

∂F
∂x
� i

∂F
∂y

◆

= i
∂F
∂t

+ 2j
∂F
∂z

. (4.1.1)

In general, ∂/∂z is replaced by the Dolbeault operator

∂A : G(S,S)! G(S,S⌦ K)

or equivalently,

∂A : G(S, V ⌦ K�1/2)! G(S, V ⌦ K1/2),

which is defined as the (1, 0)–part of the covariant derivative rA acting on sec-
tions of S. The proof of the next proposition is a simple calculation in conformal
coordinates, almost the same as (4.1.1). 2

Proposition 4.1.7. Let AM = A(t) + b(t)dt be a connection in A (M, P) and F =
F(t) a section in G(M,S). The Dirac operator /DAM acting on G(M,S) is given by

/DAM F = i
✓

∂F
∂t

+ b(t)F
◆

+
p

2s

⇣

∂A(t)F
⌘

.

We move on to the hyperkähler moment map µ : S ! g⌦ R3 introduced in
Section 2.1. In the dimensionally-reduced setting, we use the splitting of µ into
the real and complex parts: µR : S ! g and µC : S ! g⌦ C. If µ = (µi, µj, µk)
are the three components of µ, then µR = µi and µC = µj + iµk. The following
identity will be useful later:

hµC(x)jx, xi = |µC(x)|2 (4.1.2)

2 The difference between the constants 2 in (4.1.1) and
p

2 in Proposition 4.1.7 comes from the fact that
|dz| = p2 with respect to the Euclidean metric on C.
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Under the reduction of the structure group of M from SO(3) to U(1), the splitting
R3 = R� C gives us su(/S) = R� K�1. Here, /S = K1/2 � K�1/2 is the spinor
bundle of the spin structure s. Accordingly, µ : S ! su(/S)⌦ gP splits into the
direct sum of

µR : S! gP and µC : S! K�1 ⌦ gP.

µC is holomorphic when restricted to fibers. Similarly, we have the conjugate
maps

µR : S! gP and µC : S! K⌦ gP,

which satisfy

µR � s = �µR and µC � s = µC.

Proposition 4.1.8. Let AM = A(t) + b(t)dt a connection in AB(M, Q) and F = F(t)
a section in G(M,S). The generalized Seiberg–Witten equation (2.2.1) for (F, AM) is
equivalent to

8

>

>

>

<

>

>

>

:

i
⇣

∂F
∂t + bF

⌘

+
p

2s (∂AF) = 0,

v

⇣

∂A
∂t + dAb

⌘0,1
= � i

2 µC(F),

⇤vFA = µR(F).

(4.1.3)

In particular, for a S1–invariant configuration (A, F) the equation simplifies to
8

>

>

<

>

>

:

∂ABF = 0,
µC(F) = 0,
⇤vFA = µR(F).

(4.1.4)

Proof. By Proposition 4.1.7, the first equation in (4.1.3) is equivalent to /DAM F = 0.
The remaining two equations are obtained from the identifications

su(/S) ⇠= L0S� K�1 and µ

⇠= µR � µC (4.1.5)

discussed earlier. Under the decomposition

L2M =
⇣

L2S
⌘

�
⇣

L1S1 ⌦L1S
⌘

(4.1.6)

the curvature FAM decomposes into

FAM = FA + dt ^
✓

∂A
∂t

+ dAb
◆

.

We need to identify the splittings (4.1.5) and (4.1.6) under the isomorphism
L2M ⇠= su(/S). For simplicity, consider the flat case M = R⇥C, with coordinates
t and z = x + iy—the general case differs from it by a conformal factor. The
isomorphism L2R3 ⇠= su(2) is given by

dx ^ dy 7! i, dy ^ dt 7! j, dt ^ dx 7! k.
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On the other hand, su(2) is identified with R�C via the map

ai + bj + ck 7! (a, b + ic).

Let a + dt ^ b be a two-form on R3, where

a = adx ^ dy, b = b1dx + b2dy.

Under the identifications L2R3 = su(2) = R�C,

a + dt ^ b 7! ai� b2 j + b1k 7! (a,�b2 + ib1).

Observe that a = ⇤a and (�b2 + ib1)dz̄ = 2ib0,1, where b

0,1 is (0, 1)-part of b. It
follows that under the splittings (4.1.5) and (4.1.6) the isomorphism

⇣

L2S
⌘

�
⇣

L1S1 ⌦L1S
⌘ ⇠= L0S� K�1

is the direct sum of the Hodge star L2S ! L0S and the map L1S ! L0,1S
taking a one-form b to 2ib0,1. Thus, vFAM = µ(F) is equivalent to the last two
equations in (4.1.3).

Remark 4.1.9. Since it is more common to consider holomorphic rather than
aholomorphic sections, we can complete the picture by considering the conjugate
bundle

S = (Q⇥ K1/2)⇥H⇥U(1) M = V ⌦ K1/2 = S⌦ K.

We have the Dolbeault operators

∂A : G(S,S) = G(S, V ⌦ K�1/2) �! G(S, V ⌦ K1/2) = G(S,S),

∂̄A : G(S,S) = G(S, V ⌦ K1/2) �! G(S, V ⌦ K�1/2) = G(S,S),

and the maps s : S! S and s : S! S that intertwine them:

s∂A = ∂̄As.

Thus, s maps aholomorphic sections of S to holomorphic sections of S and vice
versa. It follows from the Kähler identities that

∂̄A = �∂

⇤
A

where ∂

⇤
A is the formal adjoint of ∂A.

Using s, we can rewrite (4.1.4) as a system of equations for F := s(F) 2
G(S,S):

8

>

>

<

>

>

:

∂̄AF = 0,
µC(F) = 0,
⇤vFA + µR(F) = 0.

(4.1.7)

This is an example of a symplectic vortex equation discussed in [Cie+02]. The target
singular symplectic space is the zero locus µ

�1
C (0) ⇢ S.
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Example 4.1.10. In the case of the classical Seiberg–Witten equation, we have
G = H = U(1), S = C2, and

µ

�1
C (0) = {(x, y) 2 C2 | xy = 0}.

We see that µ

�1
C (0) has an isolated singularity at 0.

The next theorem is the main result of this section. It assumes the existence of
an irreducible solutions to the Seiberg–Witten equation.

Definition 4.1.11. A solution (F, A) of the Seiberg–Witten equation (2.2.1) is
called irreducible if there exists a point x 2 M such that the G–stabilizer of
F(x) 2 Sx = S is trivial.

Theorem 4.1.12. Suppose that M = S1 ⇥ S is equipped with a set of geometric data
(g, s, Q, B), as in Definition 2.2.1, such that

1. the Riemannian metric g is the product of the standard metric on S1 and a Rieman-
nian metric gS on S,

2. the spin structure s is induced from a spin structure on S,

3. the principal K–bundle R! M is pulled back from a bundle on S,

4. the connection B is pulled back from a connection on S.

If (F, AM) is an irreducible solution of the Seiberg–Witten equation (2.2.1), then Q! M
is pulled back from a bundle over S (that is: the geometric data is pulled back from S
in the sense of Definition 4.1.1) and (F, AM) is gauge-equivalent to a S1–invariant
configuration satisfying (4.1.4).

Remark 4.1.13. Theorem 4.1.12 establishes a correspondence between gauge
equivalence classes of solutions of the Seiberg–Witten equation on M = S1 ⇥ S
with the hyperkähler target S and gauge equivalence classes of solutions of the
symplectic vortex equation on S with the singular Kähler target µ

�1
C (0).

Proof. Assume for simplicity that the algebraic data from Definition 2.1.7 is so
that G = H; the general proof is the same after adjusting the notation. In this case,
the flavor symmetry group K is trivial, and so are the bundle R and connection B
appearing in the geometric data from Definition 2.2.1. Identify S1 with [0, 1] with
the endpoints glued together. Pull back the data on M = S1 ⇥ S to one-periodic
data on [0, 1]⇥S. Since [0, 1]⇥S is homotopy equivalent to S, there is a principal
G–bundle QS ! S and a gauge transformation g 2 G (S, QS) such that Q is the
quotient of [0, 1]⇥QS by the relation (0, p) ⇠ (1, g(p)). The isomorphism class of
Q depends only on the homotopy class of g. Similarly, S = (Q⇥ S)⇥G⇥SU(2) M
over M is obtained from pulling back SS = (QS ⇥ K�1/2)G⇥U(1)M to [0, 1]⇥ S
and identifying the fibers over 0 and 1 using g. As before there is an anti-linear
map s : SS ⌦ K ! SS.

For AM 2 AB(M, Q) and F 2 G(M,S) we have

AM = A(t) + b(t)dt, F = F(t),

where A(t), b(t), and F(t) are families of connections and sections on S, as
discussed earlier. The only difference now is that the families are periodic with
respect to the action of g:

A(1) = g (A(0)) , b(1) = g (b(0)) , F(1) = g (F(0)) .



4.1 a dimensional reduction 101

Define a gauge transformation h over [0, 1]⇥ S by

h(t) = exp
✓

Z t

0
b(s)ds

◆

. (4.1.8)

h does not necessarily descend to an automorphism of Q! M; this happens if
and only if h(1) = Adg(h0) = id. In any case, h is well-defined over [0, 1]⇥ S
and the new connection

C := h(AM) = AM � h�1dAM h = h(t) (A(t))

does not have a dt part—it is in a temporal gauge. Thus, it is identified with a
path of connections {C(t)}t2[0,1] on QS satisfying C(1) = h(1)g(C(0)). Likewise,
we identify the section h(F) with a path {F(t)}t2[0,1] of sections of SS ! S
satisfying F(1) = h(1)g(F(0)).

By Proposition 4.1.8, the Seiberg–Witten equation for (F, C) is equivalent to
8

>

>

<

>

>

:

i ∂F
∂t +

p
2s (∂CF) = 0,

⇣

∂C
∂t

⌘0,1
= � i

2 µC(F),

⇤FC = µR(F).

(4.1.9)

Differentiating the first equation with respect to t and using (4.1.9), we obtain

0 = i
∂

2F
∂t2 +

p
2s

(

✓

∂C
∂t

◆1,0
F + ∂C

✓

∂F
∂t

◆

)

= i
∂

2F
∂t2 +

p
2

2
siµC(F)F + 2si∂Cs∂CF

= i
∂

2F
∂t2 �

p
2

2
iµC(F)sF� 2is∂Cs∂CF.

We have used the anti-linearity of s and the fact that ∂C/∂t is a real g–valued
one-form, so its (1, 0) part is conjugate to the (0, 1) part. Multiplying the obtained
identity by i and taking the pointwise inner product with F yields

0 =

⌧

�∂

2F
∂t2 , F

�

+

p
2

2
hµC(F)sF, Fi+ 2 hs∂Cs∂CF, Fi . (4.1.10)

By formula (4.1.2) the second term simplifies to
p

2/2|µC(F)|2. Remark 4.1.9
implies that

s∂Cs∂C = ∂̄C

⇣

s

2
⌘

∂C = �∂̄C∂C = ∂

⇤
C∂C.

We conclude that

hs∂Cs∂CF, FiL2(S) = h∂⇤C∂CF, FiL2(S) = k∂CFk2
L2(S) .

For a fixed value of t integration of (4.1.10) over S yields

0 =
Z

S

⌧

�∂

2F
∂t2 , F

�

volS +

p
2

2
kµC(F)k2

L2(S) + 2k∂CFk2
L2(S).



4.2 adhm bundles on riemann surfaces 102

Integrate the last equality by parts with respect to t 2 [0, 1]. The boundary terms
vanish because F is periodic up to the action of h(1)g which preserves the inner
product. We obtain

0 =

�

�

�

�

∂F
∂t

�

�

�

�

2

L2
+

p
2

2
kµC(F)k2

L2 + 2 k∂CFk2
L2 ,

which shows that

∂F
∂t

= 0,
∂C
∂t

= 0.

Thus, the families C(t) = C and F(t) = F are constant and

C = C(1) = k (C(0)) = k(C), F = F(1) = k (F(0)) = k(F)

for the gauge transformation k = h(1)g over S. The first equality implies dCk = 0,
so k is covariantly constant. On the other hand, by irreducibility, there exists a
point x 2 S such that the G–stabiliser of F(x) is trivial. Hence, k(x) = id, so
k = id everywhere and g = h(1)�1. The path h(t)�1 is a homotopy of gauge
transformations connecting g with h(0)�1 = id and so Q ! M is pulled back
from QS ! S. In particular, we could have chosen g = id, then h(1) = id and h
descends to a gauge transformation of Q mapping (AM, F) to the S1–invariant
solution (C, F). By Proposition 4.1.8, (C, F) satisfies equation (4.1.4).

Remark 4.1.14. Much of this discussion can be extended to the setting when
S is a hyperkähler manifold with an isometric Sp(1)–action, which rotates the
sphere of complex structures on S. The Dirac operator /DA and equation (2.2.1)
have natural generalizations [Hay12; Hay14a]. For M = S1 ⇥ S one introduces
the non-linear Dolbeault operator ∂A as in [Cie+02] so that Proposition 4.1.7 and
Proposition 4.1.8 hold. However, our proof of Theorem 4.1.12 makes use of the
vector space structure on S and does not immediately generalize to the non-linear
setting. We expect the result to be true, but in the proof one should use the
Weitzenböck formula for non-linear Dirac operators [Tau99; Pid04b; Cal15].

4.2 adhm bundles on riemann surfaces

In Section 2.9 we introduced the notion of an ADHM monopole on a 3–manifold.
In this section, we apply Theorem 4.1.12 to characterize ADHM monopoles on
M = S1 ⇥ S in terms of the complex geometry of S.

We will consider the ADHMr,k Seiberg–Witten equation on M under the as-
sumption that the geometric data required to write down the equation is pulled-
back from S. This is similar to the situation described in Definition 4.1.1. However,
in order to discuss the ADHMr,k Seiberg–Witten equation, it is convenient to use
spinU(k) structures rather than spin structures. Specifically, assume that we are
given a set of geometric data as in Definition 2.9.5 such that

1. g is a product Riemannian metric,

2. E and the connection B are pulled-back from S, and

3. V and the connection C are pulled-back from a U(2)–bundle with a connec-
tion on S such that L2

CV ⇠= KS as bundles with connections.
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Proposition 4.2.1. If the above three conditions hold and (Y, x, A) is an irreducible
solution of the ADHMr,k Seiberg–Witten equation (2.9.3), then the spinU(k) structure
w is pulled-back from a spinU(k) structure on S and (Y, x, A) is gauge-equivalent to a
configuration pulled-back from S.

Recall that any spinU(k) structure on a 3–manifold is obtained from a spin
structure and a U(k)–bundle as in Example 2.9.4. Thus, the above result can
be formulated in the language of spin structures and is a special case of Theo-
rem 4.1.12.

In the situation of Proposition 4.2.1, equation (2.9.3) reduces to a non-abelian
vortex equation on S. Recall that a choice of a spinU(k) structure on S is equivalent
to a choice of a U(k)–bundle H ! S. Consequently, A can be seen as a connection
on H. The corresponding spinor bundles are

gH = u(H) and W = H � T⇤S0,1 ⌦ H.

Proposition 4.2.2. Let (A, Y, x) be a configuration pulled-back from S. Under the
splitting W = H � T⇤S0,1 ⌦ H we have Y = (y1, y

⇤
2 ) where

y1 2 G(S, Hom(E, H)),

y2 2 W1,0(S, Hom(H, E)), and
x 2 G(S, V ⌦ End(H)).

Equation (2.9.3) for (A, Y, x) is equivalent to

∂̄A,By1 = 0, ∂̄A,By2 = 0, ∂̄A,Cx = 0,
[x ^ x] + y1y2 = 0, and

i ⇤ FA + [x ^ x

⇤] + y1y

⇤
1 � ⇤y⇤2 y2 = 0.

(4.2.1)

In the second equation we use the isomorphism L2
CV ⇠= KS so that the left-hand side is

a section of W1,0(S, End(H)). In the third equation we contract V with V⇤ so that the
left-hand side is a section of iu(H).

This follows from Proposition 4.1.8, Remark 4.1.9, and the complex description
of the hyperkähler moment map appearing in the ADHM construction, cf. [Nak99,
Chapter 2] and [DW17b, Appendix D]

We can also perturb (4.2.1) by t 2 R and q 2 H0(S, KS):

∂̄A,By1 = 0, ∂̄A,By2 = 0, ∂̄A,Cx = 0,
[x ^ x] + y1y2 = q ⌦ id, and

i ⇤ FA + [x ^ x

⇤]� y1y

⇤
1 + ⇤y⇤2 y2 = t id.

(4.2.2)

There is a Hitchin–Kobayashi correspondence between gauge-equivalence
classes of solutions of (4.2.2) and isomorphism classes of certain holomorphic
data on S. Let E = (E, ∂̄B) and V = (V, ∂̄C) be the holomorphic bundles induced
from the unitary connections on E and V.

Definition 4.2.3. An ADHM bundle with respect to (E , V , q) is a quadruple

(H , y1, y2, x)

consisting of:
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• a rank k holomorphic vector bundle H ! S,

• y1 2 H0(S, Hom(E , H )),

• y2 2 H0(S, KS ⌦Hom(H , E )), and

• x 2 H0(S, V ⌦ End(H ))

such that

[x ^ x] + y1y2 = q ⌦ id 2 H0(S, KS ⌦ End(H )).

Definition 4.2.4. For d 2 R, the d–slope of an ADHM bundle (H , y1, y2, x) is

µ

d

(H ) :� 2p

vol(S)
deg H

rk H
+

d

rk H
.

The slope of H is µ(H ) :� µ0(H ).

Definition 4.2.5. Let d 2 R. An ADHM bundle (H , y1, y2, x) is d–stable if it
satisfies the following conditions:

1. If d > 0, then y1 6= 0 and if d < 0, then y2 6= 0.

2. If G ⇢H is a proper x–invariant holomorphic subbundle such that im y1 ⇢
G , then µ

d

(G ) < µ

d

(H ).

3. If G ⇢ H is a proper x–invariant holomorphic subbundle such that G ⇢
ker y2, then µ(G ) < µ

d

(H ).

We say that (H , y1, y2, x) is d–polystable if there exists a x–invariant decomposi-
tion H =

L

i Gi
L

j Ij such that:

1. µ

d

(Gi) = µ

d

(H ) for every i and the restrictions of (y1, y2, x) to each Gi
define a d stable ADHM bundle, and

2. µ(Ij) = µ

d

(H ) for every j, the restrictions of y1, y2 to each Ij are zero, and
there exist no x–invariant proper subbundle J ⇢ Ii with µ(J ) < µ(Ij).

In the proposition below we fix d and the topological type of H , and set
t = µ

d

(H ).

Proposition 4.2.6. Let (A, y1, y2, x) be a solution of (4.2.2). Denote by H the holo-
morphic vector bundle (H, ∂̄A). Then (H , y1, y2, x) is a d–polystable ADHM bundle.
Conversely, every d–polystable ADHM bundle arises in this way from a solution to (4.2.2)
which is unique up to gauge equivalence.

Proof. A standard calculation going back to [Don83] shows that (4.2.2) implies
d–polystability. The difficult part is showing that every d–polystable ADHM
bundle admits a compatible unitary connection solving the third equation of
(4.2.2), unique up to gauge equivalence. This is a special case of the main result
of [ACP03, Theorem 3.1], with the minor difference that the connections on the
bundles E and V are fixed and not part of a solution. The necessary adjustment
in the proof is discussed in a similar setting in [BPR03].

Remark 4.2.7. Stable ADHM bundles on Riemann surfaces were studied exten-
sively by Diaconescu [Dia12b; Dia12a], who related them to the local stable pair
invariants of the non-compact Calabi–Yau 3–fold V . This suggests that there is a
relationship between ADHM monopoles and enumerative invariants in algebraic
geometry. We elaborate on this relationship in [DW17b, Section 7].
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4.3 monopoles with two spinors

We specialize further to the Seiberg–Witten equation with two spinors, which was
introduced in Section 3.2, and which is closely related to the ADHM2,1 Seiberg–
Witten equation (see the discussion at the end of Section 2.9). In this section, we
give two constructions of the moduli space of monopoles with two spinors on
M = S1 ⇥ S, one using gauge theory and one using complex geometry, and we
prove that they are isomorphic as real analytic spaces; see Theorem 4.3.6 below.
The results of this section are inspired by work of Bryan and Wentworth [BW96].

Let M = S1 ⇥ S. Let E ! M be an SU(2)–bundle pulled back from a bundle
on S. Recall that the Seiberg–Witten equation with two spinors depends on the
choice of a parameter p = (g, B) 2Met(M)⇥A (E) and a closed 2–form h 2 Z ;
see Definition 3.1.5 and equation (3.2.1).

Definition 4.3.1. Let Met(S) be the space of Riemannian metrics on S. Define
the space of parameters pulled back from S by

PS := Met(S)⇥A (S, E).

Moreover, let ZS := W2(S, iR). We have PS ⇢P and ZS ⇢ Z .

The next result is a special case of Proposition 4.2.2.

Proposition 4.3.2. If (Y, A) is a solution of the Seiberg–Witten equation with two
spinors (3.2.2) with respect to (p, h) 2PS ⇥ZS, then

1. the spinc structure w is pulled back from a spinc structure on S,

2. (Y, A) is gauge equivalent to a configuration pulled back from S.

Concretely, there exist a spin structure K1/2 on S and a Hermitian line bundle L! S
such that the spinor bundle of w is pulled back from

W = (K1/2 ⌦ L)� (K�1/2 ⌦ L).

After a gauge transformation,

A 2 A (S, L), and
Y = (a, b̄),

with

a 2 G(S, E⇤ ⌦ L⌦ K1/2)

b 2 G(S, E⌦ L⇤ ⌦ K1/2)

and the following equations are satisfied

∂̄A,Ba = 0,
∂̄A,Bb = 0,

ab = 0,

i ⇤ FA = |a|2 � |b|2 + i ⇤ h.

(4.3.1)

Here, ab 2 G(S, K) is obtained from a⌦ b using the contractions E⌦ E⇤ ! C and
L⌦ L⇤ ! C.
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Remark 4.3.3. An attentive reader will notice that we have again switched from
the language of spinc structures to that of spin structures. The change is only
cosmetic, as every spinc structure on a Riemann surface can be obtained from a
spin structure and a Hermitian line bundle. Choosing a spin structure K1/2 on S
brings certain symmetry to the roles of a and b, which will be convenient later,
when discussing Fueter sections.

In the situation described in Proposition 4.3.2, the moduli space Mw(p, h) has
the following description. Let

CS = A (S, L)⇥ G(S, E⇤ ⌦ L⌦ K1/2)⇥ G(S, E⌦ L⇤ ⌦ K1/2)

Consider the subspace of CS consisting triples (A, a, b) satisfying equations (4.3.1).
The gauge group G (S, L) = C•(S, S1) acts on this subspace and the action is free
whenever (a, b) 6= (0, 0). By Proposition 4.3.2 and Proposition 4.1.6, the quotient
is homeomorphic to Mw(p, h).

Remark 4.3.4. To simplify the notation, assume for the remaining part of this
section that the spinc structure w and parameters (p, h) 2PS ⇥ZS are fixed and
we write simply

M := Mw(p, h).

The next result extends the work of Bryan and Wentworth [BW96] who de-
scribed monopoles with multiple spinors on Kähler surfaces under the assump-
tion that the background bundle E is trivial and B is the product connection.
Before stating the theorem, we introduce the following notation:

d = deg(L) := hc1(L), [S]i and t :=
Z

S

ih
2p

.

If d� t < 0, then the last equation of (4.3.1) forces a to be non-zero for

0 =
Z

S

n

iFA � ih + (|a|2 � |b|2)volS

o

= 2p(d� t) + kak2
L2 � kbk2

L2 .

Likewise, if d � t > 0, then b must be non-zero. In both cases there are no
reducible solutions. When d� t = 0, either both a and b are non-zero or both of
them vanish yielding a reducible solution.

Recall that every unitary connection on a vector bundle over a Riemann surface
equips the underlying vector bundle with a holomorphic structure. In particular,
K1/2 and K are naturally holomorphic line bundles.

Definition 4.3.5. Denote by E ! S the holomorphic SL(2, C)–bundle obtained
from E⇤ equipped with the dual connection B⇤.

Theorem 4.3.6. If d� t < 0, then M is isomorphic as real analytic spaces to the moduli
space Mhol of triples (L , a, b) consisting of

• a degree d holomorphic line bundle L ! S,

• holomorphic sections

a 2 H0(S, E ⌦L ⌦ K1/2) and b 2 H0(S, E ⇤ ⌦L ⇤ ⌦ K1/2)

satisfying a 6= 0 and ab = 0 2 H0(S, K).
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Two such triples (L , a, b) and (L 0, a

0, b

0) correspond to the same point in the Mhol if
there is a holomorphic isomorphism L ! L 0 mapping a to a

0 and b to b

0.
The statement still holds when d� t > 0 with the difference that for d� t > 0 it is b

instead of a that is required to be non-zero and for d� t = 0 both a and b are required
to be non-zero.

4.3.1 Construction of the holomorphic moduli space

We will now explain how to construct Mhol analytically. A related construction
was considered in [FM99, Section 1]. The first three equations in (4.3.1),

8

>

>

<

>

>

:

∂̄ABa = 0,
∂̄ABb = 0,
ab = 0,

(4.3.2)

are invariant under the action of the complexified gauge group G C(S, L) := C•(S, C⇤)
of complex automorphisms of L. The action of g : S ! C⇤ on (A, a, b) 2 CS is
given by

g(A, a, b) =
⇣

A + g�1
∂g� g�1

∂̄g, ga, g�1
b

⌘

.

In terms of the associated Dolbeault operators we have

∂̄g(A)B = g∂̄BAg�1 on G(S, E⇤ ⌦ L⌦ K1/2),

∂̄g(A)B = g�1
∂̄BAg on G(S, E⌦ L⇤ ⌦ K1/2).

Definition 4.3.7. Consider the subspace of CS consisting of triples (A, a, b) satis-
fying equations (4.3.2) and subject to the condition

8

>

>

<

>

>

:

a 6= 0 if d� t < 0,
b 6= 0 if d� t > 0,
a 6= 0 and b 6= 0 if d� t = 0.

We define Mhol to be the quotient of this subspace by the action of G C(S, L). It
is clear that the points of Mhol parametrize the isomorphism classes of triples
(L , a, b) considered in Theorem 4.3.6.

Remark 4.3.8. The moduli space Mhol depends on the conformal class of the
metric g on S, the holomorphic SL(2, C)–bundle E , the degree d of L, and the
sign of d� t, that is:

Mhol = Mhol
d (g, E , t) = Mhol

d (p, h).

The data (g, E , t) can be recovered from the data w, p, h, required to write down
the Seiberg–Witten equation with two spinors; schematically:

w ! d
p ! (g, E )

h  ! t.
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Mhol is metrizable, second countable, and has a natural complex analytic
structure given by local Kuranishi models, as in Remark 3.2.3. The discussion
is almost the same as that for the Seiberg–Witten equation (see Section 2.3 and
Section 3.2), so we only outline the details. To set up the Fredholm theory, consider
the modified equation

8

>

>

<

>

>

:

∂̄ABa + i f b̄ = 0,
∂̄ABb� i f ā = 0,
ab + ∂ f = 0.

(4.3.3)

A solution of (4.3.3) is a quadruple (A, a, b, f ) where A, a, and b are as before
and f 2 C•(S, C). The equation is elliptic modulo the action of G C(S, L). The
next result is proved by integration by parts.

Proposition 4.3.9. If (A, a, b, f ) is a solution of (4.3.3) with (a, b) 6= 0, then f = 0.

Using the linearization of (4.3.3) together with the complex Coulomb gauge
fixing we represent Mhol as the zero set of a Fredholm section. The local structure
of the moduli space is encoded in the elliptic complex at a solution (A, a, b, 0):

W0(C) W0,1 � G(E⇤ ⌦ L⌦ K1/2)� G(E⌦ L⇤ ⌦ K1/2)�W0(C)

G(E⇤ ⌦ L⌦ K�1/2)� G(E⌦ L⇤ ⌦ K�1/2)�W1,0

Gc
A,a,b

FA,a,b

where Gc
A,a,b is the linearized action of the complexified gauge group

Gc
A,a,b(h) = (�∂̄h, ha,�hb, 0),

and FA,a,b is the linearization of equations (4.3.3)

FA,a,b(a0,1, u, v, t) =

0

B

B

@

∂̄ABu + a0,1
a + itb̄

∂̄ABv� a0,1
b� itā

ub + av + ∂t

1

C

C

A

.

Even though the map given by the left-hand side of (4.3.3) is not holomorphic, its
derivative FA,a,b at a solution (A, a, b, 0) is complex linear and so the cohomology
groups H0

A,a,b, H1
A,a,b, H2

A,a,b of the elliptic complex are complex vector spaces. If
the solution is irreducible, then H0

A,a,b = 0. We are left with complex vector spaces
H1

A,a,b and H2
A,a,b of the same dimension. They have the following description.

Lemma 4.3.10. Let (A, a, b, f ) be a solution of (4.3.2) with (a, b) 6= 0 and f = 0.
Then the deformation space H1

A,a,b is the quotient of the space of solutions

(a0,1, u, v) 2 W0,1(C)� G(E⇤ ⌦ L⌦ K1/2)� G(E⌦ L⇤ ⌦ K1/2),
8

>

>

<

>

>

:

∂̄ABu + a0,1
a = 0,

∂̄ABv� a0,1
b = 0,

ub + av = 0.

by the subspace generated by (�∂̄h, ha,�hb) for h 2 W0(C). The obstruction space
H2

A,a,b is canonically isomorphic to the dual space (H1
A,a,b)

⇤ as complex vector spaces.
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The analytic structure on a neighbourhood of [A, a, b] in Mhol is induced from
a Kuranishi map k : H1

A,a,b ! H2
A,a,b. Since the derivative of FA,a,b is complex

linear at a solution, k can be taken to be complex analytic which shows that Mhol

is a complex analytic space.

4.3.2 Isomorphism of real analytic spaces

In the remaining part of this section, we construct an isomorphism M ⇠= Mhol,
thus proving Theorem 4.3.6. First, we construct a homeomorphism M ⇠= Mhol.
Since monopoles with two spinors are essentially solutions of the ADHM2,1
Seiberg–Witten equation, the existence of such a homeomorphism is a special
case of the Hitchin–Kobayashi correspondence for ADHM monopoles; see Propo-
sition 4.2.6. However, here we present a more explicit construction of this homeo-
morphism, which will be useful later, when we discuss compactifications of the
moduli spaces.

Since equation (4.3.2) is part of (4.3.1) and G (S, L) is a subgroup of G C(S, L),
every point of M gives rise to a point in Mhol.

Proposition 4.3.11. The natural map M!Mhol is a homeomorphism.

The proof relies on a generalization of a classical theorem of Kazdan and
Warner. We refer to [BW96] for the proof.

Lemma 4.3.12 (Bryan and Wentworth [BW96, Lemma 3.4]). Let X be a compact
Riemannian manifold and let P, Q, and w be smooth functions on X with P and Q
non-negative, and

Z

X
P�Q > 0,

Z

X
w > 0.

Then the equation

Du + Peu �Qe�u = w

has a unique solution u 2 C•(X).
The same statement holds when

R

w = 0 and both P and Q are not identically zero
(without the assumption on the sign of

R

P�Q).

Proof of Proposition 4.3.11. It is clear that the map M!Mhol is continuous, so it
remains to construct a continuous inverse Mhol !M. Let (A, a, b) be a solution
of (4.3.2). As in [BW96], we seek h 2 G C(S, L) such that h(A, a, b) = (A0, a

0, b

0)
satisfies also the third equation of (4.3.1). We can assume h = e f for f : S ! R.
We have

(A0, a

0, b

0) = (A� ∂̄ f + ∂ f , e f
a, e� f

b)

so the curvature of A0 is

FA0 = FA � 2∂∂̄ f = FA � i ⇤ D f ,

where D is the positive definite Hodge Laplacian. Thus, (4.3.1) for (A0, a

0, b

0) is
equivalent to

0 = i ⇤ FA0 + |a0|2 � |b0|2 � ih

= D f + e2 f |a|2 � e�2 f |b|2 + i(⇤FA � h).
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Assume d� t < 0 and set P = |a|2, Q = |b|2 and w = �i ⇤ (FA � h). We need to
solve

D f + Pe2 f �Qe�2 f = w. (4.3.4)

If d� t < 0, then a is assumed to be non-zero. After applying a gauge transfor-
mation of the form h = eC for C constant, we may assume that

Z

S
(P�Q) =

Z

S
|a|2 � |b|2 > 0.

Moreover, we have
Z

S
w = �

Z

S
(iFA � h) = �2p(d� t) > 0.

The hypotheses of Lemma 4.3.12 are satisfied and there is a unique solution
f 2 C•(S) to (4.3.4). This shows that there exists h 2 G C(S, L), unique up to an
element of G (S, L), mapping (A, a, b) to a solution of (4.3.1). The proof is similar
in the cases d� t > 0 or d� t = 0.

This gives us an inverse to M!Mhol; it remains to show that it is continuous.
Let [Ai, ai, bi] be a convergent sequence of points in Mhol. Let (A0i, a

0
i, b

0
i) be

the corresponding solutions of (4.3.1). There is a sequence hi = uie fi such that
hi(A0i, a

0
i, b

0
i) converges in CS. The functions fi satisfy (4.3.4) with coefficients Pi,

Qi, wi converging in C•(S). It follows from the proof of [Doa17a, Proposition 3.1]
that for every k there is a Ck bound for fi, independent of i. By the Arzelà–Ascoli
theorem, after passing to a subsequence, fi converges in C•(S). It follows that
[A0i, a

0
i, b

0
i] converges in M, which proves the continuity of Mhol !M.

Proof of Theorem 4.3.6. It remains to compare the deformation theories of the two
moduli spaces to show that the homeomorphism M!Mhol is an isomorphism
of real analytic spaces.

Step 3. M is isomorphic to the moduli space MS of solutions of (4.3.1).

Let MS be the space of G (S, L)–orbits of triples

(A, a, b) 2 A (S, L)⇥ G(S, E⇤ ⌦ L⌦ K1/2)⇥ G(S, E⌦ L⇤ ⌦ K1/2)

satisfying (a, b) 6= 0 and
8

>

>

>

>

<

>

>

>

>

:

∂̄ABa = 0,
∂̄ABb = 0,
ab = 0,
i ⇤ FA + |a|2 � |b|2 � i ⇤ h = 0

Endow MS with a real analytic structure using local Kuranishi models. Let C ⇤S and
C ⇤ be the spaces of irreducible configurations (A, Y) over S and M respectively,
and B⇤S, BS their quotients by gauge groups. It follows from Proposition 4.3.2
and Proposition 4.1.6 that the inclusion

B⇤S = C ⇤S /G (S, L) ,! C ⇤/G (S, L) = B⇤

induces a homeomorphism MS !M. The Seiberg–Witten moduli space M is, at
least locally, given as the zero set of a Fredholm section s of a bundle over B⇤. On
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the other hand, the restriction of s to B⇤S gives a Fredholm section defining MS.
Let H1

A,Y = ker LA,Y and H2
A,Y = coker LA,Y be the deformation and obstruction

groups introduced in Section 2.3 and Section 3.2. Here, LA,Y is the self-adjoint
elliptic operator governing the deformation theory of the Seiberg–Witten equation
with two spinors; it can be identified with the derivative of s.

In order to show that the induced real analytic structures on M and MS agree,
we need to prove

H1
A,Y = ker ds(A, Y) = ker d(s|B⇤S)(A, Y) (4.3.5)

for every [A, Y] 2 MS = M. The corresponding equality of cokernels follows
then from the natural isomorphism between H1

A,Y and H2
A,Y (and likewise for the

equations over S).
Equality (4.3.5) is the linearized version of Theorem 4.1.12. Let (A, Y) be an

S1–invariant solution. By Remark 3.2.8 and Proposition 4.1.8, H1
A,Y is the space of

pairs

(a(t) + b(t)dt, f(t)) 2 G(S1 ⇥ S, L1(iR)�L0(iR)� (E⇤ ⌦ S⌦ L))

satisfying
8

>

>

>

>

>

<

>

>

>

>

>

:

i
⇣

∂f

∂t + bY
⌘

+
p

2s

�

∂ABf + a1,0Y
�

= 0,
∂a1,0

∂t + ∂b� iµC(Y, f) = 0,
⇤da + 2µR(Y, f) = 0,
�d⇤a� ∂b

∂t + i ImhY, fi = 0.

Equality (4.3.5) will be established by showing that any solution (a + bdt, f)
satisfies

∂a
∂t

= 0,
∂f

∂t
= 0, b = 0.

This is done in the same way as in the proof of Theorem 4.1.12. First, apply ∂/∂t
to the first two equations, then get rid of the terms ∂f/∂t, ∂b/∂t, and ∂a1,0/∂t.
This results in

�∂

2
f

∂t2 + 2∂

⇤
AB∂ABf� i ImhY, fiY+ d⇤a ·Y+ 2(∂⇤a1,0)Y+

p
2sµC(Y, f)Y = 0,

�∂

2a1,0

∂t2 + ∂∂

⇤a1,0 + i∂ ImhY, fi+
p

2µC(Y, s∂f) +
p

2µC(Y, sa1,0Y) = 0.

Take the real L2–product of the first equation with f and the second equation
with a1,0. Integrating by parts as in the proof of Theorem 4.1.12, we obtain
�

�

�

�

∂f

∂t

�

�

�

�

2

L2
+

�

�

�

�

∂a
∂t

�

�

�

�

2

L2
+ 2

�

�

�

∂ABf + a1,0Y
�

�

�

2

L2
+ k�d⇤a + i ImhY, fik2

L2 +
p

2 kµC(Y, f)k2
L2 = 0.

We have used identity (4.1.2) to relate µC to the inner product. Thus, we have
proved that b = 0, f and a are pulled back from S and satisfy

8

>

>

>

>

<

>

>

>

>

:

∂ABf + a1,0Y = 0,
µC(Y, f) = 0,
⇤da + 2µR(Y, f) = 0,
�d⇤a� i ImhY, fi = 0.

(4.3.6)
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Recall that we identify Y with a pair (a, b). After a conjugation equation (4.3.6)
translates to the following equation for a and f = (u, v)

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

∂̄ABu + a0,1
a = 0,

∂̄ABv� a0,1
b = 0,

av + ub = 0,
⇤ida + 2 Reha, ui � 2 Rehb, vi = 0,
�d⇤a� i Imha, ui � i Imhb, vi = 0.

(4.3.7)

This is the linearization of (4.3.1) together with the Coulomb gauge fixing condi-
tion. We conclude that (4.3.5) holds and M is isomorphic to MS as real analytic
spaces.

Step 4. MS is isomorphic to Mhol.

The proof is similar to that of [FM94, Theorem 2.6]. As before, the main point
is to show an isomorphism of the deformation spaces for MS and Mhol. The
former is given by (4.3.7) and the latter consists of solutions of the first three
equations together with a choice of a local slice for the action of G C(S, L). The
Lie algebra of G C(S, L) splits is the direct sum of C•(S, R) and the Lie algebra of
G (S, L). Under this splitting, we can choose a slice of G C(S, L)–action imposing
the standard Coulomb gauge condition for G (S, L), which is the last equation of
(4.3.7), together with a choice of a slice for the action of C•(S, R):

e f (A, a, b) = (A + ∂ f � ∂̄ f , e f
a, e� f

b).

The linearization of this action at (A, a, b) is

f 7! (�∂̄ f + ∂ f , f a,� f b). (4.3.8)

A local slice for the action of C•(S, R) can be obtained from any subspace of

W1(S, iR)� G(E⇤ ⌦ L⌦ K1/2)� G(E⌦ L⇤ ⌦ K1/2)

which is complementary to the image of (4.3.8). Hence, to show that the defor-
mation spaces of MS and Mhol are isomorphic it is enough to prove that the
subspace given by

i ⇤ da + 2 Reha, ui � 2 Rehb, vi = 0

is complementary to the image of (4.3.8). In other words, we need to know that
for any triple (a, u, v) there is a unique function f 2 C•(S, R) such that

0 = i ⇤ d(a� ∂̄ f + ∂ f ) + 2 Reha, u + f ai � 2 Rehb, v� f bi
=
n

D + 2(|a|2 + |b|2)
o

f + i ⇤ da + 2 Reha, ui � 2 Rehb, vi.

This is true because (a, b) 6= 0 and so the operator D + 2(|a|2 + |b|2) is invertible
on C•(S, R). In the same way as in [FM94, Theorem 2.6] we conclude that (4.3.7)
provides a local Fredholm model for both MS and Mhol and so the two spaces
have isomorphic analytic structures.
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4.4 a tale of two compactifications

The goal of this section is to define two natural compactifications M ⇢ M

and Mhol ⇢M
hol using, respectively, gauge theory and complex geometry. We

then extend the isomorphism M ⇠= Mhol to a homeomorphism between these
compactifications.

Theorem 4.4.1. The isomorphism of real analytic spaces M ⇠= Mhol extends to a
homeomorphism M ⇠= M

hol.

We assume d� t < 0 so in particular there are no reducible solutions. The
discussion can be easily adapted to the cases d� t = 0 and d� t > 0.

4.4.1 A complex-geometric compactification

Mhol has a natural compactification analogous to the one described in [BW96].
Consider the subspace S ⇢ CS ⇥C given by

S := {(A, a, b, t) | (A, a, b) satisfies equations (4.3.2), a 6= 0, and (b, t) 6= (0, 0)} .

The group G C(S, L)⇥C⇤ acts freely on S by the standard action of the first factor
on CS and

l(A, a, b, t) = (A, a, lb, lt) for l 2 C⇥.

Definition 4.4.2. We define M
hol to be the quotient of S by G C(S, L)⇥C⇤.

This is analogous to compactifying CN by CPN which is the quotient of
(CN ⇥C)\{(0, 0)} by the free action of C⇤; in fact, Mhol is obtained by applying
this construction fiberwise.

Definition 4.4.3. Let N be the subspace of Mhol consisting of triples of the form
(A, a, 0). Equivalently, N is the space of G C(S, L)–orbits of pairs (A, a) satisfying
∂̄ABa = 0 and a 6= 0.

(In this section we fix the degree d of L and parameters (p, h), but keep in
mind that, in general N = Nd(p, h) depends on the choice of this data, just like
Mhol = Mhol

d (p, h) and M = Mw(p, h).)

We will see momentarily that N is compact. The natural projection (A, a, b) 7!
(A, a) induces a surjective map p : Mhol ! N. Let [A, a] 2 N and denote by LA
the holomorphic structure on L induced by A. The fiber p

�1([A, a]) is the kernel
of the homomorphism

H0(S, E ⇤ ⌦LA ⌦ K1/2) H0(S, K)a

given by pairing with a. The compactification M
hol is obtained by replacing each

fiber ker a with the projective space P(ker a�C) containing it.

Proposition 4.4.4. The space M
hol is metrizable, compact, and contains Mhol as an

open dense subset. Moreover, the complex analytic structure on Mhol extends to a complex
analytic structure on M

hol with respect to which Mhol is Zariski open.
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Proof. It is clear that Mhol is metrizable and Mhol ⇢M
hol is open and dense. In

order to show that Mhol is compact, consider a sequence [Ai, ai, bi, ti] 2M
hol; we

need to argue that there are sequences hi 2 G C(S, L) and li 2 C⇤ such that after
passing to a subsequence hili(Ai, ai, bi, ti) converges smoothly in S. This is the
content of Step 1 in [Doa17a, Proof of Theorem 2.2].

Let C ⇤S ⇢ CS be the subset of configurations (A, a, b) with a 6= 0. The group
G C(S, L) acts freely on C ⇤S with quotient B⇤S, a complex Banach manifold. There
is a holomorphic vector bundle W ! B⇤S such that Mhol is the zero set of a
holomorphic Fredholm section S : B⇤S !W . The zero set of such a section carries
a natural complex analytic structure [FM94, Sections 4.1.3-4.1.4]. The complex
analytic structure on Mhol is extended to M

hol by extending S to a Fredholm
section whose zero set is Mhol. Replace C ⇤S by the subspace of CS⇥C consisting of
quadruples (A, a, b, t) for which a 6= 0 and (b, t) 6= (0, 0). Let B⇤S be the quotient
of this space by the action of G C(S, L)⇥C⇤: it contains B⇤S as an open subset. Let
W ! B⇤S be the vector bundle obtained as the quotient of W ⇥C⇤ by the lifted
action of G C(S, L)⇥C⇤. There is a holomorphic Fredholm section S extending S
so that Mhol

= S�1
(0). When restricted to the open subset B⇤S, this reduces to the

construction of Mhol described above, so the inclusion Mhol ⇢M
hol is compatible

with the induced analytic structures. Moreover, Mhol\Mhol is the intersection of
S�1

(0) with the analytic subset B⇤S\B⇤S given by the equation t = 0. We conclude
that Mhol\Mhol is an analytic subset of Mhol, and so Mhol is Zariski open.

Corollary 4.4.5. The subspace N ⇢Mhol is compact. Furthermore, Mhol is compact if
and only if N = Mhol.

Proof. N consists of equivalence classes [A, a, b] for which b = 0; it is compact
by Step 1 in [Doa17a, Proof of Theorem 1.3]. If N = Mhol, then Mhol is compact.
To prove the converse statement, observe that if Mhol is non-compact, then
M

hol\Mhol is non-empty by Proposition 4.4.4. On the other hand, Mhol\Mhol

consists of G C(S, L) ⇥ C⇤–orbits of the form [A, a, b, 0] with b 6= 0 so every
element of Mhol\Mhol gives rise to an element of Mhol\N.

4.4.2 A gauge-theoretic compactification

For an arbitrary 3–manifold a good compactification of M is yet to be constructed—
see [Doa17a, Introduction] for a discussion of analytical difficulties involved in
such a construction. However, for M = S1 ⇥ S we can overcome these obstacles
thanks to a refined compactness theorem.

Theorem 4.4.6 ([Doa17a]). If (Ai, Yi = (ai, b̄i)) is a sequence of solutions of (4.3.1)
with kYikL2 ! •, then after passing to a subsequence and applying gauge transfor-
mations (Ai, Yi/kYikL2) converges in C•

loc on the complement of a finite set D =
{x1, . . . , xN}. The limiting configuration (A, Y = (a, b̄)) is defined on S\D and satis-
fies

• kYkL2 = 1 and |Y| > 0 on S\D,

• ∂̄ABa = 0, ∂̄ABb = 0, ab = 0, and |a| = |b| on S\D.
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• A is flat on S\D and has holonomy contained in Z2.

• There are non-zero integers a1, . . . , aN such that ÂN
k=1 ak = 2d and

⇤ i
2p

FAi �!
1
2

N

Â
k=1

akdxk

in the sense of measures.

• For each k = 1, . . . , N we have

|Y(x)| = O(dist(xk, x)|ak |/2).

Definition 4.4.7. Let D ⇢ S be a finite set. We say that a gauge transformation in
G (S\D) or G c(S\D) is simple if it has degree zero around each point of D. Denote
by G0(S\D) and G c

0 (S\D) the subgroups of simple gauge transformations.

Definition 4.4.8. Let D ⇢ S be a finite subset. With any flat connection A 2
A (S\D, L) we associate a measure i ⇤ FA on S as follows. For x 2 D let B ⇢ S
be a small disc centred at x and not containing other points of D. In a unitary
trivialisation of L|B we have A = d + a for a one-form a 2 W1(B\{x}, iR). Denote

qx =
Z

∂B
ia.

The measure i ⇤ FA is defined by

i ⇤ FA := Â
x2D

qxdx.

One easily checks that i ⇤ FA is well-defined and invariant under simple gauge
equivalences.

Definition 4.4.9. A limiting configuration is a triple (A, Y, D) comprising of a
finite subset D = {x1, . . . , xN} ⇢ S, a connection A 2 A (S\D, L), and a pair
Y = (a, b̄) of nowhere-vanishing sections a 2 G(S\D, E⇤ ⌦ L⌦ K1/2) and b 2
G(S\D, E⌦ L⇤ ⌦ K1/2) satisfying

• kYkL2 = 1 and |Y| > 0 on S\D

• ∂̄ABa = 0, ∂̄ABb = 0, ab = 0, and |a| = |b| on S\D.

• A is flat on S\D and has holonomy contained in Z2.

• There are non-zero integers a1, . . . , aN such that ÂN
k=1 ak = 2d and

⇤ i
2p

FA =
1
2

N

Â
k=1

akdxk as measures.

• For each k = 1, . . . , N we have

|Y(x)| = O(dist(xk, x)|ak |/2).

(A, Y, D) and (A0, Y0, D0) are simple gauge equivalent if D = D0 and they differ by
an element u 2 G0(S\D).

Let F be the set of simple gauge equivalence classes of limiting configurations.
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The space F can be equipped with a natural topology in which a sequence
[Ai, Yi, Di] converges to [A, Y, D] if and only if i ⇤ FA0i

! i ⇤ FA weakly as measures
and after applying a sequence in G0(S\D) we have Ai ! A and Yi ! Y in C•

loc
on S\D.

Definition 4.4.10. Let [A, Y, D] be an equivalence class in F . For # > 0, d > 0, an
integer k > 0, and a continuous function f : S! R we define V

#,d,k, f (A, Y, D) ⇢
F to be the set of the elements of F which have a representative (A0, Y0, D0)
satisfying

• D0 ⇢ D
#

where D
#

:= {x 2 S | dist(x, D) < #},

• kA0 � AkCk(S\D
#

) < d,

• kY0 �YkCk(S\D
#

) < d.

• �

�

R

S(i ⇤ FA0) f � R

S(i ⇤ FA) f
�

� < d.

Lemma 4.4.11. The family of subsets
n

V
#,d,k, f (A, Y, D)

o

forms a base of a Hausdorff topology on F .

The proof is a simple application of [DK90, Proposition 2.3.15]. The next step is
to combine M and F into one topological space. For this purpose it is convenient
to identify points of M with gauge equivalence classes of triples (A, Y, t), where
t 2 (0, •), kYkL2 = 1, and

(

/DABY = 0,
t2FA = µ(Y).

(4.4.1)

The map (A, Y, t) 7! (A, t�1Y) gives a homeomorphism between the space of
such classes and the moduli space M. Recall that in our setting there are no
reducibles so there is no boundary at t! •. The boundary at t! 0 is obtained
by attaching the space of limiting configurations.

Definition 4.4.12. Let [A, Y, D] be an equivalence class in F . For # > 0, d > 0, an
integer k > 0, and a continuous function f : S! R we define

W
#,d,k, f (A, Y, D) ⇢M

to be the set of the elements of M that have a representative (A0, Y0, t) satisfying

• t < d,

• kA0 � AkCk(S\D
#

) < d,

• kY0 �YkCk(S\D
#

) < d,

• �

�

R

S(i ⇤ FA0) f � R

S(i ⇤ FA) f
�

� < d.
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Definition 4.4.13. The compactified moduli space is

M := M[F
equipped with the topology whose basis consists of the subsets

W
#,d,k, f (A, Y, D) := W

#,d,k, f (A, Y, D) [V
#,d,k, f (A, Y, D),

for all choices of #, d, k, f .

Lemma 4.4.14. Let U be a base of the topology on M. The family of subsets
�

W
#,d,k(A, Y, D)

 [ U
forms a base of a Hausdorff topology on M.

4.4.3 A homeomorphism at infinity

The main ingredient in the proof of Theorem 4.4.1 is

Proposition 4.4.15. The spaces Mhol\Mhol and F are homeomorphic.

The proof of Proposition 4.4.15 is preceded by auxiliary results about limiting
configurations. The first of them is a complex-geometric analogue of the statement
that a limiting configuration induces a flat connection with Z2 holonomy.

Lemma 4.4.16. Let (A, a, b) be a solution of (4.3.2) with a 6= 0 and b 6= 0. Denote by
L the holomorphic line bundle (L, ∂̄A). Let D1 and D2 be the zero divisors of a and b

respectively, and O(D1 � D2) the holomorphic line bundle associated to D1 � D2. There
is a canonical holomorphic isomorphism

j

ab

: O(D1 � D2) �! L 2.

Proof. Recall that a is a holomorphic section of E ⌦L ⌦ K1/2 and b is a holomor-
phic section of E ⇤ ⌦L ⇤ ⌦ K1/2. Since ab = 0 and the rank of E is two, we have
the short exact sequence

0 L �1 ⌦ K�1/2 ⌦O(D1) E L �1 ⌦ K1/2 ⌦O(�D2) 0.a

b

(4.4.2)

The associated isomorphism of the determinant line bundles is

L �2 ⌦O(D1 � D2) ⇠= det E ⇠= O,

where the last isomorphism follows from the fact that E is a holomorphic SL(2, C)–
bundle. Tensoring both sides with L 2, we obtain the desired isomorphism j

ab

.
It is canonically determined by a and b.

The lemma below provides an upper bound on the number of components,
counted with multiplicities, of the singular set of a limiting configuration.

Lemma 4.4.17. There exists M > 0, depending only on the holomorphic bundle E , with
the following significance. If (L , a, b) is a triple as in Lemma 4.4.16, then

deg D1 + deg D2 6 M.
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Proof. Tensoring exact sequence (4.4.2) with K1/2 we see that L �1 ⌦O(D1) is
a holomorphic subbundle of E ⌦ K1/2. It is an elementary fact that the degrees
of line subbundles of a given holomorphic bundle are bounded above [Muk03,
Corollary 10.9]. In fact, if F is a holomorphic vector bundle and A ⇢ F a line
subbundle, then

deg A 6 h0(S,F ) + 2g(S)� 2 (4.4.3)

where g(S) is the genus of S. (We will use this bound later.) Thus, we have
an upper bound on the degree of L �1 ⌦ O(D1). On the other hand, L 2 is
isomorphic to O(D1 � D2), so

deg
⇣

L �1 ⌦O(D1)
⌘

= �deg L + deg D1 =
1
2
(deg D1 + deg D2) ,

which proves the lemma.

The next result will be useful in proving the convergence of measures.

Lemma 4.4.18. Let f : S ! R be a continuous function, g > 0, and D ⇢ S a finite
subset. Then there exist # > 0 and d > 0 with the following property. Suppose that
D0 ⇢ S is another finite subset, and A and A0 are two flat connections over S\D and
S\D0 respectively, satisfying

• D0 ⇢ D
#

,

• kA0 � AkC0(S\D
#

) < d,

• the measures ⇤iFA and ⇤iFA0 have integer weights.

Then we have
�

�

�

�

Z

S
(i ⇤ FA0) f �

Z

S
(i ⇤ FA) f

�

�

�

�

6 gki ⇤ FA0 k.

where ki ⇤ FA0 k is the total variation of the measure i ⇤ FA0 given by

ki ⇤ FA0 k = Â
x2D0

|qx|

for i ⇤ FA0 = Âx2D0 qxdx .

Proof. Let D = {x1, . . . , xN} and a1, . . . , aN be the integer weights of the measure
i ⇤ FA as in Definition 4.4.8. Suppose that # is small enough so that the discs Bi of
radius # centred xi are pairwise disjoint. Partition the set D0 into disjoint subsets
D01, . . . , D0N consisting of points within #–distance from x1, . . . , xN respectively.
For each i choose small disjoint discs Ei1, Ei2, . . . centred at points of D0i and
contained in Bi. Let bi1, bi2 . . . be the weights of the points in D0i in the measure
i ⇤ FA0 .

In a unitary trivialisation of L over each Bi we have

A = d + a and A0 = d + a0,

where one-form a is defined on Bi\{xi} and a0 is defined on Bi\D0i . By the
hypothesis of the lemma ka� a0kC0(∂Bi)

< d. Thus, for sufficiently small d,
�

�

�

�

�

ai �Â
j

bij

�

�

�

�

�

=

�

�

�

�

�

Z

∂Bi
ia�Â

j

Z

∂Eij
ia0
�

�

�

�

�

=

�

�

�

�

Z

∂Bi
ia�

Z

∂Bi
ia0
�

�

�

�

< 1.
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Since all numbers ai, bij are integers, so we conclude that

ai = Â
j

bij.

For each i denote the points of D0i by {xij}. Then

�

�

�

�

Z

S
(i ⇤ FA0) f �

Z

S
(i ⇤ FA) f

�

�

�

�

=

�

�

�

�

�

Â
i

ai f (xi)�Â
ij

bij f (xij)

�

�

�

�

�

6 Â
ij
|bij|

�

� f (xi)� f (xij)
�

� .

By the continuity of f we can choose # sufficiently small so that

sup
x2Bi

| f (xi)� f (x)| 6 g

for all i = 1, . . . , N. Then
�

�

�

�

Z

S
(i ⇤ FA0) f �

Z

S
(i ⇤ FA) f

�

�

�

�

6 gki ⇤ FA0 .k

The last lemma allows us to extend a limiting configuration to a holomorphic
section. The proof is a minor variation of [Doa17a, Proof of Lemma 2.1].

Lemma 4.4.19. Let L be a Hermitian line bundle over the unit disc B ⇢ C. Suppose
that A is a unitary connection on L|B\{0} and j a section of L over B\{0} satisfying
∂̄A j = 0 and |j| = 1. Denote by deg j the degree of j|∂B. Then

1. FA = 0 on B\{0} and i ⇤ FA = (2p deg j)d0 as measures.

2. There exists a complex gauge transformation h : B\{0} ! C⇤ such that h has
degree zero around zero and in some trivialisation of L around zero h(A) is the
trivial connection and hj = zk.

Proof of Proposition 4.4.15. Set X = M
hol\Mhol. We will construct a continuous

bijection X ! F . Since the domain is compact by Proposition 4.4.4 and the target
space is Hausdorff by Lemma 4.4.11, such a map is necessarily a homeomorphism.

Step 1. The construction of X ! F .

Let [A, a, b, t] 2 X . By definition, t = 0, a 6= 0, b 6= 0, and (4.3.2) is satisfied. Let
D1, D2 be the zero divisors of a, b, respectively. We will interchangeably consider
them as divisors or as subsets of S. Set D = D1 [ D2. We claim that there is a
simple complex gauge transformation h 2 G c

0 (S\D) such that (hA, ha, h�1
b) is a

limiting configuration. A necessary condition is

|ha| = |h�1
b| on S\D. (4.4.4)

A transformation satisfying (4.4.4) exists since a and b are both non-zero on S\D
and we can set h =

p|b|/|a|; any other choice of h will differ from that one by
an element of G0(S\D).
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The map X ! F is defined by [A, a, b, 0] 7! (A0, a

0, b

0) := (h(A), ha, h�1
b).

We need to show that (A0, a

0, b

0) represents a class in F . We clearly have
8

>

>

<

>

>

:

∂̄A0Ba

0 = 0,
∂̄A0Bb

0 = 0,
|a0| = |b0|.

Moreover, for Y0 := (a0, b

0)

|Y0| =
q

|a0|2 + |b0|2 =
q

|h|2|a|2 + |h|�2|b|2 =
q

2|a||b|.

Integrating over S yields

kY0kL2 =

r

Z

S
2|a||b|.

After rescaling b, which does not change the class of [A, a, b, 0] 2 X , we can
assume kYkL2 = 1. We also see that |Y| > 0 on S\D and in a neighbourhood of
every x 2 D

|Y(y)| = O
✓

dist(y, x)
ordx(a)+ordx(b)

2

◆

, (4.4.5)

where ordx(a) and ordx(b) denote the order of vanishing of a and b at x.
It remains to prove that A0 is flat and the measure i ⇤ FA0 is as in Defini-

tion 4.4.9. Let j

ab

: O(D1 � D2)! L2 be the A–holomorphic isomorphism from
Lemma 4.4.16. The construction of Lemma 4.4.16 is local, so we can also define
an analogous map j

a

0
b

0 corresponding to sections a

0 and b

0. Since they are both
nowhere vanishing, j

a

0
b

0 is an A0–holomorphic isomorphism of the trivial bundle
over S\D and L2

|S\D; thus, j

a

0
b

0 is a nowhere vanishing A0–holomorphic section
of L2 over S\D. Moreover, on S\D

|j
a

0
b

0 | = |a0|
|b0| = 1 and j

a

0
b

0 = h2
j

ab

By Lemma 4.4.19, the tensor product connection A⌦ A on L2 is flat; so A itself is
flat and for every x 2 D the weight of the measure i/2p ⇤ FA at x is equal to half
of the degree of j

a

0
b

0 around x. Since h has degree zero around each point x 2 D,
the degrees of j

ab

and j

a

0
b

0 around x agree. Denote this degree by qx 2 Z. Since
the zero divisor of j

ab

is D1 � D2,

Â
x2D

qx = deg D1 � deg D2 = deg(L2) = 2d.

Finally, observe that for every x 2 D we have

qx = ordx(a)� ordx(b) 6 ordx(a) + ordx(b).

Together with (4.4.5) this shows that (A0, a

0, b

0, D) is a limiting configuration. It is
easy to check that if we replace (A, a, b, 0) by a different quadruple in the same
orbit of the G C(S, L)⇥C⇤–action, then the resulting limiting configurations are
simple gauge-equivalent.
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Step 2. X ! F is injective.

Suppose that (A1, a1, b1, 0) and (A2, a2, b2, 0) give rise to limiting configura-
tions that are simple gauge equivalent. In particular, they have the same singular
set, D say. Suppose that b1 and b2 are scaled so that

Z

S
2|a1||b1| =

Z

S
2|a2||b2| = 1.

Composing the simple gauge equivalence of the limiting configurations with
complex gauge transformations satisfying (4.4.4), we obtain t 2 G c

0 (S\D) such
that on S\D

A2 = t(A1), a2 = ta1, b2 = t�1
b1, j

a2b2 = t2
j

a1b1 .

Even though t is not defined at the points of D, the holomorphic data is. In
particular, j

a1b1 and j

a2b2 have zeroes at every point of D. Moreover, the zeroes
are of the same order—this is equivalent to the measures of the corresponding
limiting configurations being equal. We conclude that t is bounded around D.
Since it is also (A1, A2)–holomorphic it extends to a holomorphic isomorphism
between (L, ∂̄A1) and (L, ∂̄A2) and so (A1, a1, b1, 0) and (A2, a2, b2, 0) give rise to
the same point in X and the map X ! F is injective.

Step 3. X ! F is surjective.

Let (A0, Y0 = (a0, b

0), D) 2 F . We need to find h 2 G c
0 (S\D) such that

(A, a, b) := (h(A0), ha

0, h�1
b

0) extends smoothly to the whole of S. Furthermore,
we should have D = D1 [ D2 where D1 and D2 are the zero divisors of a and b

respectively.
Let j

a

0
b

0 2 G(S\D, L2) be as before. Then ∂̄A0ja

0
b

0 = 0 and |j
a

0
b

0 | = 1 on
S\D. By Lemma 4.4.19, applied to the connection A0 ⌦ A0 and section j

a

0
b

0 , there
exists k 2 G c

0 (S\D, L) such that C := k(A0 ⌦ A0) extends to a connection on a
line bundle T ! S and kj

a

0
b

0 extends to a meromorphic section of (T, ∂̄C). We
claim that T = L2 as unitary bundles, that k = h2 for some h 2 G c

0 (S\D), and
that C = A⌦ A for A = h(A0). This follows from the assumption on the measure
i ⇤ FA0 induced by the limiting configuration (A0, a

0, b

0, D); by Lemma 4.4.19 for
every point x 2 D the meromorphic section h2

j

a

0
b

0 vanishes to the order qx
defined by

i
2p

FA0 =
1
2 Â

x2D
qxdx.

(x is a pole of order |qx| if qx < 0.) The claim is then a consequence of the
assumption Âx2D qx = 2d = deg(L2) and the fact that k has degree zero around
the points of D. Thus, A = h(A0) extends. We need to show that a = ha

0 and
b = h�1

b

0 extend. Observe that

|a||b| = |a0||b0| = 1
2
|Y0|2,

where we have used |a0| = |b0| and Y0 = (a0, b

0). As a consequence, for every
x 2 D

|a(y)||b(y)| = O
⇣

dist(x, y)|qx |
⌘

.
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On the other hand, we have

|a|
|b| = |h2| |a

0|
|b0| =

�

�

�

h2
j

a

0
b

0
�

�

�

,

so around x 2 D

|a(y)|
|b(y)| = O (dist(x, y)qx ) .

We conclude that

|a(y)| = O
✓

dist(x, y)
|qx |+qx

2

◆

and |b(y)| = O
✓

dist(x, y)
|qx |�qx

2

◆

,

which shows that both a and b are bounded over S\D. Since they are also holo-
morphic, they extend to globally defined sections. Hence, (A, a, b, 0) represents a
point in X corresponding to (A0, a

0, b

0, D) under X ! F .

Step 4. X ! F is continuous.

Suppose that [Ai, ai, bi] ! [A, a, b] in X . Let (A0i, a

0
i, b

0
i, Di) and (A0, a

0, b

0, D)
be the corresponding points in F . We will prove that (A0i, a

0
i, b

0
i, Di) converges

to (A0, a

0, b

0, D) as limiting configurations. We easily check that the points of Di
concentrate around D and modulo simple gauge transformations

A0i ! A0, a

0
i ! a

0, b

0
i ! b

0

in C•
loc on S\D. By Lemma 4.4.18, i ⇤ FA0i

! i ⇤ FA0 as measures provided that the
sequence of total variations ki ⇤ FA0i

k is bounded. ki ⇤ FA0i
k is up to a constant equal

to the degree of Di
1 + Di

2 where Di
1 and Di

2 are the zero divisors of ai and bi. By
Lemma 4.4.17, this degree is bounded above. We conclude that [A0i, a

0
i, b

0
i, Di]!

[A0, a

0, b

0, D] in F .

4.4.4 Proof of Theorem 4.4.1

We construct a bijective map M
hol !M from the homeomorphisms Mhol !M

from Theorem 4.3.6 and M
hol\Mhol ! F from Proposition 4.4.15. This map is

continuous when restricted to M and its complement. It remains to show that it
is continuous; indeed, Mhol is compact by Proposition 4.4.4 and M is Hausdorff
by Lemma 4.4.14, so a continous bijection M

hol !M is a homeomorphism.
Let (Ai, ai, bi, ti) be a sequence representing points in Mhol and (A0i, Y0i, t0i) the

corresponding sequence of solutions of (4.4.1). Suppose that ti ! 0 and (Ai, ai, bi)
converges in C• to (A, a, b) with a 6= 0 and b 6= 0. This limit represents an ele-
ment of Mhol\Mhol and thus corresponds to a limiting configuration (A0, Y0, D).
We need to show that after applying gauge transformations the sequence of
Seiberg–Witten solutions (A0i, Y0i, t0i) converges in the sense of Definition 4.4.13

to a limiting configuration which is simple gauge-equivalent to (A0, Y0, D). By
Theorem 4.4.6, the sequence converges and by Proposition 4.4.15, the limiting
configuration is simple gauge-equivalent to (A0, Y0, D). This shows that the map
M

hol !M is continuous.
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4.5 harmonic z2 spinors and complex geometry

The main result of this section, Theorem 4.5.2 below, will ensure the compactness
of Mw(p, h) for p generic among the parameters pulled back from S.

By the Haydys correspondence for the Seiberg–Witten equation with two
spinors, cf. Section 3.4, the following definition is equivalent to the previous
definition of a harmonic Z2 with values in Re(H⌦C C2), cf. Definition 3.1.1.

Definition 4.5.1. Let Z ( M be a closed, proper subset and let

(A, Y) 2 A (M\Z, det W)⇥ G(M\Z, W).

A triple (A, Y, Z) is called a harmonic Z2 spinor with singular set Z with respect to
p = (g, B) if it satisfies

1. /DA,pY = 0 and µ(Y) = 0,

2.
R

M\Z |Y|2 = 1 and
R

M\Z |rA,pY|2 < •,

3. |Y| extends to a Hölder continuous function on M such that Z = |Y|�1(0).

Theorem 4.5.2. Let M = S1 ⇥ S be equipped with geometric data pulled back from S,
as described at the beginning of Section 4.3.

1. There exists a residual subset P�
S ⇢PS with the property that for every p 2P�

S
there exist no harmonic Z2 spinors on M with respect to p.

2. For every p0, p1 2P�
S, there exists a residual subset in the space of paths in PS

connecting p0 and p1 such that for every path (pt)t2[0,1] from this subset there
exist no harmonic Z2 spinors on M with respect to any pt.

Fix a spinc structure w on M = S1 ⇥ S induced from a spin structure K1/2 on
S and a choice of a Hermitian line bundle L ! S of degree d. In the previous
sections we constructed an isomorphism Mw(p, h) ⇠= Mhol

d (p, h). (This notation
reflects the fact that Mhol depends on d and the choice of parameters of the
Seiberg–Witten equation with two spinors.) Recall that Mhol

d (p, h) contains a
compact subspace Nd(p, h) introduced in Definition 4.4.3. As a consequence of
Corollary 4.4.5, Theorem 4.4.6, and Theorem 4.5.2, we obtain

Corollary 4.5.3. For a generic choice of (p, h) 2PS ⇥ZS, we have

M
hol
d (p, h) = Mhol

d (p, h) = Nd(p, h).

Here is an outline of the proof of Theorem 4.5.2: first, we describe harmonic Z2
spinors in terms of complex-geometric data on S. Next, we show that this data is
described by a Fredholm problem of negative index, and apply the Sard–Smale
theorem to exclude the existence of such data for a generic choice of p 2PS. For
the remaining part of this section, we continue to assume that M = S1 ⇥ S and
(p, h) 2PS ⇥ZS.
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4.5.1 S1–invariance of harmonic Z2 spinors

Let (A, Y, Z) be a harmonic Z2 spinor as in Definition 4.5.1 (equivalently, a
solution of the limiting Seiberg–Witten equation with two spinors). Suppose
that Z = S1 ⇥ D for D ⇢ S, and that (A, Y) is pulled back from S. Then, as in
Section 4.3, we have Y = (a, b̄) where

a 2 G(S\D, E⇤ ⌦ L⌦ K1/2),

b 2 G(S\D, E⌦ L⇤ ⌦ K1/2).

The Fueter equations /DABY = 0 and µ(Y) = 0 are equivalent to
8

>

>

<

>

>

:

∂̄ABa = 0, ∂̄ABb = 0,
ab = 0,
|a| = |b|.

(4.5.1)

Proposition 4.5.4. Let (A, Y, Z) be a harmonic Z2 spinor on M = S1 ⇥ S with respect
to p 2 PS. Then Z = S1 ⇥ D for a finite subset D ⇢ S. Moreover, there is a gauge
transformation u 2 G (M\Z) such that u has degree zero around each component of Z
and u(A, Y) is pulled back from a configuration on S\D.

Proof. The proof is similar to that of Theorem 4.1.12. We use the notation from
Section 4.1, with one minor convention change: Y denotes here what in Section 4.1
we called Y. As in the proof of Theorem 4.1.12, we assume for simplicity that the
background connection B is trivial; the general proof is the same.

Step 1. A Weitzenböck formula.

Let t be the coordinate on the S1 factor of S1 ⇥ S. Unlike in the proof of
Theorem 4.1.12, we cannot put A in a temporal gauge, even after pulling back to
R⇥S, because a priori the singular set Z could intersect the t–axis in a complicated
way. However, by Proposition 4.1.7, we still have

0 = /DAY = �isrtY +
p

2∂̄AY, (4.5.2)

where rt = rA(∂/∂t) and ∂̄A is the Dolbeault operator induced by A on the
{t}⇥S slice. Let rS be the part of the covariant derivative rA in the S–direction.
Since A is flat, rt and rS commute. Applying s and r⇤t = �rt to (4.5.2) and
using the above commutation relation, as well as the identity s∂̄As = ∂̄

⇤
A from

Remark 4.1.9, we obtain

0 = r⇤trtY + 2s∂̄As∂̄AY = r⇤trtY + 2∂̄

⇤
A∂̄AY. (4.5.3)

Step 2. Integration by parts; the circle-invariance of Z.

We want to integrate (4.5.3) by parts to conclude rtY = 0 and ∂̄AY = 0. The
equality holds only on M\Z, so we need to use a cut-off function. Let f : R! [0, 1]
be smooth and such that

(

f = 0 on (�•, 0],
f = 1 on [1, •)
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For every # > 0 we define the cut-off function c

#

: M! [0, 1] by

c

#

(x) = f
✓ |Y(x)|� #

#

◆

.

Let Z
#

be the subset of points in M satisfying |Y(x)| < #. We have
(

c

#

= 0 on Z
#

,
c

#

= 1 on M\Z2#

and c

#

is smooth on M. Take the inner product of (4.5.3) with c

2
#

Y and integrate
by parts:

0 =
1
2

Z

M
|rt(c#

Y)|2 +
Z

M
|∂̄A(c#

Y)|2 �
Z

M

⇣

|∂tc#

|2 + |∂̄c

#

|2
⌘

|Y|2

> 1
2

Z

M
|rt(c#

Y)|2 +
Z

M
|∂̄A(c#

Y)|2 � 2
Z

M
|dc

#

|2|Y|2.
(4.5.4)

We need to show that the last term becomes arbitrarily small as # tends to zero.
By definition, |Y| 6 2# on Z2#

. Let P
#

= Z2#

\Z
#

. By Kato’s inequality

Z

M
|Y|2|dc

#

|2 6
Z

P
#

|Y|2
�

�

�

f 0
⇣ |Y(x)|�#

#

⌘

�

�

�

2

#

2 |rAY|2

6 4k f k2
C1

Z

P
#

|rAY|2

6 Cvol(P
#

)krAYk2
L2(M\Z).

The right-hand side converges to zero as # ! 0 since |rAY|2 is integrable,
Z = \

#>0Z
#

, and vol(Z) = 0, as proved by Taubes [Tau14, Theorem 1.3]. Taking
#! 0 in (4.5.4), we conclude that on M\Z

rtY = 0 and ∂̄AY = 0.

In particular,

∂t|Y|2 = 2hrtY, Yi = 0

so |Y| is invariant under the S1–action on M\Z. By assumption, Y is continuous
on the whole of M and |Y|�1(0) = Z, so Z is necessarily of the form S1 ⇥ D for
a proper subset D ⇢ S.

Step 3. (A, Y) is pulled back from S\D.

We put A in a temporal gauge over S1⇥ (S\D) as in the proof of Theorem 4.1.12.
The gauge transformation (4.1.8) used to do that is the exponential of a smooth
function S\D ! iR when restricted to each slice {t} ⇥ (S\D); thus, it has
degree zero around the components of Z. The same argument as in the proof
of Theorem 4.1.12 shows that L|M\Z is pulled back from a bundle on S\D and
(A, Y) is pulled back from a configuration on S\D satisfying (4.5.1).

Step 4. D is a finite set of points.
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It is enough to show that D is locally finite. Suppose that S is a unit disc and
that L and E are trivial. The complement S\D is a non-compact Riemann surface
and (L, ∂̄A) defines a holomorphic line bundle over S\D which is necessarily
trivial [For91, Theorem 30.3]. Thus, there is h 2 G c(B\D) such that h(A) agrees
with the product connection on the trivial bundle, and ha and h�1

b correspond
to holomorphic maps S\D ! C2. Let g = (ha)⌦ (h�1

b); it is a holomorphic
map S\D ! C2 ⌦C2 = C4 satisfying

|g| = |a||b| = 1
2
|Y|2,

so D is the zero set of |g|. Thus, g is continuous on S and holomorphic on S\D.
By a theorem of Radó [Rud87, Theorem 12.14], g is holomorphic on S and so
D = g

�1(0) is locally finite.

4.5.2 A holomorphic description of harmonic Z2 spinors

Proposition 4.5.5. If (A, Y, Z) is a harmonic Z2 spinor as in Proposition 4.5.4, with
Y = (a, b̄) and Z = S1 ⇥ D, then there exist h 2 G c

0 (S\D) and divisors D1, D2 on S
such that

1. The divisor D1 + D2 is effective, and D = D1 [ D2 as sets.

2. Ã := h(A) extends to a unitary connection on a line bundle over S, not necessarily
isomorphic to L, defining a holomorphic line bundle L ! S,

3. Sections ã = ha and b̃ = h�1
b extend to holomorphic sections over all of S, which

fit into the short exact sequence

0 L �1 ⌦ K�1/2 ⌦O(D1) E L �1 ⌦ K1/2 ⌦O(�D2) 0.ã

b̃

(4.5.5)

Conversely, every set of holomorphic data (Ã, ã, b̃, D1, D2) satisfying conditions (1), (2),
(3) can be obtained from a harmonic Z2 spinor (A, Y, Z) in this way.

Proof. This is similar to Step 3 in the proof of Proposition 4.4.15. Using Lemma 4.4.19,
we find h 2 G c

0 (S\D, L) such that Ã = h(A) extends yielding a holomorphic line
bundle L , say, and h2

j

ab

extends to a meromorphic section of L 2. Let ã = ha

and b̃ = h�1
b. Then

|ã|
|b̃| = |h2

j

ab

| and |ã||b̃| = |a||b| = 1
2
|Y|2.

Since h2
j

ab

is meromorphic and |Y| extends to a continuous function on S, it
follows that ã and b̃ extend to meromorphic sections. Let D1 and D2 be the
associated divisors of zeroes and poles. We have D = D1 [ D2 as sets and the
condition D = |Y|�1(0) implies that D1 + D2 > 0. The existence of the short
exact sequence involving ã and b̃ was established in (4.4.2).

The next lemma provides a restriction on the possible holomorphic bundles E
fitting into the short exact sequence (4.5.5).
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Lemma 4.5.6. Under the assumptions of Proposition 4.5.5 there exists a holomorphic
line bundle T satisfying h0(T 2) > 0 and h0(E ⌦ K1/2 ⌦T �1) > 0.

Proof. Recall that by Lemma 4.4.16 we have L 2 = O(D1 � D2). Set T = L �1 ⌦
O(D1). Then

T 2 = L �2 ⌦O(2D1) = O(D2 � D1 + 2D1) = O(D1 + D2).

We have h0(T 2) > 0 because the divisor D1 + D2 is effective. On the other hand,
multiplying exact sequence (4.5.5) by T �1 ⌦ K1/2, we obtain an injective map
O ! E ⌦ T �1 ⌦ K1/2, which is the same as a nowhere vanishing section of
E ⌦ K1/2 ⌦T �1.

4.5.3 Proof of Theorem 4.5.2

Lemma 4.5.7. Fix k > 0 and a conformal structure on S. For every B 2 A (S, E), let
EB denote the holomorphic bundle (E, ∂̄B).

Let Z ⇢ A (S, E) be the subset consisting of those connections B for which there exists
a degree k holomorphic line bundle T ! S satisfying

h0(T 2) > 0 and h0(EB ⌦ K1/2 ⌦T �1) > 0.

The complement A (S, E)\Z is residual in A (S, E). Furthermore, for all B0, B1 2
A (S, E)\Z , a generic path in A (S, E) connecting B0 and B1 is disjoint from Z .

Proof. We use a Sard–Smale argument similar to the one used in the proof of
Proposition 3.2.6. As in that proof, in the argument we replace the spaces of
smooth connections and sections by their suitable Sobolev completions.

Let T ! S be a Hermitian line bundle of degree k. Denote

F = E⇤ ⌦ K1/2 ⌦ T�1

and consider the map

A (S, E)⇥A (S, T)⇥ G(F)⇥ G(T2)! W0,1(F)⇥W0,1(T2),

(B, A, y, a) 7! (∂̄ABy, ∂̄Aa).

This map is G C(S, L)–equivariant. Let X be the open subset of A (S, T)⇥ G(F)⇥
G(T2)/G C(S, L) given by

X = {[B, A, y, a] | y 6= 0, a 6= 0}.

Let V ! A (S, E)⇥ X be the Banach vector bundle obtained from taking the
G C(S, L)–quotient of the trivial bundle with fiber W0,1(F)⇥W0,1(T). Then the
map introduced above descends to a smooth section s : A (S, E)⇥ X ! V . For
every B 2 A (S, E) the restriction sB = s(B, ·) is a Fredholm section whose index
is the Euler characteristic of the elliptic complex

W0(C) W0,1(C)� G(F)� G(T2) W0,1(F)�W0,1(T2). (4.5.6)

The first arrow in the complex is the linearized action of G C(S, L), whereas
the second is the linearization of the map (A, y, a) 7! (∂̄ABy, ∂̄Aa). This elliptic
complex agrees up to terms of order zero with the direct sum of the complexes

W0(C) W0,1(C) 0∂̄ and
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0 G(F)� G(T2) W0,1(F)�W0,1(T2).
∂̄AB�∂̄A

By the Riemann–Roch theorem, the Euler characteristic of this complex is

c(O)� c(F)� c(T2) = (1� g)� (deg(F) + 2� 2g)� (2 deg(T) + 1� g) = 0

because deg(F) = 2g � 2� 2 deg(T). Thus, sB is a Fredholm section of index
zero.

The proof will be completed if we can show that s is transverse to the zero
section at all points [B, A, y, a] 2 s�1(0) ⇢ X . Indeed, if this is the case, then by
the Sard–Smale theorem, the same is true for sB for B from a residual subset of
A (S, E). For every such B the set

{[A, y, a] | ∂̄ABy = 0, ∂̄Aa = 0, y 6= 0 a 6= 0}

is a zero-dimensional submanifold of X . This submanifold must be empty as
otherwise it would contain a subset homeomorphic to C⇤ given by [A, ty, a] for
t 2 C⇤. This proves that for a generic B there is no holomorphic line bundle
T = (T, ∂̄A) together with non-zero a 2 H0(T 2) and y 2 H0(EB ⌦ K1/2 ⌦T �1).
The statement for paths is proved in the same way.

It remains to show that s is transverse to the zero section. At a point [B, A, y, a] 2
s�1(0) the first map in (4.5.6) is injective. Thus, it is enough to prove the surjec-
tivity of the operator combining the second map of (4.5.6) and the linearization
of ∂̄AB with respect to B:

W0,1(End(F))�W0,1(C)� G(F)� G(T2) �! W0,1(F)�W0,1(T2)

(b, a, u, v) 7! ((b + a)y + ∂̄ABu, aa + ∂̄Av).

If this map were not surjective, there would exist a non-zero (p, q) 2 W0,1(F)�
W0,1(T2) L2–orthogonal to the image; which in turn would imply ∂̄

⇤
AB p = 0,

∂̄

⇤
Aq = 0, and

hby, piL2 = 0 and haa, qiL2 = 0

for all b 2 W0,1(End(F)) and a 2 W0,1(C). Note that y and a are both non-zero
and holomorphic; p and q are anti-holomorphic and at least one of them is
non-zero. Thus, using a bump function, we can construct b and a such that

hby, piL2 > 0 and haa, qiL2 > 0.

The contradiction shows that s is transverse to the zero section.

Theorem 4.5.2 follows immediately from the previous results. Let p = (g, B) 2
PS. Denote by EB the holomorphic bundle (E, ∂̄B). Proposition 4.5.4 and Propo-
sition 4.5.5 show that a harmonic Z2 spinor with respect to p corresponds to a
holomorphic triple (L , a, b) fitting into the short exact sequence (4.5.5). On the
other hand, by Lemma 4.5.6 and Lemma 4.5.7, given any g, for a generic choice
of B the holomorphic bundle EB does not fit into any such sequence. The same is
true when (g, B) vary in a generic one-parameter family by the second part of
Lemma 4.5.7.
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4.5.4 Harmonic Z2 spinors and limiting configurations

Every limiting configurations, as in Definition 4.4.10, is an example of a harmonic
Z2 spinor on M = S1 ⇥ S. The results established in this section allow us to con-
struct an example of a harmonic Z2 spinor which is not a limiting configuration.
This shows that the moduli space Mw(p, h) is compactified using only some, but
not all, harmonic Z2 spinors.

Example 4.5.8. Suppose that the genus of S is positive so that the canonical
divisor K is effective. Let C1 and C2 be two divisors satisfying C1 + C2 = 1

2 K > 0.
Set

L := O(C1 � C2), D1 := 2C1, D2 := 2C2,

Then

L �1 ⌦ K�1/2 ⌦O(D1) = O(C1 + C2 � 1
2

K) = O,

L �1 ⌦ K1/2 ⌦O(�D2) = O(�C1 � C2 +
1
2

K) = O.

Set E := O�O. According to Proposition 4.5.5, if we can find holomorphic maps
ã and b̃ making the sequence (4.5.5) exact, then the data (L , D1, D2, ã, b̃) gives
rise to a harmonic Z2 spinor with singular set D = D1 [ D2.

In the present setting, the sequence (4.5.5) is

0 O O �O O 0,ã

b̃

so there is an obvious choice of ã and b̃ making the sequence exact. However,the
harmonic Z2 spinor corresponding to (L , D1, D2, ã, b̃) is not a limiting configura-
tion unless both divisors C1 and C2 are effective. For if C1 or C1 is not effective,
the last condition in Definition 4.4.9 is violated.

4.6 moduli spaces of framed vortices

We continue to assume that M = S1⇥ S and that the spinc structure w is induced
from a spin structure K1/2 ! S and a Hermitian line bundle L! S of degree d.

By Theorem 4.5.2 and Corollary 4.5.3, for a generic choice of S1–invariant
parameters (p, h) 2PS ⇥ZS, the moduli space Mw(p, h) is homeomorphic to
the compact space Nd(p, h) introduced in Definition 4.4.3. In this section we prove
that in this situation Nd(p, h) is a Kähler manifold and that the signed count of
monopoles with two spinors on M = S1 ⇥ S is the signed Euler characteristic of
Nd(p, h). As shown by Theorem 3.5.7, the signed count of monopoles with two
spinors depends, in general, on the choice of (p, h) 2P ⇥Z . However, it turns
out that it is the same for all generic choices of (p, h) 2PS ⇥ZS. As we will see,
the reason is that harmonic Z2 spinors appear for p from a subset in PS of real
codimension two.

Theorem 4.6.1. Let S be a closed spin surface of genus g(S) > 1. Equip M = S1 ⇥ S
with a spinc structure w induced from the spin structure K1/2 on S and a Hermitian line
bundle L! S. Denote by d = hc1(L), [S]i the degree of L.
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For a generic choice of (p, h) 2 PS ⇥ZS there exist no harmonic Z2 spinors with
respect to p and the moduli space Mw(p, h) is a compact Kähler manifold of dimension

dimC Mw(p, h) = g(S)� 1 ± 2d,

where ± = sign(i/2p

R

S ⇤h � d). In this case, the signed count of Seiberg–Witten
multi-monopoles is, up to a sign, the Euler characteristic of the moduli space:

nw(p, h) = (�1)g(S)�1
c(Mw(p, h)).

Moreover, nw(p, h) does not depend on the choice of a generic (p, h) 2PS ⇥ZS.

In order to prove Theorem 4.6.1, we study the moduli space Nd(p, h).

4.6.1 Framed vortices

We assume throughout this section that d � t < 0 where d = deg L and t =
t(h) =

R

S ih/2p. All the results of this section can be easily generalized to
the case d� t > 0. The case d� t = 0 is uninteresting as the moduli space is
generically empty.

The space Nd(p, h) was introduced in introduced in Definition 4.4.3. Its points
can be interpreted in three different ways.

1. As isomorphism classes of pairs (L , a), where L ! S is a degree d
holomorphic line bundle and a is a non-zero holomorphic section

a 2 H0(S, EB ⌦L ⌦ K1/2).

Recall that EB denotes the holomorphic bundle (E, ∂̄B), where B is the given
connection on E, part of the parameter p = (g, B).

2. As G C(S, L)–equivalence classes of pairs

(A, a) 2 A (S, L)⇥ G(S, E⇤ ⌦ L⌦ K1/2)

satisfying ∂̄ABa = 0 and a 6= 0.

3. As G (S, L)–equivalence classes of pairs (A, a) as above satisfying
(

∂̄ABa = 0 and a 6= 0,
i ⇤ FA + |a|2 � i ⇤ h = 0,

(4.6.1)

Following [BGP97], we will refer to Nd(p, h) as the moduli space of framed vortices
(in this context, framing corresponds to fixing the holomorphic bundle EB).

4.6.2 Deformation theory

Here we relate the deformation theories of Nd(p, h) and Mhol
d (p, h).

Theorem 4.6.2. Under the assumptions of Theorem 4.6.1, for a generic choice of (p, h) 2
PS ⇥ZS the following hold:

1. Nd(p, h) is a compact Kähler manifold of complex dimension g(S)� 1± 2d, where
± = sign(t(h)� d).
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2. Mhol
d (p, h) is Zariski smooth in the sense of Definition 3.2.17. Moreover, the

inclusion

Nd(p, h) ,!Mhol
d (p, h)

is a homeomorphism and induces an isomorphism of Zariski tangent spaces.

3. The relative orientation on the obstruction bundle O ! Mhol
d (p, h), introduced

in Proposition 3.2.18, is compatible with the orientation of the cotangent bundle
T⇤Nd(p, h)! Nd(p, h) induced from the complex structure.

Before proving the theorem, let us discuss some of its consequences.

Corollary 4.6.3. The following conditions are equivalent:

1. All points of Nd(p, h) are unobstructed in the sense of deformation theory of
solutions to the framed vortex equation (4.6.1).

2. Mhol
d (p, h) is compact and Mhol

d (p, h) = Nd(p, h).

3. There exist no triple (L , a, b) consisting of a degree d holomorphic line bundle
L ! S and non-zero holomorphic sections a 2 H0(S, EB ⌦L ⌦ K1/2) and
b 2 H0(S, E ⇤B ⌦L ⇤ ⌦ K1/2) satisfying ab = 0 2 H0(S, K).

Proof. The equivalence of (1) and (2) follows from Corollary 4.4.5 and the iden-
tification of the obstruction bundle O =

S

A,a H2
A,a with M

hol
d (p, h)\Mhol

d (p, h),
shown in the proof of Theorem 4.6.2. The equivalence of (2) and (3) is obvious
from the definition of Mhol.

Corollary 4.6.4. The diffeomorphism type of Mw(p, h) does not depend on a generic
choice of (p, h) 2 PS ⇥ZS, as long as we vary h so that sign(d � t(h)) remains
constant.

Proof. Let p0, p1 2P�
S, where P�

S ⇢PS is a residual set from Theorem 4.5.2. For
a generic path (pt)t2[0,1] in PS connecting p0 and p1, there exist no harmonic Z2
spinors with respect to pt, for any t. Thus, for any path (ht)t2[0,1] in ZS such that
sign(d� t(ht)) remains constant, Mw(pt, ht) = Nd(pt, ht) is compact consists of
irreducible, unobstructed solutions to (4.6.1). (If, for some t, we have d = t(ht),
then reducible solutions appear.) Thus,

S

t2[0,1] Nd(pt, ht) ! [0, 1] is a smooth
fiber bundle and all of its fibers are diffeomorphic.

In the remaining part of this section, we prove Theorem 4.6.2 and show that
it implies Theorem 4.6.1. Choose (p, h) 2 PS ⇥ZS so that there exist no har-
monic Z2 spinors with respect to p, and the moduli space Mw(p, h) consists of
irreducible and unobstructed monopoles. We know that this is true for a generic
choice of (p, h) 2PS ⇥ZS. To simplify the notation, in what follows denote

N = Nd(p, h),

Mhol = Mhol
d (p, h),

M = Mw(p, h).

Proof of Theorem 4.6.2. The proof proceeds in four steps.

Step 1. Deformation theory of N.
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The construction of an analytic structure on N follows the general scheme that
by now is familiar to the reader. Consider the elliptic complex associated to a
solution (A, a) of ∂̄ABa = 0:

W0(C) W0,1(C)� G(E⇤ ⌦ L⌦ K1/2) W0,1(E⇤ ⌦ L⌦ K1/2).
Gc

A,a TA,a

where Gc
A,a is the linearized action of G C(S, L)

Gc
A,a( f ) = (�∂̄ f , f a) for f 2 W0(C),

and TA,a is the linearization of the Dolbeault operator

TA,a(a0,1, f) = (∂̄ABf + a0,1
a) for (a0,1, f) 2 W0,1(C)� G(E⇤ ⌦ L⌦ K1/2).

Denote by H0
A,a, H1

A,a, and H2
A,a the homology groups of this complex. By def-

inition N consists of solutions with a 6= 0, so H0
A,a = 0. On the other hand, the

deformation complex is isomorphic modulo lower order term to the sum of the
Dolbeault complexes for ∂̄ on W0(C) and ∂̄AB on E⇤ ⌦ L⌦ K1/2 (with a shift). By
the Riemann–Roch theorem the expected complex dimension of N is

dimC H1
A,a � dimC H2

A,a = c(S,O)� c(S, E ⌦L ⌦ K1/2) = g(S)� 1 + 2d.

Step 2. N is a compact Kähler manifold.

We already know that N is compact. By Corollary 4.5.3, Mhol = N for a
generic B. One can show that N is generically smooth in the same way as in
Proposition 3.2.6. Alternatively, we can interpret the elements of H2

A,a as harmonic
Z2 spinors:

H2
A,a = ker T⇤A,a =

n

q 2 G(E⇤ ⌦ L⌦ K�1/2) | aq = 0, ∂̄

⇤
ABq = 0

o

.

Every non-zero element of H2
A,a gives rise to a non-zero b = q 2 G(E⌦ L⇤ ⌦K1/2)

satisfying ∂̄ABb = 0 and ab = 0. Thus, the triple (A, a, b) is an element of
M

hol\Mhol corresponding to a harmonic Z2 spinor as in Proposition 4.4.15. By
Theorem 4.5.2, for a generic B there are no harmonic Z2 spinors so H2

A,a = 0
for all [A, a] 2 N. This implies that N is a complex manifold of dimension
g(S) � 1 + 2d whose holomorphic tangent space at [A, a] is H1

A,a. It admits a
natural Hermitian metric induced from the L2–inner product on the space of
connections and sections. This metric is Kähler because N is the moduli space of
solutions of the framed vortex equations (4.6.1), which is an infinite-dimensional
Kähler quotient. For details, see [Per08; DT16].

Step 3. H1
A,a is naturally isomorphic to the Zariski tangent space to Mhol at [A, a, 0].

H1
A,a consists of pairs (a0,1, u) 2 W0,1(C) � G(E⇤ ⌦ L ⌦ K1/2) satisfying the

linearized equation

∂̄ABu + a0,1
a = 0
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together with the complex Coulomb gauge (Gc
A,a)

⇤(a0,1, u) = 0. By (4.3.7), the
tangent space to Mhol at consists of triples (a0,1, u, v) where a0,1, u are as above,
v 2 G(E⌦ L⇤ ⌦ K1/2), and

8

>

>

<

>

>

:

∂̄ABu + a0,1
a = 0,

∂̄ABv = 0,
av = 0

together with the complex Coulomb gauge for (a0,1, u, v). Any non-zero v satisfy-
ing the conditions above would give an element (A, a, v) of Mhol\Mhol. Since B
has been chosen so that Mhol\Mhol is empty, v = 0 and the equations obeyed by
(a0,1, u, 0) are identical to the ones defining H1

A,a. We conclude that the Zariski
tangent spaces to N and Mhol are equal.

Step 4. Comparing the orientations.

Let (A, Y) be an irreducible solution of the Seiberg–Witten equations. We have
Y = (a, 0) where (A, a) is a solution of the framed vortex equations. Consider
the deformation operator introduced in Equation 3.2.3:

LA,Y : W1(iR)�W0(iR)� G(E⇤ ⌦ S⌦ L) �! W1(iR)�W0(iR)� G(E⇤ ⌦ S⌦ L)

Write LA,Y = LA,0 + P, where

LA,0 =

0

B

B

@

⇤d �d 0
�d⇤ 0 0

0 0 /DAB

1

C

C

A

and

P(a, v, f) = (i ImhY, fi,�2 ⇤ µ(f, Y),�a · Y + vY).

The kernel and cokernel of LA,0 are naturally identified with

H1(M, iR)� H0(M, iR)� ker /DAB.

The isomorphism between det LA,0 and det LA,Y, defining the relative orientation
on the obstruction bundle, factors through the determinant space det P of the
finite dimensional map

P : H1(M, iR)� H0(M, iR)� ker /DAB ! H1(M, iR)� H0(M, iR)� ker /DAB

induced from the zeroth order operator P defined above (for simplicity we use
the same letter to denote the induced finite dimensional map). As in the proof
of Proposition 4.1.8, we have H1(M, iR) = H1(S1, iR)� H0,1(S). Consider the
complex structure on H1(S1, iR)� H0(M, iR) coming from the identification

H1(S1, iR)� H0(M, iR) = iR� iR = C.

Let dt be the one-form spanning H1(S1, R). Under the Clifford multiplication,
dt acts as the multiplication by i on S, and so idt acts as the multiplication
by �1. Hene, under the isomorphism H1(S1, iR) � H0(M, iR) = C, the map
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(a, v) 7! (�a · Y + vY) is given by (x + iy) 7! (x + iy)Y and so, in particular, it
is complex linear. Next, consider the first two components of P, that is the map
f 7! (i Im(Y, f),�2 ⇤ µ(f, Y)). Decompose the moment map into µ = µR � µC
as in the proof of Proposition 4.1.8. The map f 7! µC(f, Y) is complex linear
from ker /DAB to H0,1(S). We are left with the map from ker /DAB to H1(S1, iR)�
H0(M, iR) given by

f 7! (i Im(Y, f)� 2 ⇤ µR(f, Y)).

We have f = (u, v) under the splitting S = K1/2 � K�1/2. Following the identifi-
cations from the proof of Proposition 4.1.8 we find that ⇤µR(f, Y) = �2i Re(a, u)
and so our map is

f = (u, v) 7! (i Im(a, u),�4i Re(a, u).

Up to a constant, it coincides with the complex linear map

u 7! �Re(a, u) + i Im(a, u) = �(a, u) = �(u, a).

We conclude that the isomorphism det P ⇠= det LA,0 agrees with the orientations
induced from the complex structures on the cohomology groups. The same is
true for det P ⇠= det LA,Y where the complex structures on H1

A,Y = ker LA,Y and
H2

A,Y = cokerLA,Y come from the isomorphism of analytic spaces M ⇠= Mhol

given by Theorem 4.3.6. The tangent and obstruction spaces to Mhol are canoni-
cally identified with the tangent space to N. Therefore, the relative orientation on
the obstruction bundle agrees on the complex orientation on T⇤N! N.

4.6.3 Proof of Theorem 4.6.1

The result follows immediately from combining Proposition 3.2.20, Theorem 4.3.6,
and Theorem 4.6.2. For two different generic choices (p0, h0) and (p1, h1) of
parameters in PS ⇥ZS, we have

nw(p0, h0) = nw(p1, h1),

because a generic path (pt, ht)t2[0,1] in PS ⇥ZS, for which the sign of d� t(ht)
remains constant, avoids reducibles and harmonic Z2 spinors, cf. Theorem 4.5.2.

4.7 examples and computations

In this section we study Mw(p, h) = Mhol
d (p, h) using methods of complex

geometry. We prove some general properties of the moduli spaces and give their
complete description when S is a Riemann surface of genus zero, one, or two.

Theorem 4.7.1. Let S be a closed Riemann surface of genus g(S). Let M = S1 ⇥ S
be equipped with a spinc structure w induced from a spin structure K1/2 ! S and a
Hermitian line bundle L ! S of degree d. Let (p, h) 2 PS ⇥ZS be a generic choice
of S1–invariant parameters of the Seiberg–Witten equation with two spinors, so that
Theorem 4.6.1 holds, and d� t(h) < 0.

Set M = Mw(p, h) and n = nw(p, h).

1. If d < (1� g(S))/2, then M is empty and n = 0.
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2. If d > 0, then M admits a holomorphic map to the Jacobian torus of S. Its fibers are
projective spaces. If d > 0, this map is surjective. If d = 0, its image is a divisor in
the linear system |2Q| where Q is the theta divisor in the Jacobian.

3. If d > g(S) � 1, then M is biholomorphic to the projectivisation of a rank 2d
holomorphic vector bundle over the Jacobian torus of S and n = 0.

4. If d = 0 and g(S) = 1, then M consists of two points and n = 2.

5. If d = 0 and g(S) = 2, then M is biholomorphic to a closed Riemann surface of
genus five and n = 8.

In what follows, we will use a complex-geometric description of the moduli
spaces Mhol

d (p, h) and Nd(p, h). Henceforth, we fix a conformal structure on S and
assume that a perturbing 2–form h is chosen so that the inequality d� t(h) < 0
holds. We will allow the connection B 2 A (S, E), and thus the holomorphic
bundle E = EB = (E, ∂̄B) to vary. With all this in mind, we will denote the
corresponding moduli spaces by Mhol

d (E ) and Nd(E ).
We will say that a statement holds for a generic holomorphic bundle E if it

holds for E = (E, ∂̄B) for all B from a residual subset of A (S, E).

4.7.1 Generalized theta divisors

For d = 0, the moduli space Nd(E ) is related to generalized theta divisors [Bea95].
Let g = g(S) be the genus of S and let Pick(S) denote the component of the
Picard group of S parametrizing degree k holomorphic line bundles over S;
for every k it is biholomorphic to the Jacobian torus Pic0(S). Let E ! S be a
rank 2 stable holomorphic bundle with trivial determinant. For any line bundle
A 2 Picg�1(S) the Riemann–Roch theorem gives us

c(E ⌦A ) = 2 deg(A ) + 2(1� g) = 0,

so we expect H0(E ⌦A ) = H1(E ⌦A ) = 0 if A is generic.

Definition 4.7.2. The generalized theta divisor of E is

q(E ) := {A 2 Picg�1(S) | h0(E ⌦A ) > 0};

One can show that q(E ) is a divisor3 in Picg�1(S) in the linear system |2Q| =
CP2g�1, where Q is the classical theta divisor

Q := {A 2 Picg�1(S) | h0(A ) > 0}.

Proposition 4.7.3. If E is a rank 2 stable holomorphic bundle with trivial determinant,
then there is a surjective morphism N0(E )! q(E ) whose fibers are projective spaces.

Proof. A point in N0(E ) is an equivalence class [L , a] where L 2 Pic0(S) and
a 2 H0(E ⌦L ⌦ K1/2), with a 6= 0. Since det(L ⌦ K1/2) = g � 1, we have
L ⌦ K1/2 2 q(E ). The morphism N0(E )! q(E ) is given by [L , a] 7! L ⌦ K1/2.
The preimage of L ⌦ K1/2 is PH0(E ⌦L ⌦ K1/2).

3 This is no longer true if E is of higher rank as it can happen that q(E ) = Picg�1(S).
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Remark 4.7.4. The divisor q(E ) can be described geometrically as follows. By
a theorem of Lefschetz, the linear system |2Q| is base-point free and gives rise
to a holomorphic map Picg�1(S) ! |2Q|⇤. It follows that q(E ), as a subset of
Picg�1(S), is the preimage of a hyperplane in |2Q|⇤ under the map Picg�1(S)!
|2Q|⇤. This hyperplane is easy to identify—it is exactly q(E ) thought of as a
point in |2Q| or, equivalently, as a hyperplane in |2Q|⇤. Varying the background
bundle E , we vary the corresponding hyperplane and therefore the divisor
q(E ) ⇢ Picg�1(S).

4.7.2 General properties of the moduli spaces

Proposition 4.7.5. For a generic choice of E the following holds.

1. If d < 1�g
2 , then Mhol

d (E ) is empty.

2. If d > 0, then Mhol
d (E ) is non-empty.

3. If d > g� 1, then Mhol
d (E ) is Zariski smooth with the underying complex manifold

biholomorphic to the projectivisation of a rank 2d vector bundle over Picd(S).

Remark 4.7.6. Proposition 4.7.5 shows that the most interesting case is (1 �
g)/2 6 d < 0. It is an interesting question whether Mhol

d (E ) is generically
non-empty for d in this range.

The proof of Proposition 4.7.5 relies on the following general result about
holomorphic vector bundles on Riemann surfaces. Recall that E stable if for any
holomorphic line bundle A the existence of a non-zero holomorphic map A ! E
implies deg(A ) < 0.

Lemma 4.7.7. If g > 2, then there is an open dense subset of A (S, E) such that for
every connection B from this subset the corresponding holomorphic bundle EB is stable.

Proof. EB fails to be stable if and only if there is a holomorphic line bundle L with
deg(L ) = d > 0 and a non-zero map q : L ! EB. In other words, if L is a unitary
bundle underlying L and A is a connection inducing L , then q 2 G(L⇤ ⌦ E)
satisfies ∂̄ABq = 0. Consider

Ud := {B 2 A (S, E) | ker ∂̄AB = {0} for all A 2 A (S, L)}

for a fixed degree d unitary bundle L.

Step 1. Ud is open.

Let B 2 Ud. For every A 2 A (S, L) there is a neighbourhood of (A, B) in
A (S, L)⇥A (S, E) such that for all (A0, B0) from this neighbourhood ker ∂̄A0B0 =
0. Since this condition is invariant under the action of G C(S, L), and

A(S, L)/G C(S, L) = Picd(S)

is compact, there is a neighbourhood of B in A (S, E) such that for all B0 from
this neighbourhood ker ∂̄AB0 = 0 for all A. All such B0 belong to Ud which proves
that Ud is open.

Step 2. Ud is dense.
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The proof is similar to that of Proposition 3.2.6. In what follows we replace
the spaces of connections and sections by their Sobolev completions. Cover
A (S, L)/G C(S, L) by finitely many charts that can be lifted to G C(S, L)–slices
in A (S, L). Let V be such a chart; it is an open subset of R2g parametrizing a
smooth family of connections {Ax}x2U . The claim will follow if can show that

UV := {B 2 A (S, E) | ker ∂̄Ax B = {0} for all x 2 V}

is dense in A (S, E). To prove this, consider

S := {q 2 G(S, L⇤ ⌦ E) | kqkL2 = 1}
and the map

f : A (S, E)⇥V ⇥ S �! W0,1(S, L⇤ ⌦ E)

f (B, x, q) := ∂̄Ax Bq.

For every B 2 A (S, E) the restriction fB := f (B, ·, ·) is a Fredholm map (be-
tween suitable Sobolev spaces) because its derivative is the sum of ∂̄Ax B and
the derivative with respect to x, which is a finite-dimensional operator. By the
Riemann–Roch theorem,

indR d fB = dim V + 2ind ∂̄Ax B � 1
= 2g + 4(�d + 1� g)� 1
= 2(�2d + 2� g)� 1 6 0,

(4.7.1)

where we subtract 1 because ∂̄Ax B is restricted to the tangent space to S. A
computation similar to that in the proof of Proposition 3.2.6 shows that the
derivative of the full map f is surjective at every point of f�1(0). By the Sard–
Smale theorem, the set f�1

B (0) is empty for B from a dense subset of A (S, E); all
such B belong to UV .

Step 3. U :=
T

d>0 Ud is open and dense.

U is dense by Baire’s theorem; it is open by the following argument. By (4.4.3),
the existence of a destabilising map q : L ! EB implies

0 6 d 6 h0(S, EB) + 2g� 2.

The right-hand side can only decrease when B is replaced by a sufficiently close
B0. (Indeed, if we split G(S, E) into ker ∂̄B and its L2–orthogonal complement Q,
then by the elliptic estimate ∂̄B0 is non-degenerate when restricted to Q for all
nearby connections B0; it follows that the projection ker ∂̄B0 ! ker ∂̄B is injective.
See also [Muk03, Proposition 11.21] for an algebro-geometric proof.) Therefore,
to guarantee that a nearby connection B0 belongs to U it is enough to check that
it belongs to Ud for finitely many values of d. Thus, for every B 2 U there are
finitely many open neighbourhoods of B whose intersection lies entirely in U .

Proof of Proposition 4.7.5. By Theorem 4.6.2, for a generic choice of E the moduli
space Mhol

d (E ) = Nd(E ) is a compact complex manifold of dimension g� 1 + 2d.
If d < (1� g)/2, then this dimension is negative and Mhol

d (E ) must be empty.
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The case d = 0 was discussed in the previous subsection. Let deg(L ) = d > 0;
then

h0(E ⌦L ⌦ K1/2)� h1(E ⌦L ⌦ K1/2) = 2d > 0;

thus, L is in the image of the projection p : Mhol
d (E ) ! Picd(S) given by

[L , a, b] 7! L . For a generic E , by Theorem 4.6.2, Mhol
d (E ) = Nd(E ) and so

p

�1(L ) = PH0(E ⌦L ).
For the proof of the third item, assume g > 2; the cases g = 0, 1 will be

considered separately in the next section. By Lemma 4.7.7, a generic E is stable
and by Serre duality,

h1(E ⌦L ⌦ K1/2) = h0(E ⇤ ⌦L ⇤ ⌦ K1/2).

Any element of H0(E ⇤ ⌦L ⇤ ⌦ K1/2) gives a holomorphic map L ⌦ K�1/2 ! E ⇤.
We have

deg(L ⌦ K�1/2) = d� g + 1 > 0.

Since E ⇤ is stable, it follows that any holomorphic map L ⌦ K�1/2 ! E ⇤ is
trivial. Thus, h1(E ⌦L ⌦ K1/2) = 0 and by the Riemann–Roch theorem h0(E ⌦
L ⌦ K1/2) = 2d for every L 2 Picd(S). We conclude that p : Mhol

d (E )! Picd(S)
is the projectivisation of the rank 2d vector bundle whose fiber over L is the
cohomology group H0(E ⌦L ⌦ K1/2) = C2d.

4.7.3 Genus zero

Let S = CP1. For k 2 Z denote by O(k) the unique holomorphic line bundle of de-
gree k; K1/2 = O(�1) is the unique spin structure. By a theorem of Grothendieck,
every holomorphic bundle over CP1 is the direct sum of line bundles. In partic-
ular, every holomorphic SL(2, C)–bundle is of the form E = O(k)�O(�k) for
some k > 0, with k = 0 being the generic case.

Proposition 4.7.8. Let S = CP1 and E = O(k)�O(�k) for k > 0.

1. If d 6 0 and k 6 |d|, then Mhol
d (E ) is empty.

2. If d > 0 and k 6 d, then Mhol
d (E ) is Zariski smooth with the underlying complex

manifold biholomorphic to CP2d�1.

3. If k > |d|, then Mhol
d (E ) is non-compact and its compactification M

hol
d (E ) is

homeomorphic to a locally trivial CPk�d–fibration over CPk+d.

Proof. Mhol
d (E ) consists of the equivalences classes of pairs (a, b) such that

a 2 H0(O(k + d� 1))� H0(O(�k + d� 1)),

b 2 H0(O(�k� d� 1))� H0(O(k� d� 1)),

a 6= 0, and ab = 0 2 H0(O(�2))—this is automatically satisfied since h0(O(�2)) =
0. If E is generic, so that k = 0, then d 6 0 which implies that a = 0 and Mhol

d (E )

is empty. If d > 0, then a 2 C2d and b = 0; it follows that

Mhol
d (E ) = Nd(E ) = CP2d�1.
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The same description of Mhol
d (E ) is valid in the non-generic case k 6= 0 as long

as k 6 |d|. When k > |d| the moduli space is no longer compact and harmonic
Z2 spinors appear. If k > d > 0, then a 2 Ck+d, b 2 Ck�d and Mhol

d (E ) is the
total space of the vector bundle O(�1)�(k�d) over CPk+d�1. The compactification
M

hol
d (E ) is the CPk�d–bundle over CPk+d�1 obtained from the projectivisation

of the vector bundle O(�1)�(k�d) �O.

4.7.4 Genus one

Let S = S1 ⇥ S1 equipped with a complex structure making it into an elliptic
curve. Isomorphism classes of line bundles of a given degree d on S form the
Jacobian Picd(S) which is isomorphic to the dual torus S⇤. The canonical bundle
of S is trivial and without loss of generality we can take K1/2 also to be trivial.
Holomorphic vector bundles over elliptic curves were classified by Atiyah [Ati57].
A generic holomorphic SL(2, C)–bundle E is of the form E = A �A �1 for a
degree zero line bundle A ! S. We may moreover assume that A 2 6= O since
there are only four line bundles satisfying A 2 = O.

Proposition 4.7.9. Let S be an elliptic curve. Suppose that E is generic, that is of the
form E = A �A �1 for A 2 Pic0(S) satisfying A 2 6= O.

1. If d < 0, then Mhol
d (E ) is empty.

2. If d > 0, then Mhol
d (E ) is Zariski smooth with the underlying complex manifold

biholomorphic to the projectivisation of a rank 2d vector bundle over Picd(S).

3. If d = 0, then Mhol
d (E ) is regular and consists of two points.

Remark 4.7.10. If d > 0, then the cohomology ring H⇤(Mhol
d (E ), Z) is isomorphic

as H⇤(Picd(S), Z)–modules to H⇤(Picd(S), Z)[H]/(H2d) where deg(H) = 2. In
particular,

c(Mhol
d (E )) = c(Picd(S))c(CP2d�1) = 0.

Proof of Proposition 4.7.9. Mhol
d (E ) consists of equivalence classes of triples (L , a, b)

where L 2 Picd(S) and

a 2 H0(A ⌦L )� H0(A �1 ⌦L ),

b 2 H0(A �1 ⌦L �1)� H0(A ⌦L �1),

satisfying a 6= 0 and ab = 0 in H0(O) = C.
For d < 0 we must have a = 0 and so the moduli space is empty. For d = 0 the

only choices of L for which a is possibly non-zero are L = A �1 and L = A . If
L = A �1, then

a 2 H0(O)� H0(A �2),

b 2 H0(O)� H0(A 2).

Since A 2 and A �2 are non-trivial, so they have no non-zero sections. The only
possibly choice for a, up to scaling, is therefore a = (1, 0) and the condition
ab = 0 forces b to be zero since the pairing H0(O)⇥ H0(O)! H0(O) is simply
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the multiplication C⇥ C ! C. We repeat the same argument for L = A and
conlude that Mhol

d (E ) consists of two isolated points. In particular it is compact
and so Zariski smooth thanks to Corollary 4.6.3. Since it is also has the correct
dimension zero, we conclude that each of the points is regular.

Consider now the case d > 0. For every L 2 Picd(S) the Riemann–Roch
theorem gives us

h0(L ⌦A )� h1(L ⌦A ) = d

and by Serre duality, h1(L ⌦A ) = h0(L �1 ⌦A ) = 0 because deg(L �1) < 0,
Thus H0(L ⌦A ) = Cd and the same is true if A is replaced by A �1. Therefore,
a is identified with a non-zero vector in C2d. On the other hand, b = 0 since
A ±1 ⌦L �1 has no non-trivial sections. Since the above discussion is valid for
any L 2 Picd(S), it follows that Mhol

d (E ) is a locally trivial CP2d�1–fibration
over Picd(S): the projectivisation of a rank 2d holomorphic vector bundle over
Picd(S) given by the push-forward of the Poincaré line bundle P ! Picd(S)⇥ S
to the first factor.

It is worthwhile discussing some non-generic examples. The cases when E =
A �A �1 and either deg(A ) 6= 0 or A 2 = O are similar to the ones already
considered. Another possibility is that E is indecomposable, in which case it is of
the form E = E0 ⌦A where A 2 Pic0(S) satisfies A 2 = O and E0 is the unique
non-trivial bundle obtained as an extension

0 O E0 O 0.

The line bundle A is uniquely determined by E .

Example 4.7.11. Suppose without loss of generality that E = E0. It is shown
in [Ati57] that if h0(E ⌦L ) 6= 0, then either deg(L ) > 0 or L = O in which
case we have h0(E ) = 1. We conclude that when d < 0 or d > 0 the moduli
space Mhol

d (E ) is, respectively, empty or the projectivisation of a vector bundle
over Picd(S). On the other hand, for d = 0 the only choice of L for which
h0(E ⌦L ) > 0 is L = O and we look for holomorphic sections

a 2 H0(E ) = C,

b 2 H0(E ⇤) = C

such that a 6= 0 and ab = 0. Up to scaling, a = 1. We will show now that the
pairing H0(E )⇥ H0(E ⇤) ! C is trivial and, as a consequence, b can be chosen
arbitrarily. Let W 2 H0(L2E ) be a nowhere vanishing holomorphic volume form.
It induces an isomorphism E ! E ⇤ given by v 7! W(v, ·). If a is a generator of
H0(E ), then g = W(a, ·) is a non-zero holomorphic section of H0(E ⇤) and so it
must be a generator. On the other hand, g(a) = W(a, a) = 0 since W is skew-
symmetric—this shows that ab = 0 for every b 2 H0(E ⇤). Therefore, Mhol

0 (E ) is
homeomorphic to C. Its compactification M

hol
0 (E ) is homeomorphic to CP1.

4.7.5 Genus two

Let S be a genus two Riemann surface. By Lemma 4.7.7, a generic holomorphic
bundle on S is stable. The proof of the next lemma can be found in [NR69].
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Lemma 4.7.12. Let W be a stable rank two vector bundle with trivial determinant over
a genus two closed Riemann surface S. If A ! S is a degree 1 line bundle, then

1. h0(W ⌦A ) 6 1.

2. Any non-zero homomorphism A ⇤ ! W is everywhere injective.

Proposition 4.7.13. Let S be a closed Riemann surface of genus two. For a generic
holomorphic SL(2, C)–bundle E ! S we have the following description of Mhol

d (E ).

1. If d < 0, then Mhol
d (E ) is empty.

2. If d = 0, then Mhol
d (E ) is Zariski smooth with the underlying complex manifold

biholomorphic to a closed Riemann surface of genus five.

3. If d > 0, then Mhol
d (E ) is Zariski smooth with the underlying complex manifold

biholomorphic to the projectivisation of a rank 2d vector bundle over Picd(S).

Proof. Items (2) and (3) follow from Proposition 4.7.5 For d = 0 we use the
relation between the moduli space of framed vortices and theta divisors described
in Section 4.7.1. Let E ! S be a stable SL(2, C)–bundle. Let SU (2) be the
compactification of the moduli space of such bundles obtained by adding the
S–equivalence classes of semi-stable bundles. As explained in [NR69], we have
|2Q| = CP3 and the map introduced in Section 4.7.1

q : SU (2)! CP3

E 7! q(E )

is an isomorphism. Recall that q(E ) can be seen either as a subset of Pic1(S)

q(E ) = {A 2 Pic1(S) | h0(E ⌦ A) > 0}

or as the corresponding point in |2Q|.
Pic1(S) is a 2–dimensional complex torus and the map Pic1(S) ! |2Q|⇤ =

(CP3)⇤ induces a degree four embedding of the Kummer surface Pic1(S)/Z2.
Thus, as a subset q(E ) ⇢ Pic1(S) is the preimage of the intersection of the
Kummer surface in (CP3)⇤ with the hyperplane q(E ) 2 CP3 under the quotient
map Pic1(S) ! Pic1(S)/Z2. Since q : SU (2) ! CP3 is an isomorphism, by
changing the background bundle E we can obtain all hyperplanes in (CP3)⇤.
In particular, for a generic choice of E , the hyperplane q(E ) will avoid all the
16 singular points of Pic1(S)/Z2 and the intersection Pic1(S)/Z2 \ q(E ) will be
a smooth complex curve of degree four and genus three. Its preimage under
Pic1(S) ! Pic1(S)/Z2 is a smooth curve C ⇢ Pic1(S) of genus five, by the
Hurwitz formula.

Let p : Mhol
0 (E ) ! C be the composition of Mhol

0 (E ) ! N0(E ) with the
projection N0(E ) ! q(E ) = C from Section 4.7.1. We claim that this map is an
isomorphism for a generic choice of E . In order to prove that, it is enough to
check that the fiber over any line bundle L ⌦K1/2 in C consists of one point. This
is equivalent to showing that H0(E ⌦L ⌦ K1/2) is spanned by a single non-zero
section a and if b 2 H0(E ⇤ ⌦L ⇤ ⌦ K1/2) is any section satisfying ab = 0, then
b = 0. The first claim follows immediately from Lemma 4.7.12. As regards the
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second claim, assume that a and b are as above and b 6= 0. By Lemma 4.7.12, the
homomorphisms

a : L ⇤ ⌦ K�1/2 �! E and b : L ⌦ K�1/2 �! E ⇤

are everywhere injective. Since rank E = 2, ab = 0 implies the exactness of the
sequence

0 L ⇤ ⌦ K�1/2 E L ⇤ ⌦ K1/2 0.a

b

t

(4.7.2)

Since det E = O, we conclude L 2 = O. There are 16 line bundles satisfying
this condition: order two elements of Pic0(S). For each of them, all possible
non-trivial extensions E as above are classified by the corresponding extension
class in PH1(K�1) = CP2. (Note that the extension is non-trivial because E is
stable.) Thus, all stable bundles E that can be represented as such an extension
form a proper subvariety of SU (2) = CP3 consisting of the images of 16 maps
CP2 ! SU (2). A generic stable bundle E will not belong to this subvariety. In
this case, we conclude that each fiber of the map p consists of a single point and
p is an isomorphism. In particular, Mhol

0 (E ) is compact and therefore Zariski
smooth by Corollary 4.6.3.

Remark 4.7.14. Note that the last part of the proof was unnecessary; we already
know that generically Mhol

0 (E ) = N0(E ) is compact and Zariski smooth which is
enough to conclude Mhol

0 (E ) = C. On the other hand, the argument presented
above identifies the locus of those semi-stable bundles E 2 SU (2) for which
harmonic Z2 spinors appear. It consists of strictly semi-stable bundles A �A �1,
for some A 2 Pic0(S), which form the Kummer surface Pic1(S)/Z2 in SU (2) =
CP3, and stable bundles E that arise from an extension of the form (4.7.2) for
some element L 2 Pic0(S) of order two. The latter form a subvariety covered by
the images of 16 maps CP2 ! CP3.
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