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Abstract of the Dissertation

Turaev-Viro theory as an extended TQFT

by

Benjamin Balsam

Doctor of Philosophy

in

Mathematics

Stony Brook University

2012

In recent years, the application of quantum groups to the study of

low-dimensional topology has become an active topic of research.

In three-dimensions, these yield the well-known Reshetihkin-Turaev

(RT) invariants, which are a mathematical formulation of Chern-

Simons theory and Turaev-Viro (TV) theory, which is a conver-

gent form of the Ponzano-Regge state sum formula from Quantum

Gravity.

Both RT and TV are more than invariants; they have a far richer

structure known as a Topological Quantum Field Theory (TQFT).

We describe Turaev-Viro theory as an extended (3-2-1)-TQFT and

use this description to prove a theorem relating it to RT theory.
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Turaev-Viro theory has several equivalent descriptions. We exam-

ine Kitaevs toric code from quantum computation and the Levin-

Wen model from condensed matter physics and show that these

theories are extended TQFTs coinciding with TV theory.
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Chapter 1

Introduction
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In the last quarter century, the study of quantum invariants of knots and

low-dimensional manifolds has become an immensely active field of research.

The subject is multi-disciplinary, combining elements of representation theory,

topology, quantum physics, condensed matter theory and quantum computing

among others, and is at once highly theoretical and promising to be of practical

use in the forseeable future. It has aspects that are simple– the construction

of the Jones polynomial via the Kauffmann bracket is easily understandable

by an advanced high school student, yet much is the subject of current interest

by specialists.

The study of quantum invariants began in 1989 when Witten published the

seminal paper 51]. Previously, Jones had defined a polynomial knot invariant

which arose from studying representions of the braid group using subfactors.

In his paper, Witten provided a topological interpretation of the Jones Poly-

nomial of a knot K ⊂ S3: it is the expectation of a Wilson loops associated

to K in Chern-Simons theory with gauge group SU(2). This interpretation

was revolutionary (and helped earn Witten a Fields Medal), but it was not

entirely mathematically rigorous since the formula involved a path integral.

Using the theory of quantum groups, Reshetikhin and Turaev provided a

rigorous reformulation of Witten’s work. More specifically, they constructed a

theory which takes as input a quantum group g and a representation V of g and

produces a knot invariant. These knot invariants include the Jones Polynomial

and its colored variants. Their definition is entirely rigorous and they are easily

computable. Most importantly, they are unchanged under the Kirby moves

(See 5], Section 4.1) and thus are actually 3-manifold invariants. The RT

invariant coincides with the Witten invariant only conjecturally; physicists
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“know” how to compute the path integral using an asymptotic expansion and

the stationary phase approximation and these computations agree with RT,

but these calculations are not satisfactory to mathematicians.

Another quantum invariant was constructed in 1992 by Turaev and Viro

(TV) 49]. This also is a 3-manifold invariant, but it is somewhat different from

the Reshetkihin-Turaev invariant. Turaev-Viro also takes as input a quantum

group and produces a topological invariant of 3-manifolds. The invariant is

defined by taking a state-sum on a triangulation of the manifold and one can

check that the result is triangulation-independent. The TV invariant may

be viewed as a regularized (convergent) form of the Ponzano-Regge model in

3-dimensional quantum gravity.

Although both theories arose from the study of quantum groups, the ex-

act algebraic requirements for constructing each theory were formalized later

using category theory: Reshetikhin-Turaev theory requires a modular tensor

category and Turaev-Viro requires a spherical fusion category. A modular cat-

egory is a type of spherical fusion category with extra structure– a braiding

which is non-degenerate in a suitable sense. Given a modular category A and

a spherical fusion category C, we denote the RT invariant corresonding to A

by ZRT,A and the TV invariant corresponding to C by ZTV,C.

Since every modular category is spherical fusion, it makes sense to compare

RT and TV invariants based on the same modular category.

Theorem 1.0.1 (Turaev). Let A be a modular category. Then

ZTV,A(M) = |ZRT,A(M)|2
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for any closed 3-manifold M

This theorem is both remarkable and mysterious. The invariants are de-

fined in completely disparate ways, yet for modular categories they yield almost

the same results. Additionally, it implies that for A modular, the TV invariant

is both real and positivel. This is completely unobvious from the formula.

The RT and TV invariants are more than just invariants of 3-manifolds.

They are part of much richer theories known as Topological Quantum Field

Theories (TQFTs). Originally, these were studied primarily by physicists as

field theories in which there is no metric (e.g., Chern-Simons theory). A com-

plete axiomatic definition was given by Atiyah in 1990:

Definition 1.0.2. An (n+1)-dimensional TQFT is a symmetric monoidal

functor

Φ : (n+ 1)Cob→ V ecC

where (n+1)Cob is the category with objects closed n-manifolds and mor-

phisms cobordisms.

This definition is highly succint and probably too abstruse for the categor-

ically uninitiated. It amounts to the following:

Definition 1.0.3. An (n+1)-dimensional TQFT τ is the following collection

of data:

• To each closed n-dimensional manifold N , an assignment of a complex

vector space τ(N ).

• To each (n+1)-dimensional manifold M (possibly with boundary), an

assignment of a vector τ(M) in the vector space τ(∂M).
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• To a homeomorphism ϕ : N → N ′ of n-manifolds, a natural isomorphism

τ∗ : τ(N )→ τ(N ′).

• Functorial isomorphisms

1. τ(N )→ τ(N ∗)

2. τ(∅)→ C

3. τ(N1

∐N2)→ τ(N1)⊗ τ(N2)

These data are required to satisfying a list of axioms— functoriality, normal-

ization and gluing. For a detailed description of these axioms, see (5], Chapter

4).

Thus, a 3-dimensional TQFT gives numerical invariants of 3-manifolds and

vector space invariants of 2-manifolds. It does so in a functorial way and is

compatible with cobordisms and gluing of cobordisms.

Reshetikhin-Turaev theory actually is somewhat more than a TQFT. One

can define it for 3-manifolds with boundary and embedded ribbon tangles.

This gives an example of an extended TQFT, a construction studied by Baez,

Walker and greatly popularized by the influential paper of Lurie 35]. Reshetikhin-

Turaev theory is a (3-2-1) theory, since it computes values for manifolds of

dimensions 3, 2, and 1. In particular, it assigns to the circle S1 the original

category C.

For every monoidal category C there is an associated category called the

Drinfeld center, denoted Z(C), which is braided 39]. The construction of the

center is somewhat analogous to taking the center of an algebra, but there are
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some critical differences. In particular, for a category C, Z(C) is in some sense

larger than C and Z(Z(C)) properly contains Z(C) as a subcategory.

Theorem 1.0.4. (Mueger) If C is a spherical fusion category, then Z(C) is

modular.

Furthermore it is known that if C is modular, Z(C) is equivalent as a

braided category to C�Cop, where Cop obtained from C by replacing all braiding

isomorphisms with their inverses. Using this isomorphism and Theorem 1.0.1,

gives

Theorem 1.0.5. Let C be a modular tensor category. Then for any closed

3-manifold M,

ZTV,C(M) = ZRT,Z(C)(M) (1.0.1)

This result was conjectured to apply for C any spherical fusion category.

It had been proved in several other special cases, such as when C = Rep(G)

for some finite group G, but until recently, the general case was unresolved.

A much stronger connection was conjectured by Turaev:

Conjecture 1.0.6. Let C be a spherical fusion category. Then we have an

isomorphism of TQFTs

ZTV,C ∼= ZRT,Z(C) (1.0.2)

Surprisingly, these TQFTs have a fascinating application to Quantum

Computing. One of the main problems with physically building such a device

is that quantum systems are very sensitive to interactions with the environ-

ment. Although individually small, the effect of such interactions compounds

quickly; current models of quantum computers are incapable of performing all
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but the most trivial calculations. One proposed solution 31], is to find physical

systems whose states are topological that is, impervious to small perturbations.

Thus, the system effectively ignores the interactions with the environment, as

long as the interactions are individually small. As is discussed in section 2, this

model is equivalent to TV theory. Such physical systems have already been dis-

covered, but they are not sophisticated enough to implement any algorithms.

Finding a topological system suitable for universal quantum computation is

an active area of research.

1.1 Results

The main result of this thesis is a resolution of Conjecture 1.0.6 in the af-

firmative. As mentioned above, RT theory is defined as an extended TQFT

where cobordisms between surfaces with boundary (equivalently 3-manifolds

with boundary and embedded ribbon tangles) are permitted. Together with

Alexander Kirillov Jr, we develope a similar description of TV theory:

Theorem 1.1.1. Turaev-Viro theory has the structure of an extended (3-2-1)

TQFT, such that ZTV,C(S
1) = Z(C).

This theorem generalizes the construction of TV theory 49] to an extended

TQFT. This is important for several reasons. First, this description is neces-

sary to compare TV invariants and RT invariants even at the level of closed

3-manifolds. Further, it provides the first step in describing TV theory as a

fully extended (3-2-1-0) theory.

One of the drawbacks of TV theory is that involves triangulating a surface,

which is cumbersome even for simple manifolds, such as the torus. To address
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this, we introduce more general cell decompositions, called piecewise linear cell

decompositions 30]. This allows for much more efficient computations of TV

invariants.

Using the above description of TV theory, we prove the following:

Theorem 1.1.2. Let M be a closed 3-manifold. Then

ZTV,C(M) = ZRT,Z(C)(M) (1.1.1)

We next extend the results of Theorem 1.1.2 to show that the two theories

are equivalent as extended (3-2-1) TQFTs:

Theorem 1.1.3. 1. Let Σ be a surface Then there is a natural isomorphism

ZTV,C(Σ)→ ZRT,Z(C)(Σ).

2. The isomorphism from (1) is compatible with cobordisms; if M : Σ1 →

Σ2 is a cobordism, ZTV,C(M) = ZRT,Z(C)(M)

3. These equations also hold for surfaces with boundary and cobordisms be-

tween surfaces with boundary (cobordisms with framed embedded tangles),

and thus we have an equivalence of extended TQFTs ZTV,C ∼= ZRT,Z(C).

Another proof of Conjecture 1.0.6 is due to recent work by Turaev and Vire-

lizier 47], but their work is from quite a different perspective.

There are several models in physics that are closely related to Turaev-

Viro theory. The first is the toric codel, which Kitaev introduced in 31] as a

means of performing fault-tolerant quantum computation. The second is the

Levin-Wen model 34] , which was proposed by condensed matter physicists to

describe topological phases in certain physical systems.
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Both the Kitaev and Levin-Wen models are defined in a similar way. Begin

with an oriented surface Σ and a cell decomposition, one constructs a large

vector space H, and a Hamiltonian H, which is defined in the following form:

H = −
∑

v

Av −
∑

p

Bp (1.1.2)

Here Av and Bp are operators depending on the vertices and plaquettes (2-

cells) of the cell decomposition. The actual form of these operators as well

as the definiton of H depends on the theory. It is well-known that these

operators are commuting projectors and that the lowest eigenspace of H (the

ground state) depends only on the topology of Σ. It has been conjectured that

these models are equivalent to Turaev-Viro theory. Further, the excited states

(higher eigenspaces) have been described in the language of extended TQFTs.

Theorem 1.1.4. Turaev-Viro theory, the Levin-Wen model and the Kitaev

model are all equivalent as extended TQFTs.

1.2 Future Work

One main goal of this project is to describe Turaev-Viro theory as a fully ex-

tended TQFT, i.e. defining TV theory on a point, a 1-manifold with boundary,

etc. By general theory of extended TQFTs (see 35]), the value ZTV,C(pt) should

be an object in some 3-category that is fully dualizable. Futher, such data fully

describes the theory; invariants associated to surfaces, 3-manifolds, etc. are

determined uniquely by this object.

It had been known that the appropriate 3-category for Turaev-Viro theory
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should be the 3-category of Bimodule Categories:

Definition 1.2.1. (sketch) The 3-category BiMod of bimodule categories has

1. objects: monoidal categories

2. 1-morphisms: HomBiMod(A,B) = A− B bimodule categories

3. 2-morphisms: bimodule functors.

4. 3-morphisms natural transformations of bimodule functors.

However, the proof the BiMod is a 3-category and the structure of duals in

this category is very recent work, due to Douglas, Schommer-Pries and Snyder

14].

Theorem 1.2.2. .

1. The 3-category BiMod has the structure of a weak 3-category

2. Spherical fusion categories are fully dualizable objects in this category

Building on this work we would like to describe Turaev-Viro theory as a fully

extended theory. This would provide a partial answer to the following long-

standing question in physics

Question 1.2.3. What does Chern-Simons (Reshetikhin-Turaev) theory as-

sign to the point?

In the case where we start with a modular category A that is equivalent to

Z(C) for some spherical fusion category C, we will have answered this question.

The value we assign to the point is the category C. In the general case,

10



a proposed solution is given by so-called conformal nets [? ], but the full

categorical structure as well as a proof that this fully extends RT theory is

unknown.

It is important to note that RT theory is more general than TV theory. As

shown in Theorem 1.1.3, the TV state-sum with spherical fusion category C

gives at theory equivalent to RT with modular category Z(C), but not every

modular category arises as the center of a spherical category. For example, the

category C = Rep(Uq(g)) is not equivalent to the center of any other category.

Conjecture 1.2.4. Reshetikhin-Turaev theory is a fully extended theory pre-

cisely when the starting modular category is equivalent to the Drinfeld Center

of some other category. More generally, TQFTs which arise from triangula-

tions correspond exactly to fully extended theories.

Our study of TQFTs has been in the oriented setting. It would be interest-

ing to repeat the construction for manifolds equipped with different structures,

such as framing or spin structures. As in 35], each of these theories is in corre-

spondence with a different set of object in the 3-category BiMod (for oriented

theories Theorem 1.2.2 says these come from spherical fusion categories). Sev-

eral of these examples are described in 14]. The most interesting (and thus far,

unexplored) example is the unoriented setting. The corresponding categorical

data should be the same as the oriented case (a spherical fusion category)

together with some additional data relating the values for the positively and

negatively oriented points.

An interesting problem is to generalize the constructions here to (3+1)-

dimensional theories. Crane and Yetter developed such a generalization for

11



Turaev-Viro theory, but the invariants thus obtained turned out to be unin-

teresting. More recently, Walker and Wang [5] reframed this model in the

langauge of Levin and Wen’s string-nets 34] in order to describe topological

insulators. The work of Bravyi and Haah 9] has provided interesting examples

of (3+1)-dimensional models analogous to Kitaev’s toric code, but without the

presence of so-called ribbon operators.
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Chapter 2

Mathematical Preliminaries

In this chapter, we introduce some basic notions from category theory, repre-

sentation theory and the theory of hopf algebras. We also introduce notation

that will be used extensively in subsequent chapters. This chapter is far from

comprehensive. We refer the reader to the literature to supplement this chap-

ter:

• Category Theory: For general definitions and notions, 36] is the clas-

sic reference. 16] contains many important theorems about fusion cate-

gories. An excellent reference with many useful results regarding spher-

ical fusion categories and their centers is the two part series by Müger

(38],39]).

• Quantum Topology: The standard text on 3-D TQFTs is 45]. A more

concise alternative is 5]. For a detailed exposition on extended TQFTs,

including a proof sketch of the Baez-Dolan cobordism conjecture, see 35].

An alternative approach to extended TQFTs is covered in 50].

13



• Hopf Algebras: 13] is a good reference. For a comprehensive dis-

cussion of quantum groups and their applications to topology, 27] is

recommended.

• Quantum Computation: The standard text is 28]. To learn about

topological quantum computation, 52] is the best reference. In particu-

lar, Kitaev’s model is best covered in the original paper 31].
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In this section, we review some prerequisites and collect relevant notation

that will be used throughout the paper.

2.1 Monoidal Categories

Definition 2.1.1. A monoidal category is the following collection of data:

1. A bifunctor ⊗ : C × C → C

2. For any objects U, V,W ∈ C, a natural isomorphism

αUVW : (U ⊗ V )⊗ (W ) ∼= U ⊗ (V ⊗W )

3. An object 1 ∈ C and for each V ∈ C isomorphisms

λV : 1⊗ V → V

ρV : V ⊗ 1→ V

These data are required to satisfy certain axioms, specifically the pentagon

and triangle axioms (36]).

Example 2.1.2. The following are monoidal categories:

1. V ecK, the category of vector spaces and linear maps over some field K.

2. RepK(R), the category of K-representations of a hopf algebra R.

In general, the isomorphisms α, λ, ρ are not identity maps.
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Definition 2.1.3. If C is a monoidal category with α, λ, ρ all identity maps,

we say C is a strict monoidal category.

There are virtually no interesting examples of strict monoidal categories.

Nevertheless, the following theorem allows us to treat monoidal categories as

though they were strict.

Theorem 2.1.4. Any monoidal category is equivalent to a strict monoidal

category

We will make extensive use of this theorem. In particular, we will suppress

the α, λ, ρ isomorphisms throughout.

All monoidal categories we use are are abelian over C. That is, the Hom

spaces are vector spaces, composition is bilinear, a zero object exists, and there

are direct sums, kernels and cokernels. See 5,36] for a more precise definition.

Definition 2.1.5. An object X ∈ C is simple if any injection U ↪→ X is either

zero or an isomorphism

Definition 2.1.6. A category C is semisimple if every object X decomposes

as a direct sum

X =
⊕

i

Xi

where Xi are simple.

Definition 2.1.7. A monoidal category C is called rigid if every object of C has

left and right duals. That is, for each object X ∈ C, there are X∗, ∗X ∈ C and

maps coevR : 1→ X ⊗X∗, evR : X∗ ⊗X → 1 and coevL : 1→ ∗X ⊗X, evL :

X ⊗ ∗X → 1 satisfying

16



1. X
coevR⊗idX−−−−−−→ X ⊗X∗ ⊗X idX⊗evR−−−−−→ X = idX

2. X∗
idX∗⊗coevR−−−−−−−→ X∗ ⊗X ⊗X∗ evR⊗idX∗−−−−−−→ X∗ = idX∗

3. X
idX⊗coevL−−−−−−→ X ⊗ ∗X ⊗X evL⊗idX−−−−−→ X = idX

4. ∗X
coevL⊗id∗X−−−−−−−→

∗
X ⊗X ⊗∗ X

id∗X⊗evL−−−−−→
∗
X = id∗X .

Definition 2.1.8. A fusion category is a tensor category C such that

1. C is semisimple and linear.

2. C is rigid.

3. C has finitely many classes of simple object.

4. Hom spaces are finite-dimensional.

5. 1 is simple.

If we exclude the last condition, the category is called multi-fusion. We will

not need this more general notion in this thesis.

Definition 2.1.9. A rigid monoidal category together with a choice of natural

isomorphism

ϕ : id→ ∗∗

is called a pivotal category.

Given a pivotal fusion category, one can define the dimension dim(X) of

an object X by composing, coevalution, the pivotal map and the evaluation

map (see 5] for a precise definition). More generally, such a category contains

a trace function on any morphism between an object and itself. A category

17



is called spherical if it is pivotal and dim(X) = dim(X∗) for all objects X.

Spherical fusion categories are the main type of category we will use in this

thesis. They are discussed in more detail in the next section. Note that in a

spherical category the tensor product is not commutative:

X ⊗ Y 6∼= Y ⊗X

Definition 2.1.10. A fusion category is braided if for each object X, there is

a natural isomorphism

βX : X ⊗− → −⊗X

These isomorphisms are required to satisfy certain conditions (the hexagon

axiom). See 36] for a detailed description.

Definition 2.1.11. A spherical fusion category is modular if it is braided and

the braiding satisfies a non-degeneracy condition: The matrix S defined by

Sij = tr(βji ◦ βij)

is invertible.

2.2 Spherical Fusion Categories

We fix an algebraically closed field k of characteristic 0 and denote by Vec the

category of finite-dimensional vector spaces over k.

Throughout this thesis, C will denote a spherical fusion category over k. We

refer the reader to the paper 15] for a detailed description of such categories.
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It is important to remember that such categories are not braided.

In particular, C is semisimple with finitely many isomorphism classes of

simple objects. We will denote by Irr(C) the set of isomorphism classes of

simple objects. We will also denote by 1 the unit object in C (which is simple).

Two main examples of spherical categories are the category VecG of finite-

dimensional G-graded vector spaces (where G is a finite group) and the cate-

gory Rep(Uqg) which is the semisimple part of the category of representations

of a quantum group Uqg at a root of unity; this last category is actually mod-

ular, but we will not be using this.

To simplify the notation, we will assume that C is a strict pivotal category,

i.e. that V ∗∗ = V . As is well-known, this is not really a restriction, since any

pivotal category is equivalent to a strict pivotal category.

We will denote, for an object X of C, by

dX = dimX ∈ k

its categorical dimension; it is known that for simple X, dX is non-zero. We

will fix, for any simple object Xi ∈ C, a choice of square root
√
dX so that for

X = 1,
√
d1 = 1 and that for any simple X,

√
dX =

√
dX∗ .

We will also denote

D =

√ ∑

x∈Irr(C)

d2
X (2.2.1)

(throughout the paper, we fix a choice of the square root). Note that by results

of 16], D 6= 0.
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We define the functor C�n → Vec by

〈V1, . . . , Vn〉 = HomC(1, V1 ⊗ · · · ⊗ Vn) (2.2.2)

for any collection V1, . . . , Vn of objects of C. Note that pivotal structure gives

functorial isomorphisms

z : 〈V1, . . . , Vn〉 ' 〈Vn, V1, . . . , Vn−1〉 (2.2.3)

such that zn = id (see 5], Section 5.3); thus, up to a canonical isomorphism,

the space 〈V1, . . . , Vn〉 only depends on the cyclic order of V1, . . . , Vn.

We have a natural composition map

〈V1, . . . , Vn, X〉 ⊗ 〈X∗,W1, . . . ,Wm〉 → 〈V1, . . . , Vn,W1, . . . ,Wm〉

ϕ⊗ ψ 7→ ϕ ◦
X
ψ = evX ◦(ϕ⊗ ψ)

(2.2.4)

where evX : X⊗X∗ → 1 is the evaluation morphism. It follows from semisim-

plicity of C that direct sum of these composition maps gives a functorial iso-

morphism

⊕
X∈Irr(C)〈V1, . . . , Vn, X〉 ⊗ 〈X∗,W1, . . . ,Wm〉 ' 〈V1, . . . , Vn,W1, . . . ,Wm〉 (2.2.5)

Note that for any objects A,B ∈ Obj C, we have a non-degenerate pairing

HomC(A,B)⊗ HomC(A
∗, B∗)→ k defined by

(ϕ, ϕ′) = (1
coevA−−−→ A⊗ A∗ ϕ⊗ϕ′−−−→ B ⊗B∗ evB−−→ 1) (2.2.6)
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In particular, this gives us a non-degenerate pairing

〈V1, . . . , Vn〉 ⊗ 〈V ∗n , . . . , V ∗1 〉 → k

and thus, functorial isomorphisms

〈V1, . . . , Vn〉∗ ' 〈V ∗n , . . . , V ∗1 〉 (2.2.7)

compatible with the cyclic permutations (2.2.3).

We will frequently use graphical representations of morphisms in the cat-

egory C, using tangle diagrams as in 45] or 5]. However, our convention is

that of 5]: a tangle with k strands labeled V1, . . . , Vk at the bottom and

n strands labeled W1, . . . ,Wn at the top is considered as a morphism from

V1 ⊗ · · · ⊗ Vk → W1 ⊗ · · · ⊗Wn. As usual, by default all strands are oriented

going from the bottom to top. Note that since C is assumed to be a spherical

category and not a braided one, no crossings are allowed in the diagrams.

For technical reasons, it is convenient to extend the graphical calculus by

allowing, in addition to rectangular coupons, also circular coupons labeled

with morphisms ϕ ∈ 〈V1, . . . , Vn〉. This is easily seen to be equivalent to the

original formalism: every such circular coupon can be replaced by the usual

rectangular one as shown in Figure 2.1.

ϕ

V1 Vn

= ϕ

V1 Vn

Figure 2.1: Round coupons
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We will also use the following convention: if a figure contains a pair of

circular coupons, one with outgoing edges labeled V1, . . . , Vn and the other

with edges labeled V ∗n , . . . , V
∗

1 , and the coupons are labeled by pair of letters

ϕ, ϕ∗ (or ψ, ψ∗, or . . . ) it will stand for summation over the dual bases:

ϕ

V1 Vn

ϕ∗

V ∗n V ∗1

=
∑

α

ϕα

V1 Vn

ϕα

V ∗n V ∗1
(2.2.8)

where ϕα ∈ 〈V1, . . . , Vn〉, ϕα ∈ 〈V ∗n , . . . , V ∗1 〉 are dual bases with respect to

pairing (2.4.4).

The following lemma, proof of which is left to the reader, lists some prop-

erties of this pairing and its relation with the composition maps (2.2.4).

Lemma 2.2.1.

1. If X is simple and ϕ ∈ 〈X,A〉, ϕ′ ∈ 〈A∗, X∗〉 then

ϕ′ϕ

X A X∗A∗

=
(ϕ, ϕ′)

dX

X X∗

2.

∑

i∈Irr(C)

di ϕ ϕ∗

. . . . . .
V1 Vn Vn V1

Xi

=

. . . . . .

V1

Vn

(we use here convention (6.0.1)).

3. If X is simple, ϕ ∈ 〈A,X〉, ϕ′ ∈ 〈X∗, A∗〉, ψ ∈ 〈X∗, B〉, ψ′ ∈ 〈B∗, X〉,
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then

(ϕ ◦
X
ψ, ψ′ ◦

X∗
ϕ′) =

1

dX
(ϕ, ϕ′)(ψ′, ψ) (2.2.9)

(see Figure 2.2).

ϕ ψ′ψ ϕ′
A BX X∗

=
(ϕ, ϕ′)

dX

ϕ ϕ′

A X

=
(ϕ, ϕ′)(ψ′, ψ)

dX

Figure 2.2: Compatibility of pairing with composition.

Corollary 2.2.2. Let X be a simple object. Define the rescaled composition

map

〈V1, . . . , Vn, X〉 ⊗ 〈X∗,W1, . . . ,Wm〉 → 〈V1, . . . , Vn,W1, . . . ,Wm〉

ϕ⊗ ψ 7→ ϕ •
X
ψ =

√
dX evX ◦(ϕ⊗ ψ)

(2.2.10)

Then the rescaled composition map agrees with the pairing:

(ϕ •
X
ψ, ψ′ •

X∗
ϕ′) = (ϕ, ϕ′)(ψ′, ψ)

(same notation as in (2.2.9)).

The following result, which easily follows from Lemma 2.2.1, will also be

very useful.
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Lemma 2.2.3. If the subgraphs A, B are not connected, then

A

ϕ ϕ∗

BV1

Vn

V1

Vn

=
A B

V1

Vn

Finally, we will need the following result, which is the motivation for the

name “spherical category”.

Let Γ be an oriented graph embedded in the sphere S2, where each edge e

is colored by an object V (e) ∈ C, and each vertex v is colored by a morphism

ϕv ∈ 〈V (e1)±, . . . V (en)±〉, where e1, . . . , en are the edges adjacent to vertex v,

taken in clockwise order, and V (ei)
± = V (ei) if ei is outgoing edge, and V ∗(ei)

if ei is the incoming edge.

By removing a point from S2 and identifying S2 \pt ' R2, we can consider

Γ as a planar graph. Replacing each vertex v by a circular coupon labeled

by morphism ϕv as shown in Figure 2.3, we get a graph of the type discussed

above and which therefore defines a number ZRT (Γ) ∈ k (see, e.g., 5] or 45]).

C

A B

D E

F

Figure 2.3: Graph on a sphere and its “flattening” to the plane
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Theorem 2.2.4. 7] The number ZRT (Γ) ∈ k does not depend on the choice

of a point to remove from S2 or on the choice of order of edges at vertices

compatible with the given cyclic order and thus defines an invariant of colored

graphs on the sphere.

2.3 Drinfeld Center

We will also need the notion of Drinfeld center of a spherical fusion category.

Recall that the Drinfeld center Z(C) of a fusion category C is defined as the

category whose objects are pairs (Y, ϕY ), where Y is an object of C and ϕY

– a functorial isomorphism Y ⊗ − → − ⊗ Y satisfying certain compatibility

conditions (see 38]).

As before, we will frequently use graphical presentation of morphisms which

involve objects both of C and Z(C). In these diagrams, we will show objects of

Z(C) by double green lines and the half-braiding isomorphism ϕY : Y ⊗ V →

V ⊗ Y by crossing as in Figure 2.4.

Y V

Figure 2.4: The half-braiding

We list here main properties of Z(C), all under the assumption that C is

a spherical fusion category over an algebraically closed field of characteristic

zero.
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Theorem 2.3.1. 39] Z(C) is a modular category; in particular, it is semisim-

ple with finitely many simple objects, it is braided and has a pivotal structure

which coincides with the pivotal structure on C.

We have an obvious forgetful functor F : Z(C)→ C. To simplify the nota-

tion, we will frequently omit it in the formulas, writing for example HomC(Y, V )

instead of HomC(F (Y ), V ), for Y ∈ ObjZ(C), V ∈ Obj C. Note, however, that

if Y, Z ∈ ObjZ(C), then HomZ(C)(Y, Z) is different from HomC(Y, Z): namely,

HomZ(C)(Y, Z) is a subspace in HomC(Y, Z) consisting of those morphisms that

commute the with the half-braiding. The following lemma is extremely useful.

Lemma 2.3.2. Let Y, Z ∈ ObjZ(C). Define the operator

P : HomC(Y, Z)→ HomC(Y, Z) by the following formula:

Pψ =
1

D2

∑

X∈Irr(C)

dX ψ

Y

Z

X

Then P is a projector onto the subspace HomZ(C)(Y, Z) ⊂ HomC(Y, Z).

Proof. It is immediate from the definition that if ψ ∈ HomZ(C)(Y, Z), then

Pψ = ψ. On the other hand, using Lemma 2.2.1, we get that for any ψ ∈
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HomC(Y, Z), one has (Pψ)ϕY = ϕZ(Pψ):

(Pψ)ϕY =
1

D2

∑

j

dj ψ

Y

Z

j

W

=
1

D2

∑

i,j

didj ψ

Y

Z

ϕ ϕ∗

j

i

W

W

=
1

D2

∑

i

di ψ

Y

Z

i

W

= ϕZ(Pψ),

(as before, we are using convention (6.0.1)).

The following theorem is a refinement of 16], Proposition 5.4.

Theorem 2.3.3. Let F : Z(C)→ C be the forgetful functor and I : C → Z(C)

the (left) adjoint of F : HomZ(C)(I(V ), X) = HomC(V, F (X)). Then for V ∈

Obj C, one has

I(V ) =
⊕

i∈Irr(C)

Xi ⊗ V ⊗X∗i (2.3.1)

with the half braiding given by

Note that instead of normalizing factor
√
di
√
dj we could have used di or

dj — each of this would give an equivalent definition.

Proof. Denote Y =
⊕

i∈Irr(C) Xi ⊗ V ⊗X∗i . It follows from Lemma 2.2.1 that

the morphisms Y ⊗W → W⊗Y defined by Figure 2.5 satisfy the compatibility
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⊕

i,j∈Irr(C)

√
di
√
dj

V

ϕ ϕ∗

i

jW

i

j

W

Figure 2.5: Half-braiding I(V )⊗W → W ⊗ I(V ).

relations required of half braiding and thus define on Y a structure of an object

of Z(C). Now, define for any Z ∈ ObjZ(C), maps

HomZ(C)(Y, Z)→ HomC(V, Z)

Ψ 7→ Ψ ◦ P0 = Ψ

V

11

Z

where P0 is the embedding V = 1⊗ V ⊗ 1→ Y =
⊕

Xi ⊗ V ⊗X∗i and

HomC(V, Z)→ HomZ(C)(Y, Z)

Φ 7→
⊕

i∈Irr(C)

√
di Φ

V

Z

i

It follows from Lemma 2.3.2 that these two maps are inverse to each other.

Composition in one direction is easy. First suppose Φ ∈ HomC(V, Z). The
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computation is shown below.

Φ→
⊕

i

√
di Φ

V

Z

i

→ Φ.

The composition in opposite order is as follows:

Ψ→ Ψ

V

11

Z

→
⊕

i

√
di Ψ

V

Z

i

11

=
⊕

i

√
di
√
dj Ψ

ϕ ϕ∗

V

Z

i i

j∗

1

j

1

= Ψ

V

Z

The first equality holds by functoriality of the half-braiding and Figure 2.5.

The second equality is obvious. Therefore, the two maps are inverses to one

another and we have HomZ(C)(Y, Z) = HomC(V, Z); thus, Y = I(V ).

An easy generalization of Theorem 2.2.4 allows us to consider graphs in

which some of the edges are labeled by objects of Z(C).

Let Γ̂ be a graph which consists of a usual graph Γ embedded in S2 as in

Theorem 2.2.4 and a finite collection of non-intersecting oriented arcs γi such

that endpoints of each arc γ are vertices of graph Γ, and each vertex has a

neighborhood in which arcs γi do not intersect edges of Γ; however, arcs γi are

allowed to intersect edges of Γ away from vertices. Note that this implies that

for each vertex v, we have a natural cyclic order on the set of all edges of Γ̂

(including arcs γi) adjacent to v.

Let us color such diagram, labeling each edge of Γ by an object of C, each arc

29



γ by an object of Z(C), and each vertex v by a vector ϕv ∈ 〈V ±(e1), . . . , V ±(en)〉

where e1, . . . , en are edges of Γ̂ adjacent to v (including the arcs γi), and the

signs are chosen as in Theorem 2.2.4.

C

A B

D E

F

Figure 2.6: The graph Γ̂ on the sphere and its flattening to the plane. The
arc γ is shown by a double line.

As before, by removing a point from S2 and choosing a linear order of edges

(including the arcs) at every vertex, we get a diagram in the plane; however,

now the projections of arcs γi can intersect edges of Γ as shown in Figure 2.6.

Let us turn this into a tangle diagram by replacing each intersection by a

picture where the arch γi goes under the edges of Γ, as shown in Figure 2.6.

Such a diagram defines a number ZRT (Γ̂) defined in the usual way, with

the extra convention shown in Figure 2.4.

Theorem 2.3.4. The number ZRT (Γ̂) ∈ k does not depend on the choice of a

point to remove from S2 orand thus defines an invariant of colored graphs on

the sphere. Moreover, this number is invariant under homotopy of arcs γi.

Proof. The fact that it is independent of the choice of point to remove and
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thus is an invariant of a graph on the sphere immediately follows from The-

orem 2.2.4: replacing every crossing by a coupon colored by half-braiding ϕY

gives a graph as in Theorem 2.2.4. Invariance under homotopy of arcs γ follows

from compatibility conditions on half-braiding shown in Figure 2.7.

ϕ

. . .

. . .

= ϕ

. . .

. . .

Figure 2.7: Invariance under homotopy

Finally, we will need a construction generalizing the cyclic isomorphism

from (2.2.3).

For any Y ∈ ObjZ(C), we define a functor functor C�n → Vec by

〈V1, . . . , Vn〉Y = HomC(1, Y ⊗ V1 ⊗ · · · ⊗ Vn) (2.3.2)

for any collection V1, . . . , Vn of objects of C. As before, we have functorial

isomorphisms

zY : 〈V1, . . . , Vn〉Y ' 〈Vn, V1, . . . , Vn−1〉Y (2.3.3)

obtained as composition

〈Y, V1, . . . , Vn〉 → 〈Vn, Y, V1, . . . , Vn−1〉 → 〈Y, Vn, V1, . . . , Vn−1〉

(the first isomorphism is the cyclic isomorphism (2.2.3), the second one is the
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inverse of half-braiding ϕY ). Note however that in general we do not have

znY = id.

2.4 Hopf Algebras

Basic definitions

Throughout the paper, we denote by R a finite dimensional Hopf algebra over

C with

• multiplication µR : R⊗R→ R,

• unit ηR : C→ R

• comultiplication ∆R : R→ R⊗R

• counit εR : R→ C

• antipode SR : R→ R

We will drop the subscript R when there is no ambiguity.

We will use the Sweedler notation, writing ∆(x) = x′ ⊗ x′′, ∆2(x) = x′ ⊗

x′′ ⊗ x′′′, etc.; summation will be implicit in these formulas. If the number of

factors is large, we will also use the alternative notation writing ∆(n−1)(x) =

x(1) ⊗ x(2) ⊗ · · · ⊗ x(n).

We will denote by R∗ the dual Hopf algebra. We will use Greek letters

α, β, . . . for elements of R∗. We will also use the Sweedler notation for comul-

tiplication in R∗, writing ∆R∗(α) = α′ ⊗ α′′; thus,

〈α′ ⊗ α′′, x1 ⊗ x2〉 = 〈α, x1x2〉 (2.4.1)
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where 〈 〉 stands for the canonical pairing R∗ ⊗R→ C.

From now on, we will also assume that R is semisimple. The following

theorem shows that in fact this condition can be replaced by one of several

equivalent conditions.

Theorem 2.4.1. [3] Let R be a finite-dimensional Hopf algebra over a field

of characteristic zero. Then the following are equivalent:

1. R is semisimple.

2. R∗ is semisimple.

3. S2
R = id.

Haar integral

Let R be as described above. Then we have a distinguished element in R called

the Haar integral which is defined by the following conditions:

1. hx = xh = εR(x)h for all x ∈ R.

2. h2 = h.

The following theorem lists important properties of the Haar integral.

Theorem 2.4.2. Let R be a semisimple, finite-dimensional Hopf algebra.

Then

1. h exists and is unique.

2. S(h) = h.
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3. For any n, the element

hn = ∆(n−1)(h) ∈ R⊗n

is cyclically invariant. In particular, for n = 2, we have ∆op(h) = ∆(h).

Lemma 2.4.3. The Haar integral acts by 1 in the trivial representation of R

and by 0 in any irreducible non-trivial representation.

Proof. This is an immediate consequence of the definition of Haar integral.

Corollary 2.4.4. Let W1, . . . ,Wn be finite-dimensional representations of R.

Then hn = ∆n−1(h) acts in W1 ⊗ · · · ⊗Wn by projection onto the invariant

subspace

{w ∈ W1 ⊗ · · · ⊗Wn | ∆n−1(x)w = ε(x)w} ' HomR(1,W1 ⊗ · · · ⊗Wn)

Representations

Since R is semisimple, any representation of R is completely reducible. We

will denote by Vi, i ∈ I, a set of representatives of isomorphism classes of

irreducible representations of R; we will also use the notation di = dimVi. In

particular, the trivial one-dimensional representation of R will be denoted

1 = V0.

We will frequently use the notation

〈W1, . . . ,Wn〉 = HomR(1,W1⊗· · ·⊗Wn) ' {w ∈ W1⊗· · ·⊗Wn | ∆n−1(x)w = ε(x)w}
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(compare with Corollary 2.4.4).

Given a representation V of R, we can define the dual representation V ∗.

As a vector space V ∗ is the ordinary dual space to V . The action of R is

defined by

〈xα, v〉 = 〈α, S(x)v〉 (2.4.2)

where α ∈ V ∗, v ∈ V , and x ∈ R. Note that since S2 = id, the usual vector

space isomorphism V ∗∗ ' V is an isomorphism of representations; thus, V ∗∗

is canonically isomorphic to V as a representation of R.

Since a dual of an irreducible representation is irreducible, we have an

involution ∨ : I → I such that V ∗i ' Vi∨ . This isomorphism is not canonical;

however, one does have a canonical isomorphism

Vi ⊗ V ∗i ' V ∗i∨ ⊗ Vi∨ . (2.4.3)

For any two representations V,W of R, we denote by HomR(V,W ) the

space of R-morphisms from V to W . We have a non-degenerate pairing

HomR(V,W )⊗ HomR(V ∗,W ∗)→ C (2.4.4)

given by

〈ϕ, ψ〉 = (1→ (V ⊗ V ∗) ϕ⊗ψ−−→ W ⊗W ∗ → 1)

By semisimplicity, we have a canonical isomorphism

R ∼=
⊕

i∈I

EndC(Vi) =
⊕

i

Vi ⊗ V ∗i . (2.4.5)
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It is convenient to write the Hopf algebra structure of R in terms of this

isomorphism.

Lemma 2.4.5. Under isomorphism (4.4.1), multiplication, comultiplication,

unit, counit, and antipode of R are given by

• Multiplication: µR : Vi⊗V ∗i ⊗Vj⊗V ∗j
1⊗ev⊗1−−−−→ δi,jVi⊗V ∗i , where ev : V ∗i ⊗

Vi → C is the evaluation map.

• Comultiplication: Let ϕα be a basis for HomR(Vi, Vj ⊗ Vk) and ϕα ∈

HomR(V ∗i , V
∗
k ⊗ V ∗j ) the dual basis with respect to the pairing given by

(2.4.4). Then

∆R :
⊕

i

Vi ⊗ V ∗i

∑
diϕα ⊗ ϕα

−−−−−−−−−−→
⊕

j,k

Vj ⊗ Vk ⊗ V ∗k ⊗ V ∗j

τ23◦τ34−−−−→
⊕

j,k

Vj ⊗ V ∗j ⊗ Vk ⊗ V ∗k

• Unit: ηR =
⊕

i

dimVi∑

j=1

vj ⊗ v∗j =
∑

i

idVi, where {vj} is a basis for Vi and

{v∗j} is the dual basis.

• Counit: For a⊗ b ∈ Vi ⊗ V ∗i , εR(a⊗ b) = δi,0b(a)

• Antipode: If a⊗ b ∈ Vi ⊗ V ∗i , then

S(a⊗ b) = b⊗ a ∈ V ∗i ⊗ Vi ' Vi∨ ⊗ V ∗i∨

(see (2.4.3)).
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In this language, the Haar integral is given by the canonical element 1 ∈

V0 ⊗ V ∗0 .

Graphical calculus

We will frequently use graphical presentation of morphisms between represen-

tations of R. We will use slightly different conventions from those in Section 2.1

, representing a morphism ϕ : W1 ⊗ . . .Wk → W ′
1 ⊗ · · · ⊗W ′

l by a tangle with

k strands labeled W1, . . . ,Wk at the top and l strands labeled W ′
1, . . . ,W

′
l at

the bottom (here, morphisms are graphically represented top to bottom; we

are using the aptly-named pessimistic convention). We will also use the usual

cap and cup tangles to represent evaluation and coevaluation morphisms.

Dual Hopf algebra

Given a semisimple Hopf algebra R, we will define the following version of the

dual Hopf algebra

R = (Rop)∗ (2.4.6)

where Rop denotes the algebra R with opposite multiplication.

Since comultiplication in R is opposite to comultiplication in R∗, notation

α′, α′′ is ambiguous. We adopt the following convention: notation α′, α′′ (or,

equivalently, α(1), α(2),. . . ) always refers to comultiplication in R∗. Thus,

comultiplication in R is given by

∆R(α) = α′′ ⊗ α′.
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Note that R is canonically isomorphic to R as a vector space but as a Hopf

algebra, has opposite multiplication and comultiplication. Thus, the map

S : R→ R

is an isomorphism of Hopf algebras.

Note that by Theorem 2.4.1, R is also semisimple and thus has a unique

Haar integral. We will denote by

h̄ ∈ R (2.4.7)

the Haar integral of R.

Lemma 2.4.6. Let R be a semisimple Hopf algebra. Then the Haar integral

of R is given by

〈h̄, x〉 =
1

dimR
trR(x)

where trR(x) =
∑
di trVi(x) is the trace of action of x in the (left or right)

regular representation.

We can also rewrite the Haar integral of R in terms of the isomorphism

R '⊕Vi ⊗ V ∗i (see (4.4.1)).

Lemma 2.4.7. Let xk = vk⊗wk ∈ Vik ⊗V ∗ik ; using isomorphism (4.4.1), each

xk can be considered as element of R. Then

〈h̄, x1 . . . xn〉 =





di
dimR
〈v1, wn〉〈w1, v2〉 . . . 〈wn−1, vn〉, i1 = i2 = · · · = in = i,

0 otherwise
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(see Figure 2.8).

〈h̄, (v1 ⊗ w1) · · · (vn ⊗ wn)〉 =
di

dimR

v1 w1 v2 w2 vnwn

Figure 2.8: The Haar integral of R

Regular action

With have two obvious actions of R on itself, called left and right regular

actions:

• Lx : y 7→ xy

• Rx : y 7→= yS(x)

Note that these actions commute.

In a similar way, the dual Hopf algebra R can also be endowed with two

commuting actions of R.

Using (2.4.2), we can also define two actions of R on R:

• L∗x : λ 7→ x.λ, where 〈x.λ, y〉 = 〈λ, S(x)y〉

• R∗x : λ 7→ λ.S(x), where 〈λ.x, y〉 = 〈λ, yS(x)〉

and two actions of R on on R:

• L∗α : x 7→ α.x := 〈α, S(x′)〉x′′, so that 〈λ, α.x〉 = 〈S(α)λ, x〉
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• R∗α : x 7→ x.S(α)〉 = x′〈α, x′′〉, so that 〈λ, x.α〉 = 〈λS(α), x〉

Note that notation x.α is ambiguous, as it can mean L∗x(α) or R∗S(α)(x). In

most cases the meaning will be clear from the context.

Note that we can also define left and right action of the Hopf algebra R on

R. It is easy to see that these actions are given by

• Lt : λ 7→ λ.t, where t ∈ R is considered as an element of R via trivial

vector space isomorphism.

• Rt : λ 7→ S(t).λ, where t ∈ R is considered as an element of R via trivial

vector space isomorphism.

We will use these actions (together with left and right regular actions of R

on itself) repeatedly throughout the rest of the paper. All the operators we

will discuss can be defined in terms of them.

Lemma 2.4.8. Let h̄ be the Haar integral of R. Consider the left regular

action of h̄ on R⊗n:

L∗h̄ : R⊗n → R⊗n

xn ⊗ · · · ⊗ x1 7→ h̄(n).xn ⊗ · · · ⊗ h̄(1)x1

= 〈h̄, S(x′n . . . x
′
1)〉x′′n ⊗ · · · ⊗ x′′1 = 〈h̄, x′n . . . x′1〉x′′n ⊗ · · · ⊗ x′′1

(2.4.8)

(recall that comultiplication in R is given by ∆(n−1)α = α(n) ⊗ · · · ⊗ α(1)).

Then, after identifying each copy of R with
⊕

Vi ⊗ V ∗i (see (4.4.1)), L∗
h̄

is
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given by the following picture:

∑

i1,...,in,j1,...,jn,k

di1 . . . dindk
dimR

∑

α,β,...

ϕα ϕα

in i
∗
n

jn j∗n

ϕβ ϕβ

k k

i1 i∗1

j1 j∗1

k

k

where ϕα, ϕ
α are as in Lemma 2.4.5.

Note that the crossings in the picture are just permutation of factors (there

is no braiding in the category RepR) and the whole map is not a morphism of

representations.

Proof. Follows by combining the formula for multiplication and comultiplica-

tion in R (Lemma 2.4.5) and Lemma 2.4.7.

2.5 Drinfeld Double

In this section, we discuss the Drinfeld Double of a Hopf algebra. This con-

struction takes a Hopf algebra R and constructs a quasitriangular Hopf algebra

D(R). This is done by taking a twisted tensor product of R and R. We will be

concerned both with D(R) and its dual. This can prove very confusing when

writing expressions, so we stick to the following conventions:
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1. We use letters from the Latin alphabet (x, y, z, ...) to refer to elements

from R.

2. Letters from the Greek alphabet (α, β, γ, ...) to refer to elements from

R∗

3. We use Sweedler notation when taking coproducts, but always indexing

by coproducts in R and R∗. For example, in R, comultiplication is given

be ∆(α) = α′′ ⊗ α′.

Theorem 2.5.1. The following operations define on the vector space R⊗R a

structure of a Hopf algebra. This Hopf algebra will be denoted D(R) and called

the Drinfeld double of R.

1. Multiplication:

(x⊗ α) · (y ⊗ β) = xy′′ ⊗ αyβ,

where αy ∈ R is defined by

〈αy, z〉 = 〈α, y′′′zS−1(y′)〉 (2.5.1)

2. Unit: 1D(R) = 1R ⊗ 1R

3. Comultiplication: x⊗ α 7→ (x′ ⊗ α′′)⊗ (x′′ ⊗ α′)

4. Counit: x⊗ α 7→ εR(x)εR(α)

5. Antipode: S(x⊗ α) = S(α)S(x) = S(x′′)S(α)S(x)
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The Hopf algebra D(R) is actually quasitriangular, with R-matrix given

by

R =
⊕

α

xα ⊗ xα (2.5.2)

The algebraic structure of D(R) is obtained from a bicrossed product of R and

R (27]).This leads to some messy formulas. Luckily, the haar integral is easy

to define:

Lemma 2.5.2. Let R be a semisimple, finite-dimensional Hopf algebra. Then

D(R) is semisimple with Haar integral given by

hD(R) = hR ⊗ hR. (2.5.3)

Moreover, both h, h̄ are central in D(R).

We now define an action of D(R) on R. This action is very important and

will be used in Chapter 7.

Lemma 2.5.3. For a ∈ R, α ∈ R, define the operators pa : R ⊗ R → R ⊗ R

and qα : R⊗R→ R⊗R by

pa(u⊗ v) = a′u⊗ vS(a′′)

qα(u⊗ v) = 〈α, S(u′v′))u′′ ⊗ v′′ = α′′.u⊗ α′.v.

Then these operators satisfy the commutation relations of D(R): the map

D(R)→ End(R⊗R)

a⊗ α 7→ paqα
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is a morphism of algebras.

Proof. This follows by explicit computation ([1]), using the following formulas:

α.(xy) = x′′(αx.y) = (yα.x)y′′, where

〈αx, z〉 = 〈α, zS(x′)〉

〈yα, z〉 = 〈α, S(y′)z〉
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Chapter 3

Turaev-Viro Theory as an

Extended TQFT
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3.1 Polytope decompositions

It will be convenient to rewrite the definition of Turaev–Viro (TV) invariants

using not just triangulations, but more general cellular decompositions. In

this section we give precise definitions of these decompositions.

In what follows, the word “manifold” denotes a compact, oriented, piecewise-

linear (PL) manifold; unless otherwise specified, we assume that it has no

boundary. Note that in dimensions 2 and 3, the category of PL manifolds is

equivalent to the category of topological manifolds. For an oriented manifold

M , we will denote by M the same manifold with opposite orientation, and by

∂M , the boundary of M with induced orientation.

Instead of triangulated manifolds as in 7], we prefer to consider more gen-

eral cellular decompositions, allowing individual cells to be arbitrary polytopes

(rather than just simplices); moreover, we will allow the attaching maps to

identify some of the boundary points, for example gluing polytopes so that

some of the vertices coincide. On the other hand, we do not want to consider

arbitrary cell decompositions (as is done, say, in 40]), since it would make

describing the elementary moves between two such decompositions more com-

plicated. The following definition is the compromise; for lack of a better word,

we will call such decompositions polytope decompositions.

Recall that a cellular decomposition of a manifold M is a collection of

inclusion maps Bd →M , where Bd is the (open) d-dimensional ball, satisfying

certain conditions. Equivalently, we can replace d-dimensional balls with d-

dimensional cubes Id = (0, 1)d. For a PL manifold, we will call such a cellular

decomposition a PL decomposition if each inclusion map (0, 1)d → M is a
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PL map. In particular, every triangulation of a PL manifold gives such a

cellular decomposition (each d-dimensional simplex is PL homeomorphic to a

d-dimensional cube).

We will call a cell regular if the corresponding map (0, 1)d → M extends

to a map of the closed cube [0, 1]d → M which is a homeomorphism onto its

image.

Definition 3.1.1. A polytope decomposition of a 2- or 3-dimensional PL

manifold M (possibly with boundary) is a cellular decomposition which can

be obtained from a triangulation by a sequence of moves M1—M3 below (for

dimM = 2, only moves M1, M2).

M1: removing a vertex Let v be a vertex which has a neighborhood whose

intersection with the 2-skeleton is homeomorphic to the “open book”

shown below with k ≥ 1 leaves; moreover, assume that all leaves in the

figure are distinct 2-cells and the two 1-cells are also distinct (i.e., not two

ends of the same edge). Then move M1 removes vertex v and replaces

two 1-cells adjacent to it with a single 1-cell.

remove vertex v−−−−−−−−−→

Figure 3.1: Move M1
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M2: removing an edge Let e be a 1-cell which is regular and which is ad-

jacent to exactly two distinct 2-cells c1, c2 as shown in the figure below.

Then the move M2 removes the edge e and replaces the cells c1, c2 with

a single cell c.

remove edge e−−−−−−−−→

Figure 3.2: Move M2

M3: removing a 2-cell Let c be a 2-cell which is regular and which is ad-

jacent to exactly two distinct 3-cells F1, F2 as shown in the figure below.

Then the move M2 removes the 2-cell c and replaces the cells F1, F2 with

a single cell F .

remove face c−−−−−−−→

Figure 3.3: Move M3

A 2 or 3-dimensional PL manifold M with boundary together with a

choice of polytope decomposition will be called a combinatorial manifold; for

dimM = 2, we will also use the term “combinatorial surface”. We will use

script letters to denote combinatorial manifolds and Roman letters for under-

lying PL manifolds.
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Note that the extension of the inclusion maps (0, 1)d →M to the boundary

does not have to be injective.

If F is an oriented d-dimensional cell of a combinatorial manifoldM (i.e.,

a pair consisting of a cell and its orientation), we can define its boundary ∂F

in the obvious way, as a formal union of oriented (d − 1)-dimensional cells.

Note that ∂F can contain the same (unoriented) cell C more than once: for

example, one could have ∂F = · · · ∪ C ∪ C . . . .

Lemma 3.1.2. If M is a combinatorial manifold of dimension d with bound-

ary, then
⋃

F

∂F =
( ⋃

C∈∂M

C
)
∪
(⋃

cin

c′in ∪ c′′in
)

where F runs over the set of d-cells of M (each taken with induced orientation),

C runs over the set of (d−1)-cells of ∂M (each taken with induced orientation),

and cin runs over the set of (unoriented) (d − 1)-cells in the interior of M ,

with c′, c′′ denoting two possible orientations of c (so that c′ = c′′).

The main result of this section is the following theorem.

Theorem 3.1.3. Let M be a PL 2- or 3-manifold without boundary. Then

any two polytope decompositions of M can be obtained from each other by a

finite sequence of moves M1–M3 and their inverses (if dimM = 2, only moves

M1, M2 and their inverses).

Proof. It is immediate from the definition that it suffices to prove that any

two triangulations can be obtained one from another by a sequence of moves

M1–M3 and their inverses. On the other hand, since it is known that any

two triangulations are related by a sequence of Pachner bistellar moves 42],
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it suffices to show that each Pachner bistellar move can be presented as a

sequence of moves M1–M3 and their inverses. For dimM = 2, this is left as

an easy exercise to the reader; for dimM = 3, this is shown in Figure 3.4,

Figure 3.5.

remove face ADE−−−−−−−−−−→ remove edge DE−−−−−−−−−→

remove face CDBE−−−−−−−−−−−→ add face ABC−−−−−−−−→

Figure 3.4: Pachner 3-2 move as composition of elementary moves

This can be generalized to manifolds with boundary.

Theorem 3.1.4. Let M be a PL 2- or 3-manifold with boundary and let N

be a polytope decomposition of ∂M . Then

1. N can be extended to a polytope decomposition M of M .

2. Any two polytope decompositions M1,M2 of M which coincide with N

on ∂M can be obtained from each other by a finite sequence of moves M1–
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remove faces AOB,DOC−−−−−−−−−−−−−−→

remove edges AO,OB−−−−−−−−−−−−→ remove vertex O−−−−−−−−−→

remove edge DC−−−−−−−−−→ remove face ADBC−−−−−−−−−−−→

Figure 3.5: Pachner 4-1 move as composition of elementary moves

M3 and their inverses which do not change the polytope decomposition

of ∂M .

Proof. The theorem immediately follows from the following two lemmas.

Lemma 3.1.5. If N is a triangulation, then the statement of the theorem

holds.

Lemma 3.1.6. If N is obtained from another polytope decomposition N ′ of

∂M by a move M1, M2 (only M1 if dimM = 2), and the statement of the

theorem holds for N ′, then the statement of the theorem holds for N .

Proof of Lemma 3.1.5. Follows from the relative version of Pachner moves 12].
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Proof of Lemma 3.1.6. We will do the proof in the case when dimM = 3 and

N is obtained from N ′ by erasing an edge e separating two cells c1, c2. The

proof in other cases is similar and left to the reader.

Let M′ be a polytope decomposition of the M which agrees with N ′ on

∂M ; by assumption such a decomposition exists. Denote c = c1 ∪ e ∪ c2. Let

us glue toM′ another copy of 2-cell c along the boundary of c1 ∪ e∪ c2 and a

3-cell F filling the space between c1 ∪ e ∪ c2 and c as shown in Figure 3.6

−→

Figure 3.6: Proof of Lemma 3.1.6

This gives a new manifold M̃ which is obviously homeomorphic to M ,

together with a polytope decomposition M̃ such that its restriction to the

boundary is N . This proves existence of extension. Moreover, it is immediate

from the assumption on N ′ that any two polytope decompositions M̃1, M̃2

obtained in this way from polytope decompositionM′
1,M′

2 extending N ′ can

be obtained from each other by a sequence of moves M1, M2 and their inverses

which do not change decomposition of ∂M .

To prove the second part, let M1, M2 be two polytope decompositions

which coincide withN on ∂M . Let us add 2-cells c1, c2 and an edge e to to each

of these decomposition as shown in Figure 3.7; this gives new decompositions

M̃1,M̃2 which are of of the form discussed above and thus can be obtained

from each other by a sequence of moves M1, M2 and their inverses which do
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not change decomposition of ∂M .

−→

Figure 3.7: Proof of Lemma 3.1.6

Finally, we will need a slight generalization of this result.

Theorem 3.1.7. Let M be a 3-manifold with boundary and let X ⊂ ∂M be

a subset homeomorphic to a 2-manifold with boundary. Let N be a polytope

decomposition of a X. Then

1. N can be extended to a polytope decomposition M of M

2. Any two polytope decompositions M1,M2 of M which coincide with N

on X can be obtained from each other by a finite sequence of moves M1–

M3 and their inverses which do not change the polytope decomposition

of X.

A proof is similar to the proof of the previous theorem; details are left to

the reader.
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3.2 TV invariants from polytope decomposi-

tions

In this section, we recall the definition of Turaev–Viro (TV) invariants of

3-manifolds. Our exposition essentially follows the approach of Barrett and

Westbury 7]; however, instead of triangulations we use more general polytope

decompositions as defined in the previous section.

Let C be a spherical fusion category, andM— a combinatorial 3-manifold.

We denote by E the set of oriented edges (1-cells) ofM. Note that each 1-cell

of M gives rise to two oriented edges, with opposite orientations.

Definition 3.2.1. An labeling of M is a map l : E → Obj C which assigns to

every oriented edge e of M an object l(e) ∈ Obj C such that l(e) = l(e)∗. A

labeling is called simple if for every edge, l(e) is simple.

Two labelings are called equivalent if l1(e) ' l2(e) for every e.

Given a combinatorial 3-manifoldM and a labeling l, we define, for every

oriented 2-cell C, the state space

H(C, l) = 〈l(e1), l(e2), . . . , l(en)〉, ∂C = e1 ∪ e2 · · · ∪ en (3.2.1)

where the edges e1, . . . , en are taken in the counterclockwise order on ∂C as

shown in Figure 3.8.

Note that by (2.2.3), up to a canonical isomorphism, the state space only

depends on the cyclic order of e1, . . . , en (which is defined by C) and does not

depend on the choice of the starting point.

54



X1

X2

X3

X4

X5

H(C, l) = 〈X1, X2, . . . , X5〉

Figure 3.8: Defining the state space for a 2-cell

If N is an oriented 2-dimensional combinatorial manifold, we define the

state space

H(N , l) =
⊗

C

H(C, l)

where the product is over all 2-cells C, each taken with orientation induced

from orientation of N .

Finally, we define

H(N ) =
⊕

l

H(N , l), (3.2.2)

where the sum is over all simple labelings up to equivalence.

In the case when N is a triangulated surface, this definition coincides with

the one in 7].

Note that it is immediate from (2.2.7) that we have canonical isomorphism

H(N ) = H(N )∗. (3.2.3)

Next, we define the TV invariant of 3-manifolds. LetM be a combinatorial

3-manifold with boundary. Fix a labeling l of edges of M. Then every 3-cell

F defines a vector

Z(F, l) ∈ H(∂F, l)
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defined as follows. Recall that F is an inclusion F : (0, 1)3 → M . The pull-

back of the polytope decomposition of M gives a polytope decomposition of

∂(0, 1)3 ' S2. Consider the dual graph Γ of this decomposition and choose

an orientation for every edge of this dual graph (arbitrarily) as shown in Fig-

ure 3.9.

−→

Figure 3.9: The dual graph on the boundary of a 3-cell

Note that a labeling l of M defines a labeling of edges of this dual graph

as shown in Figure 3.10. Moreover, choose, for every face C ∈ ∂F , an element

ϕC ∈ H(C, l)∗ = 〈l(en)∗, . . . , l(e1)∗〉. Then this collection of morphisms defines

a coloring of vertices of Γ.

By Theorem 2.2.4, we get an invariant ZRT (Γ) ∈ k, which depends on the

choice of labeling of edges l and on the choice of morphisms ϕC . We define

Z(F, l) ∈ ⊗CH(C, l) by

(Z(F, l),⊗ϕC) = ZRT (Γ, l, {ϕC}). (3.2.4)

Again, if F is a tetrahedron, then this coincides with the definition in 7];
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X1X2

X3

X4

X5

X∗1

X2

X3

X∗4
X5

ϕC
X∗1

X2

X3

X∗4 X5

ϕC ∈ H(C, l)∗ = 〈X∗5 , X∗4 , . . . , X∗1 〉

Figure 3.10: Coloring of the dual graph

if C is the category of representations of quantum sl2, these numbers are the

6j-symbols.

We can now give a definition of the TV invariants of combinatorial 3-

manifolds.

Definition 3.2.2. Let M be a combinatorial 3-manifold with boundary and

C – a spherical category. Then for any coloring l, define a vector

ZTV (M, l) ∈ H(∂M, l)

by

ZTV (M, l) = ev
(⊗

F

Z(F, l)
)

where

• F runs over all 3-cells in M , each taken with the induced orientation, so
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that

⊗

F

Z(F, l) ∈
⊗

F

H(∂F, l) = H(∂M, l)⊗
⊗

c

H(c′, l)⊗H(c′′, l)

(compare with Lemma 3.1.2)

• c runs over all unoriented 2-cells in the interior of M , c′, c′′ are the two

orientations of such a cell, so that c′ = c′′.

• ev is the tensor product over all c of evaluation maps H(c′, l)⊗H(c′′, l) =

H(c′, l)⊗H(c′, l)∗ → k

Finally, we define

ZTV (M) = D−2v(M)
∑

l

(
ZTV (M, l)

∏

e

dnel(e)

)

where

• the sum is taken over all equivalence classes of simple labelings of M,

• e runs over the set of all (unoriented) edges of M

• D is the dimension of the category C (see (2.2.1)), and

v(M) = number of internal vertices of M+
1

2
(number of vertices on ∂M)

• dl(e) is the categorical dimension of l(e) and
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ne =





1, e is an internal edge

1
2
, e ∈ ∂M

It is easy to see that in the special case of triangulated manifold, this

coincides with the construction in 7].

Theorem 3.2.3. If M is a PL manifold without boundary, then the number

ZTV (M) ∈ k defined in Definition 3.2.2 does not depend on the choice of

polytope decomposition of M : for any two choices of polytope decomposition,

the resulting invariants are equal.

The proof of this theorem will be given in Section 3.3.

These invariants can be extended to a TQFT. Namely, let M be a com-

binatorial 3-cobordism between two 2-dimensional combinatorial manifolds

N1,N2, i.e a combinatorial manifold M with boundary such that ∂M =

N1 t N2 (note that the combinatorial structure on M automatically defines

a combinatorial structure on ∂M). Then H(∂M) = H(N1)∗ ⊗ H(N2) =

Homk(H(N1), H(N2)), so Definition 3.2.2 defines an element Z(M) ∈ Homk(H(N1), H(N2)),

i.e. a linear operator

Z(M) : H(N1)→ H(N2).

Theorem 3.2.4.

1. So defined invariant satisfies the gluing axiom: if M is a combinatorial

3-manifold with boundary ∂M = N0 ∪ N ∪ N , and M′ is the mani-

fold obtained by identifying boundary components N ,N of ∂M with the
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obvious cell decomposition, then we have

ZTV (M′) = evH(N ) ZTV (M) =
∑

α

(ZTV (M), ϕα ⊗ ϕα),

where ev is the evaluation map H(N ) ⊗ H(N ) → k, and ϕα ∈ H(N ),

ϕα ∈ H(N ) are dual bases.

2. If a M is a 3-manifold with boundary, and M′,M′′ are two polytope de-

compositions of M which agree on the boundary, then Z(M′) = Z(M′′) ∈

H(∂M′) = H(∂M′′).

3. For a combinatorial 2-manifold N , define AN : H(N )→ H(N ) by

AN = ZTV (N × I) (3.2.5)

Then AN is a projector: A2
N = AN .

4. For a combinatorial 2-manifold N , define the vector space

ZTV (N ) = Im(AN : H(N )→ H(N )) (3.2.6)

where A is the projector (3.2.5). Then the space ZRT (N) is an invari-

ant of PL manifolds: if N ′,N ′′ are two different polytope decomposi-

tions of the same PL manifold N , then one has a canonical isomorphism

Z(N ′) ' Z(N ′′).

5. The assignments N 7→ ZTV (N), M 7→ ZTV (M) give a functor from the

category of PL 3-cobordisms to the category of finite-dimensional vector
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spaces and thus define a 2 + 1-dimensional TQFT.

Proof. Part (1) is immediate from the definition.

Part (2) will be proved in Section 3.3.

To prove part (3), note that gluing of two cylinders again gives a cylinder,

so (3) follows from (1) and (2).

To prove (4), let N ′,N ′′ be two different polytope decompositions of N .

Consider the cylinder C = N × I and choose a polytope decomposition of C

which agrees with N ′ on N×{0} and agrees with N ′′ on N×{1} (existence of

such a decomposition follows from Theorem 3.1.4). Consider the corresponding

operator F1 = Z(C) : H(N ′) → H(N ′′). In a similar way, define an operator

F2 : H(N ′′)→ H(N ′). Then it follows from (2) that F1F2 = AN ′′ , and F2F1 =

AN ′ . Thus, F1, F2 give rise to mutually inverse isomorphisms ZTV (N ′) →

ZTV (N ′′).

Part (5) follows immediately from (1)–(4).

Note that in the PL category, gluing along a boundary component is well

defined: gluing together PL manifolds results canonically in a PL manifodl

(unlike the smooth category).

Example 3.2.5. Let G be a finite group and C = VecG — the category of

G-graded vector spaces, with obvious tensor structure. Then a simple labeling

is just labeling of edges of M with elements of the group G, and for a 2-cell

C, we have

H(C, l) =





k,
∏

∂C l(e) = 1

0, otherwise
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Thus, we see that in this case the state space H(N ) is the space of flat G—

connections (which depends on the choice of polytope decomposition!). It is

well-known that in this case the projector A = ZTV (Σ× I) is the operator of

averaging over the action of the gauge group Gv(N ), where v(N ) is the set of

vertices of N . Thus the space Z(N) is the space of gauge equivalence classes

of G–connections.

Example 3.2.6. We verify ZTV (S2) = k as is required by the definition of

a TQFT. We pick the polytope decomposition of S2 consisting of one vertex,

one edge and two faces as shown in Figure 3.11. Using the fact that for Xi, Xj

Figure 3.11: The polytope decomposition of S2

simple Hom(Xi, Xj) = δijk, it is easy to see that H(S2) =
⊕

i〈Xi〉⊗〈X∗i 〉 = k.

It remains to show that A : H(S2)→ H(S2) is the identity map or equivalently,

the induced map H(S2) ⊗ H(S2)∗ → k equals the canonical pairing defined

in Section ??. Consider the cylinder S2 × I with cell decomposition as in

Figure 3.12. Note that both boundary edges must be labeled by 1. The
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Figure 3.12: The cylinder over S2

computation is then straightforward:

1

D2

∑

X∈Irr(C)

dX ϕ

1

1

X

· ϕ∗

1

1

X∗

=
1

D2

∑

X∈Irr(C)

X

·

X∗

=
1

D2

∑

X∈Irr(C)

d2
X = 1.

The first equality follows from the normalization of the pairing. The other two

equalities are obvious.

3.3 Proof of independence of polytope decom-

position

In this section, we give proofs of Theorem 7.2.1, Theorem 7.4.1, i.e. prove

that TV invariants are independent of the choice of polytope decomposition.

The proof is based on Theorem 3.1.3, Theorem 3.1.4, which state that any

two decompositions can be obtained from one another by a sequence of moves
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M1–M3 and their inverses.

First, we fix some notation. Unless otherwise stated, we denote simple

objects in C by Xi, Xj . . . and arbitrary objects by A,B, . . . . We let N i1...ik
1 =

dim(〈Xi1 , . . . , Xik〉).

We will now show that the TV state sum is invariant under M1–M3.

Invariance under M1

First we consider move M1. Note that by applying M2 and M3, we can trans-

form an open book with any number of pages to one with only one page (see

Figure 3.13). Thus, it suffices to prove invariance under M1 in this special

add edge to each page−−−−−−−−−−−−→

add faces between new edges−−−−−−−−−−−−−−−−→ remove all pages but one−−−−−−−−−−−−−−→

Figure 3.13: Decomposing an open book into a single page book

case. Drawing the dual graph in the vicinity of the vertex, invariance under
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M1 is equivalent to the following equality:

1

D2

∑

j,k∈Irr(C)

djdk ϕ ϕ∗

. . . . . .
V1 Vn Vn V1

Xj

Xk

=
∑

i∈Irr(C)

di ϕ ϕ∗

. . . . . .
V1 Vn Vn V1

Xi

Note the normalizing factor 1
D2 which comes from the fact that we are removing

a vertex.

Using semisimplicity of C, it is easy to see that it suffices to show this

equality in the special case when V = V1 ⊗ · · · ⊗ Vn is simple:

1

D2

∑

j,k∈Irr(C)

djdk ϕ ϕ∗

V V
Xj

Xk

=
∑

i∈Irr(C)

di ϕ ϕ∗

V V

Xi

By Lemma 2.2.1, the right-hand side is equal to coevV : 1 → V ⊗ V ∗. Since

Hom(1, V ⊗ V ∗) is one-dimensional, the left-hand side is also a multiple of

coevV . Composing it with the evaluation morphism evV , we get

1

D2

∑

j,k

djdkN
V jk
1 =

1

D2

∑

j,k

NV j
k∗ dkdj

=
1

D2

∑

j

(∑

k

NV j
k∗ dk

)
dj =

1

D2

∑

j

(dV dj)dj = dV ,

which proves that the left-hand side is equal to coevV .

Invariance under M2

The invariance under M2 is seen as follows. By definition, the edge being

removed is incident to exactly two faces c1, c2. Each face bounds the same
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two 3-cells F1, F2. In Figure 3.14, we draw the dual graphs. In each of the

summands we have two graphs corresponding to cells F1, F2, separated by a

dot. The equality follows immediately from the fact that if ϕα, ϕ
α and ψβ, ψ

β

are dual bases, then so are ϕα •
Xi
ψβ, ψβ •

X∗i
ϕα (cf. Corollary 2.2.2).

∑

i,α,β

di ϕα ψβ

. . . . . .
V1 Vn Wm W1

Xi

ϕαψβ

. . . . . .
Vn V1W1 Wm

X∗i

=
∑

i,α,β

ϕα •
Xi
ψβ

V1 Vn Wm W1

ψβ •
Xi
ϕα

W1 Wm Vm Vn

Figure 3.14:

Invariance under M3

Finally, we consider M3. In this case the invaraince immediately follows from

Lemma 2.2.3, whith two subgraphs corresponding to two 3-cells separated by

the 2-cell being removed.

3.4 Surfaces with boundary

In this section we extend the definition of TV TQFT to surfaces with boundary

(and 3-manifolds with corners). Recall that according to general ideas of

extended field theory (see 35]), an extended 3d TQFT should assign to a closed

1-manifold a 2-vector space, or an abelian category, and to a 2-cobordism
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between two 1-manifolds, a functor between corresponding categories (which

in the special case of cobordism between two empty 1-manifolds gives a functor

Vec → Vec, i.e. a vector space). In this section we show that the extension

of the TV TQFT to 1-manifolds assigns to a circle S1 the category Z(C)—the

Drinfeld center of the original spherical category C. This result was proved by

Turaev in the special case when the original category C is ribbon (see 45]); the

general case has remained a conjecture.

For technical reasons, it is more convenient to replace surfaces with bound-

aries by surfaces with embedded disks. These two notions give equivalent the-

ories: given a surface with boundary, we can glue a disk to every boundary

circle and get a surface with embedded disks; conversely, given a surface with

embedded disks, one can remove the disks to get a surface with boundary.

Moreover, in order to accommodate real-life examples, we need to consider

framing. This leads to the following definition.

We denote

D2 = [0, 1]× [0, 1]

and will call it the standard disk (it is, of course, a square, but this is what

a disk looks like in PL setting). We will also the marked point P0 on the

boundary of D2

P0 = (0, 1) ∈ ∂D2

Definition 3.4.1. A framed embedded disk D in a PL surface N is the image

of a PL map

ϕ : D2 → N
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which is a homeomorphism with the image, together with the point P =

ϕ(P0) ⊂ ∂D.

An extended surface is a PL surface N together with a finite collection of

disjoint framed embedded disks (see Figure 3.15). We will denote the set of

embedded disks by D(N).

A coloring of an extended surface is a choice of an object Yα ∈ ObjZ(C)

for every embedded disk Dα.

Figure 3.15: Extended surface

Next, we can define cobordisms between such surfaces. As usual, such

a cobordism will be a 3-manifold with boundary together with some “tubes”

inside which connect the embedded disks on the boundary of M . The following

gives a precise definition in the PL category.

Definition 3.4.2. Let M be a PL 3-manifold with boundary.

An open embedded tube T ⊂M is the image of a PL map

ϕ : [0, 1]×D2 →M

which is satisfies the conditions below, together with the oriented arc γ =

ϕ([0, 1]× {P0}) (which we will call the longitude).

The map ϕ should satisfy:
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1. ϕ is a homeomorphism onto its image

2. T ∩ ∂M = ϕ({0} ×D2) ∪ ϕ({1} ×D2)

We will call the disks B0 = ϕ({0}×D2) and B1 = ϕ({1}×D2) the bottom

and top disks of the tube.

A closed embedded tube T ⊂M is the image of a PL map

ϕ : S1 ×D2 →M

which is satisfies the conditions below, together with the oriented arc γ =

ϕ([0, 1]× {P0}) (the longitude) and the disk B = ϕ({0} ×D2) ⊂ T .

The map ϕ should satisfy:

1. ϕ is a homeomorphism onto its image

2. T ∩ ∂M = ∅

The longitude γ determines the framing of the tube; the disk B is conve-

nient for technical reasons; later we will get rid of it.

Definition 3.4.3. An extended 3-manifold M is an oriented PL 3-manifold

with boundary together with a finite collection of disjoint framed tubes Ti ⊂

M . We denote the set of tubes of M by T (M).

A coloring of an extended 3-manifold M is a choice of an object Yα ∈

ObjZ(C) for every tube Tα.

Note that if M is an extended 3-manifold, then its boundary ∂M has a

natural structure of an extended surface: the embedded disks are the bottom

and top disks of the open tubes, and the marked points on the boundary of
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Figure 3.16: Extended 3-manifold

embedded disks are the endpoints of the longitude arcs γα, where α runs over

the set of all open tubes in M . Moreover, a coloring of M defines a coloring of

∂M : if an open tube Tα is colored with Yα ∈ ObjZ(C), we color the embedded

disk ϕα({1} ×D2) with Yα and the embedded disk ϕα({0} ×D2) with Y ∗α .

Our main goal will be extending the TV invariants to such extended sur-

faces and cobordisms. Namely, we will

1. Define, for every colored extended surface N , the space ZTV (N, {Yα})

which

• functorially depends on colors Yα

• is functorial under homeomorphisms of extended surfaces

• has natural isomorphisms ZTV (N, {Y ∗α }) = ZTV (N, {Yα})∗

• satisfies the gluing axiom for surfaces

2. Define, for every colored extended 3-manifold M , a vector ZTV (M) ∈

ZTV (∂M) (or, equivalently, for any colored extended 3-cobordism M be-
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tween colored extended surfacesN1, N2, a linear map ZTV (M) : ZTV (N1)→

ZTV (N2)) so that this satisfies the gluing axiom for extended 3-manifolds.

In the next chapter, we will show that this extended theory actually coin-

cides with the Reshetikhin–Turaev theory for the modular category Z(C):

ZRT,Z(C) = ZTV,C.

The construction of the theory proceeds similar to the construction of TV

invariants. Namely, we will first define ZTV (N), ZTV (M) for manifolds with

a polytope decomposition and then show that the so-defined objects are inde-

pendent of the choice of a polytope decomposition and thus define an invariant

of extended manifolds.

3.5 Extended combinatorial surfaces

We begin by generalizing the definition of a polytope decomposition to ex-

tended surfaces.

Definition 3.5.1. A combinatorial extended surface N is a an extended sur-

face N together with a polytope decomposition such that

1. The interior of each embedded disk is one of the 2-cells of the polytope

decomposition.

2. Each marked point Pα on the boundary of an embedded disk is a vertex

(0-cell) of the polytope decomposition.

71



We can now define the state space for such a surface. Let N be a combi-

natorial extended surface, and Yα, α ∈ D(N), — a coloring of N . Let l be a

labeling of edges of N . Then we define the state space

H(N , {Yα}, l) =
⊗

C

H(C, l)

where the product is over all 2-cells of N (including the embedded disks) and

H(C, l) =





〈Yα, l(e1), l(e2), . . . , l(en)〉 C = Dα – an embedded disk

〈l(e1), l(e2), . . . , l(en)〉 C – an ordinary 2-cell of N

where e1, e2, . . . are edges of C traveled counterclockwise; for the embedded

disks, we also require that we start with the marked point Pα; for ordinary

2-cells of N the choice of starting point is not important.

As usual, we now define

H(N , {Yα}) =
⊕

l

H(N , {Yα}, l) (3.5.1)

where the sum is taken over all equivalence classes of simple labellings l of

edges of N .

Note that so defined state space is functorial in Yα and functorial under

homeomorphism of extended surfaces; it is also immediate from the definition

that one has a canonical isomorphism

H(N , Y ∗α ) = H(N , Yα)∗.
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Example 3.5.2. Let N be the sphere with n embedded disks and the cell

decomposition shown in Figure 3.17. Then

Figure 3.17: n-punctured sphere

H(N , Y1, . . . , Yn)

=
⊕

X1,...,Xn,U1,...,Un∈Irr(C)

〈X1, U1, X
∗
1 , . . . , Xn, Un, X

∗
n〉 ⊗ 〈U∗1 , Y1〉 ⊗ · · · ⊗ 〈U∗n, Yn〉

'
⊕

X1,...,Xn∈Irr(C)

〈X1, Y1, X
∗
1 , . . . , Xn, Yn, X

∗
n〉.

where the last isomorphism is given by direct sum of rescaled compositions

(2.2.10).

The first main result of this chapter is the gluing axiom for the so defined

state space.

Theorem 3.5.3. Let N be a combinatorial extended surface and Da, Db — two

distinct embedded disks. Let N ′ be the extended surface obtained by removing

the disks Da, Db and connecting the resulting boundary circles with a cylinder

with the polytope decomposition consisting of a single 2-cell and a single 1-cell

as shown below:

Thus, the set D′ of embedded disks of N ′ is D′ = D(N ) \ {a, b}
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Figure 3.18: Gluing of extended surfaces. To help visualize the cylinder, it is
colored light gray.

Then one has a natural isomorphism

H(N ′, {Yα}α∈D′) =
⊕

Z∈Irr(Z(C))

H(N , {Yα}α∈D′ , Z, Z∗)

where objects Z,Z∗ are assigned to embedded disks Da, Db.

Proof. For a given labeling l of edges of N , let

H0(l) =
⊗

C

H(C, l)

where the product is taken over all 2-cells of N (including the embedded disks)

except Da, Db. Then

H(N , {Yα}, Z, Z∗, l) = H0(l)⊗ 〈Z,A〉 ⊗ 〈Z∗, B〉

where A = l(e1) ⊗ l(e2) · · · ⊗ l(en), where e1, e2, . . . are edges of Da traveled

counterclockwise starting with the marked point Pa, and similarly for B.
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On the other hand, for a given labeling l′ of edges of N ′, we have

H(N ′, {Yα}, l′) = H0(l)⊗ 〈A⊗ l(e)⊗B ⊗ l(e)∗〉

where l is the restriction of labeling l′ to edges of N , and e is the added edge

connecting marked points Pa, Pb.

Thus, the theorem immediately follows from the following lemma.

Lemma 3.5.4. For any A,B ∈ Obj C, the map

⊕

Z∈Irr(Z(C))

〈Z,A〉 ⊗ 〈Z∗, B〉 →
⊕

X∈Irr(C)

〈A,X,B,X∗〉

ϕ⊗ ψ 7→
⊕

X∈Irr(C)

√
dX
√
dZ

D ϕ ψ

A B

Z
X

(3.5.2)

is an an isomorphism.

(The factor
√
dX
√
dZ/D is introduced to make this isomorphism agree with

pairing (2.4.4).)

Proof. By Theorem 2.3.3, we have

⊕

X∈Irr(C)

〈A⊗X ⊗B ⊗X∗〉 =
⊕

X

HomC(A
∗, X ⊗B ⊗X∗)

= HomC(A
∗, F I(B)) = HomZ(C)(I(A∗), I(B))
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On the other hand,

⊕

Z∈Irr(Z(C))

〈Z,A〉 ⊗ 〈Z∗, B〉 =
⊕

Z

HomC(Z
∗, A)⊗ HomC(Z,B)

=
⊕

Z

HomZ(C)(Z
∗, I(A))⊗ HomZ(C)(Z, I(B))

=
⊕

Z

HomZ(C)(I(A)∗, Z)⊗ HomZ(C)(Z, I(B))

= HomZ(C)(I(A)∗, I(B))

(using semisimplicity of Z(C)).

This completes the proof of the lemma and thus the theorem.

3.6 Invariants of extended 3-manifolds

We begin by generalizing the definition of a polytope decomposition to ex-

tended 3-manifolds as defined in Definition 3.4.3.

Definition 3.6.1. A combinatorial extended 3-manifold M is an extended

PL 3-manifold with a polytope decomposition such that

• For an open tube Tα, its interior is a single 3-cell of the decomposition.

Moreover, the interior of the “bottom disk” B0 = ϕα({0}×D2) is a single

2-cell of the decomposition, and the marked point P on the boundary of

the bottom disk is a vertex of the decomposition, and similarly for the

top disk B1 = ϕα({1} ×D2).

• For a closed tube Tα, the interior of the disk Bα = ϕα({0} × D2) is a

single 2-cell of the decomposition, the marked point Pα ∈ ∂Bα is a vertex
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of the decomposition, and the complement Int(Tα)−Bα is a single 3-cell

of the decomposition.

Note that this implies that the restriction of such a polytope decomposition

to the boundary of ∂M satisfies the conditions of Definition 3.5.1 and thus

defines on ∂M the structure of a combinatorial extended surface. It also

this implies that M contains two kinds of 3-cells: usual cells (which are not

contained in any tube) and “tube cells”, i.e. cells contained in one of the tubes.

The boundary of a usual 3-cell is a union of usual 2-cells; the boundary of a

3-cell corresponding to an open tube contains usual 2-cells and two embedded

disks; the boundary of a 3-cell corresponding to a closed tube contains usual

2-cells and two copies of the disk Bα with opposite orientation.

Finally, note that we have imposed no restriction on the longitude of the

tube: it is allowed (and usually will) intersect the edges of the decomposition

of the boundary tubes.

The following theorem is an analog of Theorem 3.1.4.

Theorem 3.6.2. Let M be an extended 3-manifold. Then any two polytope

decompositions M′,M′′ of M which satisfy the conditions of Definition 3.6.1

and agree on ∂M can be obtained from each other by a sequence of moves M1—

M3 and their inverses such that all intermediate decompositions also satisfy

the conditions of Definition 3.6.1 and agree with M′,M′′ on ∂M .

Proof. Let us consider the manifold M̃ obtained by removing from M the

interior of every tube and also the interior of the embedded disks on the
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boundary of M . Then M̃ is a manifold with boundary

∂M̃ = (∂M − ∪ Int(Dα)) ∪ ∂M̃free

where the “free boundary” ∂M̃free is the union of side surfaces I × ∂D2 of the

tubes (for closed tubes, S1 × ∂D2).

Obviously, polytope decompositions M′,M′′ satisfying the conditions of

the theorem determine decomposition of M̃ which agree on the subset X =

(∂M − ∪ Int(Dα)) ⊂ ∂M̃ . Now the result follows from Theorem 3.1.7.

Recall that for usual oriented 3-cell F and a choice of edge labeling l, we

have defined the vector ZTV (F, l) ∈ H(∂F, l) defined by (3.2.4). We can now

generalize it to tube cells. Namely, let l be an edge coloring of an extended

combinatorial 3-manifold M and let Tα ⊂ M be an open tube, with the

longitude γα and color Yα ∈ Z(C). Since T is homeomorphic to [0, 1]×D2 '

D3— a 3-ball, the boundary ∂T is homeomorphic to S2; thus, the polytope

decomposition of T defines a polytope decomposition of S2.

Let Γ be the dual graph of this cell decomposition. We can connect the

marked points on the top and bottom disks to the vertex of the dual graph

corresponding to these disks; together with the longitude γ, this gives an

oriented arc on the surface of the sphere whose endpoints are two distinct

vertices of Γ. For every 2-cell C ∈ ∂F (including the embedded disks), choose

a vector vC ∈ H(C, l)∗. Thus, we get a graph Γ̂ of the type considered in

Section 2.3, i.e. colored graph Γ on the surface of the sphere together with

a colored framed arc inside as shown in Figure 3.19. By Theorem 2.3.4 this
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Figure 3.19: Dual graph for a tube cell. The longitude is shown by double
green line.

defines a number ZRT (Γ̂); as before, we let

(Z(F, l),⊗vC) = ZRT (Γ̂). (3.6.1)

In a similar way we define the invariant for closed tubes.

We can now generalize the constructions of Section 3.2 to extended 3-

manifolds.

Definition 3.6.3. Let M be an extended combinatorial 3-manifold with

boundary and C – a spherical category. Then for any edge coloring l and

a coloring Yα of the tubes Tα ⊂M, define the vector

ZTV (M, {Yα}, l) ∈ H(∂M, {Yα}, l)

by

ZTV (M, l) = ev
(⊗

F

Z(F, l)
)
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where

• F runs over all 3-cells in M (including the tube cells), each taken with

the induced orientation, so that

⊗

F

Z(F, l) ∈
⊗

F

H(∂F, l) = H(∂M, l)⊗
⊗

c

H(c′, l)⊗H(c′′, l)

(compare with Lemma 3.1.2)

• c runs over all unoriented 2-cells in the interior of M , including the disks

Bα inside the closed tubes, and c′, c′′ are the two orientations of such a

cell, so that c′ = c′′.

• ev is the tensor product over all c of evaluation maps H(c′, l)⊗H(c′′, l) =

H(c′, l)⊗H(c′, l)∗ → k

Finally, we define

ZTV (M, {Yα}) = D−2v(M)
∑

l

(
ZTV (M, {Yα}, l)

∏

e

dnel(e)

)
(3.6.2)

where

• the sum is taken over all equivalence classes of simple labellings of M,

• e runs over the set of all (unoriented) edges of M

• D is the dimension of the category C (see (2.2.1)), and

v(M) = number of internal vertices of M+
1

2
(number of vertices on ∂M)
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• dl(e) is the categorical dimension of l(e) and

ne =





1, e is an internal edge

1
2
, e ∈ ∂M

Note that in this definition, edges and vertices on the boundary of the

tubes are considered internal unless they are also on ∂M.

Theorem 3.6.4.

1. ZTV (M) satisfies the gluing axiom: if M is an extended combinatorial

3-manifold with boundary ∂M = N0 ∪ N ∪ N , and M′ is the mani-

fold obtained by identifying boundary components N ,N of ∂M with the

obvious cell decomposition (if N contains embedded disks, then we may

need to erase them so that the interior of resulting tubes have exactly one

3-cell), then we have

ZTV (M′) = evH(N ) ZTV (M) =
∑

α

(ZTV (M), ϕα ⊗ ϕα),

where ev is the evaluation map H(N ) ⊗ H(N ) → k, and ϕα ∈ H(N ),

ϕα ∈ H(N ) are dual bases.

2. If a M is an extended PL 3-manifold, and M′,M′′ are two polytope

decompositions of M which agree on the boundary, then Z(M′, {Yα}) =

Z(M′′, {Yα}).
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3. For a combinatorial 2-manifold N , define A : H(N )→ H(N ) by

A = ZTV (N × I) (3.6.3)

Then A is a projector: A2 = A.

4. For a combinatorial extended 2-manifold N , define the vector space

ZTV (N ) = Im(A : H(N )→ H(N )) (3.6.4)

where A is the projector (3.6.3). Then the space ZRT (N ) is an invariant

of PL manifolds: if N ′,N ′′ are two different polytope decompositions of

the same extended PL manifold N , then one has a canonical isomorphism

Z(N ′) ' Z(N ′′).

Proof. The proof is parallel to the proof of Theorem 7.4.1. The only new

ingredient is in the proof of part (1), i.e. the gluing axiom for 3-manifolds:

if the component of boundary along which we are gluing contains embedded

disks, we need to erase them so that in the resulting manifold, interior of each

tube is exactly one 3-cell. Thus, we need to check that our that Z(M) is

unchanged under this operation. The proof of this is similar to invariance

under M3 move proved in Section 3.3. Details are left to the reader.

Finally, we also note that our extended theory satisfies the gluing axiom

for extended surfaces.
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Theorem 3.6.5. Under the assumptions of Theorem 3.5.3, one has a natural

isomorphism

Z(N ′, {Yα}α∈D′) =
⊕

Z∈Irr(Z(C))

Z(N , {Yα}α∈D′ , Z, Z∗)

where objects Z,Z∗ are assigned to embedded disks a, b.

Proof. Recall that by Theorem 3.5.3, one has an isomorphism

G :
⊕

Z∈Irr(Z(C))

H(N , {Yα}α∈D′ , Z, Z∗) ∼−→ H(N ′, {Yα}α∈D′)

Since Z(N ) is defined as the image of the projector A : H(N ) → H(N ),

and similarly for Z(N ′), it suffices to prove that the following diagram is

commutative:

H(N , Z, Z∗) H(N ′)

H(N , Z, Z∗) H(N ′)

G

G
A A′

or equivalently, that for any ϕ ∈ H(N , Z, Z∗), ϕ′ ∈ H(N , Z, Z∗), we have

(Z(N × I, Z, Z∗), ϕ⊗ ϕ′) = (Z(N ′ × I), G(ϕ)⊗G(ϕ′)).

Comparing both sides, we see that the only difference is thatN×I contains
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a pair of cylinders Da × I,Db × I:

ADa A′
k

l

B DbB′

whereas N ′ × I contains instead a single cell C × I, where C is the cylinder

connecting boundary circles ∂Da, ∂Db:

A A′

i

j

k

l

BB′

Thus, it suffices to prove that for any collection

ϕa ∈ H(Da) = 〈A,Z〉, ϕb ∈ H(Db) = 〈B,Z∗〉,

ϕ′a ∈ H(Da)
∗ = 〈(A′)∗, Z∗〉, ϕb ∈ H(Db)

∗ = 〈(B′)∗, Z〉,

ψa ∈ H(∂Da × I) = 〈Xk, A
′, X∗k , A

∗〉, ψb ∈ H(∂Db × I) = 〈Xl, B
′, X∗l , B

∗〉

we have

Z(Da × I, ϕa ⊗ ϕ′a ⊗ ψa) · Z(Db × I, ϕb ⊗ ϕ′b ⊗ ψb)

=
∑

i,j

√
di
√
dj Z(C × I, ψa, ψb, G(ϕa ⊗ ϕb), G(ϕ′a ⊗ ϕ′b))
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(the factors
√
di,
√
dj appear because N ′ × I contains two extra edges on the

boundary, labeled i, j.)

The left hand side is given by

LHS = ψa

ϕ′a

ϕa

Z

A′

A

k

· ψb

ϕ′b

ϕb

Z∗
B′

B

l

Combining explicit computation given in Section 3.7 with the formula for

gluing in Lemma 3.5.4, we see that the right hand side is given by

RHS =
∑

i,j

didjdZ
D2 ψa ϕ ψb ϕ∗

ϕ′a ϕ′b

ϕa ϕb
Z

Z∗

k l lA′ B′i

A Bj

k
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Using Lemma 2.2.1, we can rewrite it as

RHS =
∑

j

djdZ
D2 ψa ψb

ϕ′a ϕ′b

ϕa ϕb

A′ B′

j

A B

k l

Since it follows from Lemma 2.3.2 that for any simple Z ∈ ObjZ(C) and a

morphism Φ ∈ HomC(Z,Z), we have

1

D2

∑

j

dj Φ

Z

Z

j

=
1

dZ
tr(Φ) idZ

this easily implies that the LHS is equal to RHS.

Example 3.6.6. Let N be the sphere with n embedded disks, colored by

objects Y1, . . . , Yn ∈ ObjZ(C) (see Example 3.5.2). Then

Z(N , Y1, . . . , Yn) = HomZ(C)(1, Y1 ⊗ Y2 ⊗ · · · ⊗ Yn).
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Indeed, by Example 3.5.2, we have

H(N , Y1, . . . , Yn) =
⊕

i1,...,in∈Irr(C)

〈Xi1 , Y1, X
∗
i1
, . . . , Xin , Yn, X

∗
in〉.

By a direct computation done in Section 3.7, we see that the operator

A = Z(N × I) : H(N )→ H(N ) is given by

ϕ 7→ 1

D2(n+1)

∑

l,j1,...,jn∈Irr(C)

dl

n∏

a=1

√
dia
√
dja

ϕ

Y1 Yni1

j1

in

jn

ll

. . .

Consider now the subspace W ⊂ H(N , Y1, . . . , Yn) spanned by elements of

the form

⊕

j1,...,jn

n∏

a=1

√
dja

ψ
Y1 Yn

j1 jn

. . .

ψ ∈ HomZ(C)(1, Y1 ⊗ · · · ⊗ Yn)

Clearly, W ' HomZ(C)(1, Y1 ⊗ · · · ⊗ Yn).

Now, it follows from the previous computation and Lemma 2.3.2 that for

any ϕ ∈ H(N , Y1, . . . , Yn), we have Aϕ ∈ W ; on the other hand, it is im-
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mediate that if ψ ∈ W , then Aψ = ψ. Therefore, A is the projector onto

W ' HomZ(C)(1, Y1 ⊗ · · · ⊗ Yn).

3.7 Some computations

In this section we give some explicit computations of the TV invariants.

Cylinder over an annulus

Let F = S1 × I × I be the cylinder over an annulus, as shown below. Then

A A′

i

j

k l

B B′

∂F = Ca ∪ Cb ∪ Cin ∪ Cout ∪ C ∪ C
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where Ca, Cb are the left and right annuli, Cin and Cout are the inner and outer

cylinders, and C is the internal cell:

Ca = A A′

k

Cb = BB′

l

Cin = A

i

B

i

Cout = A′

j

B′

j

C = k

j

l

i

The pullback of the cell decomposition of ∂F ' S2 to the sphere is home-

omorphic to the cube shown below:

i

j

k
l

j

l

k
i

A′

A
B

B′

Drawing the dual graph, we see that given a collection

ψL ∈ H(Ca) = 〈A,Xk, (A
′)∗, X∗k〉, ψR ∈ H(Cb) = 〈B∗1 , Xl, B

′, X∗l 〉

ψin ∈ H(Cin) = 〈A∗, Xi, B,X
∗
i 〉, ψout ∈ H(Cout) = 〈A′, Xj, (B

′)∗, X∗j 〉

ϕ ∈ H(C) = 〈Xl, X
∗
j , X

∗
k , Xj〉, ϕ′ ∈ H(C) = 〈X∗j , Xk, Xj, X

∗
l 〉,
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the value (Z(F ), ψL⊗ψR⊗ψin⊗ψout⊗ϕ⊗ϕ′) is given by the following graph:

ψa ϕ ψb ϕ′

ψout

ψin

k l l

A′ j B′ j

A i B i

k

Sphere with n holes

Let N be the sphere with n embedded disks, colored by objects Y1, . . . , Yn ∈

ObjZ(C) (see Example 3.5.2). Choose the cell decomposition of N as in

Example 3.5.2; then

H(N , Y1, . . . , Yn)

=
⊕

X1,...,Xn,U1,...,Un∈Irr(C)

〈X1, U1, X
∗
1 , . . . , Xn, Un, X

∗
n〉 ⊗ 〈U∗1 , Y1〉 ⊗ · · · ⊗ 〈U∗n, Yn〉

'
⊕

X1,...,Xn∈Irr(C)

〈X1, Y1, X
∗
1 , . . . , Xn, Yn, X

∗
n〉.

Consider now the cylinder N × I with the cell decomposition shown in

Figure 3.20.

This cell decomposition contains (n+1) 3-cells: n open tubes and one large
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l

j1
jn

i1 in
k1

kn

Y1 Yn

Figure 3.20: Cylinder over sphere with n embedded disks

3-cell. Thus, the invariant Z(N × I) is given by

(Z(N × I), ϕ⊗ ϕ′) =
∑

l,k1,...,kn∈Irr(C)

D · Z0 · · · · · Zn

where

ϕ = ϕ0 ⊗ ϕ1 ⊗ · · · ⊗ ϕn ∈ H(N , i1, . . . , in)

= 〈Xi1 , U1, X
∗
i1
, . . . , Xin , Un, X

∗
in〉 ⊗ 〈U∗1 , Y1〉 ⊗ · · · ⊗ 〈U∗n, Yn〉

ϕ′ = ϕ′0 ⊗ ϕ′1 ⊗ · · · ⊗ ϕ′n ∈ H(N , j1, . . . , jn)∗

= 〈Xjn , V
∗
n , X

∗
jn , . . . , Xj1 , V

∗
1 , X

∗
j1
〉 ⊗ 〈V1, Y

∗
1 〉 ⊗ · · · ⊗ 〈Vn, Y ∗n 〉

D is the normalization factor:

D =
1

D2(n+1)
dl

n∏

a=1

dka
√
dia
√
dja
√
dUa
√
dVa

and Z0, . . . , Zn are the factors corresponding to the (n + 1) 3-cells of the de-
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composition:

Z0 =

ϕ0

ϕ′0

α1 β1 α∗1 αn βn α∗n

i1

j1

U1

V1

i1

j1

in

jn

Un

Vn

in

jn

l ll

Zi =

ϕi

β∗i

ϕ′i

Ui

Vi

Yi

ki

Using Lemma 2.2.3, we see that it can be rewritten as follows:

(Z(N × I), ϕ⊗ ϕ′) =

∑

l,k1,...,kn∈Irr(C)

D

ϕ0

ϕ′0

α1

ϕ1

ϕ′1

α∗1 αn

ϕn

ϕ′n

α∗n

i1

j1

U1

Y1

V1

i1

j1

in

jn

Un

Vn

Y1

in

jn

k1 l l knl

Thus, identifying H(N , i1, . . . , in) ' 〈Xi1 , Y1, X
∗
i1
, . . . ) as in Example 3.5.2 and
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using Lemma 2.2.1, we see that

(Z(N × I), ϕ⊗ ϕ′) =
∑

l∈Irr(C)

1

D2(n+1)
dl

n∏

a=1

√
dia
√
dja

ϕ

ϕ′

Y1 Yni1

j1

in

jn

ll

. . .

. . .
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Chapter 4

Relating RT and TV invariants

In this chapter, we finish proving that for a closed 3-manifoldM (possibly with

an embedded link inside), ZTV,C(M) = ZRT,Z(C)(M). Turaev and Virelizier

recently posted a proof of this formula [4], but the methods are different, and

in particular involves state sums on skeletons of 3-manifolds and the theory of

Hopf monads in monoidal category.

In contrast, we prove the theorem via the results of the previous chapter.

Namely, we use the extended TV theory. First we prove that the theories

coincide for S3 with a link inside. We do this by decomposing S3 into a finite

collection of building blocks, demonstrating that the theories coincide on these

blocks, and then using the gluing axiom. Next, we describe graphically the

vector space assigned to the torus and examine the action of the mapping class

group. In particular, we show that the generators T and S of the mapping

class group act by multiplication by the twist and s-matrices respectively, just

as they do in ZRT . Finally, we prove the surgery formula for our theory, which

implies the main theorem as a corollary.
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4.1 Sphere

In this section we compute the TV state sum for several extended 3-manifolds,

which we call generators. If S3
L denotes S3 with an embedded link L inside, we

can decompose S3
L into a finite union of these generators. Using the compu-

tations in this section and the gluing axiom for our TQFT, we conclude that

the theories give the same answer for S3
L. In what follows, all links are framed

and oriented.

Consider the following extended 3-manifold structure on N where N is

the cobordism between 3-punctured spheres that interchanges two of the em-

bedded disks with longitudes labeled as pictured 1. Clearly, the two picture

are homeomorphic If we take a modular category as input data, Reshetikhin-

N =

A B Y

∼=

Y

BA

Turaev theory gives ZRT (N ) = IdY ⊗ σAB, where σ is the braiding 5]. We

now show that Turaev-Viro theory gives the same answer.

Lemma 4.1.1. Let C be a spherical category. Then there is a canonical iso-

morphism ZTV,C(N ) ∼= ZRT,Z(C)(N )

1We have removed a solid cylinder from the figure to make the diagram more manageable
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Proof. See Section 5.3

Now letM = S2×I with a single open embedded tube colored by Y ∈ Z(C)

as shown. As in the previous lemma, we have removed a solid cylinder from

M. By definition, ZRT,Z(C)(M) = evY : Y ∗ ⊗ Y → 1, the evaluation map.

Y

Lemma 4.1.2. ZTV,C(M) ∼= ZRT,Z(C)(M).

Proof. See Section 5.3

It follows by an identical calculation that ZTV (M′) gives the coevaluation

map, where M′ is similar to M but inverted.

We can now use the above two lemmas to state the following result.

Theorem 4.1.3. Let M = S3
L be the 3-sphere with an embedded link L inside

with components colored by Y ∈ Irr(Z(C)). Then ZTV,C(M) = ZRT,Z(C)(M).

Proof. After isotoping L appropriately, we can cut M into regions, each of

which is isomorphic to N ,M or M′ from the above lemmas or to B3. The

theorem then follows from the lemmas and the gluing axiom 2].
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Note that it is known that for RT, ZRT,A(S3
L) = 1

Dim(AF (L), so the theorem

gives

ZTV,C(S
3
L) = ZRT,Z(C)(S

3
L) =

1

Dim(Z(C))F (L) =
1

D2
F (L) (4.1.1)

which can also be verified by direct computation. Here we use the fact that

Dim(Z(C))= Dim(C)2 39].

4.2 Computations with the Torus

In the previous section, we established that ZRT (S3
L) = ZTV (S3

L), where S3
L

is the 3-sphere with an embedded link L inside. It is a classical result that

any connected, closed 3-manifold may be obtained from S3 via surgery along

a framed link L, or, more precisely, along a tubular neighborhood of L. A

tubular neighborhood of a link is simply a disjoint union of solid tori. In this

section, we study the vector space ZTV (T2) and describe graphically an inner

product, an orthonormal basis and action of the mapping class group (MCG)

of the torus. We denote the standard 2-torus S1 × S1 by T2.

The following result is well-known (see e.g. 39]):

Lemma 4.2.1. ZTV,C(T2) has basis indexed by isomorphism classes of irre-

ducible objects of Z(C).

Proof. The torus may be obtained from the 2-punctured sphere, S2
2 by gluing

together its two boundary circles. It follows directly from the gluing axiom for
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surfaces (Theorems 8.4, 8.5 in 2]) that

ZTV,C(T2) =
⊕

Z∈Irr(Z(C))

〈Z,Z∗〉Z(C). (4.2.1)

We can also see this explicitly by computing ZTV (T2 × I), as is done in

Section 5.3.

We denote by T2
Z the solid torus with a closed embedded tube inside with

(untwisted) longitude labeled by Z ∈ Irr(Z(C)) as shown in Figure 4.1. Then

ZTV,C(T
2
Z) is a vector in ZTV,C(T2). We denote this vector by [Z].

Z

Figure 4.1: The solid torus with a closed embedded tube labelled by Z ∈ Z(C)

Lemma 4.2.2. {[Z]}Z∈Irr(Z(C)) form a basis in Z(T2).

A simple computation shows that [Z] = 1√
dZ
coevZ , under the identification

4.2.1 . Note that coevC|Z(C) = coevZ(C).

4.3 Surgery

If M , N are manifolds with boundary and ϕ : ∂M −→ ∂N is a homeo-

morphism, we may glue M and N along their boundaries to obtain a closed
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3-manifold, denoted M tϕN . Such a map ϕ induces a linear map between the

corresponding vector spaces, and we denote this map ϕ∗: Z(∂M) → Z(∂N).

By the gluing axiom, Z(M tϕ N) = (ϕ∗Z(M), Z(N)).

Lemma 4.3.1. M tϕ N only depends on the isotopy class of ϕ

For a proof of this lemma, see 5].

Definition 4.3.2. For a closed manifold M , the mapping class group Γ(M)

is the group of isotopy classes of homeomorphisms M −→M .

Since any 3-manifold may be obtained from S3 by surgery along an embed-

ded link, or equivalently along a collection of solid tori, we will be primarily

concerned with the following example:

Example 4.3.3. Γ(T2) = SL2(Z), which is generated by S =




0 −1

1 0


 and

T =




1 1

0 1


. If we pick generators α, β for H1(∂T2,Z) as in Figure 4.2, then

S acts by interchanging 2 α and β and T is a Dehn twist (See Figure 4.2).

Further, the action of T extends to a homeomorphism of the solid torus.

T :
α

β

7−→
α

β

Figure 4.2: The action of T on the Torus

We now describe an inner product on Z(T2).

2More precisely S(α) = β, S(β) = -α
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Lemma 4.3.4. Define a bilinear form on Z(T2) by 〈[Z], [W ]〉 = Z(T2
ZtUT2

W ),

where U =



−1 0

0 1


. Then {[Z]}Z∈Irr(Z(C)) is orthonormal with respect to this

form.

Proof. See Section 5.3.

Since Z(C) is a modular category, it has an s-matrix s̃ (5]) and a twist

matrix t where ti,j is zero for i 6= j and is defined for i = j by

i

= ti,i

i

Let S and T be as above. The following theorem shows that S and T act on

Z(T2) by the s-matrix and the twist matrix respectively.

Theorem 4.3.5. 1. S∗[Z] =
∑

W∈Irr(Z(C))

s̃ZW
D2

[W ].

2. T∗[Z] = tZ,Z [Z]

Proof. 1. By the gluing axiom, (S∗[Z], [W ]) = ZTV,C(T
2
ZtST2

W ) = ZTV,C(S
3
L),

where L is the Hopf link with components labelled by Z and W . By 4.1.3,

this equals ZRT,Z(C)(S
3
L) = s̃ZW .

2. By the gluing axiom (T∗[Z], [W ]) = ZTV,C(T
2
Z tT T2

W ). This manifold

is homeomorphic to S2 × S1 with two unlinked embedded closed tubes

labelled Z and W respectively, the Z tube with a single positive twist.

This follows directly from the fact that T2 tU T2 = S2 × S1 combined

with the fact that the map T extends to a homeomorphism of solid tori.
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Replacing the twist with a multiplicative factor tZ,Z , we get ZTV,C(T
2
ZtT

T2
W ) = tZ,ZZTV,C(T

2
Z tU T2

W ) = tZ,ZδZ,W , where the final equality holds

by Lemma 4.3.4.

The following computations will be particularly useful:

1. S∗[1] =
∑

W∈Irr(Z(C))

dW
D2

[W ]. This follows immediately from Theorem

4.5(1) and the fact that s̃1,Z = dZ .

2. S∗
∑

Z

dZ
D2

[Z] = [1]. This follows from the equation
∑

Z

dZ s̃Z,W = δW,1D2

(See 5], Chapter 3).

Let us briefly outline what we have accomplished so far.

1. In Section 4.1, we demonstrated that ZTV,C(S
3
L) = ZRT,Z(C)(S

3
L). This

was done by decomposing S3
L as a union of several types of 3-manifolds

with boundary, showing the result holds for each type, and using the

gluing axiom.

2. In Section 4.2 we showed that ZTV,C(T2) ∼= ZRT,Z(C)(T2) and that this

isomorphism agrees with the action of the mapping class group Γ(T2)

We will now connect these results. Let K be a framed knot with framing n ∈ Z

andMK a 3-manifold with K embedded. LetM′ be the result of performing

surgery in M along K. We can write the gluing map ϕ : T2 → ∂(M− T2) as

ϕ = T n ◦ S.

Lemma 4.3.6. ZTV,C(M′) = 1
D2ZTV,C(MK).
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Proof. Recall that ZTV,C(MK) ≡
∑

i

diZTV,C(MKi) , where Ki is the knot K

colored by i ∈ Irr(C) and MK = (M− T2) tId T2, where T2 is a tubular

neighborhood of K. Then

ZTV,C(MK) = (
∑

di[i], Z(MK −T2)) = (
∑

dit
n
i,i[i], Z(MK −T2))

= D2(T n∗ S∗[1], Z(MK −T2) = D2ZTV,C((M−T2) tTn◦S T2) = D2ZTV,C(M′).

We can slightly generalize Lemma 4.3.6. The proof is similar.

Lemma 4.3.7. LetML be a 3-manifold with a framed link L inside. LetM′
L′

be the result of performing surgery on ML along a single component of L.

(Note that |L′| = |L| − 1). Then ZTV,C(M′
L′) = 1

D2ZTV,C(ML).

Note that if L is a knot, the lemma reduces to Lemma 4.3.6. Now we

state the main theorem of this section, which relates the Reshetikhin-Turaev

and Turaev-Viro invariants. The proof makes repeated use of Lemma 4.3.7

and is very simple. Since we will be working with two categories, C and its

Drinfeld Center Z(C), we will replace all potentially ambiguous shorthand in

what follows. For example, we will write Dim(C) instead of D.

Theorem 4.3.8. Let M be a closed, oriented 3-manifold with a colored link

inside. Then ZTV,C(M) = ZRT,Z(C)(M).

Proof. For simplicity, we can assume M has no embedded link. The general

case is proved in the exact same fashion. We can obtainM from S3
L via surgery
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along a tubular neighborhood of L. Evidently, we can perform surgery along

each component of L individually. Using Lemma 4.3.7 repeatedly, we obtain

ZTV,C(M) =
1

Dim(C)2|L|ZTV,C(S
3
L) =

∑ 1

Dim(C)2|L|

∏
dYiZTV,C(S

3;Li;Yi).

By Theorem 2.3, this equals

∑ 1

Dim(C)(2|L|+2)

∏
dYiF (Li;Yi) =

∑ 1

Dim(Z(C))(|L|+1)

∏
dYiF (Li;Yi)

≡ ZRT,Z(C)(M).

We have shown that ZTV,C and ZRT,Z(C) give the same 3-manifold invari-

ants. Using the gluing axiom and the fact that the theories agree on the

n-puntured sphere, one can easily show that for Σg a closed genus g surface,

Dim(ZTV,C(Σg)) = Dim(ZRT,Z(C)(Σg))
3. Thus, the vector spaces associated to

2-manifolds are isomorphic. This is not enough, however, to show the TQFTs

are isomorphic. We will have to construct a canonical isomorphism between

the spaces and show these satisfy certain compatibility conditions. This is the

subject of the next chapter.

3In fact it is not hard to explicitly compute this this common dimension. See 45]
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4.4 Some Proofs

In this section we include some of the computations described in the chapter.

Proof of Lemma 4.1.1

YBA

Decompose N into a combinatorial 3-manifold. The tubes labeled A and

B are shaded gray and the tube labeled Y lies on the outside of the 3-cell. The

decomposition has 4 vertices and 16 edges, of which 4 are internal and 12 lie

on the boundary. The decomposition has four 3-cells, of which 3 are labeled

tubes. Orienting and coloring edges, we get 4 graphs, one for each 3-cell. Note

that in the following diagrams we often replace coupons with vertices and

omit labeling vertices by the appropriate vectors. As always, we label vertices

corresponding to dual Hom-spaces with dual basis vectors and sum over all

these ’paired’ bases (Recall that these correspond to internal 2-cells). We also

label the bottom and top vertices by ϕ and ϕ′ respectively.

The state sum is therefore:
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u2 x2 α1 x2 u1 z2 β1
z2

z1

v2 x3 α2 x3 v1 z3 β2 z3

x1 α3 α3 x1 z1 β3 β3

Figure 4.3: Big 3-cell

α3

α1

α2

A

β3

β1

β2

B

u1 u2

v1 v2

Y

z1

x1

Figure 4.4: Dual graphs of the 3 tube cells
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ZTV (N ) =
∑
DK3KYKAKB

where K3, KY , KA, KB denote the evaluations of each of the labeled graphs

picture above and D is the following unsightly term:

D = D−8
∑
dx1dz1dα3dβ3d

1
2
α1d

1
2
α2d

1
2
β1
d

1
2
β2
d

1
2
x2d

1
2
x3d

1
2
z2d

1
2
z3d

1
2
u1d

1
2
u2d

1
2
v1d

1
2
v2

Recall that each vertex is labeled by a morphism in the corresponding Hom-

space. Pairing dual morphisms, we can glue in the 3 tubes.

ZTV (N ) =

∑D−8dx1dz1dα3dβ3d
1
2
x2d

1
2
x3d

1
2
z2d

1
2
z3d

1
2
u1d

1
2
u2d

1
2
v1d

1
2
v2

u2

x2 x2 u1 z2 z2

z1

v2

x3 x3 v1 z3 z3

x1 α3 x1 z1 β3

u1

v1

Y A
B

Here we have used the pairing of dual graphs and semisimplicity (Lemma 2.2.1).

Using Lemma 2.2.1 three more times, we get

ZTV (N ) =

∑D−8dz1d
1
2
x2d

1
2
x3d

1
2
z2d

1
2
z3d

1
2
u1d

1
2
u2d

1
2
v1d

1
2
v2

v2

u2

v1

u1

x2

x3

z2

z3

z1

ϕ′

ϕ

If we pair some more and cancel opposite twists, this equals
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∑D−8dz1d
1
2
x2d

1
2
x3d

1
2
z2d

1
2
z3d

1
2
u2d

1
2
v1

v1

x2

x3

z2

z3

z1

u2

Y A B

ϕ′

ϕ

It follows from Lemma 2.2 and Example 8.6 of 2] that the loop labeled z1

projects the top morphism onto HomZ(C)(1, Y ⊗A⊗B). After projection, the

diagram may be depicted as below where P is the projector from Lemma 2.3.2

and the diagram on the left follows from the fact that for a projector, (Pϕ, ϕ′)

= (Pϕ, Pϕ′). The final isomorphism may be easily verified by the reader.

Y A B

Pϕ′

Pϕ

∼=

Y A B

Pϕ′

Pϕ

=
(
Pϕ′, (1Y ⊗ σAB)Pϕ

)

Proof of Lemma 4.1.2

We choose the following combinatorial structure on M:

• Three 3-cells, one of which is an open embedded tube, with longitude

labeled by Y∈ Irr(Z(C)).

• 8 vertices, all of which lie on the boundary

• 15 edges, three of which are internal.

For each 3-cell, we get a graph. Gluing these graphs together using Lemma 2.2.1
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Y

Figure 4.5: Decomposition of M

yields the following graph:

x

x y

y

H

γO

γI

γO

K

H ′

K ′
x′ y′

E

H
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x

x y

yα β

H

γO

γI

γI

γO

K

H ′

K ′
x′ y′

E

E

K

H

γO

H ′K

γI

β

α

Y

Figure 4.6: The graphs corresponding to the three 3-cells from Figure 6.
From left to right, these correspond to the main 3-cell, the outer 3-cell and
the embedded tube cell

Simplifying the graph using Lemma 2.2.1, the state-sum formula becomes

ZTV,C(M) =
∑
D−8dE(dxdx′dydy′dKdK′)

1
2

E

ϕ

ϕ′

K
yx

K ′

y′

x′

Y

Using the same arguments as the previous calculation, one can see that

this gives (Pϕ′, evY (Pϕ)), where evY : Y ∗ ⊗ Y → 1 is the evaluation map in

Z(C).
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Computation of ZTV (T2 × I) from Lemma 4.2.1

Let us take the following polytope decomposition of T2 consisting of one vertex,

two edges and one face. Then

A i

H(T2) =
⊕

A,X∈IrrC

〈A,X,A∗, X∗〉.

. We will often make use of the following isomorphisms:

H(T2) ∼=
⊕

Z,A

〈Z,A〉 ⊗ 〈Z∗, A∗〉 ∼=
⊕

Z

〈Z,Z∗〉C (4.4.1)

where the first isomorphism is given by the map G from Lemma 3.5.4, and

the second is given by a direct sum of composition maps ((2.2.5)). Choosing

bases {ϕZ,A,i} in 〈Z,A〉 and {ψZ,A,j} in 〈Z∗, A∗〉, we can write a basis in H(T2)

as

ηZ,A,i,j =
∑

X∈Irr(C)

√
dX
√
dZ

D ϕ ψZ

XA A

Composing the map G with the direct sum of composition maps, we see that

H(T2) ∼=
⊕

Z

〈Z,Z∗〉C. We now show that ZTV,C(T2 × I) computes the projec-

tion onto
⊕

Z∈Irr(Z(C))

〈Z,Z∗〉Z(C).
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Consider the decomposition of T2× I shown below. . The top and bottom

i j

k
A

A’

A’

A
k

Figure 4.7: Decomposition of T2 × I

of the figure are shaded to emphasize that they are to be identified. This

decomposition consists of 2 vertices both on the boundary, 5 edges 4 of which

lie on the boundary, and a single 3-cell.

ZTV (T2 × I) =
∑ 1

D2
(dAdA′didj)

1
2dk

A’ j A’ j

A i A i

k

k k k

where we have labelled vertices dual to one another by the same color. This

gives a map Φ :
⊕

A,i

〈A,Xi, A
∗, X∗i 〉 −→

⊕

A′,j

〈A′, Xj, A
′∗, X∗j 〉. Composing on

both sides by G yields a map G−1ΦG :
⊕

Z,A

〈Z,A〉⊗ 〈Z∗, A∗〉 −→
⊕

W,A′

〈W,A′〉⊗
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〈W ∗, A′∗〉.

∑ 1

D4
(dAdA′)

1
2didjdk

A’ j A’

A i A

k

k k k

W

Z

Pairing the two orange vertices yields

⊕

Z,W

∑ 1

D4
(dAdA′)

1
2didk

A’

A A

k

A’

k

W

Z

j

By Schur’s Lemma, this diagram evaluates to 0 unless W = Z∗. If W = Z∗,

this equals (Lemma 2.3.2)

⊕

Z

∑ 1

D2
(dAdA′)

1
2dk

A’

A A

k

A’

k

Z Z

=
⊕

Z

∑ 1

D2
dk

Z Z*

k
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where the equality follows from pairing the dual vertices and using the rescaled

composition map twice. By Lemma 2.3.2 this is a projector onto

⊕

Z∈Irr(Z(C))

HomZ(C)(1, Z ⊗ Z∗).

This computation also shows that the projection is compatible with 4.4.1.

Proof of Lemma 4.3.4

T2
ZtU T2

W = S2×S1 with two unlinked embedded tubes labelled by Z and W .

Choose a decomposition of S2×S1 as pictured in Figure 9. This decomposition

i j

k
A

A’

A’

A
k

Z

Figure 4.8: Decomposition of S2 × S1 with two closed embedded tubes. The
tube labelled W is to be glued on the outside of the pictured cylinder and the
top and bottom of the picture are identified.

has two vertices, five edges and three 3-cells, two of which are embedded tubes.
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The computation of the state sum is similar to that in Lemma 4.2.1. We get

Z(T2
Z tU T2

W ) =
∑ 1

D4
dAdA′didk

ϕ ϕ∗Z

i

A A

ψ ψ∗
W

A’ A’k k

where the orange vertices are labelled by dual vectors. By Lemma 2.3.2 this

equals

δZ,W
∑

A,A′,k

1

D2

dAdA′dk
dZ

ϕ ϕ∗

Z

A A

ψ ψ∗

Z

A’ A’k k

.

Finally, pairing dual vertices using Lemma 2.2.1, we get

δZ,W
∑

A,A′,k

1

D2

dAdA′dk
dZ

ϕ∗

A’
Z

A
k

k ϕ

A

= δZ,W
∑

A,k

1

D2

dAdk
dZ

ϕ∗

ϕ

Z Ak = δZ,W
∑

k

1

D2

dk
dZ

Zk = δZ,W
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Chapter 5

Comparison of the Theories

In this chapter, we show that the Reshetikhin-Turaev and Turaev-Viro TQFTs

are isomorphic at the level of surfaces. Namely, if Σ is a closed surface, we

show that there is a nautural isomorphism ZTV,C(Σ) ∼= ZRT,Z(C)(Σ) of vector

spaces. We also note that we actually get an equivalence of extended (3-2-1)

theories if we impose mild restrictions on the allowed types of manifolds with

corners.

It is easy to compute the dimensions of the above spaces:

DimZTV (Σg) = DimZRT (Σg) = D2g−2
∑

i∈Irr(C)

d2−2g
i (5.0.1)

where D is the dimension of C and di is the dimension of simple object Xi.

The vector spaces are therefore isomorphic, but this is not enough. We need

to exhibit a natural isomorphism between the spaces.

The same issue occurs in general when attempting to define any 2D mod-

ular functor. For example, in RT theory, one decomposes the surface Σ into
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a union of punctured spheres1, evaluates ZRT for each of them, and uses the

gluing axiom to obtain ZRT (Σ). A priori, this appears to depend on the choice

of decomposition of Σ. Refining earlier work by Moore and Seiberg, Bakalov

and Kirillov 6] proposed a set of moves (The ”Lego-Teichmüller Game”). re-

lating any two such decompositions. One can show that each of these moves

corresponds to a certain natural isomorphism of vector spaces and any two

“paths” between two chosen decompositions yield the same map. The space

Z(Σ) is therefore well defined.

We will apply the results described above to TV theory. In Section 3.7 ,

we constructed an isomorphism

ZTV (Σ) ∼= HomZ(C)(1, Y1 ⊗ · · · ⊗ Yn) (5.0.2)

where Σ is an n-punctured sphere with boundary components labeled by

Y1, . . . Yn ∈ Irr(Z(C)). Notice that the space on the right of this equation

is by definition ZRT,Z(C)(Σ;Y1, . . . Yn).

It is important to note that RT is defined using ”pairs-of-pants” decom-

positions of surfaces, while TV is defined via cell decompositions. Since the

latter is a local construction and the former is inherently nonlocal, compar-

ing the two requires a natural way of passing between them. The solution is

simple and is provided immediately by the surface parametrizations defined in

6]. Using these, we can compute maps between TV state spaces that corre-

spond to each of the moves between cut systems and check that such maps are

compatible with the projector HTV (Σ) −→ ZTV (Σ). Thus, we get a natural

1Following 6], we call this a cut sytem.
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identification ZRT (Σ) ∼= ZTV (Σ).

In both RT and TV theory, once we know the value of the TQFT on a

punctured sphere, we can use the gluing axiom to define Z(Σ) for any sur-

face. Thus, we get a well-defined vector space, up to natural isomorphism

that depends only on the topology of Σ. We do this in each case by defining

”intermediate” vector spaces which do depend on some choices2 and demon-

strating that we can identify all such spaces naturally. The key result of this

chapter is that we can pass between the theories in a natural way, so that

ZTV,C(Σ) ∼= ZRT,Z(C)(Σ) independent of any choices.

This chapter is organized as follows. First, we briefly review the theory of

parametrized surfaces from 6]. Next, we examine the effect of passing between

parametrizations on the associated TV state spaces. In particular, we show

that each of the moves yields a natural map between state spaces, which under

projection gives the same identification between vector spaces as that in RT.

This establishes an equivalence of theories at the level of surfaces. Finally,

we consider extended 3-manifolds with boundary and show that both theories

give the same answer. Along the way, we explain how Turaev-Viro theory

works for 3-manifolds with embedded ribbon graphs.

2The parametrization in RT and the cell decomposition in TV.
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5.1 Surface Decompositions

In this section we briefly review the notion of a parametrized surfaces. For a

complete exposition, see 6]. Informally, a parametrization is a way of writing

a surface Σ as the union on punctured spheres, together with a fixed identifi-

cation of each punctured sphere with a standard sphere. The standard sphere

with n punctures is defined formally as

S0,n = CP1\{D1, . . . , Dn};Dj = {z||z − zj| < ε}, z1 < · · · < zn (5.1.1)

where ε is sufficiently small so the boundary circles do not intersect. We also

fix a point pi ∈ ∂Di. Note that we have fixed an ordering of the boundary

circles, so we can refer to the set of boundary components by {1, . . . , n}.

Definition 5.1.1. An extended surface is a compacted oriented surface Σ

, possibly with boundary, together with a fixed point pα on each boundary

component (∂Σ)α.

Note that there are several other equivalent ways of defining an extended

surface (See 5]).

Definition 5.1.2. A colored extended surface is an extended surface together

which a choice of label Zα ∈ Z(C) for each marked point pα.

We now give the main definition of this section. Let Σ be a colored extended

surface.

Definition 5.1.3. A parametrization of Σ consists of
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1. A finite set C of non-intersecting simple closed curves on Σ such that

Σ\C is of genus zero. We call C the set of cuts and fix a point on each

cut.

2. For each component Σa of Σ\C, a homeomorphism ψ : Σa → S0,na

Two parametrizations are considered equivalent if they are isotopic 3. There

is a nice graphical way of describing parametrized surfaces. Namely, take the

standard sphere with the graph as shown in Figure 5.1. This graph connects

Figure 5.1: The graph on S0,3

a single internal vertex to each of the points pα fixed on the boundary and

labels the edge connected to circle 1 by an arrow.

To depict a parametrization of any surface Σ, we draw the cuts on Σ. Then

for each connected component Σα, we pull back the graph on the standard

sphere by ψα to obtain a graph Mα on Σα. Clearly, such data are equivalent

(up to isotopy) to specifying a parametrization and henceforth we will refer

to a parametrization as a pair (C,M) where C is a set of cuts on Σ and

M = ∪αMα. When possible, we will often draw the graphs Mα in the plane,

ignoring the sufaces into which they are embedded. The reader should have

no difficulty passing between such a graph and the surface it represents.

3Both the set of cuts and the homemorphisms of boundary components are considered
up to isotopy
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Figure 5.2: A parametrization of a genus two surface Σ = S0,3 t S0,3 t S0,2.
The blue lines are cuts and the green lines are graphs Mα

Definition 5.1.4. Let Σ be a parametrized sphere with n boundary compo-

nents colored by Z1, . . . , Zn ∈ Irr(Z(C)). We define the Reshetikhin-Turaev

invariant of Σ to be

ZRT,Z(C)(Σ;Z1, . . . , Zn) = HomZ(C)(1, Z1 ⊗ · · · ⊗ Zn) (5.1.2)

More generally, we can defined the Reshetikhin-Turaev invariant for any

colored, parametrized surface as follows. Σ\C is a union of genus zero surfaces

with boundary, each equipped with parametrization inherited from Σ. Let

Σα,Σβ be two such components separated by a cut c. Then c corresponds to

two boundary circles, one on Σα and the other on Σβ. We may color these

components by assigning Z ∈ Irr(Z(C)) to one component and Z∗ to the other.

Definition 5.1.5. Let (Σ, P ) be a colored parametrized surface.

ZRT,Z(C)(Σ, P ) =
⊕

Y1α ,...Ynα

⊗

α

ZRT,Z(C)(Σα;Y1α , . . . Ynα) (5.1.3)

where the product is over all connected components of Σ\C, and we color

all newly created boundary components as described above, summing over all
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possible colorings.

We will typically denote a simple object Yi ∈ Z(C) by its index i. In all

that follows, i∗ represents the dual object Y ∗i , which is also simple. To simplify

formulas, many authors attempt to pick a function f : Irr(C) → Irr(C) so

that Y ∗i = Yf(i), but one should avoid doing this at all costs since it is often

impossible to do so in a consistent manner (See 5], Remark 2.4.2).

Example 5.1.6. Let Σ be the torus with one puncture and parametrization

as shown on the left hand side of Figure 5.1 and boundary disk labeled by Y .

Then ZRT,Z(C)(Σ) =
⊕

i∈Irr(Z(C))

HomZ(C)(1, Y ⊗ i⊗ i∗).

Now we describe a set of moves between parametrizations of a surface. As

we’ll see below, we can relate any two decompositions by a finite composition

of these moves:

1. The Z-move cyclically permutes the boundary components.

2. The B-move braids one boundary component about an adjacent one.

3. The F-move removes a cut. If a cut separates S0,n and S0,m, deleting the

cut gives a component homeomorphic to S0,m+n−2 together with a graph

inherited from the original components. Notice that we connect circle 1

from the one sphere to circle m of the other, thus resulting in a graph

which inherits a natural ordering of boundary circles.

4. The S-move interchanges meridians and longitudes of the punctured

torus.
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α

Z−→
α

Figure 5.3: Z-move

α β

B−→

α β

Figure 5.4: B-move

F−→

Figure 5.5: F-move

S−→

Figure 5.6: S-move
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Theorem 5.1.7. Let A = (Σ, C,M) and A′ = (Σ, C ′,M ′) be two parametriza-

tions of a surface. Then A and A′ are related by a finite sequence of Z,B, F

and S moves described above.

This result has its origins in conformal field theory. It was conjectured

by Moore and Seiberg and rigorously proved in 6]. It is a generalization of a

result by Hatcher and Thurston (24]), which describes moves between surfaces

decomposed into spheres, cylinders and pairs-of-pants, but doesn’t take into

account the full data of a parametrization. The theorem in 6] does a lot more

in fact: it provides a complete set of relations between the above moves, but

we will not need this part explicitely.

These moves are important for defining a 2-dimensional (extended) mod-

ular functor F . Given the vector space associated to the punctured sphere,

one should be able to use the gluing axiom to describe F(Σ) for a surface of

any genus. Different parametrizations should give naturally isomorphic vector

spaces; one can check that this is so by verifying that it is true for each of the

simple moves between parametrizations. If P, P ′ are two parametrizations of

a surface Σ related by a single Z,B, F or S move, we can explicitely describe

the correspondence between associated vector spaces in RT theory:

Lemma 5.1.8. Let P, P ′ be two parametrizations of a surface Σ and let

X : (Σ, P ) −→ (Σ, P ′) be any composition of Z,B, F and S moves con-

necting P and P ′. Then X induces an isomorphism X∗ : ZRT,Z(C)(Σ, P )
∼=−→

ZRT,Z(C)(Σ, P
′). This isomorphism is independent of the choice of X. In terms

of the generators,

1. The Z-move corresponds to the rotation isomorphism:

123



〈Y1, . . . , Yn〉 → 〈Yn, Y1, . . . , Yn−1〉

ϕ

Y1 Y2 Yn

. . . Z∗−→
ϕ

Y1 Y2Yn

. . .

2. The F-move gives the composition isomorphism. That this is an isomor-

phism follows directly from semisimplicity.

∑

i∈Irr(Z(C))
ϕ

Y1 Y2 i

. . .

ϕ′

YnYn−1i

. . . F∗−→
∑

i
ϕ′

YnYn−1

ϕ

Y1 Y2

i

. . . . . .

3. The B-move gives the braiding isomorphism

ϕ

Y1 Y2 Yn

. . . B∗−→
ϕ

Y1 Yn Yn−1

. . .

4. The S-move gives multiplication by the S-matrix

∑

B
ϕ

A B B∗

S∗−→ 1
D2

∑

B,Y
ϕ

A

B B∗

Y Y ∗

5.2 Parametrized surfaces and cell decompo-

sitions

In this section, we state and prove the main result of the chapter: TV and

RT theories assign the same vector space (up to natural isomorphism) surface

Σ, which may have boundary. If ∂Σ 6= ∅, we fix a coloring of each boundary

component ∂Σi by Zi ∈ Irr(Z(C)).
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Given two cell decompositions ∆,∆′ of a surface Σ, there is a natural map

Ψ∆′,∆ : H(Σ,∆) −→ H(Σ,∆′) (5.2.1)

obtained by computing a state sum on the cylinder Σ× I, with a decomposi-

tion chosen to agree with ∆ on Σ × 0 and ∆′ on Σ × 1. Note, that this map

does not depend on the choice of the internal decomposition. We will refer to

this map as the cylinder map.

The cylinder map is not an isomorphism in general since the dimension of

HTV,C(Σ,∆) depends on the number of edges of ∆, but it is almost an isomor-

phism. More precisely, define the space ZTV,C(Σ,∆) = Im(Ψ∆,∆). Then

Ψ∆,∆′ : ZTV,C(Σ,∆) −→ ZTV,C(Σ,∆
′) (5.2.2)

is a natural isomorphism. We can refer to this space as ZTV,C(Σ), since up to

natural isomorphism it doesn’t depend on the cell decomposition.

Given a parametrized surface Σ, there is a natural way to obtain a cell

decomposition of Σ . We have a fixed collection of closed curves dividing Σ

into the union of punctured spheres. These cuts become 1-cells in the cell

decomposition. Further, for each punctured sphere thus obtained, we have a

graph from our parametrization terminating at fixed points on the boundary

circles. Each edge of this graph becomes a 1-cell and the points at which the

1-cells terminate become vertices. It is easy to see that these choices define a

cell decomposition in the sense of Section 3.1. We call the cell decomposition

obtained in this way, the associated cell decomposition to parametrization P .
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Recall that for a punctured sphere with standard cell decomposition (Fig-

ure 5.1), we have a projection HTV,C(S
2)

π→ ZTV,C(S
2) ∼= ZRT,Z(C)(S

2). The

associated inclusion map i can be described graphically: The normalization

ϕ
i−→

⊕

x1,...,xn

n∏

j=1

√
dj

ϕ

x1 xn

Y1 Yn

...

Figure 5.7: i : ZRT,Z(C)(S
2) ↪→ HTV,C(S

2)

factors are chosen to agree with that in 2], so that π ◦ i = Id.

We have two parallel notions in TV and RT theory. On the RT side, we

have surface parametrizations and passing between any two parametrizations

gives an isomorphism as described earlier in Lemma 5.1.8. On the TV, side, we

have cell decompositions; passing between any two cell decompositions gives

a natural isomorphism obtained from a cylinder as described earlier. The

following theorem, which implies the main result in this chapter, shows that

these two notions are the same, up to projection.

Theorem 5.2.1. Let P, P ′ be two parametrizations of a surface Σ with asso-

ciated cell decompositions ∆,∆′ respectively. Then the diagram in Figure 5.8

commutes.

Here, X∗ is the map described in Lemma 5.1.8, j is the map described in

Figure 5.7 followed by projection to ZTV,C(Σ)and Ψ is the isomorphism de-

scribed in (5.2.2).

Proof. To show the diagram commutes, we will verify that it does for each

of the generators Z,B, F and S. The Z and B moves are essentially imme-

diate, while the F and S moves require some work. Throughout the proof,
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ZTV,C(Σ,∆) ZTV,C(Σ,∆′)

j j

ZRT,Z(C)(Σ, P ) ZRT,Z(C)(Σ, P ′)
X∗

Ψ

Figure 5.8:

our convention will be that diagrams of surfaces represent the vector spaces

associated to them. In particular, a parametrized surface (Σ, P ) represents

ZRT,Z(C)(Σ, P ) and a cell-decomposed surface (Σ,∆) represents ZTV,C(Σ,∆).

In the diagrams below, we have written Ψ from Figure 5.8 as the composition

of several elementary steps for the reader’s edification. We have moved several

of the large diagrams to Section 5.3.

The Z-move

This follows directly from the natural isomorphism from Lemma 5.1.8(1).

The B-move

A proof of this fact may be found in 2] (lemma 2.1), where we provide an

explicit computation.

The F-move

We will show that the diagram in Figure 5.16 commutes . The arrow labeled

F is the isomorphism described in Lemma 5.1.8, those labeled i are inclusion

maps (Figure 5.7), and G is the gluing isomorphism at the level of state-spaces
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(Theorem 7.3, 2]) . The other maps are all cylinder maps 5.2.1. Notice that

this can be done in fewer steps, but the cylinder maps will be more difficult

to realize. Figure 5.16 by contrast contains cylinder maps that are all easy to

compute.

To check that this diagram commutes we begin with a vector in ZRT,Z(C)

and proceed about the diagram in two ways. In Figure 5.17 we give the answer.

The explicit computation at each stage left to the reader.

The S-move

We will show that the diagram in Figure 5.18 commutes. We have omitted

some intermediate steps on the right side of the diagram as they are much

the same as those on the left. Notice that the diagrams connected by the

horizontal arrow labeled S are parametrized surface while the others are of

cell-decomposed surfaces. We have chosen a convenient cell decomposition as

the terminating point of the diagram which is easy to work with since there

are simple maps α, β to this space which can be though of as contractions

along edges u1 and u2 respectively (Figure 5.9). If we start on the bottom left

α β
u1

u2

Figure 5.9: To identify the spaces on the left and the right, we use cylinder
maps α, β to the space in the center and compare the images of these maps.

of figure Figure 5.18 and proceed around in two different ways, we get two

vectors, ϕ1, ϕ2 in the same space as shown in Figure 5.10
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ϕ1 = 1
D

∑

x1,x2,N

(dx1dx2dN)
1
2

ϕ

iY i

NN∗x2 x∗
2

;ϕ2 =
1

D3

∑

x1,x2,N

(dx1dx2dN)
1
2

x∗
2x2

N

ϕ

Y
i

j

Figure 5.10:

We can easily verify that these vectors are the same by picking some vector

w in the dual space and comparing the pairings 〈ϕ1, w〉 and 〈ϕ1, w〉. Let w be

given by

1

D
∑

i,N,x1,x2

(dNdx1dx2)
1
2

w̃

j Yj

x∗
2 x2N

where w̃ is some vector in
⊕

j

HomZ(C)(1, j
∗ ⊗ j ⊗ Y ). Then

〈w,ϕ1〉 =
1

D2

∑
dNdx1dx2

w̃

jY j

ϕ

i i

x2 N∗x1

=

ϕ

Y i

j

w̃

= 〈w̃, S∗ϕ〉

=
1

D4

∑
dNdx1dx2

w̃

ϕ

Y

i

j

Nx2 x∗
2

x1

j

= 〈w,ϕ2〉

As an immediate consequence, we get

Theorem 5.2.2. For any surface (possibly with boundary), we have a natural

isomorphism
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ZRT,Z(C)(Σ) ∼= ZTV,C(Σ)

We conclude the chapter by combining results in 2], 3] and this paper to

prove the following theorem.

Theorem 5.2.3. Let C be a spherical fusion category. Then ZTV,C ∼= ZRT,Z(C)

as (3-2-1) TQFTs.

We have already shown that the two TQFTs give the same answer for a

closed 3-manifold with an embedded link 2] (Theorem 4.8), and for a surface,

possibly with boundary, as shown in Theorem 7.4.1. It remains to show that

the theories give the same answer on any 3-manifold with corners.

Let us very briefly review the RT construction for 3-manifolds with corners.

For more details, see 5], 45]. Fix a spherical fusion category C.

Definition 5.2.4. An extended 3-manifold M is an oriented PL 3-manifold

with boundary, together with a finite collection of disjoint framed tubes Ti ⊂

M.

An extended 3-manifold as described above is equivalent to a 3-manifold

with an embedded framed tangle in the obvious way. We will use both de-

scriptions interchangeably.

Notice that a tube Ti may terminate on ∂M in which case we call it an

open tube, or it may close on itself, forming a solid torus, in which case we

call it a closed tube.

Definition 5.2.5. A coloring of an extended 3-manifoldM is a choice of color

of simple object Y ∈ Z(C) for each open tube Ti.
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We wish now to generalize the famous theorem which states that any closed

3-manifold may be obtained from S3 via surgery along a framed link.

Definition 5.2.6. A framed link with coupons is a framed link where compo-

nents are allowed to coincide at multivalent vertices, called coupons. We often

draw coupons as rectangles instead of vertices (Figure 5.11).

Given L ⊂ R3, an oriented, framed link with coupons, we can color L as

follows. As before, assign to each edge, a simple object Y ∈ Z(C). To each

coupon Ci assign a morphism ϕi ∈ Wi ≡ HomZ(C)(1, Z
ε1
1 ⊗ · · · ⊗ Zεn

n ), where

Z1 . . . Zn are the colors of the edges incident the coupon in clockwise cylic

order, and εi = 1 if the strand labeled by Zi is oriented away from the coupon

and −1 otherwise.

As shown in 45], we can evaluate such a link L ⊂ R3 to get a number

ZRT (L) ∈ C in a way that is invariant under isotopy of L. Further, since C

(and hence Z(C)) is a spherical category, we can actually view L as lying in

S3.

Equivalently, if we leave the coupons of L uncolored, this construction gives

a vector v ∈
⊗

i

W ∗
i , where the tensor product is over all coupons in L and Wi

is the Hom-space associated to coupon Ci. Thus, such a link with uncolored

coupons gives a vector space V and a vector vL ∈ V . Both can be seen to be

invariant under isotopy of L ∈ S3.

We are most interested in a particular type of oriented, framed link with

coupons:

Definition 5.2.7. A special link X is a framed link with coupons such that

some of the link components and coupons are colored by objects and mor-
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phisms, respectively, such that the following conditions hold:

• Any uncolored link component is either an annulus, or has both ends

on the same uncolored coupon, in which case they are required to be

adjacent to one another.

• Uncolored coupons are all of the form shown in Figure 5.11

Z1 Z2 Z3

Figure 5.11: A uncolored coupon C in a special link X. Colored strands have
a single end terminating on C. Uncolored strands have both ends terminating
on C. Further, the ends are adjacent to one another.

Theorem 5.2.8. Let M be an extended 3-manifold as in 2]. Then C may be

obtained from S3 via surgery along some special link X ⊂ S3, where we define

surgery along X by

MX = ML\
⋃

i

T (Ci) (5.2.3)

Here, we do ordinary surgery along all annular link components L, giv-

ing ML, and remove handlebodies T (Ci) which are tubular neighborhoods of

uncolored coupons Ci, as shown in Figure 5.12.

Using the surgery description of an extended 3-manifoldM, we can easily

define the RT invariant for such a manifold. Namely, we express M as the

result of surgery along a special link X ⊂ S3, and define

ZRT (M) ≡ ZRT (X) (5.2.4)
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Z1 Z2 Z3

−→

Figure 5.12: A coupon C determines a handlebody T (C) by taking a tubular
neighborhood of C and its uncolored strands. The genus of T (C) equals the
number of uncolored strands incident to C. The colored strands determine ex-
tra data attached to this handlebody, namely marked points and tangent vec-
tors on ∂(T (C)) (not pictured), and are important in definining Reshetikhin-
Turaev theory. For more details, see 5].

where ZRT (X) is obtained by evaluating the special link X, summing over

all possible colorings of unlabeled link components, and using the convention

that whenever we color an unlabeled component by simply object Y ∈ Z(C),

we multiply by dY , its categorical dimension. As noted above, if X has any

uncolored coupons, then ZRT (X) is a vector, not a number.

We can also define Turaev-Viro theory on manifolds with embedded special

links.

Definition 5.2.9. Let M = S3
X be the 3-sphere with a special link X inside.

Then

ZTV,C(M) ≡ ZTV,C(M′) (5.2.5)

whereM′ denotes the manifold with boundary obtained by removing tubular

neighborhoods of each coupon.

Lemma 5.2.10. Let N be a handlebody of genus g. Then ZTV,C(N ) =

ZRT,Z(C)(N ).

This equality is to be interpreted as follows: Under the canonical isomor-

phism ZTV,C)(Σ) ∼= ZRT,Z(C)(Σ), where Σ = ∂N , the two sides of the equation
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are identified.

Proof. As computed in 5] (Example 4.5.3),

ZRT,Z(C)(N ) = (id : 1→ (1⊗ 1)⊗g) ∈
⊕

Hom(1, Z1 ⊗ Z∗1 ⊗ · · · ⊗ Zg ⊗ Z∗g ).

(5.2.6)

. One shows that this equals ZTV,C(N ) by explicit state-sum computation. For

g = 1, this can be deduced from 3], (Lemma 3.2). The general case is left to

the reader as an exercise.

Our goal is to show that ZTV,C(M) ∼= ZRT,Z(C)(M) for any extended 3-

manifold M. The idea is to convert our extended 3-manifold to a closed 3-

manifold N (possibly with a link inside) by gluing handlebodies of appropriate

genus to each component of ∂M.

For simplicity, assume ∂M has a single component of genus g. Given a

vector ψ ∈ ZTV,C(∂M), we can try to find a handlebody Hg with an embedded

colored tangle, such that ZTV,C(Hg) = ψ. By the gluing axiom, we get

〈ZTV,C(M), ψ〉 = 〈ZRT,Z(C)(M), ψ〉

If we can do this for any ψ, then we are done.

Unfortunately, it is almost never possible to produce such a handlebody,

even when g = 0. For example, if Σ is the 3-punctured sphere with boundary

components labeled by Z1, Z2, Z3, the space ZTV,C(Σ) may be quite large, but

there are no extended 3-manifolds with boundary Σ. Indeed Σ is cobordant

to ∅ if and only if it has an even number of punctures.
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One approach is to redefine ZTV,C(Σ) as the vector space generated by

{ZTV,C(M)}, where M ranges over all extended 3-manifolds with ∂M = Σ.

The theorem then follows from the above argument and some minor details,

which we omit. This approach certainly works, but it is undesirable, e.g. it

assigns a zero-dimensional vector space to any surface with an odd number of

boundary circles.

A better approach is to use coupons.

Definition 5.2.11. Let K be the 3-ball with an special link inside as shown

in Figure 5.13. We define

ZTV,C(K) = ψ ∈ HomZ(C)(1, Z1 ⊗ Z2 ⊗ Z3 ⊗ · · · ⊗ ZN) (5.2.7)

ψ

Z1 Z2 Z3 ZN
. . .

Figure 5.13: The manifold K is the 3-ball B3 with a special link consisting of
a single coupon and N strands connecting the coupon to ∂K. The coupon is
labeled by some morphism ψ ∈ HomZ(C)(1, Z1 ⊗ · · · ⊗ ZN).

Notice that if we removed from K a tubular neighborhood of the coupon,

we would be left with a cylinder over the N punctured sphere. We think of

the coupon as a handlebody H which satisfies ZTV,C(H) = ψ.

Also note that we have defined the value of ZTV,C(K). It is not a result

we can deduce from standard Turaev-Viro theory. However, it is consistent
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with the rest of our theory. In particular, we can treat K as an ordinary

extended 3-manifold and use the gluing axiom, the graphical calculus descibed

in 2]. In particular, if we view the braiding isomorphism, the cup and the cap

(3], Section 2) as special examples of coupons, we get the same result as in

Definition 5.2.11.

Theorem 5.2.12. Let M = S3
X be the 3-sphere with a special link X inside.

Then

ZTV,C(M) = ZRT,Z(C)(M) (5.2.8)

Proof. A special case of this theorem is proved in 3] (Theorem 2.3), where the

result is proved if X is a colored link (with no coupons). If every coupon of

X has the same form as that in Figure 5.13 (every strand that is incident to a

coupon is colored and touches the coupon exactly once), the theorem follows

immediately from Theorem 2.3 in 3], Definition 5.2.11 and the gluing axiom.

The situation is slightly more complicated if there are coupons of X that

have uncolored strands (see Figure 5.11). We could try to come up with an

analogous defintion to Definition 5.2.11 for the more complicated coupons, but

in this case, the result follows from the state sum formula and Definition 5.2.11.

Let H be the extended 3-manifold shown in Figure 5.14. H is a cobordism,

so by standard theory, it gives a linear map

ZTV,C(H) : ZTV,C(S
2, Z1, Z

∗
1 , Z2, Z

∗
2) −→ ZTV,C(Σ2) (5.2.9)

Notice that the left hand side of (5.2.9) is naturally a subspace of ZTV,C(Σ2).
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Lemma 5.2.13. The map defined above is given by

ZTV,C(H) = Id : ZTV,C(S
2, Z1, Z

∗
1 , Z2, Z

∗
2) −→ ZTV,C(Σ2) (5.2.10)

where by Id, we mean the identification of the domain with its image under the

identity map. If we sum up over all possible colorings of the strands, the two

sides of the equation are naturally isomorphic, and we get the identity map.

Proof. We decompose H as shown in Figure 5.15.

Z1 Z2

Figure 5.14: The extended manifold H is obtained by taking a handlebody of
genus 2, removing a 3-ball and embedding a colored tangle inside as shown.
Thus, H is a cobordism between the sphere with 4 holes and Σ2, a suface of
genus 2.

The result follows immediately from (2], Example 9.2), where the compu-

tation is done in detail.

An analogous result holds for a handlebody of any genus.

Now we can use Lemma 5.2.13 to finish proving Theorem 5.2.12. Suppose

X contains a coupon C with uncolored strands beginning and ending on C

(see Figure 5.11 for an example.) Let T(C) be a tubular neighborhood of C,

as described earlier. It is a handlebody of some genus g. By definition,

ZTV,C(S
3
X) = ZTV,C(S

3
X\T (C)).
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Z1 Z2

Figure 5.15: The decomposition of H is given by cutting along the grey disks.
The complement of these disks is a cylinder over the sphere with 4 holes. We
choose the same cell decomposition (not pictures) for this cylinder as in 2],
Example 9.2.

Using Lemma 5.2.13, we can glue an extended manifold H to S3
X\T (C).

(Here, we sum up over all colorings of strands inside H.) Up to natural iso-

morphism ZTV,C(H) is the identity map, so gluing it to S3
X\T (C) does not

change the value of ZTV,C(S
3
X\T (C)).

Our new manifold may be described as S3
X′ , where X ′ is the same as X

except the coupon C is replaced by a coupon C with no uncolored strands

incident to it (so T (C ′) has genus zero). Repeating this, we reduce X to a

special link all of whose coupons have no uncolored strands incident to them.

But we already know the theorem to be true in this case!

We know from before that any extended 3-manifold may be obtained from

S3
X by doing surgery along the annular components of X, and removing tubular

neighborhoods of coupons of X. Combining Theorem 5.2.12 with the surgery

formula from 3] (Lemma 4.7) gives a proof of Theorem 5.2.3.

5.3 Diagrams
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Chapter 6

The String-net Model

The string-net model was introduced by Levin and Wen in 2004 (34]) as a

model in condensed matter physics. It was independently discovered and

studied by Walker (50]) in much greater generality as a framework for de-

scribing TQFTs. Given a closed surface Σ and a spherical fusion category C,

the string-net space Hstr(Σ) is constructed by considering all embedded graphs

in Σ suitably colored by data from C modulo some local relations. Levin and

Wen derive these local relations by requiring that any vector ϕ ∈ Hstr(Σ) be

a fixed point under so-called renormalization group (RG) flow. An equiva-

lent description can be obtained as the ground state of some Hamiltonian on

a Hilbert space. In this work we will use the names Levin-Wen model and

string-net model interchangeably.

It has long been proposed that the string-net model is equivalent two the

two-dimensional part of Turaev-Viro theory. It has been partially proved in

25] and 32] and has been recently proved in full generality in the recent paper

by Kirillov 29]. In particular, the subtleties of the model on surfaces with
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boundary are completely new to Kirillov’s paper.

In this chapter, we present a quick overview of the string-net model as

described in 29]. We mostly state the results without proof. The reader is

encouraged to consult 29] for a much more detailed presentation.
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Like in Turaev-Viro theory, we begin with a spherical fusion category C

and consider colored graphs Γ on Σ. Edges of the graph should be oriented

and colored by objects of C (not necessarily simple); vertices are colored by

morphisms ψv ∈ HomC(1, V1 ⊗ · · · ⊗ Vn), where Vi are colors of edges incident

to v taken in clockwise order and with outward orientation (if some edges come

with inward orientation, the corresponding Vi should be replaced by V ∗i ).

ϕ

V1 Vn

ϕ ∈ Hom(1, V1 ⊗ · · · ⊗ Vn)

Figure 6.1: Labeling of colored graphs

We will follow the conventions of 29]; in particular, if a graph contains a

pair of vertices, one with outgoing edges labeled V1, . . . , Vn and the other with

edges labeled V ∗n , . . . , V
∗

1 , and the vertices are labeled by the same letter α

(or β, or . . . ) it will stand for summation over the dual bases:

α

V ∗n V ∗1

α

V1 Vn

:=
∑

α

ϕα

V ∗n V ∗1

ϕα

V1 Vn
(6.0.1)

where ϕα ∈ 〈V1, . . . , Vn〉, ϕα ∈ 〈V ∗n , . . . , V ∗1 〉 are dual bases with respect to

pairing (2.4.4).

We then define the string-net space

Hstr(Σ) = Formal linear combinations of colored graphs on Σ/Local relations
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Local relations come from embedded disks in Σ; the precise definition can be

found in 29]. Here we only give one local relation which will be useful in the

future:

∑

i∈Irr(C)

di
α

α

. . .

. . .
V1 Vn

V1 Vn

i = . . .V1 Vn (6.0.2)

The following result has been stated in a number of papers; a rigorous

proof can be found in 29].

Theorem 6.0.1. Let C be a spherical fusion category and Σ – a closed oriented

surface. Then one has a canonical isomorphism ZTV,C(Σ) ' Hstr(Σ).

In fact, we will need a more detailed version of the theorem above. Namely,

let ∆ be a cell decomposition of Σ. Let Σ−∆0 be the surface with punctures

obtained by removing from Σ all vertices of ∆ and let Hstr
∆ = Hstr(Σ − ∆0)

be the corresponding string-net space. Then one has the following results.

Theorem 6.0.2.

1. The natural map Hstr
∆ → Hstr induces an isomorphism

Hstr ' Im(Bs) = {ψ ∈ Hstr
∆ | Bs

pψ = ψ ∀p} ⊂ Hstr
∆

where Bs =
∏

pB
s
p, p runs over the set of vertices of ∆ and Bs

p : Hstr
∆ →

Hstr
∆ is the operator which adds to a colored graph a small loop around

puncture p as shown below. (The superscript s is introduced to avoid
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confusion with the plaquette operators Bp in Kitaev’s model; relation

between the two operators is clarified below.)

∑

i

di
D2 p

i

Figure 6.2: Operator Bp

2. One has a natural isomorphism HTV (Σ,∆) ' Hstr
∆

3. Under the isomorphism of the previous part, the operator associated to

the cylinder ZTV (Σ × I) : HTV → HTV is identified with the projector

Bs =
∏

pBp : Hstr
∆ → Hstr

∆ .

The proof of this theorem can be found in 29]; obviously, it implies Theo-

rem 6.0.1.

We can now describe the Levin-Wen model as an extended theory, in which

we allow surfaces with boundary. We give an overview of the theory, referring

the reader to 29] for a detailed description.

Recall that given a spherical category C, we defined the notion of a colored

graph Γ on an oriented surface Σ0. For a surface with boundary, we consider

colored graphs which may terminate on the boundary, and the legs terminating

on the boundary should be colored by objects of C. Thus, every colored graph

Γ defines a collection of points B = {b1, . . . , bn} ⊂ ∂Σ0 (the endpoints of the

legs of Γ) and a collection of objects Vb ∈ Obj C for every b ∈ B: the colors of

the legs of Γ taken with outgoing orientation. We will denote the pair (B, {Vb})

by V = Γ ∩ ∂Σ and call it boundary value. Similar to the closed case, we can
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define, for a fixed boundary value V, the string-net space

Hstr(Σ0,V) =

(
formal combinations of colored

graphs with boundary value V

)
/local relations

It was shown in 29] that boundary conditions actually form a category

Â(∂Σ0) so that Hstr(Σ0,V) is functorial in V. Moreover, if we denote by

A(∂Σ0) the pseudo-abelian completion of this category, then one has an equiv-

alence

J : A(S1) ' A

{V1, . . . , Vn} 7→ I(V1 ⊗ · · · ⊗ Vn)

where A = Z(C) is the Drinfeld center of C and I : C → A is the adjoint of

the forgetful functor Z(C) → C. Thus, if ∂Σ0 is a union of n circles, then a

choice of parametrization ψ : ∂Σ0 ' S1 t · · · t S1 gives rise to an equivalence

of categories A(∂Σ0) ' A�n.

Since any functor Â → Vec naturally extends to a functor of the pseudoa-

belian completion A → Vec, we can define the string-net space Hstr(Σ0,Y)

for any Y ∈ A(∂Σ0). Equivalently, given a surface Σ0 together with a

parametrization ψ of the boundary components, we can define the vector space

Hstr(Σ0, ψ,Y), where Y = {Y1, . . . , Yn}), Ya ∈ Z(C).

The space Hstr(Σ0, ψ,Y) admits an alternative definition. Namely, let Σ

be the closed surface obtained by gluing to Σ0 a copy of the standard 2-disk

D along each boundary circle (∂Σ0)a of Σ0, using parametrization ψa. So

defined, the surface comes with a collection of marked points pa = ψ−1
a (p),
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where p = (1, 0) is the marked point on S1. Moreover, for every point pa

we also have a distinguished “tangent direction” va at pa (in PL setting, we

understand it as a germ of an arc staring at pa), namely the direction of

the radius connecting p with the center of the disk D. We will refer to the

collection (Σ, {pa}, {va}) as an extended surface. It is easy to see that given

(Σ, {pa}, {va}), the original surface Σ0 and parametrizations ψa are defined

uniquely up to a contractible set of choices.

For such an extended surface and a choice of collection of objects Y =

{Y1, . . . , Yn}), Ya ∈ Z(C), define

Ĥstr(Σ,Y) = VGraph′(Σ,Y)/(Local relations) (6.0.3)

where VGraph′(Σ,Y) is the vector space of formal linear combinations of

colored graphs on Σ such that each colored graph has an uncolored one-valent

vertex at each point pa, with the corresponding edge coming from direction va

(i.e., in some neighborhood of pa, the edge coincides with the corresponding

arc) and colored by the object F (Ya) as shown in Figure 6.3, and local relations

are defined in the same way as before: each embedded disk D ⊂ Σ not

containing the special points pa gives rise to local relations.

va

Ya

pa

Figure 6.3: Colored graphs in a neighborhood of marked point

The following lemma is a reformulation of results of 29].

Lemma 6.0.3. Let Σ0 be a compact surface with n boundary components,
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ψ : ∂Σ0 ' S1 t · · · t S1 — a parametrization of the boundary, and Y =

{Y1, . . . , Yn}), Ya ∈ Z(C) — a choice of boundary conditions. Then one has a

canonical isomorphism

Hstr(Σ0, ψ,Y) = {x ∈ Ĥstr(Σ,Y) | Bpax = x ∀a}

where for each marked point pa, the operator Bpa is defined by

pa
7→

∑

i

di
D2 pa

i

Figure 6.4: Operator Bp for a marked point

The following is the main result of 29].

Theorem 6.0.4. Let Σ0 be a compact surface with n boundary components,

ψ : ∂Σ0 ' S1 t · · · t S1 — a parametrization of the boundary. Then for any

Y = {Y1, . . . , Yn} ∈ Z(C)�n, one has a canonical functorial isomorphism

ZTV (Σ0, ψ,Y) ∼= Hstr(Σ,Y).

where, as before, Σ is obtained from Σ0 by gluing disks along the boundary.

As before, we will need a more detailed construction of the isomorphism

of this theorem, parallel to the description for closed surfaces given in Theo-

rem 6.0.2. Namely, let ∆0 be a cell decomposition of Σ0 such that for every

boundary component (∂Σ0)a, the corresponding marked point pa = ψ−1(0, 1)

is a vertex of ∆0. By adding to ∆0 a disk Da for each boundary component,

we get a cell decomposition ∆ of closed surface Σ.

150



Let Σ − ∆0 be the surface with punctures obtained by removing from Σ

all vertices of ∆ (this includes the marked points pa). Let Ĥstr(Σ − ∆0,Y)

be the string-net space defined by boundary condition Ya near puncture pa

(and trivial boundary conidition near all other punctures). Then one has the

following results.

Theorem 6.0.5.

1. One has an isomorphism

Hstr(Σ,Y) ' {x ∈ Ĥstr(Σ−∆0,Y) | Bs
px = x ∀p ∈ ∆0} ⊂ Ĥstr(Σ−∆0,Y)

where Bs
p : Hstr

∆ → Hstr
∆ is the operator which adds to a colored graph a

small loop around puncture p as shown in Figure 6.2, Figure 6.4

2. One has a natural isomorphism HTV (Σ0,∆0,Y
∗) ' Ĥstr(Σ−∆0

0,Y)

3. Under the isomorphism of the previous part, the operator associated to

the cylinder ZTV (Σ × I) : HTV → HTV is identified with the projector

Bs =
∏

pBp : Ĥstr(Σ−∆0,Y)→ Ĥstr(Σ−∆0,Y).

The proof of this theorem can be found in 29]; obviously, it implies Theo-

rem 6.0.4.
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Chapter 7

The Kitaev Model

In this chapter, we discuss Kitaev’s toric code and its generalizations. The

toric code was introduced by Kitaev in 31]. One starts with a finite group

G and a closed surface with cell-decomposition. Using these data, one can

construct a Hilbert space and Hamiltionian whose ground states are topolog-

ical invariants of the surface. In this chapter, we show that the ground state,

(which is a vector subspace of the beginning Hilbert space) is naturally iso-

morphic to the Turaev-Viro space associated to that surface with spherical

fusion category C = Rep(G). Much more interesting is the collection of ex-

cited states (higher eigenstates of the Hamiltonian). These correspond to a

generalization of Kitaev’s theory corresonding to surfaces with boundary. As

we’ll see in this chapter, the excitations in these theories are local— they reside

at vertex-plaquette combinations of the cell decomposition called sites. Such

excitations have characteristic similar to particles, and are called anyons in

physics literature. The term anyons was chosen to signify that the phase shift

when two identical particles are switched can be an arbitrary unitary transor-
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mation (on the other hand, fermions and bosons just inherit phase changes

of -1 and +1 respectively). Since unitary transformations form the basis for

quantum computation, there is hope that the toric code is a suitable model

for a quantum computer. And since the ground state is a topological invariant

of the surface, the state of such a quantum computer would be fault-tolerant ;

small amounts of noise would not affect the underlying state of the system.

The creation of a fault-tolerant quantum computer was the main motivation

of Kitaev’s work.

The excitations in the Kitaev model based on a group G correspond to

irreducible representations of D(G), the Drinfeld Double of G. It is known

that there is a braided equivalence Rep(D(G)) ∼= Z(Rep(G)): the category of

representations of the double is braided equivalent to the Drinfeld Center of

G (see 27],8.5). Using this theorem, we can say that excitations in Kitaev’s

model are given by objects of Z(C), where C = Rep(G). This should look very

similar to the boundary conditions in the Turaev-Viro and string-net models!

In this chapter, we provide a detailed proof that these theories are, in fact,

equivalent.

There have been a lot of papers giving mathematical treatments and gen-

eralizations of Kitaev’s model. Of particular note is 11], where the authors

carefully describe the model generalized to a semisimple Hopf algebra R and,

in particular, prove that the excitations correspond to irreducible representa-

tions of the double of R. Another comprehensive paper is 8] which discusses

the model for a finite group and includes an analysis of ribbon operators,

condensation and confinement.

It is important to note that the string-net and Kitaev models assign vector
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spaces to oriented surfaces, but do not a priori give invariants of 3-manifolds.

They are examples of 2-dimensional modular functors, whereas Turaev-Viro

is a 3d TQFT. It is well-known (see 5]) that these two notions are equivalent.

In particular, the 2-dimensional part of Turaev-Viro TQFT is the same as

Kitaev and Levin-Wen, so they define the same TQFT. In general, there is

no obvious way to construct a TQFT from its underlying modular functor

(see 5]). Abusing terminology slightly, we will often refer to the Kitaev and

string-net model as TQFTs.
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In this section, we look at Kitaev’s lattice model. This model is a general-

ization of the well-known toric code; we get a theory for any finite-dimensional

semisimple Hopf algebra R over C. We begin with a compact, oriented surface

Σ with a fixed cell decomposition ∆. 1. We will assign to (Σ,∆) a finite-

dimensional Hilbert space HK(Σ) and introduce a Hamiltonian consisting of

local operators. The ground state of this Hamiltonian is useful for quantum

computation. We will later show see that this ground state can be identified

with the Turaev-Viro vector space ZTV (Σ). This obviously implies that the

ground state is a topological invariant of Σ: in particular, it does not depend

on the cell decomposition ∆.

From now on, we fix a choice of finite-dimensional, semisimple Hopf algebra

R.

7.1 Description of the model

Crude Hilbert space

Given a compact oriented surface Σ with a cell decomposition ∆, we denote

by E the set of (unoriented) edges of ∆. Then for any choice o of orientation

of each edge of Σ, we define the space

HK(Σ,∆,o) =
⊗

E

R (7.1.1)

1Some papers begin instead with a surface Σ with an embedded graph Γ. This is clearly
equivalent data; the graph Γ corresponds to the 1-skeleton of the cell decomposition.
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We will graphically represent a vector
⊗

xe ∈ HK by writing the vector xe

next to each edge e.

As defined, the above vector space appears to depend on the choice of edge

orientation. However, in fact, vector spaces coming from different orientations

are canonically isomorphic. Namely, if o and o′ are two orientations that differ

by reversing orientation of a single edge e, we identify

HK(o)→ HK(o′)

xe 7→ S(xe)

(7.1.2)

(see Figure 7.1). Note that since S2 = id, this isomorphism is well defined.

This shows that all spaces HK(o) for different choices of orientation are canon-

ically isomorphic to each other; thus, we will drop the choice of orientation

from our formulas writing just HK(Σ,∆).

x 7→ S(x)

Figure 7.1: The antipode allows us to identify the Hilbert spaces obtained via
any two choices of edge orientation.

The Hilbert space HK is clearly not a topological invariant; in particular,

its dimension depends on number of edges in ∆.

Vertex and plaquette operators

We now define a collection of operators on HK ; in the next section, we will use

them to construct the Hamiltonian on HK . As before, we fix a closed oriented
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surface Σ and a choice of cell decomposition ∆.

Definition 7.1.1. Let (Σ,∆) be a surface with a cell decomposition. A site s

is a pair (v, p) where v is a vertex of ∆ and p is an adjacent plaquette (face).

A typical site is shown in Figure 7.2. We will depict a site as a green line

connecting a vertex to the center of an adjacent plaquette. Equivalently, if

we superimpose the dual lattice, a site connects a vertex in the lattice to an

adjacent vertex in the dual lattice.

p

v

Figure 7.2: The site s = (v, p) is drawn as a green line connecting v and the
center of p

At each vertex v, we have a natural counterclockwise cyclic ordering of

edges incident to v. Similarly, given a plaquette (2-cell) p, we have the clock-

wise cyclic ordering of edges on ∂p.

Definition 7.1.2. Given a site s = (v, p) of the cell decomposition ∆ and an

element a ∈ R, the vertex operator Aav,p : HK(Σ,∆)→ HK(Σ,∆) is defined by

Aav,p : v

p

xn

x2

x1

7→ v a(n)xn

a(2)x2

a(1)x1
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where the edges incident to v are indexed counterclockwise starting from p.

In the definition above, the edges incident to v are all pointing away from

the vertex. It is easy to see, using (7.1.2), that if any edge is oriented towards

the vertex, then left action would be replaced by the right action: instead of

a(i)xi, we would have xiS(a(i)).

In a similar way, one defines the plaquette operators.

Definition 7.1.3. Given a site s = (v, p) of the cell decomposition ∆ and an

element α ∈ R, the plaquette operator Bα
p,v : HK(Σ,∆)→ HK(Σ,∆) is defined

by

Bα
p,v : p

v

xn

x2

x1

7→ p

v

α(n).xn

α(2).x2

α(1).x1

= 〈α, S(x′n . . . x
′
1)〉 p

v

x′′n
x′′2

x′′1

where α.x stands for left action of R on R as defined in Section 2.4.

In the definition above, the edges surrounding p are all given a clockwise

orientation (even though the indices go counterclockwise). It is easy to see, us-

ing (7.1.2), that if any edge is oriented counterclockwise, then left action would

be replaced by the right action: instead of α(i).xi, we would have xi.S(α(i)).

Theorem 7.1.4.

1. If v, w are distinct vertices, then the operators Aav, A
b
w commute for any

a, b ∈ R.
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Similarly, if p, q are distinct plaquettes, then the operators Bα
p , Bβ

q com-

mute for any α, β ∈ R.

2. If v, p are not incident to one another, then operators Aav, B
α
p commute.

3. For a given site s = (v, p), the operators Aav,p, B
α
p,v satisfy the commuta-

tion relations of Drinfeld double of R: the map

ρs : D(R)→ End(HK(Σ,∆)) (7.1.3)

a⊗ α 7→ AavB
α
p (7.1.4)

is an algebra morphism.

Proof. 1. The operators Av, Aw obviously commute if the edges incident

to v and those incident to w are disjoint. We therefore assume that v

and w are adjacent, i.e. at least one edge connects them. Clearly, we

need only to check that the actions of Av, Aw commute on their common

support. Suppose such an edge e is oriented so that it points from v to

w. Then Av acts on the corresponding copy of R via the left regular rep-

resentation, and Aw acts on e via the right regular representation. These

are obviously commuting actions. The proof for plaquette operators is

similar.

2. Obvious.

3. Follows from the following generalization of Lemma 2.5.3, proof of which

we leave to the reader.
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Lemma 7.1.5. Let X be a representation of R, and Y – a representation

of R. For a ∈ R, α ∈ R, define the operators pa, qα ∈ End(R⊗X⊗Y ⊗R)

by

pa(u⊗ x⊗ y ⊗ v) = a′u⊗ a′′x⊗ y ⊗ vS(a′′′)

qα(u⊗ x⊗ y ⊗ v) = α′′′.u⊗ x⊗ α′′.y ⊗ α′.v

Then these operators satisfy the commutation relations of D(R): the map

D(R)→ End(R⊗X ⊗ Y ⊗R)

a⊗ α 7→ paqα

is a morphism of algebras.

Duality

The A and B projectors are dual to one another in the following sense. Con-

sider a dual theory, in which we begin with the dual cell decomposition ∆∗

with edge orientation inherited from ∆ as shown in Figure 7.3 and the dual

Hopf algebra R.

We get the Hilbert space HK which may be identified with H∗K using the

evaluation pairing ev : R ⊗ R → C. Note that the vertices in ∆∗ correspond

to plaquettes in ∆ and vice versa. The following lemma shows that the vertex

operators from one theory correspond naturally to the plaquette operators

from the other. .
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Figure 7.3: The convention for orienting edges of the dual graph is shown
above. Here the solid black edge is from the original cell decomposition ∆ and
the dashed blue arrow belongs to the dual one ∆∗.

Lemma 7.1.6. Under the natural pairing 〈, 〉 of HK and HK, we have

1. 〈Aαsψ, ϕ〉 = 〈ψ,Bα
s′ϕ〉

2. 〈Ba
sψ, ϕ〉 = 〈ψ,Aas′ϕ〉

where ψ ∈ H∗, ϕ ∈ H, a ∈ R,α ∈ R∗ and s and s′ denote dual sites in the

decomposition Γ and its dual.

Proof. 〈Aαs (β1 ⊗ · · · ⊗ βn), a1 ⊗ · · · ⊗ an〉

= 〈α(1)β1, a1〉 . . . 〈α(n)βn, an〉 = 〈β1, α1.a1〉 . . . 〈βn, αn.an〉

= 〈β1, α1(S(a1(1)))a1(2)〉 . . . 〈βn, αn(S(an(1)
)an(2)

〉

= 〈β1 ⊗ · · · ⊗ βn, α(S(a1(1))S(a2(1)) . . . S(an(1)
))〉

= 〈β1 ⊗ · · · ⊗ βn, Bα
s (a1 ⊗ · · · ⊗ an)〉

The groundspace

Let HK(Σ,∆) be as in Section 7.1. Consider the following special case of the

vertex and plaquette operators:

Av = Ahv

Bp = Bh̄
p

(7.1.5)
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where h ∈ R, h̄ ∈ R are the Haar integrals of R,R.

Note that since ∆n(h) is cyclically invariant (see Theorem 2.4.2), the op-

erator Av only depends on the vertex v and not on the choice of the adjacent

plaquette p (which was used before to construct the linear ordering of the

edges adjacent to v); similarly, Bp only depends on the choice of p.

Using these operators, we define the Hamiltonian H : HK → HK by

H =
∑

v

(1− Av) +
∑

p

(1−Bp) (7.1.6)

The most important property of this Hamiltonian is that it consists of

commuting operators.

Theorem 7.1.7.

1. All operators Av, Bp commute with each other.

2. Each of these operators is idempotent: A2
v = Av, B

2
p = Bp.

Proof. Immediately follows from Theorem 7.1.4 and h2 = h, h is central (The-

orem 2.4.2).

The Hamiltonitan (7.1.6) is a sum of these local projectors and since they

all commute, H is diagonalizable.

Definition 7.1.8. The ground state KR(Σ,∆) of Kitaev’s model is the zero

eigenspace of H:

KR(Σ,∆) = {ψ ∈ HK(Σ,∆)|Hψ = 0}.
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It is easy to see that ψ ∈ KR(Σ) iff Avψ = Bpψ = ψ for every vertex v and

plaquette p.

We will show that up to a canonical isomorphism, the groundspace does

not depend on the choice of the cell decomposition.

7.2 The main theorem: closed surface

In this section, we prove the first main result in the paper, identifying the

ground space KR(Σ,∆) of Kitaev model with the vector space ZATV of the

Turaev–Viro TQFT with the category A = Rep(R).

Theorem 7.2.1. Let R a finite-dimensional semisimple Hopf algebra. Then

for any closed, oriented surface Σ with a cell decomposition ∆ one has a canon-

ical isomorphism KR(Σ,∆) ∼= ZATV (Σ), where ZATV is the Turaev-Viro TQFT

based on the category A = Rep(R).

For example, on the sphere S2, the ground state is one-dimensional, or

non-degenerate in physics terminology.

The proof of this theorem occupies the rest of this section. For brevity, we

will denote the Hilbert space of Kitaev model just by HK , dropping Σ,∆ from

the notation.

Recall that KR ⊂ HK was defined as the ground space of the Hamiltonian.

We begin by introducing an intermediate vector space HA such that KR ⊂

HA ⊂ HK . Namely, we let

HA = ker(
∑

(1− Av)) = {ψ ∈ HK | Avψ = ψ ∀ v} ⊂ HK
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where Av are vertex operators (7.1.5) and the sum is over all vertices v of ∆.

Since Av, Bp commute, the Bp operators preserve subspaceHA ⊂ HK . The

following equality is obvious from the definitions:

KR = {ψ ∈ HA | Bpψ = ψ ∀ p} (7.2.1)

where p ranges over all 2-cells of ∆.

We can now formulate the first lemma relating Kitaev’s model with the

Turaev–Viro TQFT.

Lemma 7.2.2. One has a natural isomorphism

HA(Σ,∆) ' HTV (Σ,∆∗)

where ∆∗ is the dual cell decomposition.

Proof. Recall that we have an isomorphism R '⊕Vi⊗V ∗i (see (4.4.1)). Using

this isomorphism, we can give an equivalent description of the vector space

HK . Namely, let us denote by Eor the set of oriented edges of ∆, i.e. pairs

e = (e, orientation of e); for such an oriented edge e, we denote by ē the edge

with opposite orientation.

Then we can rewrite the definition of HK as follows:

HK =
⊕

l

⊗

e

l(e) (7.2.2)

where the sum is over all ways of colorings of oriented edges e of ∆ by simple

objects l(e) of A so that l(ē) = l(e)∗ and tensor product is over all oriented
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edges e of ∆; thus, every unoriented edge e appears in this tensor product

twice, with opposite orientations. We will illustrate a vector v =
⊗

ve by

drawing two oriented half-edges in place of every (unoriented) edge e and

writing the corresponding vector ve next to each half-edge, as shown in Fig-

ure 7.4.

x = v ⊗ w ↔
v
w ↔ S(x) = w ⊗ v

Figure 7.4: HK =
⊕

l

⊗
e Vl(e)

Re-arranging the factors of (7.2.2), we can write

HK =
⊕

l

⊗

v

Hv

where the product is over all vertices v of the cell decomposition ∆ and

Hv = l(e1)⊗ · · · ⊗ l(en)

where the l(e1), . . . , l(en) are the colors of edges incident to v taken in coun-

terclockwise order with outgoing orientation.

In this language, the vertex operator Av acts on Hv by

Av(a1 ⊗ · · · ⊗ an) = h(1)a1 ⊗ · · · ⊗ h(n)an
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By Corollary 2.4.4, we see that therefore the image of
∏
Av is the space

HA =
⊕

l

⊗

v

〈l(e1), . . . , l(en)〉

where, as before, l(e1), . . . , l(en) are the colors of edges incident to v taken in

counterclockwise order with outgoing orientation.

Since vertices of ∆ correspond to 2-cells of ∆∗, this gives an isomorphism

θ : HA '
⊕

l

⊗

v

HTV (Cv, l) = HTV (Σ,∆∗)

where Cv is the 2-cell of ∆∗ corresponding to vertex v of ∆.

However, for reasons that will become clear in the future, we will rescale

this isomorphism and define

θ̃ =
√

dlθ

where, for any choice of simple coloring l of edges,
√

dl acts on
⊗

Cv
H(Cv, l)

by multiplication by the factor

∏

e

√
dl(e)

where the product is over all unoriented edges e of ∆∗.

Figure 7.5 shows the composition map HA
θ̃−→ HTV (Σ,∆∗) ' Hstr

∆∗ (cf.

Theorem 6.0.2).

Lemma 7.2.3. Under the isomorphism of Lemma 7.2.2, the operator B =
∏

pBp : HA → HA is identified with the operator ZTV (Σ× I) : HTV → HTV .
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∗

u1

u2

u3

u4

u5

w5

v5

w4

v4
w3

v3

w2

v2

w1
v1

7→ . . . di1 . . . di5 . . . ∗

ϕ1

ϕ5

ϕ3

ϕ3

ϕ2

j1

j2

j3

j4

j5

i1

i2

i3
i4

i5

v1 ∈ Vi1 , w1 ∈ V ∗i1 , . . .
ϕ1 = u1 ⊗ v1 ⊗ w5, . . .

Figure 7.5: Isomorphism HA ' Hstr
∆∗ . Asterisk ∗ shows the puncture obtained

by removing a vertex of ∆∗.

Proof. We will prove it in the language of stringnets: combining isomorphism

HA ' HTV (see Lemma 7.2.2) and HTV ' Hstr
∆∗ (see Theorem 6.0.2), we get an

isomorphism HA ' Hstr
∆∗ , and it suffices to prove that under this isomorphism,

the plaquette projector Bp of Kitaev model is identified with the projector Bs
p

of Levin-Wen model. To avoid complicated notation, we write explicitly the

proof in the case shown in Figure 7.5.

Using Lemma 2.4.8, we see that the projector Bp of Kitaev model can be

described as follows: if ψ ∈ HA is as shown in Figure 7.5, then

θ̃(Bpψ) =
∑

k,j1,...,j5

dk
dimR

dj1 . . . dj5 ∗

ϕ1

ϕ5

ϕ3

ϕ3

ϕ2
α

α

ε

ε

δ

δ

γ

γ

β

β

j1

j5

j4

j3

j2

k

k

k
k

k
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Now we can use local relations in stringnet space to transform it as follows:

θ̃(Bpψ) =
∑

k

dk
dimR

∗

ϕ1

ϕ5

ϕ3

ϕ3

ϕ2

i1

i5

i4

i3

i2

k

= Bs
p(θ̃(ψ))

(because for A = RepR, D2 = dimR).

Combining Lemma 7.2.2, Lemma 7.2.3, we get the statement of the theo-

rem.

Corollary 7.2.4. The space KR(Σ,∆) is independent of the choice of cell

decomposition ∆.

7.3 Excited states and Turaev–Viro theory with

boundary

In the previous section, we constructed a Hamiltonian on the Hilbert space

HK(Σ,∆). The Hamiltonian had a special form; it was expressed as a sum

of local commuting projectors. We saw that the ground state was naturally

isomorphic to that in Turaev-Viro theory. In this section we study higher eigen-

states of the Hamiltonian, which are typically called excited states. Physically,

excited states are interpreted as “quasiparticles” (anyons) of various types sit-
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ting on the surface Σ. Excited states can also be described in Turaev-Viro

theory, viewed as an extended 3-2-1 TQFT; a particle in this language corre-

sponds to a puncture in the surface with certain boundary conditions.

Excited states in Kitaev model

As before, let Σ be a closed surface with a cell decomposition ∆.

Recall (see Definition 7.1.1) that a site of ∆ is a pair s = (v, p) of a vertex

and incident edge.

Definition 7.3.1. Two sites s = (v, p) and s′ = (v′, p′) are said to be disjoint

if v is not incident to p′ and v′ is not incident to p (which in particular implies

that v 6= v′ and p 6= p′). More generally, we call a collection of n sites disjoint

if any two among them are disjoint.

The following result immediately follows from Theorem 7.1.4.

Lemma 7.3.2. Each site s defines an action ρs of D(R) on HK; if s, s′ are

disjoint sites, then these actions commute.

From this perspective, the ground state KR(Σ) has the trivial representa-

tion of D(R) attached to every site.

In physics language, a representation V of D(R) at a site s models a particle

of type V at s, with the trivial representation corresponding to the absence

of a particle. Thus, the ground state has no particles at all at any site; it is

called the vacuum state.

Now suppose we fix a collection of n disjoint sites S = {s1, . . . , sn}. Define
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the operator HS : HK → HK by

HS =
∑

v/∈S

(1− Av) +
∑

p/∈S

(1−Bp) (7.3.1)

Let

L(Σ,∆, S) = ker(HS) = {ψ ∈ HK | Avψ = ψ ∀v /∈ S, Bpψ = ψ ∀p /∈ S}

(7.3.2)

We think of L(Σ,∆, S) as the space of n particles fixed at sites s1, . . . , sn on

the surface; for brevity, we will frequently drop Σ and ∆ from the notation,

writing just L(S). Our next goal is to describe this space.

By Lemma 7.3.2, we have an action of the algebra D(R)⊗S on L(S). Since

the algebra D(R)⊗S is semisimple, we can write

L(s1, . . . , sn) =
⊕

Y1,...,Yn

(Y ∗1 � Y ∗2 � · · ·� Y ∗n )⊗M(Σ, Y1, . . . , Yn) (7.3.3)

where Y1, . . . , Yn ∈ Irr(D(R)) are irreducible representations of D(R) and

M(Σ, Y1, . . . , Yn) is some vector space. (Note that M also depends on the

cell decomposition ∆ and the set of sites S;; we will usually suppress it in the

notation.) The algebra D(R)⊗S acts in an obvious way on the tensor product

Y ∗1 � · · ·� Y ∗n and acts trivially on the space M.

The spaceM(Σ, Y1, . . . , Yn) is called the protected subspace in the language

of 31]. It is unaffected by local operators, as suggested above, but we can act

on it (in a suitable sense), by nonlocal operators, such as creating, interchang-

ing or annihilating particles. For example, there is a natural action of the
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braid group onM which, with suitable starting data, is capable of performing

universal quantum computation.

Our next goal will be relating the protected space M(Σ, Y1, . . . , Yn) with

the Turaev–Viro and string-net model for surfaces with boundary.

Rewriting the protected space

Throughout this section, Σ, S,Y are as in the previous section.

First, recall that the space L(s1, . . . , sn) has a natural structure of aD(R)⊗n

module, where the i-th copy of D(R) acts on site si. Since for any collection

Yi ∈ Irr(D(R), the vector space Y1 � · · · � Yn also has a natural structure of

D(R)⊗n-module, we can define the action of a D(R)⊗n on the space

(Y1 � · · ·� Yn)⊗ L(s1, . . . , sn)

using Hopf algebra structure of D(R)⊗n.

Using the decomposition of L(s1, . . . , sn) from (7.3.3), we can extract the

protected space M:

M(Σ,Y) ∼= [(Y1 � · · ·� Yn)⊗ L(s1, . . . , sn)]D(R)⊗n (7.3.4)

Equivalently, consider the vector space

HK(Σ,∆,Y) = (Y1 � · · ·� Yn)⊗HK(Σ,∆)

where HK(Σ,∆) is the crude Hilbert space defined in Section 7.1. We will
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graphically represent vectors in this space by writing a vector xe ∈ R next

to each oriented edge e, and also drawing, for every site si, a green segment

connecting v and center of the plaquette p (as in Figure 7.2) labelled by yi, as

shown in Figure 7.6.

pi

vi

yi
xn

x2

x1

Figure 7.6: Graphical presentation of a vector in HK(Σ,∆,Y)

For every vertex v and a ∈ R, define the operator Ãav : HK(Σ,∆,Y) →

HK(Σ,∆,Y) by Ãav = idY⊗Aav if v /∈ {s1, . . . , sn} and by the figure below if

v = vi ∈ S:

Aav,p : v

p

xn

xk+1yixk

x1

7→ v

p

a(n+1)xn

a(k+2)xk+1

a(k+1)yi

a(k)xk

a(1)x1

Aav,p : v

p

xn
yi

xk

x1

7→ v

p

a(n+1)xn

a(1)yi

a(k+1)xk

a(2)x1

Similarly, for any plaquette p and α ∈ R, define the operator B̃α
p : HK(Σ,∆,Y)→

HK(Σ,∆,Y) by B̃α
p = idY⊗Bα

p if p /∈ {s1, . . . , sn} and by the figure below if
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p = pi ∈ S (recall that comultiplication in R is given by ∆(α) = α′′ ⊗ α′):

Bα
p,v :

v
xn

xk+1

xk

x1

yi
7→

v
α(n+1).xn

α(k+2).xk+1

α(k).xk

α(1).x1

α(k+1).yi

Bα
p,v :

v
xn

xk

x1

yi 7→

v
α(n).xn

α(k).xk

α(1).x1

α(n+1)yi

It is easy to see that then the operators Ãv, B̃p satisfy the relations of The-

orem 7.1.4; in particular, for any site s = (v, p) (including the sites s1, . . . , sn),

the operators Ãv, B̃p satisfy the relations of Drinfeld double. It follows from

the definition of L and (7.3.4) that

M(Σ,∆,Y) = {x ∈ HK(Σ,∆,Y) | Ãhvx = Bh̄
px = x ∀v, p} (7.3.5)

7.4 Comparison of models for extended sur-

faces

In this section, we establish the relation between the protected space for Ki-

taev’s model and the Turaev–Viro (and thus the Levin-Wen) space for surfaces

with boundary, extending Theorem 7.2.1 to surfaces with boundary.
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Statement of the main theorem

As before, we fix a semisimple Hopf algebra R over C and denote A = RepR.

As was mentioned before, in this case we also have a canonical equivalence of

categories Rep(D(R)) ∼= Z(A).

Throughout the section, we fix a choice of a compact oriented surface Σ

(without boundary) and a cell decomposition ∆ of Σ. We also fix a finite collec-

tion of disjoint sites S = {s1, . . . , sn} and a finite collection Y = {Y1, . . . , Yn}

of irreducible representations of D(R).

We denote by ∆∗ the dual cell decomposition of Σ. Then each site si =

(vi, pi) defines a cell Di (containing vi) of ∆∗ and a marked point pi on the

boundary of Di.

Denote by Σ0 the surface with boundary and marked points, obtained by

removing from Σ the interiors of D1, . . . , Dn. Clearly, in this situation Σ can

be obtained from Σ0 by gluing the disks D1, . . . , Dn.

Theorem 7.4.1. Let Σ, Σ0, Y be as above. Then one has a canonical func-

torial isomorphism

M(Σ,∆,Y) ∼= ZTV (Σ0,Y
∗) ∼= Hstr(Σ0, {pi},Y),

where M(Σ,∆,Y) is the protected space defined by (7.3.3).

The following example is instructive.

Example 7.4.2. Let Σ be the sphere with n sites labeled by Y1, . . . , Yn. Then

ZTV (Σ0, Y1, . . . , Yn) ∼= HomD(R)(1, Y1 ⊗ · · · ⊗ Yn) 2]. It follows that for n =

1, M(Y ) is one-dimensional if Y is trivial one-dimensional representation of
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D(R), and M(Y ) = 0 if Y is non-trivial irreducible representation of D(R);

thus, L(s1) = M(s1,1) is one dimensional, i.e. there are no single particle

excitations on the sphere. For n = 2, ZTV (Σ0, Y, Z) = HomD(R)(1, Y ⊗Z) = 0,

unless Z ∼= Y ∗. It follows that two-particle excitations on the sphere consist

of a particle of type Y at one site and a particle of type Y ∗ at another site.

The proof of the theorem occupies the rest of this section. We begin with

some preliminary results.

Lemma on Haar integral

We will need the following technical lemma.

Lemma 7.4.3. Let Y be a representation of D(R), and let h̄ ∈ R be the Haar

integral of R.

Consider the map

Y ⊗R→ Y

y ⊗ r 7→ h̄′′.y〈h̄′, r〉

where λ.y stands for the action of R on Y .

Then under the isomorphism R ' ⊕Vi ⊗ V ∗i , this map is identified with
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the map pictured below

∑

i

di
dimR

Y
Vi

(7.4.1)

where the upper crossing is just the permutation of factors (note that it is not

a morphism of modules).

Proof. By definition of the R-matrix (2.5.2), the map (7.4.1) is given by

y ⊗ v ⊗ f 7→ di
D2

∑

α

xαy ⊗ xαv ⊗ f 7→
di
D2

∑

α

xαy ⊗ 〈xαv, f〉

=
∑

α

xαy〈h̄, xαv ⊗ f〉

where v ∈ Vi, f ∈ V ∗i , and xα, xα are dual bases in R,R.

Since for any λ ∈ R, we have 〈λ, xr〉 = 〈λ′, x〉〈λ′′, r〉, this can be rewritten

as
∑

α

xαy〈h̄′, xα〉〈h̄′′, v ⊗ f〉 = h̄′y〈h̄′′, v ⊗ f〉

Since ∆(h̄) is symmetric (h̄′ ⊗ h̄′′ = h̄′′ ⊗ h̄′), we get the statement of the

lemma.

Combining this with the formula for multiplication and comultiplication

in R under the isomorphims R ' ⊕Vi ⊗ V ∗i , we get the following corollary,

generalizing Lemma 2.4.8.
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Corollary 7.4.4. Consider the map

Y ⊗R⊗n → Y ⊗R⊗n

y ⊗ xn ⊗ · · · ⊗ x1 7→ h̄(n+1)y ⊗ h̄(n).xn ⊗ · · · ⊗ h̄(1).x1

= h̄′′y ⊗ 〈h̄′, S(x′n . . . x
′
1)〉x′′n ⊗ · · · ⊗ x′′1

Then under the isomorphism R ' ⊕Vi ⊗ V ∗i , this map is identified with

the map pictured below

∑

i1,...,in,j1,...,jn,k

di1 . . . dindk
dimR

∑

α,β,...

α α

in i
∗
n

jn j∗n

β β
k k k

k

7.5 Proof of the main theorem

We can now complete the proof of Theorem 7.4.1, by combining results of the

two previous subsections.

By (7.3.5), the space M can be obtained from the space HK(Σ,∆,Y) by

applying projectors Av, Bp. Let us consider the intermediate space obtained

by Av projectors only:
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HA(Σ,∆,Y) = {x ∈ HK(Σ,∆,Y) | Ãhvx = x ∀v}

Lemma 7.5.1. We have an isomorphism

HA(Σ,∆,Y) ∼= HTV (Σ,∆∗,Y∗) ∼= Ĥstr(Σ−∆∗0,Y)

where the space on the right is the string net space on Σ, with the centers of

plaquettes removed, and boundary condition Yi at site si (cf. (6.0.3)).

Proof. The proof repeats with necessary changes the proof of Lemma 7.2.2.

Lemma 7.5.2. Under the isomorphism of the previous lemma, the operators

Bp of Kitaev’s model (for all p, including p ∈ S) are identified with the oper-

ators Bs
p of stringnet model.

Proof. For p /∈ S, the proof is the same as in Lemma 7.2.3. For p ∈ S, it

follows from Corollary 7.4.4.

Taken together, thse two lemmas immediately imply Theorem 7.4.1.
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