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Endowing total spaces of vetor bundles over Riemannian manifolds with a Rieman-
nian $§truture sets them within the realm of Gromov’s Theory of Convergence. The par-
ticular choice of Riemannian metric is a generalization of the one §tudied by Sasaki on
tangent bundles. In this work, the “Static” and the “dynamic” properties of said bundles
are Studied.

Here “Static” means the metric and differential geometric properties of the interplay
between the Riemannian metrics of the base and the total space. Differential geometri-
cally, the fibers are known to be flat and totally geodesic. Metrically, it is shown that their
departure from convexity is controlled quite explicitly by the concept of holonomic spaces.
A holonomic space is a triple (V, H,L), where V is a normed vector space, H is a group of
norm preserving linear maps, and L is a group norm, together with a convexity assump-
tion. In the particular geometric setting, V is a fixed fiber of a veltor bundle, H is the
holonomy group at that fiber, and L is a geometric group norm, the length-norm, obtained
by looking at the “smallest loop that generates a given holonomy element”. The degener-
ations of these group-norms are fundamental to determining the “dynamic” properties.
It is also seen that by restriting the class of maps to geodesic Riemannian maps, the Sasaki
metric con$truction renders the tangent bundle a metric functor.

The “dynamic” perspective is to analyze the convergence of these metrics of Sasaki

type under the Gromov-Hausdorff topology. A pre-compactness result is obtained under
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the assumption of a uniform upper bound on rank. Furthermore, the limiting spaces
possess a surprisingly rich struture.

Limits of Sasaki-type metrics are submetries over the limit of their bases and retain a
notion of re-scaling and a compatible norm (understood here as a “diStance to zero” of
sorts). The fibers of which are conical are worst: in fact, their topology is that of a quotient
of Euclidean space by a compact group of orthogonal transformations. This group, called
the wane group, is essentially obtained by looking at limits of holonomy elements with
waning length-norm; it depends on the base point, and thus the limits in general fail to
be locally trivial. These groups will further play a role for the uniqueness problem of a
limiting notion of parallelism, also introduced here.

The length-norm $tudied here had been overlooked before perhaps due to its lack of
continuity with respect to the §tandard Lie group topology on the holonomy groups.
However, tautologically, a group norm is continuous with respeét to the metric topology
induced by itself. This topology, seemingly artificial, also has some of the nice properties
one should require a topological transformation group to have; even certain “wrong way”
inheritance is exhibited.

Overall, this work dwells upon the interaétions between the metric properties and the
algebraic nature of vector bundles, as well as their possible degeneration in a limiting

process.
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Introdu&ion

...la géométrie euclidienne classique peut étre considérée comme une
magie; au prix d’une di$torsion minime des apparences (le point éten-
due, la droite sans épaisseur...), le langage purement formel de la
géomeétrie décrit adéquatement la réalité spatiale. En ce sens, on pour-
rait dire que la géométrie e$t une magie qui réussit. J'aimerais énoncer
une réciproque: toute magie, dans la mesure ou elle réussit, n’est-elle

pas nécessairement une géométrie?

Stabilité Structurelle et morphogéneése.

RenE THOM

THE QUESTION OF determining how do §trutures degenerate in a limiting process
can sometimes say more about the §trutures themselves. The Gromov-Hausdorff conver-
gence of Riemannian manifolds was introduced by Gromov in the late 1970’s as a way to
achieve this program. Unlike smooth convergence, limit spaces under Gromov-Hausdorff
convergence need not be smooth or even Lipschitz. Adding conditions of uniform curva-
ture bounds to the sequence of metrics one can control the regularity of the limit spaces
to some extent. Work of Cheeger and Colding [11), 12, [13]] showed that the regular set
of limit spaces with Ricci curvature bounded below is dense and a C!‘* submanifold.
Adding the $tronger condition of one- or two-sided bounds on sectional curvature, there
have been significantly §tronger results; many Structural results have been obtained by
Cheeger [10], Cheeger, Fukaya, and Gromov [15]], Yamaguchi [52], Shioya and Yamaguchi
[44]], as well as upcoming work of Rong [40]. Only by assuming both a setional curva-
ture and lower bound on volume or that the sequence is Einstein with a lower bound on
injeGivity radius does one obtain limits which are C!** manifolds, as seen by Anderson
[3], and Anderson and Cheeger [4]. However, it should be noted that a common feature
is to have certain assumptions on the curvature, injectivity radius, etc.

Veltor bundles with metric conneltions (i.e. Euclidean bundles with compatible con-
nections) have natural metrics Riemannian metrics on their total spaces called metrics of
Sasaki-type (see Definition [3.28). These metrics were firét introduced on tangent bundles



by Sasaki [42]] and for more general vector bundles by Benyounes, Loubeau, and Wood
[5], where they introduce a two-parameter family of metrics that include a metric know
to exi$t by the results of Cheeger and Gromoll [[14]. These metrics coincide with the full
classification of the natural metrics on tangent bundles given by Kowalski and Sekizawa
[30]. It should be noted that the use of the word natural coincides with its usage in the
classification of natural bundles given by Terng [47] as part of her doltoral dissertation;
and thus the results Stated here could be stated as certain continuity properties of these
natural bundle functors. In Chapter [3|it is seen that in the case of the tangent bundle,
the class of maps for which the Sasaki type metric yields a funétor contains the Rieman-
nian maps (a generalization of isometries, isometric immersions and submersions given
by Fischer [18]]) which have totally geodesic image and totally geodesic fibers.

The first explicit rendering of the Cheeger-Gromoll metric, together with a systematic
study of the Sasaki metric was given by Musso and Tricerri [35]. Later, it has been devel-
oped by many, in particular by Abbassi and Sarih [1]. Mo$t of the attention has been for
the case of the tangent bundle. In this case, on the tangent bundle, TM, over a Rieman-
nian manifold, M, with the §tandard conneétion, the Sasaki metric on TM is uniquely
defined so that w: TM — M be a Riemannian submersion where the horizontal lifts of
curves are simply parallel translations along curves and, furthermore, that the individual
tangent spaces be totally geodesic flats; i.e with the intrinsic diStance, the fibers are iso-
metric to Euclidean space. However, with the restri¢ted metric, distances between points
in a fiber may be achieved by paths that leave the fibers; in some cases even by horizontal
paths, thus relating the problem to the semi-Riemannian context. The fibers with the
reStri¢ted metrics are holonomic spaces, whose metrics depends on the holonomy group
and the shortest lengths of curves representing each holonomy element (See Definition
3:31).

At any given point on a Riemannian manifold there are three pieces of information
that interplay: the tangent space, as a normed veltor space V; the holonomy group, as
a subgroup H of the isometry group of the fiber; and a group-norm L on the holonomy

group, given by considering the infimum
L(a) =inf{(y) (0.1)
)4

of the lengths of the loops y that yield a given holonomy element a.

A holonomic space is a triplet (V, H, L) consisting of a normed vector space V; a group H
of linear isometries of V; and a group-norm L on such group; satisfying a local convexity
property that relates them: For any element u € V there is a ball around it such that for



any two elements v, w in that ball the following inequality holds:
v —wll> = llav - wl* < L*(a) (0.2)

for any element a € H. See Definition
By considering the following distance function, d; : V xV - R,

dy (1,v) = iralf\/LZ(a)+ law |2, (0.3)

one gets a modified metric-space §truture on V that sheds light on the definition of a

holonomic space:

Theorem A (Theorem [2.9). A triplet (V,H,L) is a holonomic space if and only if dy is locally

isometric to usual distance on V.

The measure of nontriviality of a holonomic space is controlled by the holonomy radius,
a continuous function on V given by the supremum of the radii of balls for which the
local convexity property is satisfied. This function is finite if and only if H is nontrivial
[Proposition [2.13].

Considering the holonomy radius at the origin already yields some information on the
group-norm in the case when the normed vetor space is atually an inner product space.
Namely the following result.

Theorem B. Given a holonomic space (V,H,L), the identity map on H is Lipschitz between
the left invariant metrics on H induced by L(a'b) and /2||a - b|| respectively, where ||-|| $tands
for the operator norm. Moreover, the dilation is precisely the reciprocal of the holonomy radius
po at the origin of V.

V2lla-1b| < %L(a'lb). (0.4)

This is a consequence of Theorem and Corollary2.19|in Chapter

Recall that a Sasaki-type metric G on a Euclidean vetor bundle with compatible con-
ne&tions is given in terms of the connection map x : TE — E, uniquely determined by
requiring that x(o,x) = Vo, as

G(&,n) = g(m.&, ) + h(x&, k1), (0.5)

for vectors &, € TE.

Given these considerations one gets the following result.



Theorem C. Given a Euclidean vector bundle with a compatible conneltion over a Riemannian
manifold, each point in the base space has a naturally associated holonomic space, with the fiber
over that point being the underlying normed vector space.

Furthermore, if the total space is endowed with the corresponding Sasaki-type metric then
the aforementioned modified metric-space Structure coincides with the restriéted metric on the

fibers from the metric on the total space.

This result is $tated more precisely in Proposition Theorem and Theorem
The group-norm in Theorem C is given precisely by (o.1)). The §tudy of this group-
norm was already hinted in the work of Tapp [46] and Wilkins [50].

This group-norm induces a new topological group structure on the holonomy group
that makes the the group-norm continuous while retaining the continuity of the holon-
omy a&tion (Lemma [2.6). It should be noted that with the §tandard topology (i.e. that
of a Lie group) of the holonomy group, this group-norm is not even upper semicontinu-
ous. Wilkins [50] had already noted this (an immediate example is to consider a metric
that is flat in a neighborhood of a point and consider the group-norm associated at that
point). He proved that if the Lie group topology is compat then —in the language of this
report— the group-norm topology is bounded, which is a surprising result given that the
group-norm topology is finer.

Tapp [46]] defines a ‘size” for a given holonomy element as an infimum over acceptable
smooth metrics on the holonomy group (quoted here as Theorem|[4.4). As such, he proved
that holonomy ‘size’ and the length group-norm are comparable up to a constant that
depends only on the base space and the norm of the curvature (see Theorem[4.5). These
results are discussed in more detail in Chapter

Here it is only assumed that there is a sequence of Riemannian manifolds which con-
verges in the pointed Gromov-Hausdorff sense to a limit space; the sequence of tangent
bundles over those Riemannian manifolds —or more generally, an arbitrary sequence of
vector bundles over the converging sequence of Riemannian manifolds— is then ana-
lyzed. Throughout this report, none of the usual uniform bounds on curvature, diameter,
volume or injectivity radius are assumed. Only those properties which can be derived
from the pointed Gromov-Hausdorff convergence of the base spaces are used.

It is worth noting that the results discussed here differ from the very interesting ap-
proach taken by Rieffel [39]. He introduces a Lipschitz seminorm of a very natural space
of matrix-valued functions to control distances between vector bundles. In essence, he
regards Euclidean vector bundles as a certain type of map into the space of self-adjoint
idempotent matrices. In the case of vector bundles over smooth manifolds, this can be

easily be seen as maps into a suitable Grassmannian. Under the assumption that two



(compact) metric spaces be e-close, he gives a correspondence between their vector bun-
dles with control on their Lipschitz seminorm on any metric on their disjoint union that
makes said spaces e-Hausdorff close.

In Example|[5.36] if a single compa¢t n-dimensional Riemannian manifold is re-scaled
so that it converges in the Gromov-Hausdorff sense to a single point, then the Gromov-
Hausdorff limit of the tangent bundles endowed with their Sasaki metrics is homeomor-
phic to R"/H where H is the closure of the holonomy group of M inside the orthogonal
group O(n). Intuitively, horizontal paths became so short under rescaling that in the
limit, vetors related by a horizontal curve are no longer distin¢t points. In contrast, if
one has a sequence of §tandard 2-dimensional flat tori collapsing to a circle (Example
, then the limit of the tangent bundles is S! x E2, where the fibers are Euclidean
since the holonomy group is trivial in this setting.

Observe also that there are sequences of Riemannian manifolds which converge in
the Gromov-Hausdorff sense whose tangent bundles do not converge (Example [5.40).
Nevertheless a precompactness theorem for tangent bundles and other vector bundles

can be obtained:

Theorem D (Theorem [5.14). Given a precompact collection of (pointed) Riemannian mani-
folds M and a positive integer k, the colle¢tion BWCy (M) of veltor bundles with metric con-
nections of rank < k endowed with metrics of Sasaki-type is also precompact. The distinguished

point for each such bundle is the zero setion over the distinguished point of their base.

The assumption that the rank be bounded is easily satisfied for natural bundles over a
convergent sequence of Riemannian manifolds (such as tangent bundles, cotangent bun-
dles, or combinations thereof).

The notion of holonomic space metric introduced in Chapter [2|is used to analyze the
convergence of these bundles by analyzing the fiberwise behavior of a convergent se-
quence of metrics of Sasaki-type. This approach proved to be quite useful in view of the

following results.

Theorem E (Propositions and [5.18). For any sequence of Riemannian man-

ifolds {(X;,p;)} converging to (X, X ) consider a convergent family of bundles with met-
ric connection (E;, h;,V;) over it converging to (E., Vs ). Then there exist continuous maps
Tloo * Eco = Xoor Coo : Xoo = Ecor Poo : Eco = R, and a subsequence, without loss of generality

also indexed by i, such that:

1. the projection maps 1t; : E; — X; converge to T, : E, — X, which is also a submetry
with equidistant fibers;



2. the zero section maps ¢; : X; — E; converge to Gy, : Xoo — Eo, which is also a isometric

embedding;
3. M ©0Coo = idx_;

4. the maps p; : E; = R, given by
pi(u) =dg (u,G;omt;(u)) = \hi(u, u),
converge to Uy, : Eo — Ry also given by

Hoo(¥) = dE_ (9, Coo © 1o (9));

5. The scalar multiplications on E; converge to an R—action on E, such that
Hoo(Att) = | Moo (1)

For any € > 0 and for any sequence {q;}, q; € X;, converging to q € X,

pt-GH 1

6. 1! (B(9;)) — 14(Be(q));
t-GH
7. 71 (a;) — 3(9).
As mentioned before, Example already suggests that the holonomy group must
play a significant role. With this in mind, the following result yields more information

about fibers of the limiting map.

Theorem F (Theorem|[s.19). Let 1t; : E; — X; be a convergent sequence of vector bundles with
bundle metric and compatible conneltions {(E;, h;, V;)}, with limit 7t : E — X. Then there exi$ts
a positive integer k such that for any point p € X there exists a compact Lie group G < O(k),
that depends on the point, such that the fiber 7w\ (p) is homeomorphic to R¥/G, i.e. the orbit
space under the standard action of G on R¥.

The group G here is described explicitly in Theorem and will be called the wane
group at x € X because of another precise description of the fibers as V/G given in The-
orem |5.4| where G is defined in terms of the metrics d; (on the fibers of the converging
sequence of vector bundles) by essentially looking at sequences of holonomy elements
with waning norm.

It is important to remark that the wane group G truly depends on the base point; thus

the limit 7t : E — X need not be a fiber bundle. This occurs for example when a sequence
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of Riemannian manifolds converge smoothly everywhere except at a point and at the
point they develop a conical singularity. In Chapter [3|such examples are produced.

The notion of holonomy radius at a point on a Riemannian manifolds is defined to be
the holonomy radius at the origin of the corresponding tangent space. Since for metrics
of Sasaki-type the fibers of the vetor bundle in cosideration are totally geodesic and flat,
it makes sense to consider the following definition.

Definition. Consider a veétor bundle E with metric and conneltion over a Riemannian man-
ifold. The holonomy radius of a point p in the base is the largest R > 0 such that the restri¢ted
metric on Br(0,) N E, C E is Euclidean.

For a more technical definition see Definition Now, if one is willing to assume
some further restriction on a convergent sequence of manifolds, a uniform lower bound

on their holonomy radii yields the following.

Theorem G (Theorem|[s5.22). Let 7t; : E; — X; be a convergent sequence of vector bundles with
bundle metric and compatible connections {(E;, h;, V;)}, with limit 7t : E — X. Suppose further
that there exists a uniform positive lower bound for the holonomy radii of 1; : E; — X;. Then

the fibers of ., are vector spaces.

This is somewhat surprising since one is only controlling the information near the origin.
Furthermore, there is a natural way to define a notion of parallelism on these limit

spaces by considering horizontal curves.

Definition. Given a submetry wt:Y — X, a curve in Y is horizontal if and only if its length is
equal to the length of its projection in X.

The colletion of horizontal curves over a given curve « in X gives a relation between
the fibers the endpoints of a. For loops at a point, it follows that the set of parallel
translates form a *-semigroup, which will be called the Holonomy monoid of m, because it
generalizes the holonomy group, yet it is not necessarily a group.

In particular, the limit spaces 7t : E — X satisfy very nice properties summarized in the

next result.

Theorem H (Corollary|[6.7). Let ; : E; — X; be a convergent sequence of vector bundles with
bundle metric and compatible conneétions {(E;, h;, V;)}, with limit 7t : E — X. Given any curve
a1 — X and a point u € ' (a(0)) there exists a parallel translate y of a with initial point u,
furthermore the norm is constant along y and any re-scaling of v is also a parallel translate of
a.



The non uniqueness of parallel translates is exactly encoded by the lack of invertibil-
ity of holonomy elements (see Theorem [6.12). Also, a necessary condition for having
uniqueness for this weak notion of parallelism is given by whether the wane groups are
conjugates of each other or not (see Theorem [6.13).

Some questions were left unanswered (e.g. that of sufficient conditions for uniqueness
of parallel translates). In the final chapter of this report (Chapter [7), some questions, as
leads for future dire&tions, are posed. In particular, these are of two natures: $tatic and
dynamic.

On the static side, the question of computing the length-norm and the holonomy ra-
dius remains. The former is a que$tion that relates to the isoperimetric problem (as seen
in Section and the latter ought to be related to curvature in a more direct way.

The dynamic considerations suggest that the wane groups detect the emergence of
singularities. Can they not only detet but also distinguish them? If so, is there a $tratifi-

cation on the limit spaces (in terms of wane groups) such that the Strata are smooth?



Chapter 1

Hors d’(Euvre

Tudo quanto o homem expde ou exprime é uma nota a margem de um
texto apagado de todo. Mais ou menos, pelo sentido da nota, tiramos o
sentido que havia de ser o do texto; mas fica sempre uma davida, e os

sentidos possiveis sao muitos.

Livro do Desassossego

FErNaNDO PEssoa

THIS CHAPTER is devoted to the introduction of all the terminology and the notation
that will be used later on. Mo$t of the topics treated here are, to a certain degree, ele-
mentary yet seemingly disparate. Nevertheless, they will intertwine in manifold ways.
The §tudy the metric §truture of Riemannian spaces is now also very closely related to
the Study of length spaces in general. The notion of convergence of metric spaces will
be a central one; however, even before considering limits, certain geometric properties
can be translated into algebra through the study of groups the arise geometrically. These
groups not only act naturally, but will also come equipped with metric Structures them-
selves, namely through certain group-norms. La$tly, once limits are considered, some of
this algebraic stru¢tures degenerate into weaker ones. As an act of justice —or by divine
intervention— other §tructures appear.

To the experienced reader: The topics discussed here are the following: differential
manifolds, group norms (i.e left-invariant metrics on topological groups), semimetrics
(and the quotient by the identification of zero-diStance-apart points), certain categorical
properties of relations (i.e. subsets of cartesian products of sets, their compositions, etc.),
and, lastly, the rudiments of the theory of convergence of metric spaces introduced by

Gromov in the late 1970’s.



1.1 The differential assumption.

The ultimate goal of this report is to describe certain limiting $tructures occurring on
limits of Riemannian manifolds. Therefore the notion of a differential manifold will be
freely used, as it is central to the results presented here. For the sake of completeness, a
few remarks are presented here. The properties listed here are precisely those of interest
in the sequel. A basic familiarity with the differentiability of functions between Euclidean

spaces will be assumed.

1.1 Definition. A differential manifold is a paracompact Hausdorff locally Euclidean topo-
logical space M endowed with a fix maximal atlas: A colle&tion {(U, ¢y)} of pairs where
U C Misopenand ¢y : U — R"is ahomeomorphism, such that for any p € M there exi$ts
(U, @) with p € U and such that whenever the corresponding open sets U, V of two such
pairs have non trivial intersection, the map ¢y o ¢y} is a diffeomorphism when reétricted
topy(UNYV).

If M is connected it follows that n is necessarily constant. Such con$tant is called the

dimension of M. Henceforth, all differential manifolds will be assumed to be conneéted.

1.2 Definition. A smooth map between two differential manifolds M and N is a contin-
uous map ¢ : M — N such that ¢y o @ o ¢}; is smooth, whenever the latter composition

makes sense.

1.3 Definition. A tangent vetor at a point p on a differential manifold M is an equiva-
lence class @(0) := [a] of curves a : (—¢,¢) — M, such that a(0) = p and such that for any

(U, py) the maps @y o a agree to first order at 0.

The set of tangent vectors at a point p is a vector space of the same dimension of the
manifold M and will be called the tangent space at p and will be denoted by M,, or T,M.

1.4 Definition. Given a smooth map ¢ : M — N between differential manifolds, the
differential of f is the linear map f, : T,M — T,,)N, given by f,[a] =[f o a].

The collection TM of all tangent spaces over a given n-dimensional manifold is nat-
urally a differential manifold of dimension 2n locally modeled by (n}\}I(U),((pU o Tpp) X
(pu).), where 1ty [a] = a(0) is the canonical projettion. The latter will necessarilly be a
smooth map. The space TM is called the tangent bundle. With this in mind, it follows
that the map f, is smooth when regarded as a map between tangent bundles, thus yield-
ing a natural| fun&or from the category of differential manifolds and smooth maps to
itself. In this language it also follows that 7, is a natural transformation.

The structures that render these spaces metric will be analyzed in Chapter

'Naturality is a rigorous concept §tudied by Terng [47] in her do¢toral dissertation.
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1.2 Distances: metrics, et cetera.

The next primary concept is that of diStance. Throughout this report, measuring dis-
tances between objects, be it points in a metric spaces, elements in a group, or even be-
tween spaces, can be described not only as means to an end but also as an end on its own.

Because of this, the notion of (semi-) metric is quickly reviewed here.

1.5 Definition. Let X be a set together with a funétion from d : X x X —» R. (X,d) is a

semimetric space if d is

* nonnegative: d(x,y) > 0;

* symmetric: d(x,y) =d(y,x);

* reflexive: d(x,x) = 0; and

* satisfies the triangle inequality d(x,y) < d(x,z)+d(z,v).
It is called a metric space if it further satisfies

* the identity of indiscernibles, d(x,y) = 0 only if x = y.

This last condition is the only that is not immediately preserved under limits. Yet,
even if under a limiting process indiscernibles arise, the following process identifies them

without loosing any other information.

1.6 Proposition (see [51]|). Given a semimetric space (X,d), let x ~ vy if d(x,y) = 0. Then

X’ = X/ ~ is a metric space with metric, d’,

d'([x],[y]) = d(x,p) (1.1)

for any choice of representatives. Also, the canonical projeétion map is open and continuous

with the quotient topology.

1.3 Groups and their norms.

As mentioned in the introduction, groups have been an important tool to under§tanding
geometric properties of spaces with shape. In return, in this setion, a particular way of
endowing groups with a geometric Structure will be analyzed. Not only as entertainment
for the souls of the mathematically oriented, but especially since it will be seen in the

sequel that perhaps —per haps?— the mo$t natural way to introduce a notion of distance
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for certain geometric groups (namely the holonomy groups, to be discussed in Chapter|3)

is through the notion of group-norm.

1.7 Definition. Let G be any group. A group-norm on G is a funétion N : G — R that

satisfies the following properties.
1. Positivity: N(A) > 0.
2. Non-degeneracy: N(A) = 0iff A =idy.
3. Symmetry: N(A™) = N(A).
4. Subadditivity (“Triangle inequality”): N(AB) < N(A)+ N(B).

1.8 Example. Let V be a normed vecltor space and let G be a subgroup of the group of
norm preserving automorphisms of V. Then N(A) = |lidy — A||, the operator norm, is a

group-norm.

1.9 Example. Let f : [0,00) — [0, 00) be any non-decreasing subadditive fun&tion, f(t+s) <
f(t)+ f(s), with f(0) =0. Let N : G — R be any group-norm on G. Then f o N is also a

group-norm on G.

1.10 Proposition. A group G together with a group-norm N becomes a topological group with

the left invariant metric induced by
d(A,B)=N(A!B). (1.2)
Proof. Left-invariance follows from the fa& that (CA)"!CB = A™' B. Now, the map
(A,B)— A''B
is continuous since

d(A'B,C'D) = N(B'AC'D)
N(A'B)+N(C'D)=d(A,B)+d(C,D)
V2,/d2(A, B) + d2(C,D).

IA

IA

]

1.11 Definition. Given a group-norm N on a group G, the topology generated by N will
be called the N-topology on G.

12



1.12 Proposition. With the N-topology on G, the group-norm N is continuous.

Proof. This follows from the fac that [N(A) - N(B)| < N(A™'B), which in turn follows
direétly from the triangle inequality in Definition O

As seen, the notion of group-norm is completely equivalent to that of a left-invariant
metric on a group. As usual, it can be also seen to be equivalent to right-invariant metrics.

For more details on normed groups see the survey by Bingham and OStaszewski [j9].

1.4 Transformation groups.

Groups arise naturally from metric sStructures. The set of isometries (i.e. diStances pre-
serving maps) from a given metric space to itself is evidently closed under composition
and set-theoretic inverses exi$t and are easily seen to be isometries as well.

This is the first section where different notions are seen to interact and intertwine. A
technical lemma about certain compadtness of isometry groups for very general metric
spaces is reviewed, an a proposition will be proved that takes a metric spaces with a
group acting by isometries and produces a new metric. This new metric, for the very
particular case of the holonomy groups will be seen to be the guiding light to many of the

original results reported in this dissertation.

1.13 Definition. An isometric group action consists of a triplet (G, X, @), where G is an
abstra&t group, (X, d) a metric space and ¢ : G — Iso(X,d) a group homomorphism. The
orbit of a point x € X, denoted by G(x), is the equivalence class of all y € X such that
y = gx = @(g)(x) for some g € G. The space of equivalence classes is called orbit space and
will be denoted by G\X. If, furthermore, G is a topological group and the map (g, x) — gx

is continuous then (X, G) is a transformation group.

1.14 Remark. The quotient map from X to G\X is an open continuous map with the quo-
tient topology.

The following faét will be used in the sequel. It is a classical result of spaces of con-
tinuous maps with the compa&t open topology that the continuity of the evaluation map

is equivalent, under some assumptions, to the continuity of the embedding (see Munkres

[32]).

1.15 Proposition. If X is locally compact then a transformation group (X,G) is equivalent

to a continuous homomorphism @ : G — Iso(X, d), where the codomain has the compat open
topology.
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1.16 Lemma (see [27]. p. 47). Let (X,d) be a locally compacl connelted metric space and
let {@p;} be a sequence of isometries of (X,d). If there exislts a point x € X such that {@;(x)}

converges, then there exists a subsequence {@; } that converges to an isometry of (X, d).

With the hypotheses of the previous lemma, one has the following fact, which for

future reference is included here.

1.17 Proposition. Let (X, G) be a transformation group where X is locally compact and con-

nected. Then G\X is a semimetric space with
d(G(x), G(y)) =infd(x, gy) (1.3)

Furthermore, let H be the closure of @(G) in the isometry group of X. Then there exisls an
isometry such that
H\X = (G\X)/ ~. (1.4)

Proof. All the properties of a semimetric are §traightforward. Let x € X, then its equiva-

lence class [x] € X in the right-hand side of the equation is the set
[x]={y:Je>0,dge€ G, d(x,gy) < e}

This is equivalent to H(y) for any fixed y € [x] since one can produce a sequence {g;} of
isometries such that the sequence {g;(y)} converges to x; thus by Lemma there is a
g € H with x = gy. There is therefore a canonical bije¢tion between both sides of the
equation. It follows that it is an isometry since the metric on each side is defined to be
the diStance between equivalence classes as subsets of X (cf. (1.1)), (1.3)). O]

1.18 Corollary. Let (X, G) be a transformation group where X is locally compact and con-
nected. The orbit space is a metric space if ¢(G) is a closed subgroup of Iso(X, d).

Being closed is too §trong of an assumption. In most cases, non-necessarily closed sub-
groups of Iso(X, d) will be of interest. In any event, the following result, which intertwines
both the metric struture of G and that of X together.

1.19 Proposition. Let (G,dg) be a metric topological group with left-invariant metric dg. Let
(X, G) be a transformation group (no assumption on conneétedness or local compactness). Then
so is (X x G, G), where the ation is given by g(x, h) := (gx, gh). The quotient space G\(X x G)
is a metric space and is homeomorphic to X under the map x — G(x, e), the orbit of (x,e). This

induces a new metric on X given by

d’(x,v) = inf/d2 (e, d?(x, qv).
(1,y) = inf \[d2(e.g) + 4°(x,g9)
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Proof. That (X x G,G) is a transformation group is immediate from the hypotheses. The
second quotient, G\(X x G)/ ~, is a metric space by Prop Let [x,g] := [G(x, g)] $tand
for the equivalence class (x, g) in the second quotient, regarded as a subset of X x G. The
map

X [x, €] (1.5)

is a injetive; indeed, suppose that [x,e] = [y, e]. For all 17 > 0 there exiSts a group element
g such that

d(x,gv), dgle, g) <n.

Then, by continuity of the ation, for every ¢ > 0 there exiSts 0 < 6 < ¢/2 such that for all
g, with dg(g,e) <9,
d(y,gy)<e/2,

by equation (1.3). So by letting =9,
d(x,p) <d(x,gy)+d(y,8y) <e.

It is also onto since [x,g] = [¢"!x,e]. It is continuous since it is a composition of contin-
uous maps and it is open since the quotient maps are open and the map (x,g) — g 'x is
continuous, hence it is a homeomorphism. Since the map x — G(x, e) is also bijective and

continuous, it follows that G\X was already a metric space, as claimed. N

1.5 Relations: the usual [ab$traél] nonsense.

Semigroups and monoids, which are further equipped with an involutive anti-homomor-
phism are somewhat pervasive in mathematics; e.g. in complex-valued matrices (or the
more general C* algebras), etc.

Even without any further assumption, the category of relations provides a fundamen-
tal example. Relations between sets are the weakes§t way to —never a better name was
given to a mathematical concept— relate one set to another. If follows that relations can
be composed (just as functions are) and reversed (without concerning oneself with sat-
isfying the vertical line test for functions). The language of relations will be the correct
language for describing the notion of parallelism that prevails even after passing to the
limits considered in this report.

The following definitions and $tatements review these concepts. Their proofs are all

elementary (cf. Freyd and Scedrov [20]).

1.20 Definition. Given sets A and B, a set-valued function f : A --» B (or equivalently a
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relation) is a subset of f C A x B. It can equivalently be seen as the composition of the
§tandard embedding A — 24 with any funcion 24 — 25,

1.21 Remark. Usual functions f : A — B can be regarded as set-valued functions by con-
sidering a — {f(a)} or simply by identifying them with their graph (Of course, this is

essentially a tautology).

1.22 Definition. Given two relations f : A --» B, ¢: B--» C, the composition go f : A --»

C is defined in the usual way:

gofla)={cAb e f(a),c € g(b)}. (1.6)

1.23 Lemma. The composition is associative and for any f : A --» B,

foidy=idgof = f (1.7)
Proof. Elementary. ]

1.24 Definition. Given f : A --» B there exiSts a relation f*: B --» A given by

f7(b) ={alb € f(a)}

It is worthwhile noticing that in the case of actual functions, f* coincides with the
inverse, whenever the latter exists. Also, nothing prevents an element from having empty

image.

1.25 Lemma. Given two relations f :A--+B, g:B--»C,

(gof)' =f"og" (1.8)

Furthermore,
f** = f. (1 .9)
Proof. Elementary. [

1.26 Lemma. Given relations f,g,h, k such that f oh, ko f, goh and k o h exist, then if

fcg (1.10)

then
fohCgoh (1.11)
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and
kofCkog. (1.12)

The following fa¢t summarizes the previous statements.

1.27 Proposition. Given a set X, the set of relations, with the composition and subsumption

given as before, is an ordered *-semigroup with identity.

1.28 Proposition. A submonoid H of relations is a group if and only if for alla € H, a* = a’!

Proof. The sufficiency is immediate since it prescribes the existence of an inverse, in par-
ticular it follows that for any a € H, a is an invertible function. For the necessity, one
fir§t sees that because aa! = id, then a is necessarily onto, i.e. that for all y there exists x,
namely any element in a”!(y), such that a(x) = y.

Furthermore, since the monoids are ordered (see Proposition , if for a,b € H are
such that a C b then, by multiplication on both sides by b™! yields that

ab! Cid (1.13)
which in turn implies equality since ab™! must be surjective. Therefore, since
aa*,a*a Did, (1.14)

equalities must hold as well. ]

1.6 Gromov’s Theory.

In the late 1970’s Gromov [24]] introduced a metric on the moduli space of compact metric
spaces and with that a notion of convergence valid also for proper metric spaces.

In this section, the basic elements of Gromov’s theory are introduced. Of these, the one
that is the mo$t powerful is the observation that one can think of limits as honest limits
of points, which allows one to develop notions of convergence for families of continuous
fun&ions, whose limits will be continuous as well. That said, a particular form of the
classical Arzela-Ascoli theorem is $tated and proved. This is a minor modification of

previous results of Gromov [23]] and Grove and Petersen [25].

1.29 Definition (Gromov [24]]). Given two complete metric spaces (X,dx) and (Y,dy),
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their Gromov-Hausdorff distance is defined as the following infimum.

1) 3d:(XuY)x(XuY)—R, metric
2) dlxxx =dx,dlyxy =dy (1.15)
3) VxeX(dyeY,d(x,y)<e) '

)

(
dGH(X,Y):inf e>0 E
(4) VyeY(@dxeX,d(x,y)<e)

That is the infimum of possible ¢ > 0 for which there exists a metric on the disjoint
union X LY that extends the metrics on X and Y, in such a way that any point of X is

e-close to some point of Y and vice versa.

1.30 Remark. This is a generalization of the Hausdorff distance between subspaces of a
fixed metric space (Z,d). In this case, the diStance dlz{(X, Y), between subspaces X,Y C Z,

is defined as follows.

(1.16)

dg(X,Y)=inf{e >0
(4) VyeY(@dxeX,d(x,y)<e¢)

(3) YxeX(@yeY,d(x,p)<e) }

1.31 Remark. For compact metric spaces the assignment is always finite, since
1 . :
dou(X,Y) < Emax{dzam(X),dzam(Y)};

it may however be infinite if compacdtness is not assumed. This assignment is positive,
symmetric and satisfies the triangle inequality (provided it makes sense). Two com-

pact/complete spaces are zero diStance apart if and only if they are isometric.

1.32 Definition (Gromov [24]). Let X and Y be metric spaces. For ¢ > 0, an e-isometry
from X to Y is a (possibly non-continuous) funétion f : X — Y such that:

1. for all x;,x, € X,
|dx (x1,%2) —dy(f (x1), f (x2))| < & and (1.17)

2. for all y € Y there exi$ts x € X such that
dy(f(x),y)<e. (1.18)

1.33 Proposition (Gromov [24]]). Let X and Y be metric spaces and € > 0. Then,

1. if dgy(X,Y) < & then there exists a 2e-isometry between them.

2. if there exists an e-isometry form X to Y, then dgy(X,Y) < 2e.
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Except for some set theoretical considerations, the colleftion of isometry classes of
metric spaces, together with the Gromov-Hausdorff distance, (M, dgy) behaves like an
extended metric space (i.e. allowing infinite values). When restri¢ted to compaét metric

spaces, it is a metric space and, as such, yields a notion of convergence for sequences.

1.34 Remark. It was proved by Gromov [23]] that if a sequence {X;} of compact metric
spaces converges in the Gromov-Hausdorff sense to a compact metric space X, then there
exists a metric on X U| |; X; for which the sequence {X;} converges in the Hausdorff sense.
Because of this, it makes sense to say that a sequence of points x; € X; converge to a point
x e X.

1.35 Remark. In the setting of compact X;, Z, a sequence of subspaces X; C Z converges to

a subspace X C Z if and only if:

1. for any convergent sequence x; — x, such that x; € X; for all 7, it follows that x € X;

and

2. for any x € X there exists a convergent sequence x; — x, with x; € X;.

1.36 Definition (Gromov [24]). Let {X;}, {Y;} be convergent sequences of pointed metric
spaces and let X and Y be their corresponding limits. One says that a sequence of contin-
uous fun&tions {f;} : {X;} — {Y;} converges to a fun&tion f : X — Y if there exists a metric
on X LI| |; X; for which the subspaces X; converge in the Hausdorff sense to X and such
that for any sequence {x; € X;} that converges to a point x € X, the following holds.

f) = lim fi(x;) (1.19)
1.37 Remark. The limit function f is unique if it exists; i.e. it is independent of the choice
of metricon X UI| |; X;.

The following is Gromov’s way to produce a notion of convergence for the non-compact
case. For technical reasons, the assumption that the spaces be proper (i.e. that the dis-
tance function from a point is proper, thus yielding that closed metric balls are compact)

is required [24].

1.38 Definition. A sequence {(X;, x;)} of pointed proper metric spaces is said to converge
to (X, x) in the pointed Gromov-Hausdorff sense if the following holds: For all R > 0 and
for all € > 0 there exists N such that for all i > N there exists an e-isometry

fi : Br(x;) = Bgr(x),
with f;(x;) = x, where the balls are endowed with restri¢ted (not induced) metrics.
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In the previous definition, it is enough to verify the convergence on a sequence of balls
around {x;} such that their radii {R;} go to infinity. Furthermore, the limit is necessarily
also proper as noted by Gromov [23].

Given a pointed space (X, x), Gromov [24]] studies the relation between precompactness
and the function that assigns to each choice of R > 0 and ¢ > 0 the maximum number
N = N(¢&,R, X) of disjoint balls of radius ¢ that fit within the ball of radius R centered at

an x € X. Furthermore he proves the following result.

1.39 Theorem (Gromov’s Compacétness Theorem [24]], Prop.5.2). Consider a family (X;, x;)
of pointed path metric spaces, it is pre-compact with respect to the pointed Gromov-Hausdorff
convergence if and only if each function N(g,R,-) is bounded on {X;}. In this case, the family
is relatively compaél, i.e., each sequence in the X; admits a subsequence that converges in the

pointed Gromov-Hausdorff sense to a complete, proper path metric space.

1.40 Remark. Providing a bound for N is equivalent to providing a bound to the minimum
number of balls of radius 2¢ required to cover the ball of radius R (see [37]). This will be

used inétead in the sequel and will also be denoted by N.

In the non-compact setting, in order to consider the convergence of sequences of points
{p; € X;}, as in Remark[1.34} the only technicality is the following: In order for a sequence
{pi} to be convergent, it has to be bounded. Therefore, there must exist a large enough
R > 0 such that for all i, p; € Bg(x;), where the x; € X; are the distinguished points. Because
of this, a sequence {p; € X;} is convergent if there exists R > 0 for which the sequence
{pi € m C X;} is convergent as in Remark

To analyze the behavior of sequences of functions defined on convergent sequences of
spaces, Gromov [23]], as well as Grove and Petersen [25]], has given a generalization to the
classical Arzela-Ascoli Theorem. Their setting is that of compact spaces. To analyze the
non-compact setting, a further generalization is required. In the proof of the compact
case, families of countable dense sets A; C X;, A C X are considered (since continuous
functions are determined by their values on dense sets, and as a basis for the $§tandard
diagonalization argument). Also, the codomains satisfy that for every sequence there ex-
i§t a convergent subsequence. To retain these properties, the assumption of separability
for the domains and the requirement of totally bounded metric balls for the codomains
are added; these are both controlled by the assumption that all the spaces being consid-
ered be proper. Also, by virtue of the Hopf-Rinow Theorem in Riemannian geometry,
when the metric spaces considered are Riemannian manifolds these conditions follow

from completeness.
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1.41 Theorem (Arzela-Ascoli Theorem). Let {(X;,x;)} and {(Y;,v;)} be two convergent se-
quences of complete proper pointed metric spaces. Let (X,x) and (Y,vy) be their corresponding

limits. Suppose further that there is an equicontinuous sequence of continuous maps {f;},
fi: Xi—>Y, (1.20)

such that f;(x;) = y;, for all i. Then there exis$t a continuous function f : X — Y, with f(x) =y,

and a subsequence of {f;} that converges to f.

Proof. In the compact case, this is the content of the generalization of the Arzela-Ascoli
Theorem given by Grove and Petersen [25]. For the non-compact case, Gromov [23] al-
ready proved this for isometries under the assumption of properness. Again, a diagonal-
ization argument is required. Namely, because the sequence {f;} is equicontinuous, for
every € > 0 consider the largest 0 = 6(¢) that satisfies the definition of equicontinuity. It
follows that ¢ is an increasing function of ¢ that goes to infinity as ¢ does; it may happen
that 6(&) = co for a finite €. This implies that for any R > 0 there exists R > 0,

fi(Br(x;)) € Br(:), (1.21)

by essentially considering the inverse of 9 as a fundtion of ¢ (if 9 is infinite, then the exis-
tence of R is clearly also satisfied.). This means that one can now repeat the proof of the
compact case for the restrictions {f;[,(x,)} (since Br(x;) is separable and By(y;) compact).
Therefore, consider a sequence of radii R; — oo and apply the $tandard diagonalization
argument to the successive restrictions of the convergent subsequences of f;’s (and subse-
quences thereof) to BRj(x,-) — B (vi). By uniqueness of the limit, one obtains further and

further extensions to a single continuous function f : X — Y as promised. [

In particular this implies that given a convergent sequence of metric spaces and a
sequence of curves, one on each space of the sequence, if their lengths are uniformly
bounded, then there is a curve in the limit and a subsequence of curves that converges to
it. In the case of sequences of curves within a single metric space, it is well known that

the length function is lower semi-continuous, that is that

liminfé(a;) > €(lim a;).

i—o0 i—oo
This is also true in the case of limits of proper metric spaces, essentially since the

condition that the curves be bounded restriéts the entire sequence to within a sequence
of compaét balls, as per Remark
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1.42 Corollary. Let {(X;,x;)} be a convergent sequence of proper length spaces and let (X, x) be
their limit. Consider a sequence of curves «; : I — X; whose length is uniformly bounded and
such that a;(0) = x;. Then there exists a curve o : I — X, a limit for a subsequence of {«;}, such

that
liminfé(a;) > €(a). (1.22)

This will be thus freely used in the sequel.
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Chapter 2

A case $tudy: Holonomic spaces

Die Einfuhrung von Zahlkoordinaten...is eine Vergewaltigung.

Philosophie der Mathematik und Naturwissenschaft.

HerMANN WEYL

CERTAINLY, the fa& that infinitesimal §tructures are inherently linear has been very
advantageous. In this chapter, the relation between these infinitesimal §tructures and the
global nature of holonomy is abstracted. Actually, the fact that the spaces considered in
this chapter be those obtained on the infinitesimal §truétures over Riemannian manifolds
(or in the more general setting of vector bundles with metric connetions) will not be
discussed. The justification will appear in Chapter [3{as Theorem

In the meantime, please consider the following analysis as a classification of twisted
metrics, in the sense of Proposition[1.19g] with the further assumption that they be locally
flat. Three ingredients are to be considered: A normed vector space, a subgroup of the
group of norm-preserving linear maps, and a group-norm on said subgroup. A priori, this
three components need not be related. However, a certain convexity law will be assumed,
which will also become natural once the language of the Sasaki metric be introduced in
Chapter[3

A remark on the name: to the experienced reader it should hint a relation with the
holonomy ation on individual fibers. This is exatly so. The pre-compactness assump-
tion on holonomy is a necessary one. The group-norm is obtained by remembering the
definition of holonomy as parallel translation along loops, unwillingly prone to having

their lengths measured—by unsympathetic metric geometers with nothing better to do.

23



2.1 Cons$tituents and law.

The notion of a holonomic space is introduced in this section. It will be seen in the sequel
how these spaces occur as fibers of Euclidean veltor bundles with suitable conditions

imposed. Several properties of holonomic spaces are also analyzed here.

2.1 Definition. Let (V,||-||) be a normed ve&tor space, H < Aut(V) a subgroup of norm
preserving linear isomorphisms, and L : H — R a group-norm on H. The triplet (V,H,L)

will be called a holonomic space if it further satisfies the following convexity property:

(P) For all u € V there exi$ts r = r, > 0 such that for all v,w € V with |[v—u| <,
|lw—ul|| <r,and for all A € H,

lv = wl|?> = |lv — Aw||*> < L*(A). (2.1)

2.2 Definition. Let (V,H,L) be a holonomic space. The holonomy radius of a point u € V
is the supremum of the radii r > satisfying the convexity property (P) given by (2.1). It
will be denoted by HolRad(u). It may be infinite.

2.3 Lemma. Given a holonomic space (V,H, L) as above, there exis$ts r > 0 such that foru eV,
lu| < r, and for any Be H,
|lu — Bu|| < L(B). (2.2)

Proof. Simply choose r = ry as in v=Buand A=B"l, ]

2.4 Definition. Given a holonomic space (V,H, L), the largest radius of a ball satisfying
Lemma |2.3|is the convexity radius of a holonomic space.
Please take a moment to notice that these radii can in fa&t be infinite.

2.5 Remark. The convexity radius is in general larger than the holonomy radius at the
origin, as can be seen in Example

Recall that the group norm L on H induces a topological group $tructure on H, the
L-topology (see Proposition [1.10).

2.6 Lemma. Given a holonomic space (V,H,L), the ation H x V. — V is continuous with
respect to the L-topology on H. Furthermore, the bound depends only on the maximum norm

when redtriéted to bounded domains.
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Proof. Let ry be the convexity radius. Let (a,u) € Hx V, with ||[u|| > rg. Fix A > 0 such that

AMlul| < r,and let € > 0. Let K = /1 + 17 Note that for any positive real numbers x,y € R,

1
X+ 3y < KqJx?+y2

Now, if 6 = min{g, = /‘”u”} and \/L2(a’1b) + |lu — v||2 < §. Notice that

[Av|| < A|Ju — ||+ ||[Au]| < Ao + Al|u|| < .
Thus,

1
llau —bv|| = |lu —albv|| = Xll/\u —a by
< L= v+ v —a b
< 5 (1w = Avll +]1Av - 2 bAv] )

1
<|lu-v|+ XL(a-lb)

< KyJL2(a1b) + [lu — ]

= KJL2(a1b) + [lu —v]]? < K5 <.

]

Notice that this implies that the L-topology is necessarily finer than the subgroup
topology induced from O(V). The fact that they be comparable is already somewhat
reStrictive on what L is allowed to be. This will be even more surprising once the con-
cept of holonomic space be related to its geometric roots and seen that, with the induced

topology, L will in general not be continuous.

2.7 Theorem. Let (V,H,L) be a holonomic space.

dr(u,v) 1nf{\/L2 )+ |l — avllz} (2.3)
is a metricon V.

Proof. By Lemma [2.6| one sees that the altion H x V — V is continuous with respe¢t to
the L-topology on H. Letting G = H and X = V in Proposition it follows that the V
is homeomorphic to H\(V x H) and that the pullback metric on V is given by (2.3]. ]

2.8 Definition. Given a holonomic space (V, H,L). The metric given by (2.3 will be called
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associated holonomic metric and V together with this metric will sometimes be denoted by
VL.

2.9 Theorem. A triplet (V,H,L) is a holonomic space if and only if id : V. — V| is a locally

isometry.

Proof. By property (P), given any point u € V there exists a radius r > 0 such that for all
v,weV,with|lv—u||<rand||lw—u| <r, and for all A€ H,

v~ wll < yJL2(4) + v - Aw].

Hence, considering the infimum of the right-hand side, it follows that

lv-wll<dr(v,w) < \/Lz(idv) +llv—wll* = llv - wll

Conversely, if the identity is a local isometry, property (P) in Definition is also sat-
isfied: Let B be a ball around u € V on which the identity map idy|B is an isometry.
Therefore, for any A € H and any pair of points v,w € B,

— ol = i 2 _ 2 2 _ 2
| wll_;ghfl{\/L (a)+|lv —awl| }s\/L (A)+|lv — Aw||>.
O]

2.10 Remark. The holonomy radius is also the radius of the largest ball so that the re-

Strited dp-metric is Euclidean.

2.11 Proposition. Let (V,H, L) be a holonomic space. The original norm on V is recovered by

the equation
[vll = di(v,0) (2.4)

Proof. Because H alts by isometries on V,

41(v,0) = inf {\/L2(a) + [v]1}.

The conclusion now follows by letting a = idy. O]

2.12 Corollary. Given a holonomic space (V,H,L) the rays emanating from the origin are
geodesic rays with respect to d;.
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2.2 Consequences.

Several properties will be derived from the definitions. In particular, those concerning
the holonomic and convexity radii. These properties will be of two types: one giving
conditions for them to be finite; and the other giving a more precise control on the relation
between metrics given to H. In particular, the standard operator norm on H is seen to be

Lipschitz with respect to the constituent group-norm.

2.13 Proposition. Let (V,H,L) be a holonomic space. Then H = {idy} if and only if there

exi$ts u € V for which the holonomy radius is not finite.

Proof. If H is trivial, then L = 0, and so V is globally isometric to V, hence for any u € V
the holonomy radius is infinite. Conversely, if there exi$ts u € V with HolRad(u) = oo,
and there is a € H with L(a) > 0 (i.e. a # idy), then for any v € V, ||[v —av|| < L(a) should

hold. This is a contradiction since v - ||v —av|| is clearly not bounded unless a = idy,. [

2.14 Corollary. Let (V,H,L) be a holonomic space. Then the funétion u — HolRad(u) is

positive. Furthermore, it is finite provided H is nontrivial.

2.15 Proposition. Let (V,H,L) be a holonomic space. The funétion u — HolRad(u) is con-

tinuous.

Proof. By Proposition one can assume, with no loss of generality, that H = {idy}.
Let u € V and let p(u) be the holonomy radius at u. Let v € V with ||v — u|| < p(u), i.e.
v € B(y)(u), then by maximality of p(v), it has to be at lea$t as large as the radius of the

larges$t ball around v completely contained in B (),

o(v) 2 p(u) - |lu -l

Also, by maximality of p(u), if follows that p(v) cannot be $trictly larger than the smallest

ball around v that contains B(,)(u),

o(v) < p(u) +[ju—v||.

Therefore, at any given point u € V and any ¢ > 0, there exists 0 = min{p(u), ¢} such that
forany v e V, ||u —v|| < o it follows that
lo(u) —p(@)l < llu-vll<e. O

For many applications, having an exaét formula for the convexity radius, which in

turn is bounded below by the holonomy radius at the origin, is desirable. In fact, with
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the further assumption on the normed vector space to be an inner product space, the a

formula for the holonomy radius at zero will also be given.

2.16 Theorem. Let (V,H, L) be a holonomic space. Then the convexity radius is given by

L(a)
Rad = inf ———, )
CvxRad = inf o 0 (2:5)
where for any T : V — V, ||T|| denotes its operator norm.
Proof. Let u € V with |lu|| < T d )A”, then
|Au —ull <[|A —id,|[[[u]l < L(A)
which proves that
L
CvxRad > inf &
acH ||idy —al|’
Now, let p > T d(AA” and let € > 0 be such that
. . L(A
e <IlA - idyllo—L(A) = ||A—zdv||(p— L) >0, (2.6)
lA—idyl|l

Then, by the definition of operator norm, there exists u € V with ||u|| = p such that
A —idyllo > |Au—ull > |A-idyllo-e.
The second inequality, together with (2.6, yields that

|A—idy|lo—¢e>L(A).

This proves that CvxRad cannot be strictly larger than ﬁ for any A, and thus for

all. O

Recall that by Examples[1.8|and [1.9|and by Proposition the operator norm and
any composition of it with a non decreasing subadditive funtion is a group-norm; and

that given a group-norm N, a left-invariant metric is obtained by
d(gh)=N(g"h).

With this, the group norm in the definition of a holonomic space, the usual operator norm

and the convexity radius are related in the following Lipschitz condition.
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2.17 Corollary. Given a holonomic space (V,H,L) then

lla—0bll < L(a'b),

CvxRad
forall a,be H.

2.18 Theorem. Let (V,H,L) be a holonomic space and suppose further that V is an inner
produét space and that the norm is given by || -||*> = (,-). Then the holonomy radius at the
origin is given by

HolRad(0) = inf —=@)

_— (2.7)
ach \J2llidy —a] 7

where for any T : V — V, ||T|| denotes its operator norm.

Proof. Using the inner produdt, and the fa& the symmetry of the group-norm L, L(A™!) =
L(A), and that H a&s by isometries, is equivalent to

v ~wll® ~[|Av ~wl|* < L*(A),
which when expanded out yields,
I+ wll? = 2¢v, w) =[]l ~ l[wl® + 2{Av, w) < L*(A),

and thus
2{Av —v,w) < L*(A).

L(A)
2||idy —All

Thus if |||, ||w|| < then

2Av —v,w) < 2|A - id, |lIllllwll < L*(A).
Since the inequality has to hold for any 4, it follows that

L
HolRad(0) > inf —2

acH \2lidy —al|

Furthermore, for p > L_(—A), let € > 0 such that
2|jidy—All
, L2(A) _lidy - All{ L*(A)
e <|lidy - Allp - = -——7 _1|>0.
VAP 0 p 2lidy — Al
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By the definition of operator norm, there exists v € V, with ||v|| = p and

llidy — Allp > [[Av —v|| > [lidy — Allp - &.

Set w = mmv —v). It now follows that

2(Av —v,w) = 2p||Av —v|| > 2p(|lidy — Allp—€) > L*(A),

by the previous second inequality.

Thus, cannot hold for p > ﬁ and the claim follows. O
1ay—

2.19 Corollary (cf. Corollary [2.17). Given a holonomic space (V,H,L), with V an inner

product space, then
V2l —bll<——t 1
~ HolRad(0

) (a'b),

forall a,b e H.

For most of the applications, the convexity radius, it’s formula, and the fact that it is
bounded below by the holonomy radius, will be used more than the formula . In fa&,
the following result will be used in the sequel.

2.20 Corollary. Given a holonomic space (V,H, L) then

1 1
lla— bl < mua b), (2.8)

forall a,be H.

After these concepts are reinterpreted in terms of holonomy and lengths of loops, (2.8)
states that one can control the holonomy by controlling the length of a loop generating.

And viceversa.

2.3 Examples

Here are two examples. The fir§t one shows that indeed the convexity and holonomy radii
are different. The second, seemingly trivial, will play a significant role in the §tudy of the

occurrence of isolated 2-dimensional singularities, as seen in Chapter @

2.21 Example. The existence of an r > 0 satisfying (guaranteed for holonomic spaces
by is not equivalent to the exi$tence of an r’ > 0 satisfying (2.1). This follows from
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by considering the following action: Let V = C?, H = R,
t(zw) = (e'tz, eV2itw),

and L(t) = [t|. Indeed, by Theorem|2.18]

HolRad(0) = in

LIGH ‘/2 ld _a t—>0+
” v \/2\/2 2cos \/—t

whereas, any positive r < \f will make (2.2 . ) hold. Hence, by Theorem|2.16

o

CvxRad >

Finally, consider the following example.

2.22 Example. Let r > 0 and let H be the group generated by a rotation by 0 < @ < 7. Let
L, be the group-norm given by

2r aze,
L(a) = , (2.9)
0 otherwise.

Consider V to be R? with the §tandard inner produ&. Then (V,H,L,) is a holonomic
space. This can be seen dire¢tly will also follow from Theorem [3.56|when considering the

flat metric
ds? = dr? +( ) 16?
27

on R?\ {0} (see Chapter .
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Chapter 3

Shaping directions after Sasaki.

Has lineas defcribere Geometria non docet fed poftulat. Poftulat enim
ut Tyro eafdem accurate defcribere prius didicerit quam limen attingat
Geometriae; dein, quomodo per has operationes Problemata {olvantur,

docet.

Philofophie Naturalis Principia Mathematica

Isaac NEwTON

IT 1S A MATTER OF CHOICE to make the tangent bundle (or arbitrary vetor bundles)
into a metric space. Firs§t one begins by assigning a Riemannian metric to the base mani-
fold and then, in the case of the tangent bundle, magic occurs and there is a natural mo$t
obvious pick: the Sasaki metric. In the more general setting of vetor bundles, this metric
occurs when one further picks a bundle metric (tautologically a priori given for the tan-
gent bundle) and a compatible connetion (once more already granted as the Levi-Civita
connection).

A Riemannian metric (or more generally a bundle metric) is an inner product on each
tangent space. One reason why inner products are beautiful on their own is because
they yield a way to measure distances between tangent vectors, notwithstanding the fact
that when you think of the tangent space as the space of directions, it doesn’t seem very
natural to think of distances between diretions. Only after one makes an obvious iden-
tification (denoted in the sequel by J after Gromoll [21]]) does it become natural, at least
in the case of the Euclidean Geometry.

Once this infinitesimal notion of distance (which is called a Riemannian manifold or
Riemannian metric) is given (or chosen), the atual notion of distance comes from the
age-old practice of integration.

In general, the §tarting point for §tudying the metric geometric properties of bundles
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over Riemannian manifolds is to consider their total spaces as Riemannian manifolds
such that the projetion is a Riemannian submersion. Existence and naturality of such
metrics has been addressed and studied from a purely differential geometric viewpoint
(see [30] or [48] for the tangent bundle).

One procedure to view a veltor bundle as a Riemannian submersion is to endow the
base with a Riemannian metric and to require that the bundle be equipped with a bundle
metric and any compatible bundle connection. These two ingredients provide a plethora
of metrics on the total space of the bundle (see [1]]), perhaps the simplest of which is the
Sasaki-type metric, introduced for the tangent bundle by Sasaki [42]. These are just a
particular case of the general con$truction over locally fibered maps as in [28]].

To the experienced reader: In this chapter, the notions of connection, affine connec-
tion, bundle metric, and parallel translation are reviewed. Also, the differential and the
length §tructures of the Sasaki-type metrics are analyzed, yielding a complete description
of the fibers as holonomic spaces; showing a way to recover the Riemannian $tructure on
M via the Sasaki-type metric and the knowledge of the norm; and providing a condition
on the arrows of a category whose objects are Riemannian manifolds so that the Sasaki-

type metric renders the tangent bundle con$truction a funtor from said category to itself.

3.1 Connecions and the canonical splitting.

In the sequel, the discussion will be focussed on general vector bundles over Riemannian

manifolds. The basic example being the tangent bundle (consider already in Chapter [1).

3.1 Definition. A veltor bundle is a triple (E, t M) where E, M are differential manifolds
and 7 : E — M is a surjective submersion (i.e. a surjetive smooth map whose derivative
7, is surjeCtive when restricted to any tangent space), such that for any point p € M
nl(p) is a veCtor space, and there exists a neighborhood U > p such that there exists a
diffeomorphism

Py () - Uxr(p),

such that for any two such diffeomorphisms 1y, Py, the map ¢y o 1y is linear on the

second factor, whenever U NV is nonempty.

A bit of nomenclature: Let M denote a differential manifold. A vector bundle over M
will be denoted by (E, 7w) where E is its total space and 7 : E — M is the projetion map .
Notice that the tangent bundle is in fa¢t a vector bundle, since its differential §tructure
was locally modeled as a produc (cf. Chapter[i)). Also, every diagram is assumed to be

commutative unless otherwise §tated.
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3.2 Definition. Let (E,7t;) and (F, ;) be veétor bundles over a manifold M. Define their
Whitney sum as a vector bundle over M with total space denoted by E @ F and projetion

map 7y o pr; = 1, o pt, fitting into the universal diagram for the pullback. Namely,

(3-1)

VE

=
E®F +—F
pn Tfll

E—.M

3.3 Remark. The proje&tions from the Whitney sum to its factors are also veétor bundles

regarding, e.g., the pullback 7t} = E® as a functor from the category of bundles over M to
the category of bundles over E.

3.4 Proposition. Given a veétor bundle, (E, ), there are two veltor bundle $trutures with
total space TE, namely the Standard projection, (TE, 1tg),

T : TE — E,
and the secondary $§truture, (TE, t,),
n,: TE—TM.

Let TE®, TE denote the Whitney sum using the secondary struc¢ture; that is (X,Y) e TE®, TE
satisfy 1, X =1, Y:

TE®, TE L2+ TE (3.2)

| ml

TC

TE————TM

3.5 Definition. Following the notation in [21]], given a (normed) vetor space V, there is

a canonical isomorphism between V x V and TV, given by

Jy(w)f =3, w)f f(v+tw). (3-3)

That is, J,w is the diretional derivative at v in the dire&tion w.

This construction already shows us the following §tatement (cf. [28]]).
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3.6 Proposition. Given any veétor bundle (E, ), (3.3) yields a bundle isomorphism between
®2E := E®E and the vertical di§tribution V = kern, C TE, in a natural way; that is, there is a
natural transformation (also denoted by J) from the functor &? to the funcétor T.

Proof. The naturality: Let (E,7t;) and (F, 1t;) be vetor bundles over M, and let ¢ : E — F
be a morphism between them. Then,

&>
—

®°E ®°F (e,0) (pe, @é) (3-4)

)l I |

P
TE TF [e + té]e — (P*([e + té]e) = [(Pe + t(Pé](p*e

with [a(t)]4(0) = @(0), where a is a curve. The fact that it maps into the vertical distribu-

tion follows from
1y.[e+té], = [my(e+té)] e = [11€]re = 0, (3-5)

since by assumption 7t;e = 711 ¢ = 711 (e + té). Surjetivity can also be verified. H

3.7 Corollary. Let f : M — N be a smooth map between smooth manifolds. Then
fuoTd=T0(@f). (3-6)

3.8 Definition (Dieudonné [17]]). A connection on a veétor bundle (E, 7t) is a bundle mor-
phism C: E®@ TM — TE with respet to both bundle stru¢tures on TE:

EeTM —C TE E®TM ¢

TE
E ™M

3.9 Remark. One should read C(e, 1) as the “horizontal lift of u at ", since given a connec-

(3-7)

tion C one can define the horizontal space as H, = C({e} x Ty ,)M) as well as a projection
onto the vertical space V, also denoted by V. Parallel translation along curves in M of
veltors in E is defined as horizontal lifts to E.

3.10 Proposition. Given a conneltion C on (E, 1) there exists a bundle isomorphism E = B :
E®TM®E — TE as bundles over E.

Proof. Define E by
E(e,u, f)=Cle,u)+T(e f). (3.8)
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This map is a bundle map in view of the following diagram.

-

E®TM®E = TE (e,u, f) —————C(e,u) + (e, f)
pn A \ /
E e
In order to prove that it is an isomorphism, an inverse can be produced:
ENX) = (mp X, X, T; xVX) (3-9)
with V as in O

3.11 Definition. A metric on a veGtor bundle (E, ) is a fun&ion g : ®*E — R such that
when restricted to the fibers it is a non-degenerate positive definite inner product. Given
(E, ) and a ve&tor bundle with metric (F, 7, h) there is a natural metric on 7w*F = E®F as

a bundle over E given by the pullback metric
wh=ho (&%pr,). (3.10)
Notice that when E = TM the this is the precise formulation of a Riemannian metric

on M.

3.12 Remark. Given two bundles with metrics (E, 7y, g), (F, 1t,, h) over M, there is a natural

metric on their Whitney sum as bundles over M:
g®h=go(@pr))+ho(®°pry). (3.11)

3.13 Definition (Fisher and Laquer [19]). Let : ®*E — R be a metric on a ve¢tor bundle
(E,m). There is an associated map Th: TE®, TE — R given by
d
Th(X,Y)=—| h(u(t),v(t)), (3.12)
where u and v are curves in E with 7wou = 7o v such that #(0) = X and v(0) = Y (Recall
7. X = 1,Y from[3.4). As the notation sugge$ts Th is essentially h, : TE @, TE — TR (in
faét it is exaétly pr, 0 31 o hn,).



3.2 Parallelism.

As discussed in the introduction, the notion of parallelism has been central to geometry.
It happen rather quickly —about two thousand years after the infamous fifth postule was
introduced by Euclid— that mathematicians realized that there is not a global well de-
fined notion for objects in space (in a generalized space) to be parallel in a consistent way.
However, at the infinitesimal level, parallelism can be described as integral submanifolds
of the horizontal distribution (not necessarily of maximal dimension). In particular for
curves, it is seen to always exi$t given certain initial conditions. This notion was first
introduced by Levi-Civita [31] after the introduction of the notion of absolute calculus by
Ricci and Levi-Civita [38].

The following technical §tatements will be needed in the sequel. As known, many
struGtures on vetors bundles are transfered automatically by universality. In particular,
given a vetor bundle with connection (E, 7, C) over a manifold M, parallel translation
along a curve a : I — M is the trivialization of a”E such that the vertical projeétion coin-

cides with the projection onto the linear fadtor:

3.14 Proposition. Let (E, 1, C) be a vector bundle with conneltion over a manifold M, and let
a: 1 — M be a smooth curve. The pullback becomes a bundle with connection (a*E,a*1, a*C).
Moreover, since I is contractible, a*E is trivial. a*C yields a trivialization, called parallel
translation, by considering the flow P = P® of the vector field

d
e [a7C((s,e), ) = (5, Cle, @), (3.13)

under the usual presentation of pullbacks a subsets of cartesian products. Furthermore, P sat-
isfies the following properties.

P2 =laC)(p, o) (314
PioPr=Pq (3.15)

(a*1)o P(t,(s,e)) =s+t (3.16)
P(e+ Af)=Pe+ AP f (3.17)
P.[a”C](e,v) = [a”C](Py(e), v) (3.18)
P.3(e, f) =3(Pe, B f) (3.19)
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so that if I =[a,b], a’E =1 x[a"E], by
(s,e) . (s, P,_se) (3.20)

Proof. The fir§t equation is the definition of a flow, and the second is the usual local 1-
parameter group property. The third equation follows from the fact that this vector field
is (a*m)-related to %. Linearity in the fourth is a dire¢t consequence of a connection C
being a bundle map with respe& to the secondary bundle structure of TE over TM. The
fifth equation is an application of the fact that for any manifold N and for any vector field
Y € X(N) with flow @, Y is ®;-related to itself. The last one follows from linearity of P;.

Finally, P is an bundle morphism that is a linear isomorphism on the fibers and hence
a diffeomorphism:

Pl(s,e) = (s, P_ze)

]

3.15 Proposition (Fisher and Laquer [19]]). Given a vector bundle with metric and conneltion
(E,h,C,V), the following are equivalent.

1. Parallel translation is by isometries.

2. Forall & € TM and all seftions o,t € T'(E, 1),

Th(C(0,¢),C(t,&)) =0. (3.21)

3.16 Remark. One says that the connection is compatible with the metric if these proper-
ties hold.

Notice that a connection on (E, 1t, M) can be interpreted as a splitting C of the following
short exa&t sequence of bundles over the the total space E.

0—1'E -2~ TE Y~ ' TM —0 (3.22)
C

where ¢ = (1tg, 1t,), by regarding C(e,u) as the horizontal lift of the veltor x € M, to e
as in the following definition. In particular, for the tangent bundle, by considering the
Levi-Civita connection one gets a canonical splitting of TTM.

With this splitting in mind, one defines vertical and horizontal lifts as follows(c.f. [27]).



3.17 Definition. Given elements e, f € E, u € TM such that nt(e) = n(f) = mp(u) = p the

horizontal lift of u over e is given by

The vertical lift of f over e is

fr(e)=Te(f).

La$tly, for the case of loops based at a point on M, one can consider the corresponding
parallel translates. The extent to which this parallel translations depend on the partic-
ular choice, and thus measuring the failure of having a global way of telling when two
vectors (e.g. two directions in the case of the tangent bundle) are parallel, is given by the

holonomy groups.

3.18 Definition. Given a bundle with metric and connection, parallel translation yields
a map from the space (), of piecewise smooth loops at a point p € M to the group GL(E,)
by

a€Q,— H(a)=P. (3.23)

The holonomy group Hol, at the point p on the base manifold is then defined as the

continuous image of the map H.

It can be shown that these groups are all isomorphic and that they admit a Lie group
stru©ture. Holonomy groups have proved to be useful in deteéting special types of ge-
ometries. In fact, the holonomy groups of simply connelted irreducible Riemannian
manifolds (i.e. the holonomy groups of the Levi-Civita connection) have been classified

by Berger [7] (see [8]).

3.3 Conne&ions as bona fide derivatives

It is also quite Standard to think of connections on vector bundles as covariant deriva-
tives. This is equivalent. In this section, all the previous definitions are interpreted using

covariant derivatives in§tead.

3.19 Definition (Connections and metrics on vetor bundles). As before, given a vector
bundle 7t : E — M over a smooth manifold M, a bundle metric is a choice of inner prod-
ucts on each fiber, E,, that depends smoothly on the base space. Namely, it is a smooth
seCtion h € T(Sym?(E*)) satisfying the non-degeneracy assumption.
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A connetion on abundle t: E > M isamap V,
V:T(E) > T(T" M ®E), (3.24)

that satisfies the Leibniz rule V(fo) = df ® o0 + fV(0) for any section o and any smooth
fun&ion f on M. Given a bundle metric, the connetion is said to be metric if it further
satisfies that V(h) = 0, where V the induced conneéion on Sym?E*. More explicitly, a
connetion is metric if and only if for any seftions ¢,7 € I'(E) and any veltor field X €
X(M),

X(h(o,t))=h(Vxo,t)+h(o,VxT). (3.25)

3.20 Remark. The $tandard (Kozul) covariant derivative definition of a connedtion is
equivalent and is recovered by the following equation. Let Y : M — E be a setion of
the bundle (E, i), let x € TM; then

J(Y,V,Y)=Y,x-C(Y,x). (3.26)

3.21 Definition (Parallel translation). Given a veltor bundle 7 : E — M with connection
V, asection o € I'(E) is parallel if Vo = 0. A section o along a curve « : [0,1] — M is parallel
if V40 = 0. Given any curve a and a vetor u € E with (1) = a(0) there exiSts a unique
parallel section t — P*(u) along o with P (u) = u.

It follows that the transformation u +— P®(u) is linear with respet to u for any t. Fur-
thermore, if the conneltion is metric then P*(u) is an isometry with respect to the bundle

metric. P (u) is frequently called parallel translation of u along « at time t.

3.22 Definition (Holonomy Groups). Given a vector bundle 7 : E — M with connection
V, and given any p € M, the holonomy group of V is the collection, denoted by Hol,(V), of
P :E, — E, where a : [0,1] — M is a loop at p; i.e. @(0) = a(1) = p. If M is connected it
follows that, for all point p,q € M, Hol,(V) is isomorphic to Hol,(V), but this isomorphism
is not canonical. Furthermore, if V is metric with respe& to h, then for all p € P, Holp(V)

is a subgroup of the orthogonal group O(E,) with respect to h,,.
In order to define metrics of Sasaki-type, the following con$truétion is required.

3.23 Definition (Vertical lifts). Given a vector bundle 7t : E — M, consider a vector u € E,,
the vertical lift of u is the map u" : E, — T(E,) C TE given by

v = p(0), (3-27)
where y is the curve in E given by y(t) = v + tu. It follows that 7,(u”) = 0.
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In fa&, if one $§tarts with a setion o € I'(E), in this fashion one produces a veltor field
o' € X(E), the vertical lift of o, that satisfies that

71*(0‘1/) =0. (3.28)

3.24 Definition (Horizontal lifts). Given a ve&tor bundle 7 : E — M with connetion V,
consider a tangent vector x € T, M, the horizontal lift of x is the map X E, — TE given by

v 6(0), (3-29)

where o(t) = P%(v) and a is any curve on M such that a(0) = p and @(0) = x; i.e. x"(v) is the
derivative of the parallel translation of v in the direétion of x. It follows that 7t,(x") = x.

In fact, if one Starts with a vector field X € X(M), in this fashion one produces a vetor
field X" € X(E), the horizontal lift of o, that satisfies that

(X" = X. (3-30)

3.25 Remark. Given a vector bundle 7 : E — M with metric connection V and bundle

metric h, consider any veltor & € T,E, with p = 7(u), then & can be expressed as
&=0"(u)+x"(u) (3-31)

for some uniquely determined x € T,M and o € E,,.

3.4 Global shape.

Having reviewed all the needed concepts, it is now appropriate to introduce the Sasaki-
type metrics on the total spaces of vector bundles over Riemannian manifolds.

Let (E, ) be a veGtor bundle over M and suppose it has a covariant derivative V¥ and
a compatible metric h. Consider a trivialization over a coordinate neighborhood of M
given by codrdinates functions x' on M and by se&ions e; on E. Consider the coordinates
rl such that for any e € E e = r/(e)e;.

Before that, and because it will be useful for certain later results, an local expression of
the vertical and horizontal lifts will be given in terms of a choice of trivialization of the

bundle over a coordinate chart of the base manifold.
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3.26 Proposition. Given ¢, f € E, with e = 1t f, the vertical and horizontal lifts are given by

£Y(e)=3uf) = ri(f)e! (3.32)
A Y AN Y A (3.33)
ox' - \ox) o i\oxi]k 333
where e = a%k and I is given by
VEe; =Tley. (3-34)
Proof. Both are easy consequences of the definitions using (3.26)) and (3.3). O

3.27 Proposition. Given 0,7 € I'(E), X,Y € X(M). Then the Lie bracket at a point e € E is
given by the following formule.

[0%,7"]=0 (3-35)
[X",0"] = (Vgo) (3-36)
[X” Y= [X, Y]" - (RS ye) (3.37)

where RE is the curvature of VE,

Proof. This a §traight forward computation which follows direétly from (3.32) and (3.33).

3.4.1 Sasaki metrics

This subseltion reviews the definitions of Sasaki-type metrics on general vetor bundles,
states several assorted properties thereof.

In view of the splitting of TE given in[3.10]and[3.12]there is a very natural way to define
a complete Riemannian metric on the total space E, the Sasaki-type metric. Benyounes,
Loubeau, and Wood [6] have introduced a larger class of such metrics of which the Sasaki-
type is a particular case.

Recall the definition of vertical and horizontal lifts from Definition

3.28 Definition ([42]). Given a vector bundle with metric and compatible connection

(E,7,h,VE) over a Riemannian manifold (M, g), the Sasaki-type metric ¢ = c(g,h, VF) is
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defined as follows

c(e’, f") = h(e, f) (3.38)
a(e’,x") =0 (3-39)
a(x",y") = g(x,v), (3-40)

3.29 Remark. An equivalent phrasing of G can be given in terms of the conne&tion map
[27]], x : TE — E, uniquely determined by requiring that

K(0.x) = Vio; (3-41)

so that G becomes
G(E,T’) :g(n*él 7-(*77)+h(1<51 KI”]), (342)

for vectors &, € T,TE.

3.30 Proposition. Given a curve o : I — M (parametrized by arc length), the (trivial) pullback
bundle a*E (as in is further isometric to I x Rk where k is the rank of E.

Proof. In view of[3.14|and [3.15} by parallel translation one gets that
a‘c =Ll(a)*dt’ +a’hy,
where p = a(0), and ¢ denotes the length of a. O

3.31 Proposition. The length distance on (E,G) is expressed as follows. Let u,v € E, then

dp(u,v) = ir1f{\/€(a)2 +]|Pfu—v||?

a:[0,1]—>M,a(0):nu,a(1):nv}. (3.43)

Furthermore, if Tu = 7v then

dp(u,v) = inf{\/L(a)2 +lau —v||? : a € Hol,}, (3.44)
with L being the infimum of lengths of loops yielding a given holonomy element.

Proof. The fir§t expression is the definition of distances by And follows by
dividing the set of curves a according to the holonomy element they yield. ]

3.32 Proposition. Let (E, 7, h, VE) be a veltor bundle with metric and compatible connection

over (M, g) and consider its corresponding Sasaki metric G. The Levi-Civita covariant deriva-
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tive V of G is the given at a point e € E by

VT’ =0 (3-45)
Vo Y= (§.(Y,0)" (3-46)
VT’ = (Fe(X, 7)) + (Vi) (3-47)
Van Y= (VyY)h - %(nge)”, (3.48)

for vector fields X,Y € X(M) and sections o,t € I'(E). Where § is given by the equation
28(3e(x, f),y) = (R e, f). (3-49)
Proof. All of these are similar; for instance, the case Vv yh goes as follows.

26(Vyo Y, 7%) = 0¥ (c(Y", 1)) + Y(a(7?, 07)) - T%(c(0”, Y1)
+a(t% [0V, YY) + e (Y [1Y, 0¥]) - c(o?, [Y", 7))
=0+ Y(h(t,0))-0
+h(t,-VEo)+ 0 h(o,VET) =0,

26(Vo Y, ZM) = 6% (a(Y", ZM) + Y(c(2", 67)) - Z"(c(0?, YY)
+a(Z" [0V, Y") +a(YH [ 2", 67)) - c(a¥, [Y", ZM))
=0+0-0
+0+0+ h(a,R?Ze)

=28(8e(Y,0),2).
]

3.33 Corollary. In the case when the vector bundle is (TM, g, V), one can recover the formule

obtained by Kowalski [29]], that is
1
Su(x,v) = ER(u,v)x. (3.50)
Proof. In this case, h=g, RT™ — R and thus

28(8(x,v),9) = h(RIMu,v) = g(R(x,p)u,v) = g(R(u,v)x, 7).
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3.4.2 Metric properties

The setting is as follows. Given a Riemannian manifold (M, g) (i.e. a metric space) and a
veétor bundle over it with certain additional structure, one produces another Riemannian
manifold (E,c). It has been thoroughly investigated in the case when E is the tangent
bundle. In that case, it was noted by Musso and Tricerri [35] that G is flat if and only if g
is also. In general, one also has the requirement that E admit a flat metric. Even without
those assumptions, certain flatness is still present.

Certainly, by construction, g renders 7w a Riemannian submersion; but additional prop-

erties occur.

3.34 Proposition. Let (E,G) be a vetor bundle with a Sasaki metric over a Riemannian man-
ifold (M, g). The following properties hold:

1. 7w: E —> M is a Riemannian submersion.
2. ¢: M — E, the zero seltion, is a totally convex isometric embedding.
3. Forany p € M the fiber F, = 7l(p) is totally geodesic, flat, and equidistant.

Proof. The fa&t that 7t : E — M is a Riemannian submersion follows from the description
of g in
To show that the metric induced on it coincides with g (i.e. ¢ = ¢*G), and that the second
fundamental form vanishes, it suffices to observe that the tangent spaces to ¥ coincide
with the horizontal distribution. But given the fact that the conneftion C is bilinear (cf.
yields
d d d
axi  oxi oxi

Cx

and
VY = (VxY) = (RE,0)” e K,

thus proving the claim. To prove that the image ¥, of ¢ : M — E is a locally convex

submanifold, recall that

Nl —

L(c) = fc(c',c')% > JG(HC, He)? = Lmoc), (3.51)

so convexity follows since for any curve joining ¢(p) and ¢(gq) within ¥ is necessarily
smaller than any other curve having non vanishing vertical component.

The fibers are totally geodesic in view of (3.45). Flatness is yet another application of
(3-45), since the curvature is tensorial. O
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3.35 Lemma. Let e € E and let ¥ be the zero section. Then

d(e,Xo) = y/ple) = lel. (3-52)

Proof. Let e € E and let p € M such that d(e,¢(p)) = d(e,X). Then, since the tangent veltor
at ¢(p) to any minimizing geodesic to e is perpendicular to X, it is also vertical, and, by
will remain in E,. Therefore, tu = p and there exi$ts a unique such p € M. ]

3.36 Proposition. Let e € E, then t +— te is a minimizing geodesic for all time; i.e. a ray.

Proof. This follows from the lemma and the fa&t that any minimizing geodesic between

two points is also minimizing between any other two points along its trace.
O

3.37 Remark. These properties can also be derived from (3.43)) or (3.44)) directly.

As an immediate consequence,

3.38 Corollary. M can be thought of as a submanifold ¥y C E and 1t can be construéted

intrisically as the retration

p=CoT, (3-53)

which can be interpreted geometrically as follows. Let e € E, then

o(e) = unique point in ¥ at distance \/{e, e) from e. (3.54)
With this in mind, the next classical result now follows.

3.39 Corollary. E is isomorphic to the normal bundle of ¢ and the isomorphism is given by

ple) =J(ple),e) = y.(0) (3-55)
where y, is the unique geodesic from p(e) to e with speed d(e, X).

3.40 Remark. This map is nothing but the inverse of the exponential map at p(e) restricted
to V.

Another important fact is that of metric completeness.

3.41 Proposition. The Sasaki metric is complete if and only if (M, ) is complete.



Proof. In view of the classical theorem of Hopf-Rinow, the equivalence follows from view-
ing M as the zero section X and from considering the following sets, in lieu of metric
balls,

Cp(R) ={v € E|re(v) € B,(r), p(v) = 2},

p

which are sequentially compa& —and thus compact—, together with the faét that

Bv(”) - Cn(v)(r + ”V”)

Summarizing, the differential and metric geometric properties of these metrics:
1. The Sasaki-type metric G is complete if and only if g is also complete.

2. The projeétion 7t : E — M is a Riemannian submersion.

3. The fibers E, are totally geodesic and flat.

4. The zero settion ¢ : M — E, ¢(p) = 0, € E, is an isometric embedding (i.e. it is

distance preserving).

5. The rays t > tu are geodesic rays for t > 0 and are unique in joining u to the close$t

point to the zero setion.

3.5 Means of identification: Norms and their derivatives.

A somewhat natural question is whether one can recover the base manifold from the Rie-
mannian §tru¢ture on the total space of its tangent bundle. Topological considerations
aside, this question will be partially addressed here from a metric and differential geo-
metric viewpoint.

It will be seen that there are certain geometric objects that essential recover the §truc-
ture, but a definite answer is yet to be found. The first se&tion establishes how to recover
said §tructure through the knowledge of certain gradient veétor field, or more precisely
through a particular function, namely pu(e) = |le||. The second setion, reviews the notion

of almost tangent §tructure and recalls a result of Thompson and Schwardmann [48].
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3.5.1 Canonical constructs

Given any vector bundle with metric (E, 7, h) over (M, g) endowed with a Riemannian
metric of Sasaki-type certain amount of information about g can be recover once one has

information about the following vector field.

3.42 Definition. The canonical vetor field of (E, ) denoted by 21 is given by
A(e) = (e, e). (3.56)

It is smooth, being given as the pullback of the identity map. Notice that the vanishing
set of 2 is exaltly the zero se&tion. Therefore, to recover the §tructure, in this case, should

mean to exhibit 7.

3.43 Proposition. Let (E, 1, h, VE g, V) be a veétor bundle with metric connection with a Rie-
mannian metric of Sasaki-type. Let Jl be its canonical veltor field, let @ be its flow, and let
Y = {e|M(e) = 0}. Then A is complete. Furthermore, by virtue of Lemma 7 may be

regarded as the map
n(e)= lim ®y(e) (3-57)

f oot
Proof. By the definition of the canonical veltor field, one sees that it is essentially the
position veltor field when restricted to the fibers. Because of this, this is enough to see
that the flow is given by

D;(e) = exp(t)e,

which proves both claims by thinking of 7 as the retraction p onto ¥ given in Lemma
335 O
To further recover the §truture, one sees that the covariant derivative of the canonical

vector field behaves as expected, as stated in the following.
3.44 Proposition. Let (E, 7, h,VE,G, V) be as before.

1. The canonical veltor field I is vertical:

A =0. (3-58)

2. The covariant derivative of the canonical vector field 21 at any point e € E coincides with
the vertical projeétion:
VA=V, (3-59)

where V is the projeétion onto the vertical subbundle.

48



Proof. The fir§t part is an immediate consequence of the definition, since J maps onto the
vertical bundle. For the second part, consider a local frame e; € I'(E) as at the beginning

of the se&ion. Then I can be written as follows.

A= rje;-’, (3.60)

so that for a vertical lift f?,
V= fU(r)ej = (r'(f)e)' (r}) = ri(f)5f€f =f"
since e! = % Now, for a horizontal lift x",

(VD) = X"(r1)e! (e) + 1 (e)V e () = 7/ (e)(Fe(x,€)))" = (Be(x,€))" = 0

where the second equality follows from since

w(r)e; = [x(r]) = T (x)ep(rF)]ej = 1T} (x)e; = —r*VEey,

and the last equality follows from the fact that h(RE,y o,7) = —h( RE,;;T, o):
28(8e(x€),y) = h(Ryye,e) = 0.

]

3.45 Corollary. The canonical splitting of TE can be recovered from the knowledge of G and
A

Analogously, if one is Stead given the norm —a seemingly weaker assumption— by
virtue of the following considerations, the canonical vector field can be recovered and

thus so will the projection map.

3.46 Definition. The canonical fun&tion of (E, 7, h) denoted by p = g is given by

pe) = Vh(e,e) = Va1 ). (361)

3.47 Proposition. Let G be a Sasaki metric, then the gradient and the Hessian of u? are given
by

Vu? =23 (3.62)
vVu? =2V (3.63)
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Proof. The second equation follows from the fir§t in view of To establish the first,

one observes that
G(Vp?, &) = Ehe, e) = EG(L ) = 6(231, V) = 6(231, V&)

so that for a vertical f?,

a(Vi?, f7) = c(22L, fY),

and for a horizontal x",
G(Vy2,xh) =0 =a(22L,x").

]

3.48 Corollary. The level sets X, := y(r) are submanifolds of E for all r > 0 and in particular
Yo = ¢(M) where ¢ € I'(E) with ¢(p) = 0; i.e. ¢ is the zero seltion.

3.5.2 Almost tangent stru&tures

The notion of tensor §truture was introduced by Clark and Bruckheimer [16] in the
context of the extensively Studied G-§tructures. Examples of this are the Structures given
by metric tensors (of any signature), orientations, almost complex strutures, etc.

It is common knowledge that any paracompacét manifolds admit metric tensors, but
certain other $tructures impose, by nature, conditions on dimension; as well as some
integrability notions and conditions.

The total space of a tangent bundle, being even dimensional and orientable, has a

plethora of these structures. A particularly pertinent example is that of an almost tangent
structure.

3.49 Definition. Let N be a smooth manifold. An almost tangent struture is a bundle
endomorphism S on TN satisfying S? = 0 and such that ImS = KerS.

The existence of an almo$t tangent $tructure requires the dimension of N to be even
and in the case of the total space of a tangent bundle, this §truéture is quite canonical,

thus the suggestive name.
3.50 Proposition. The map S = J o (1t ® 7,) is an almost tangent Structure.

Proof. The faé that S? = 0 is immediate from the definition and both 7, and J being onto
yields that
VY =ImS =kerSS.
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Thompson and Schwardmann [48]] give a comprehensive review of the theory of tan-
gent manifolds; i.e. those with an integrable almost tangent structure. One such §tructure
is said to be integrable if its Nijenhuis tensor vanishes; or equivalently, if the distribution

ImS =ker S is integrable. In particular, the following is true.

3.51 Proposition ([48])). Let (N, 1, M,S) denote Riemannian manifolds N and M, a Rieman-
nian submersion 1 and an almost tangent Stru¢ture on N such that ImS = kerm,. Then 1 is
a fibre bundle with fibers diffeomorphic to a product (S')¥ x R¢. So that if the fibers are simply
connelted, then N is affinely diffeomorphic to T M.

In view of this last result, one is necessarily left pondering the following.

3.52 Question. What is the simplest additional geometric information needed to recover S

from the knowledge of G?

Even though this question remains open, in the sequel, using the techniques from
Gromov’s theory of convergence, several strutures are analyzed. Many of these questions
hint that the interplay between the metric properties on the total space of the tangent

bundle and that of the base is indeed quite rich.

3.6 Holonomy: from global to local.

Aside from introducing the specific terminology, exhibiting quite explicitly the length
metric Structure of Sasaki-type Riemannian metrics as seen in Theorem the main
observation in this chapter comes from the realization that the fibers, even though they
were seen to be dull from the viewpoint of differential geometry, carry a lot of information
in their lack of convexity: The way these veltor spaces sit inside the total space is a

manifeStation of the latter’s global geometry. And this is the content of this section.

3.6.1 Fibers as holonomic spaces

Recall from Definition2.1]that a holonomic space has three congtituents: a normed vector
space, a subgroup of the norm-preserving linear isomorphisms, and a group-norm on
said subgroup. Furthermore, the law they have to abide by is the convexity property (P).
In this section, the fibers are seen to satisfy this, together with the holonomy group at

their base-point an the following group-norm.

3-53 Theorem (Solorzano [45]). Let Hol, be the holonomy group over a point p € M of a
bundle with metric and connection and suppose that M is Riemannian. Then the function
Lp : Holp — R,
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L,(A) = inf{t(a)la € Q,, P = A}, (3.64)

pl

is a group-norm for Hol,

Proof. Positivity is immediate from the fact that it is defined as an infimum of positive
numbers. To prove non-degeneracy suppose that an element A # I has zero length. There
exiSts u € E, such that Au # u; thus, by (3.44), choosing a = A yields d(u,Au) = 0. A
contradiction.

The length of the inverse of any holonomy element is the same because the infimum
is taken essentially over the same set (the same curves but traversed in the opposite di-
retion). Finally, to eStablish the triangle inequality, note that the set of loops that gen-
erate AB contains the concatenation of loops generating A € Hol, with loops generating
B e Hol,. O

3.54 Definition. The function L,, defined by (3.64) will be called length-norm of the

holonomy group induced by the Riemannian metric at p.

3.55 Remark. The fact that connection be metric is used twice in proof that L, is indeed
non-degenerate. This is because once can then produce a Riemannian metric on the total

space of the bundle, namely that of Sasaki type.

3.56 Theorem (Holonomic fiber theorem. Solérzano [45]]). Let E, be the fiber of a vector
bundle with metric and connection E over a Riemannian manifold M at a point p. Let Hol,
denote the associated holonomy group at p and let L, be the group-norm given by (3.64)). Then
(E,,Hol,,L,) is a holonomic space. Moreover, if E is endowed with the corresponding Sasaki-
type metric, the associated holonomic distance coincides with the restricted metric on E, from
E.

Proof. According to the definition given in the only remaining condition is given by
(2.1). To see this, one needs only to note that the fiber E, is a totally geodesic submanifold
of E. With this, given any point u € E,, let r = CvxRad,(E) > 0, the convexity radius; thus,
for any pair of points v,w € BE(p) N E, there exi$ts a unique geodesic from v to w. This

geodesic is necessarily t > u —t(v — u) € E,,, and thus the distance
d(u,v) = |lu—vll,

proving that the metric is locally Euclidean and by Theorem [2.g|the claim follows. [

This fact, as innocent as it seems, will be proved to be rather powerful in Chapter
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3.6.2 Holonomy Radius of a Riemannian Manifold

Given a Riemannian manifold (M, g), in view of the fundamental theorem of Riemannian
Geometry, one immediately obtains a vetor bundle, a connection and a bundle metric
compatible with the conne&tion; i.e. the tangent bundle, the Levi-Civita connection and
the metric itself. With this at hand, together with Theorem there is no further need
to motivate the following definition.

3.57 Definition. Let (M, g) be a Riemannian manifold and let p € M. The holonomy radius
of M at P and denoted by HolRad,,(p) is defined to be the supremum of r > 0 such that
for all u,v € M, with [[u]|,|[v|| < r and for all a € Hol,

llu = vlI? = llau - v||* < Ly(a), (3.65)

where L, is the associated length norm on Hol,.

3.58 Remark. This is simply the holonomy radius at the origin of the holonomic space
(T,M, Holy, L,) (see Definition .

3.59 Theorem. Given a Riemannian manifold M. The funétion that assigns to each point its

holonomy radius is $triétly positive.

Proof. This is a direét consequence of and the fa& that the tangent spaces are holo-
nomic by the holonomic fiber theorem[3.56] O

3.60 Remark. This fact also follows directly from geometric considerations given that 0 <
CvxRadr)(0,) < HolRady(p), where CvxRadr), is the convexity radius of TM with its

Sasaki metric.

The kind reader might raise a natural question at this point:

3.61 Question. Is the function
HolRad : M — R

continuous?

A partial answer is given in Chapter |5t the function is at least upper semi-contiuous.
Of course, the only relevant case is when the fundtion is finite. For otherwise flatness

occurs, as per the next result.

3.62 Proposition. If there exisls a point p in a Riemanian manifold M for which the holonomy
radius is not finite, then M is flat.
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Proof. by Proposition the existence of such point is equivalent to the group being
trivial. In particular, the re§tri¢ted holonomy group is trivial, which in turn is equivalent
to flatness. O

3.63 Remark. The converse is certainly not true. Consider for example a cone metric on
R?\ {0}, or the infinite Mobius §trip, or the Klein bottle, all of which are flat but have

non-trivial holonomy.

Summarizing one gets the following §tatement.

3.64 Corollary. Let M be a simply connected Riemannian manifold. If there is a point on M
with infinite holonomy radius, then M is isometric to a Euclidean space.

3.7 Twofold examples

In the case when (M, g) is a two-fold more can be said from the Gauf3-Bonnet Theorem.
Furthermore, in the particular case of the S? or H?, L can be computed by virtue of the
isoperimetric inequality.

Recall the following classical result.

3.65 Lemma. Let (M?,g) be a 2-dimensional Riemannian manifold and let y : [0,(]CR — M
be any curve parametrized by arc length. Let k be a signed geodesic curvature of y with respect
to an orientation of y*TM. Let O(t) be the angle between y and its parallel translate at time t.
Then

2n—6(t):J:k (3.66)

Assume further that y is a loop. Then, possibly up to a reversal in orientation, the holonomy

action of y at p = y(0) is the rotation by 27 —f(f k.

Proof. Consider a compatible parallel almos$t complex Structure on y*TM, . With respect
to the orthonormal frame given by {y,]J(y)}, V,,» = k] (), and thus the equations for any
parallel vector field P = ay + bJ(y) along y are given by

i = kb
b = —ka
which integrates to a rotation by —Ik as claimed. O]
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3.66 Theorem. Let M? be a complete simply connected two-dimensional non-flat space-form

with curvature K. Let L : S! — R be the associated length-norm on the holonomy group. Then

V4m|0|+ 62
VIKl

for —1t < O < 1, where the sign is opposite to the sign of the curvature.

L(O) = (3-67)

Proof. By the Gauf3-Bonnet Theorem, 6 = 27 —Ik = KA, where A is the area of the region
enclosed by any loop y, so that

o
A=|—|. .
2 (5.68)
Now, the isoperimetric inequality in this case (see [36])) is given by
(% > 4mA - KA?, (3.69)

where the equality is achieved when y is metric circle. So, by direct substitution of (3.68)
into the claim follows. O

3.67 Corollary. Let M? be a simply conneted two-dimensional non-flat space-form with cur-
vature K. The holonomy radius at any point p € M is given by

inf 40|+ 07 (3.70)
—n<O<m \[ 2|K|4/2 — 2cos(0)

Proof. In view of (2.7), the only remain part is to compute ||a — id|| for any holonomy

element a. Since all of them are rotations by some angle 0, if follows that |lau — u|| =
lla —id||||lu]| for any given u € T,M. Hence a direct application of the law of cosines yields
that

lla—idy||=V2-2cosO (3.71)

and hence the result. ]

3.8 Categorical concerns.

This section is devoted to determining to what extent does the construction of the Sasaki
metric in the case of tangent bundles produces a functor at the level of Riemannian man-

ifolds. The issue, of course, is to determine a reasonable class of maps.
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The concept of natural bundles and of metrics has been $§tudied by Terng [47] and
Kowalski and Sekizawa [30]] respectively, among others. In essence, the idea is to un-
derstand what constructions are functorial. In the case of bundles, the question is the

following.
3.68 Question. What bundle constructions are well defined up to diffeomorphism?

Examples of these are tangent bundles, cotangent bundles, their produdts, etc. In fa&,
Terng [47]] proves that natural bundles are in one-to-one correspondence to isomorphism
classes of modules of jet groups.

For metrics, the question can be posed as follows.

3.69 Question. What Riemannian metrics on tangent bundles are preserved under (local)

isometries of the base?

In the category of Riemannian manifolds and local isometries, the notion of natural
metric for the tangent bundle (one for which the total differential as a map of tangent
bundles is also a local isometry) has been extensively studied by Sasaki [42]; Kowalski
and Sekizawa [30]; Kolar, Michor, and Slovak [28]]; among others . A full classification

was obtained by Abbassi and Sarih [2]], yielding the following

3.70 Theorem (Abbassi and Sarih [2l]). Any natural metric on the tangent bundle rendering
the projection Riemannian and preserving the natural splitting of the second tangent bundle

can be written as follows:

(X" YMm, =(X,Y), (3.72)
<th Yv>u =0, (373)
(XU, Y7 = alllulP)X, Yy, + Blull ), X )y, Y, (3-74)

where u,X,Y are tangent veltors at p; the superscripts denote the usual horizontal and

vertical lifts; and a, B : [0, 00) — R satisfy the following.

a(t)>0, a(t)+tp(t) > 0. (3.75)

In particular, for a =1, 8 = 0, one gets the metric introduced by Sasaki [42]].
Trying to extend the class of maps from local isometries to a larger class that includes
isometric immersions and Riemannian submersions leads naturally to the following def-

inition.



3.71 Definition (Fischer [18]]). A Riemannian map f is a smooth map between Rieman-

nian manifolds such that it satisfies that, for every p,

f*p (ker(f*p)l - Im(f;p) (3.76)

is a linear isometry.

In particular, Fischer [18] observes that these maps are locally the composition of Rie-
mannian submersions and isometric immersions, and have constant rank. In particular,
from the classical Constant Rank Theorem (see [41])), it follows that the fibers and the

image of a Riemannian map are smooth manifolds.

3.72 Question. Does the Sasaki construction of a metric render the tangent bundle into a

functor from the category of Riemannian manifolds with Riemannian maps to itself?

Unfortunately, the answer is negative. In order for the differential of a map to be
Riemannian, the original map needs to be Riemannian and satisfy an extra condition.

Namely that the fibers and the image be totally geodesic.

3.73 Definition. Let ¢ : (M, g) — (M, ) be a Riemannian map. A veétor field x € X(M) is
called basic if

1. for any point p e M, x(p) € (ker((p*p))l; and

2. there exists a veétor field X € %(H), @—related to x, i.e. such that
Xop=@,ox. (3.77)

Just as in the particular case of Riemannian submersions (or of isometric immersions),
it is possible to produce basic vector fields in a neighborhood of a point p € M such
that x(u) is prescribed, by the §tandard procedure: By the fir§t assumption, consider
X(¢(p)) = @.x(p), smoothly extend it to a vector field on U C (M) and on M and then
consider, for any point q € ¢ }(U), x(q) to be the unique tangent veéor, perpendicular to
the kernel of ¢,, whose projection is X(¢(q)).

3.74 Definition. Let ¢ : (M, g) — (M,3) be a Riemannian map. The second fundamental
form B of ¢ is a bilinear bundle map B : @*(ker(¢,))* — TM over ¢ given by

B(u, x) :ﬁ(p*uX—go*Vux. (3.78)
for basic ve&tor fields.
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The proof that this is tensorial, bilinear and symmetric product can be given by the
same argument as for isometric immersions. It follows that B vanishes identically if and
only if the image (M) is a totally geodesic submanifold of M.

For notational purposes, for any x € T,M, denote by x+ € ker ¢,, and x, € (ker(¢,))*

the unique such veétors such that

X=Xt +tX,. (3-79)

For brevity, this will be called the (L, T) splitting. Furthermore, an additional second

fundamental form is given for the fibers.

3.75 Definition. Let ¢ : (M, g) — (M,2) be a Riemannian map. The fiberwise second fun-
damental form a of @ is a bilinear map « : ®*ker(¢,) — TM given by

a(t,s)=(Vys),. (3.80)

for vector fields tangential to the fibers. Associated to it, the fiber shape operator, S :
ker ¢, & (ker p,)* — TM, given by

S¢(x):=S(t,x) = =(Vyt) (3.81)

Either of these tensors measures how much the fibers differ from being totally geodesic.
In fact both of them vanish identically if and only if this be the case.

3.76 Lemma. Let ¢ : (M,g) — (M,g) be a Riemannian map, let their tangent bundles be
given their corresponding Sasaki metrics (g) and G(g) respectively, and let C and C be their
corresponding Levi-Civita connections. Let u € X(M) and U € X(M) be gp-related, and let
v e TM. Then

Q.C(u,v) = E((p*u, Q)+ j(go*u,ﬁ(p*v U-¢.V,u) (3.82)
Proof. Recall that by (3.26), for any vector field y € X(M),

J(y, Vyy) = y.x = C(y, %),

and that for any map
P I, %) = 399, P.x),



by Corollary [3.7] which produces

0 C(1,v) = Qv = I(Quut, 9.V 1) (3.83)

= U.p.v—=T(p.u,p.V,u) (3.84)

= C(U, @.v) + (@11, Vg, U = 9.(Vy11)) (3.85)

= C(@utt, v) + (a1t Vo, U = . (Vy10)), (3.86)

as promised. [

3.77 Proposition. Let ¢ : (M, g) — (M, ) be a Riemannian map, let their tangent bundles be
given their corresponding Sasaki metrics (g) and G(g) respectively, and let C and C be their

corresponding Levi-Civita conneltions and let u,v € TM. Then

PuC(1,v) = Cl@utt, 90) + I Putt, B(u, v, ) = (T (4, v) — a(uir, v7))) (3-87)

where T is given by
T(u,v)= SuT(vJ_) + SvT(“J_)'

Equivalently, for u,X € TpM,
X" = (9. X)+ [Blut, X ) = 9u(T(u, X) - (i, X))V (3.88)

Proof. From Lemma and because any u € T,M can be extended into a projectable

veétor field, one sees that
Voo U= @u(Vyu) = B(uy,v,) = pu(T(u,v) - a(tiy, v7).
Consider first the (L, T) splitting:
(Vuv) = (Vo (ur) + Vo (ur) +Vy () + Vo (1)) (3-89)

Now, recall that B is given by

B(u,,v,) :ﬁ(pwlU—(P*(va“L) (3.90)
:v(p*vU_(P*[(VvluJ_)J_]' 3 91)

and that
alur,vy) = (VMTVT)J_ (3-92)



Lastly, extend v to a vector field. Thus,

@*(VVJ_(MT) + VVT(uJ_)) = (P*(Vvl(”'r) + Vul (vr)) (3-93)
= @.(T(u,v)), (3-94)

since @, (V,_ (1)) = @.(V,, (vy)). To get (3.88), one has only to remember that X"(u) =
J(u,X) and X"(u) = C(u, X) for elements u, X € TM on the same fiber. ]

3.78 Corollary. Let ¢ : (M,g) — (M,g) be a Riemannian map and let their tangent bundles
be given their corresponding Sasaki metrics G(g) and (g) respectively. Let u € T,M and let
x € (ker(@.p,))", then

P C(1t,x) = Cl@t, x) + I(utt, B, x,)) = I, pu(T(11,%)). (3-95)

Proof. By Proposition [3.77]

@ C (11, %) = C(patt, p.x) + I(@att, B(uy, x 1) — (T (u, x) — a1, x1)))
= C(@utt, Pux) + (ot B(u, x 1 ) — (T (1, %))
= C(@.ut, @.x) + I(p.1t, B(uy, x, ) = I, oo (T (1, x))).

]

3.79 Corollary. Let ¢ : (M,g) — (M,3) be a Riemannian map, let their tangent bundles
be given their corresponding Sasaki metrics c(g) and G(g) respectively, and let C and C be
their corresponding Levi-Civita conneltions. The map ¢ has totally geodesic fibers and totally
geodesic image if and only if for all X € TM,

X" = (9.X)" (3.96)
PuX’ = (. X)". (3-97)
Equivalently, ¢.. commutes with vertical and horizontal projections.

Proof. The assumption of total geodesy is equivalent to the vanishing of B, &, T and S and,
thus, by (3.88) and by Corollary 3.7} the claim follows. O

One can now chara&terize the kernel of ¢,,

3.80 Proposition. Let ¢ : (M, g) — (M,3g) be a Riemannian map, let their tangent bundles be
given their corresponding Sasaki metrics (g) and G(g) respectively, and let C and C be their
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corresponding Levi-Civita connections. A vector X"+ YV € TTM is in the kernel of ¢, if and
only if X is in the kernel of ¢,, and

Y, = T(u,X)+a(ur, X;) (3-98)
Proof. From Proposition and Corollary|[3.7]
Pu(X"+Y7) = (@.X)" + (@Y + By, X1) = u(T(w, X) — (g, Xp)))'
This already implies that ¢,X = 0. Now, this also implies that
.Y + B, X,) - @u(T(1,X) - alui7, X;)) = 0.
Since B is perpendicular to the image of ¢, it follows that

B(u,;,X,)=0 (3-99)

and
oY -T(u,X)—a(ur,X+)) =0. (3.100)

However, both T and « are defined by taking their | —component, hence one is left only
with

as claimed. n

3.81 Corollary. Let ¢ : (M,g) — (M,3) be a Riemannian map, let their tangent bundles be
given their corresponding Sasaki metrics (g) and G(g) respectively, and let C and C be their
corresponding Levi-Civita connections. Suppose that ¢ has totally geodesic fibers and totally
geodesic image. Then vector X" + YV € TTM is in the kernel of @.,, if and only if X and Y are
in the kernel of @,, and in particular, a vector X" + YV € TTM is perpendicular to the kernel of
Q.. if and only if X and Y are perpendicular to the kernel of ..

Proof. By Proposition and Corollary [3.79] (3.98) reduces to Y, = 0, which is equiv-
alent to ¢,Y = 0 as claimed. The conclusion about (ker ¢,)* now follows since the Sasaki

metric renders vertical lifts and horizontal lifts perpendicular to each other and preserves
orthogonality:
G(g) (XM + Y2, Z" + WY) = g(X1, Z) + (Y1, W),

which implies that g(X+,Z) = 0 = g(Y+, W), thus completing the proof. ]
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3.82 Lemma. Let ¢ : (M,g) — (M,3) be a Riemannian map and let their tangent bundles
be given their corresponding Sasaki metrics G(g) and (g) respectively. Let u € T,M and let
x,y € (ker(¢,,))*, then

[(#.)"6(@)] (T (%), Tu () = 6(8)(Tu(x), Tu(¥)) (3.101)
Proof. Recall that by Corollary 3.7}

(P**ju (X) = j(p*u ((P*x)

From this it follows that

G(N P Tu (%), 9T (v))
G(2)(Tg,u(@ix), T (@20))
= 8o(p)(PX, P:)

=&p(%,)
=6(8)(T,(x), T (),

[(#.)"6(@)](T(x), Tu ()

since by assumption ¢*g = ¢ when restricted to (ker(¢.,))*. O

3.83 Lemma. Let ¢ : (M,g) — (M,3) be a Riemannian map and let their tangent bundles
be given their corresponding Sasaki metrics G(g) and G(g) respectively. Let u € T,M and let
x,y € (ker(q,,))*, then

[(@.)"6(@N(C(u,x), C(u,9)) = 6(g)(C(u,x), C(1,p))

+8(B(u,,x),B(u,,y))
+g(T(u,x), T(u,p)). (3.102)
Proof. By Corollary|3.78]
PuC(u,x) = C(@utt, 9.x) + It B(uy, X)) = I pott, 9 (T(u, X)) (3.103)

Notice now that this is an orthogonal decomposition of ¢,,C(u, x) and therefore the claim
follows. O

3.84 Lemma. Let ¢ : (M,g) — (M,3) be a Riemannian map and let their tangent bundles
be given their corresponding Sasaki metrics G(g) and (g) respectively. Let u € T,M and let
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x,9 € (ker(q.,))*, then
[(.)"6(@)](C1,%),3(1,9) = (T (14,%), 9) (3.104)
Proof. By Corollaries and
2 Cl1,x) = Clpatt, 9 x) + I(put, Bl 1, x,)) = Iputt, @ (T (11, %))

QI(u,v) =I(P.u, @.v)

Now, again, since these are orthogonal splittings, the only remaining term is

G(8)(I(@utt, (T (u, x))), I @t 0.y)) = (P T (1, X), P.y)
=g(T(u,x), ).

]

3.85 Theorem. Let @ : (M, g) — (M,3) be a Riemannian map and let their tangent bundles be
given their corresponding Sasaki metrics G(g) and G(g) respeltively. Suppose further that the
fibers and the image of ¢ are totally geodesic. Let u € T,M and let X, Y € (ker @,,)". Then, the

pullback metric on the orthogonal complement to ker ¢..,, is given by

(@.)'6(2)(X", YY) =a(g) (X", Y7). (3.105)
() e(@)(X"Y") =0 (3.106)
(@) e(@)(X", Y") = a(g)(X", Y") (3.107)

and thus, @, is also a Riemannian map.

Proof. Because of the totally geodesic assumption, by Corollaryit follows that X7, X",
Y, Y", are in the kernel of ¢,,. Now, the equations are simply a restatement of the content
of Lemmata|3.83}3.84}, and [3.82] N

For the particular case when ¢ is a isometric immersion, the formula for the induced

metric is given in the next Statement.

3.86 Theorem. Let 1: (M,g) — (M,3) is an isometric immersion and let their tangent bundles
be given their corresponding Sasaki metrics G(g) and G(g) respectively. Then, at a point u €
™,

(1)'c(@)(XY, YY) = c(g)(X", Y¥). (3.108)
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(L) e@(X",Y")=0 (3.109)
(1)'e(@X"Y") = a(g)(X", Y") +g(B(u, X), B(1,Y)). (3-110)
Proof. This follows from the previous lemmata. The only observation is that since the

map has zero dimensional fibers, T, S and a necessarily vanish. O

And thus, a $tronger result is obtained for isometric immersions.

3.87 Corollary. Let 1: (M,g) — (M,3) is an isometric immersion and let their tangent bundles
be given their corresponding Sasaki metrics G(g) and G(g) respectively. Then the induced metric

coincides with the Sasaki metric iff the embedding is totally geodesic.
In view of Proposition one gets, seemingly for free, the next result.

3.88 Proposition. Let 1 : (M,g) — (M,3) is an isometric immersion and let their tangent
bundles be given their corresponding Sasaki metrics G(g) and G(g) respectively. Assume further

that the immersion is totally geodesic. Then 1, is also totally geodesic.

Proof. Since 1 is totally geodesic it follows that

LR(x, )z = R(1.x, 1,y)(1.2),

where R and R are the corresponding Riemann curvature tensors. With this at hand,
it remains to show that the push forward of the covariant derivative coincides with the
covariant derivative “of the push forward”. Let y € X(M) and consider a i—related field
Y € X(M). By Proposition atapointu € TM,

v(t*x)h Yh= (Vz*xy)h - (E(l*'xl Y)(ru))”

N =N =

= (1LV,p)" -

= l**[(vxy)h -

= l**(vxh})h),

(LR(x,y)u))’

S(RGp)uy']

— 1 —
Ve Y = 5 (Rl V) ()"

= (3ROt )"
= L5 (R(,)))

= l**(vxvyh);
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The case V,»Y"? follows from the fact that the Lie bracket of i—related fields is again
1—related, and the last case follows from the fact that v,.p” = 0 as wellas V(, ,p Y” = 0. [

3.89 Lemma. Let ¢ : (M,g) — (M,3) be a Riemannian map and let their tangent bundles be
given their corresponding Sasaki metrics G(g) and G(g) respectively. Suppose further that the
fibers are totally geodesic. Then, the fibers of @, are totally geodesic.

Proof. By Corollary the kernel of ¢,, is given by horizontal lifts and vertical lifts of
elements in the kernel of ¢,, by the assumption that the fibers are totally geodesic. Also
by this assumption, for any X, Y, x € ker ¢, and u € (ker ¢,,)*

R(X,Y)u,R(u,Y)X € ker Pup-

To see this, extend them to projectable fields and thus, since the fibers are totally geodesic,
Vxu, V,(VyX) and [u, Y] are all tangential to the fiber and thus in the kernel of ¢,,. From
this, and again by Proposition the claim follows. O

In light of these results, the following definition should require no further motivation.

3.90 Definition. A smooth map between Riemannian manifolds is a geodesic Riemannian

map (GR) if it is a Riemannian map with totally geodesic fibers and totally geodesic image.

Notice that the composition of Riemannian maps needs not be Riemannian, nor does

the composition of GR maps as can be seen by considering the following example.

3.91 Example. Let ¢ : R — R? be given by t > %(t, t) and p : R? — R by (x,y) = x. Both

these maps are geodesic Riemannian, yet their composition p o @(t) = \% is not.
3.92 Theorem (Geodesic category theorem). The Sasaki metric construction renders the
tangent bundle a funétor from the category of geodesic Riemannian maps (and compositions

thereof) to itself. Furthermore, the canonical projeltion remains a natural transformation.

Proof. The fact that the projetion is, by the construction of the Sasaki metric, a Rieman-
nian submersion with totally geodesic fibers, and hence GR (see Proposition [3.34). By
Proposition if the image of a Riemannian map ¢ is totally geodesic the so is its tan-
gent bundle, which is the image of ¢,. Lastly, by Lemma the fibers ¢, are also totally
geodesic. O]

Requiring that a map be geodesic Riemannian is §till a weak assumption from the
metric geometric point of view. As maps between metric spaces, it is not necessarily
true that totally geodesic injeltive isometric immersions are totally convex, i.e distance

preserving. On the other hand, Riemannian submersions are always submetries.
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Chapter 4

Holonomy: A global perspetive through

norms

C’est véritablement utile puisque c’est joli.

Le Petit Prince

ANTOINE DE SAINT-EXUPERY

As A BY-PRODUCT of the previous considerations, a natural topology can be given
to the holonomy groups that doesn’t necessarily coincide with the classical Lie group

topology.
This new topology arises from the observations in Theorems [3.53|and |3.56} as well as

from Proposition Namely, looking at the infimum of lengths of loops one produces
a metrizable topology for the holonomy groups.

Controlling the length of loops that generate a given holonomy element has many ap-
plications, as pointed out by Montgomery [32]] , in Control Theory, Quantum Mechanics,
or sub-Riemannian geometry (see [33]).

Therefore, considering the infimum L(a) of lengths of loops that generate a given
holonomy element a is quite natural and it exhibits the fibers of a ve¢tor bundle as holo-
nomic spaces, which in turn shows that the global shape of the space determines how the
individual fibers bend within the total space.

Although the funétion a — L(a) is in general not even upper-semicontinuous when
regarded as a funétion on the holonomy group with the subspace topology (or even its
Lie group topology), as pointed out by Wilkins [50||, the following results gives a more

positive outcome.

4.1 Theorem. Let H be the holonomy group of a metric connection on a vector bundle E over a
Riemannian manifold. There exists a finer metrizable topology on H, given by d(a,b) = L(a’'b),
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so that the funétion a — L(a) is continuous with respect to this topology and furthermore, the

group action H X E, — E,, remains continuous.

Proof. By [2.6|the action map H x E, — E,,, is continuous, so by the identity map is
continuous from the L-topology to the Lie topology. Furthermore, by[1.12|L is continuous
with respect to the L-topology . O

Now, the following fat hints a type of ‘wrong way’ inheritance.

4.2 Proposition (50} [43]]). Let w: P — M be a smooth principal bundle over a smooth man-
ifold M, let a smooth connection on 1 : P — M be given, and let H, denote the holonomy
group of this connection attached to some element p of P. Suppose that H,, is compacl. Then
there exists a contant K such that every element of H,, can be generated be a loop of length not

exceeding K.
So, in the language of the induced length §tructure the following is true.

4.3 Theorem. Let E — M be a vector bundle with bundle metric and compatible connection.
Let H be the holonomy group of this connection. If H is compact with the standard Lie group
topology (in particular bounded with respect to any —invariant— metric), then H with the
induced length metric given by is bounded.

Tapp [46]] introduces a way to measure the size of a holonomy transformation as a
supremum over acceptable left invariant metrics. A smooth invariant metric m is accept-
able if for any X € £ = g(d), the Lie algebra of @,

X[l < sup [[X(@)I| (4.1)

v|lvll=1

where X(v) means the evaluation of the fundamental veftor on F associated with X. The
size of a holonomy transformation A is then defined as the supremum of its diStances to
the identity dist,,(A,Id) over acceptable metrics m. And the following fat relates this
‘size’ to the norm defined by , whenever there are curvature bounds.

4.4 Proposition (Tapp [46]. Proposition 7.1). Let E — B be a Riemannian vector bundle
over a compact simply conneéted manifold B. Let V be a compatible metric conneétion and
let its curvature R be bounded in norm, |R| < Cg. Fix a point x € B and let Hol(V) be the
corresponding holonomy group at x. Then there exists a constant C(B) such that for any loop
a in B, |Py| < C-Cg-l(a), where P, € Hol(V) stands for the holonomy transformation induced
by a.



4.5 Theorem. With the assumptions as in the previous Statement, the norm given by (3.64)
and Tapp’s holonomy size are related by |g| < C - Cg - L(g), so that the induced length topology
is finer than that of Tapp’s holonomy size.

Proof. This is immediate from the inequality, since the infimum is taken over loops with

the same holonomy transformation associated. [

Finally, with the additional assumption of completeness, the following result gives a
converse to Theorem

4.6 Theorem. Let E — B be a Riemannian vector bundle with compatible conneltion over a
complete Riemannian manifold B. The holonomy group is compacl if and only if the restricted

holonomy group is compadt and its associated length norm is bounded.

Proof. The necessity is the content of Theorem For the sufficiency, suppose that the
holonomy group has infinitely many connected components. Consider a sequence {a;} of
inequivalent classes. Let y; be a loop generating a; such that L(a;) = €(y;); these exi$t by
the completeness of the metric and an application of Arzela-Ascoli Theorem as pointed
out by Montgomery [32]. Since the lengths of the y;’s are bounded by assumption, an-
other application of Arzela-Ascoli Theorem, now to the sequence y;, yields a uniformly
convergent subsequence, also denoted by {y;}. Therefore, for i >> 0, all loops are homo-
topic. This is a contradiction to the following fact: different conneted components of the

holonomy group represent different homotopy classes. [

4.7 Corollary. In the case of complete Riemannian manifolds, the holonomy group is compact

if and only if the length norm is bounded.

Proof. By virtue of the classification theorem of Berger [7], the re§tri¢ted holonomy group

is always compact. O

4.8 Remark. Completeness is really essential as looking again at a cone metric on the

punctured plane shows.
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Chapter 5

Convergence

You take an obvious concept of a limit, and then, by the power of anal-
ysis, you can go to the limit many times, which creates §tructures that
you have not seen before. You think you have not done anything but,

amazingly, you have achieved something.

Notices of the American Mathematical Society, 2010

MikHAEL GROMOV

THE STRUCTURES that become apparent in a weak limiting process, such as the one
introduced by Gromov, are necessarily robust. In this chapter, the colletion of veétor
bundles with a metric of Sasaki type with an upper bound on their rank is seen to be
pre-compact. Furthermore, their limits retain a surprising amount of information, even
when there is no additional conditions imposed on their base spaces (such as curvature
bounds of any sort).

Holonomic spaces —in particular the fibers of said bundles— are also seen to converge,
and this convergence is compatible with that of their ambient spaces: the fibers converge
to fibers. Because of this, and because of the rich Structure of the holonomic spaces, their
limits are necessarily nice. Topologically, they are the quotient of a Euclidean spaces by a
compact Lie subgroup of the orthogonal group, called the wane group.

This group, which is produced by waning holonomy elements, will be seen to play a
role in the degeneration of the notion of parallelism that vetor bundles with connection

have. This degeneration occurs only at the level of uniqueness, not of existence.



5.1 Holonomic spaces revisited.

Because holonomic spaces arise as fibers of ve¢tor bundles with metric connections over
Riemannian manifolds (by Theorem [3.56), §tudying their convergence properties be-
comes natural when trying to underS$tand the behavior of their metrics of Sasaki-type
under limits. Also, given the underlying linear nature of the holonomic spaces, a CO-
convergence of the metrics to semimetrics is obtained, which implies the pointed Gromov-
Hausdorff convergence of the holonomic spaces to precisely described spaces. Metrically,

the description of their induced limit metrics is slightly more elusive.

5.1 Theorem. Given a finite dimensional veltor space, the colle¢tion of all holonomic space
metrics (V,dy) is precompact in the C° sense. Namely, for any sequence (V,H;, L;) there exists
a subsequence (denoted without loss of generality with the same index i) for which the metrics

dp, : V xV — R converge uniformly on bounded domains to a semi-metricp: V xV — R.

Proof. The Strategy is the following: first use Arzela-Ascoli on balls of a fixed radius r > 0
around the origin; next argue that these convergences can be made to agree on V; and
finally, argue that the limit function is a semi-metric.

Let V be a finite dimensional normed vetor space. For any r > 0 let ¢ > 0 and consider

2 _
by 0= 5
Let u,v,u’,v’ € V be such that ||u||,||v|, ||«’||,||v’|]| < r and

# = min{

Vil = w2 +1v -2'|1? <. (5.1)

Then, for any normed preserving linear mapa:V — V,

llau —v|| —|lau’ = v'||| < |lau — aw’|| + lv — '] (5.2)
<lu—u||+ v -7 (5.3)
<V2\llu—w|P +|lv -2 <7, (5.4)

by the triangle inequality for || - || and because |lau — au’|| = |lu — u’||, a € O(V), and
6=-=L
7

In particular,

llau —v||? < llau’ = v'||> + n? + 4y,

which follows by diret squaring and by noticing that |lau — v|| < 27, by the triangle in-
equality.
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Consider now any group-norm L : H — R for any H < O(V). By adding L?(a) to both

sides, one sees that,
L?(a) + |lau —v||* < L*(a) + |jau’ —v'||> + 172 +4ry

now, by taking the square root and applying the triangle inequality,

\/Lz(a) +|lau —v||> < \/Lz(a) +law’ —v’||? + 1+ 2/,

Now, since 7 is less than one it follows that 17 < /77, so that

JE2(@) + lla —vl]2 < \JL2(a) + law ~ v/ + ¢

holds.
Therefore:
dy(1,0) = inf\12(@) + Ja ~ v]] (55)
<inf \12(a) + law’ ~v/| + ¢ (5.6)
a
=d;(u',v)+e. (5.7)

Because of (5.4)), and by interchanging u,v with u’,v’, it now follows that
|dp(u,v) —di(u',v)| <, (5.8)

thus proving that the family {d; } is equicontinuous on balls of a fixed radius r > 0 around
the origin in V.
To prove uniform boundedness, one needs to observe that for any L the following is

true:

du () < \L2(idy) + llidyu —v]? = lu o] < 2r. (59)

The hypotheses of the classical Arzela-Ascoli’s theorem now apply to get a uniform
limit on the ball of radius r > 0 (times itself). Consider a countable exhaustion of V by
balls of radius r; — co. By a diagonal argument for any sequence of metrics {d; } one gets
a pointwise limit p on V that is uniform on compact sets.

Finally, except for nondegeneracy, all the properties of (semi)metrics are well behaved
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under limits:

p(u,v) = lim dy (u,v) >0, (5.10)
p(u,v) = lim dy (u,v) = lim d; (v, u) = p(v, u), (5.11)
p(u,u)=limdp (u,u)=0, (5.12)
p(u,v) = lim dy (u,v) (5.13)
< lim dy (4, w)+ lim dp_(w,v) (5.14)
= p(u, w) + p(w, v), (5.15)

Therefore for any family of holonomic spaces {(V,d} )} there exits a subsequence that

converges uniformly on compact sets. O]

Nowhere in the proof was the fact that the function d; : V x V' — R was nondegenerate
used; only properties of semi-metrics were required. However, the re§tri¢tion to holo-
nomic spaces yields nondegeneracy of d; and is of interest for the sequel as they occur

naturally. In general, the limit p will be degenerate unless further assumptions are made
(see Theorem [5.10).

5.2 Corollary. Given a finite dimensional normed veltor space, the colletion of all pointed

holonomic space metrics ((V,dp),0) is pre-compacl in the pointed Gromov-Hausdorff sense.

Proof. By Theorem for any sequence (V,d;) of holonomic space metrics there ex-
iSts a subsequence for which the semi-metrics d; converge uniformly on compact sets
to a semi-metric p on V. The quotient space Q = V/ ~, where u ~ v if and only if
p(u v) = 0 for u,v € V, is naturally a metric space; the metric is given by the ditance
wo([u],[v]) = p(u,v) for any choice of representatives (or as the usual —not Hausdorff—
dlé’tances between subsets of V). Therefore the convergent subsequence of metrics yields

a convergent sequence of metric spaces (V,d;) — (Q,d,). [

5.3 Corollary. The space of holonomic metrics on inner-product spaces of dimension at most
k is precompact in the Gromov-Hausdorff sense. More explicitly, for any family of holonomic
spaces {(V;,H;,L;)}, where V; has dimension at most k and its norm is induced by an inner

produdl, there exists a subsequence that converges in the pointed Gromov-Hausdorff sense.
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Proof. By passing to a subsequence, one can assume that all the vetor spaces in the se-
quence have the same dimension. Now, by Sylvester’s Law of Inertia— which in particu-
lar §tates that any two positive definite symmetric bilinear forms on a finite dimensional
vector space are isometric—, all the norms can be made to coincide, by way of some
isometries ¢; : V — V. By defining H; = (j);lHi(j)l- and L; : H; - R by L;(b) = Li((j)ib(f);l),
the sequence {(V,H;, L;)} now satisfies the hypotheses of Theorem O

More can be said about the limiting metric spaces when there is more information
about the underlying subgroups of isometries. Before that, recall that by Lemma
for any sequence of isometries {¢;}, if there exists a point x such that {¢;(x)} converges,
then there exi$ts a subsequence {¢; } that converges to an isometry. Of course, in the case
when the norm on a finite dimensional vector space V is given by an inner produdt, then
this is easily seen, since the group O(V) is a compact Lie group.

This fact is essential for producing a subset of O(V) that determines the degeneracy
of the limit semi-metric. Later, this subset can be replaced by a group (at the time of

writing, it is not clear that the set produced in the next result is not already a group).

5.4 Theorem. Let V be a finite dimensional normed veltor space and {H;} be a sequences
of subgroups of the group of norm preseving linear maps, denoted here by O(V'). Consider a
sequence of group-norms {L; : H; — R} such that the semi-metrics d; = d , given by

dr, (1,0) = inf \L2(a) + llau — o], (5.16)

for any u,v € V, converge uniformly on compact sets to a semi-metric d, on V. Then, there
exists a set Gy C O(V), given by:

Go={g€O(V)lg = lim a;, lim L; (a; ) = 0}, (5.17)

1,—>00 1,—00

such that for any u,v €V,
de(u,v)=0 (5.18)

if and only if there exislts g € Gy such that v = gu.

Proof. Let u,v € V be such that d,(u,v) = 0. This means that for any choice of € > 0 there
exi$ts N = N, > 0 such that for any j > N,

dj(u,v)<e (5-19)
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In particular by (5.16) there exits a;(¢) € H with

\/L]z(a]-)+||aju—v||2 <Eg, (5.20)

which in turn gives that

Li(aj),llaju —v| <e. (5.21)

By letting € = % and recursively choosing j = j, = max{[N1],j,_1} + 1, one produces a
sequence {b, = aj(%)} for which b,u — v and by Lemma npassing to a further subse-
quence if needed, such that it converges in O(V) to some g, with gu =v and lim, L; (b,) =
0 as required.

Conversely, let u € V and consider v = gu with g € Gy, with a; — ¢. Then for all ¢ >0
there exists i,, >> 0 such that

d; (u,gu) < \/Ll.zna,-,l+||ainu—gu||2 <e. (5.22)
So the claim now follows by the uniform convergence of d; — d. O

As mentioned before, it is not clear at this point whether G, is a subgroup of O(V),
since for two different elements in G, the subsequences determining them might in prin-
ciple be disjoint (i.e. have no common subsequence).

Nevertheless, the characterization given by the previous theorem is §till quite good as
will be seen in the sequel. If one however insi$ts upon having a group action to determine
the degeneracy of d,, this can be achieved by the following result. The drawback is that
this new presentation says nothing about how to explicitly con$truct said group direétly
from the knowledge of L;.

5.5 Theorem. Let V be a finite dimensional normed vector space and H be a subgroup of the
group of linear norm preserving isomorphisms, O(V). Consider now a sequence of group-norms

{L; : H — R} such that the semi-metrics d; = dy , given by

dy (10,0) = inf \JL2(a) + lau —v]P?, (5.23)

for any u,v € V, converge uniformly on compact sets to a semi-metric d,, on V. Then, there
exists a closed subgroup of O(V), given by

G = (g€ O(V)IVu € V,dy(u, gu) = 0}, (5.24)
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such that for any u,v € V
doo(u,v) = 0 (5.25)

if and only if there exists g € G such that v = gu.

5.6 Remark. Consider g € Gy, as in Theorem Then, for any u € V, d(u,gu) = 0 by

Theorem Thus
Gy CG.

5.7 Definition. The group G will be henceforth called the wane group of a convergent
sequences of holonomic spaces.

Proof of Theorem [5.5 Three §tatements must be proved: 1) the equivalence between hav-
ing zero di$tance and being related by an element in G; 2) the fa¢t that G is actually a
group; and 3) that this group is closed in O(V).

To prove the equivalence first consider let v € V with d(u,v) = 0, then by Theorem

[5.5/there exists g € Gy € G (by Remark [5.6) with v = gu.
Conversely, for any g € G and forany u € V

doo(u,gu) =0, (5.26)

by the definition of G.
As the reader might have noticed, this doesn’t prove that G C G since this only implies
that for any u € V and for any ¢ € G there exi$ts h € G, such that

gu = hu. (5.27)

Bear in mind that this equality is attained only at u € V, since in principle h depends on
u. What was accomplished was the following: For any u € V, {hulh € Gy} = {gu|g € G},
that is that the equivalence classes determined by G and by Gy (in turn determined by
the degeneracy of d.,) in V are the same, as promised.
Secondly, to prove that G is indeed a group, notice that because d, is already known
to be a semi-metric,
deo(u,u) =0, (5.28)

regardless of u € V. So idy € G.
Let g, h € G, then by the triangle inequality of 4,

doo(u, ghu) < do(u, hu)+d(hu, g(hu))=0+0 (5.29)
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and, of course,
doo(tt, g7 1) = doo(g(g ™ ), g7 1) = 0. (5.30)

Therefore G is a subgroup of the group of norm preserving linear maps, O(V).
Finally, to see that G is closed, notice that for any u € V the assignment ¢, : O(V) - R,
given by
Pu s 8 > doo(t, g), (5.31)

is a composition of continuous functions and thus itself continuous. Because of this, G

can be represented as the following interseltion of closed sets,
G={) . 0), (5:32)

and thus G is closed. [

5.8 Remark. If V is further assumed to be an inner producét space, then O(V) is a compact
Lie group; furthermore, because by Theorem G is also a compact Lie group.

5.9 Corollary. Let {V;} be a collection of finite dimensional inner product veétor spaces and
consider a sequence of holonomic space metrics {d;} on {V;}. In addition, suppose that the
sequence of metric spaces {(V;,d;)} is a convergent sequence in the Gromov-Hausdorff sense.

Then there exists a positive integer k and a closed subgroup G < O(k) such that

pt-GH

(V;,d;) —— RY/G, (5.33)

where the metric on the limit is obtained as in Corollary|s.3

Proof. As in Corollary [5.3} one can pass to a subsequence and assume that {V;} has con-
Stant dimension k and such that the norms are the con$tant. The conclusion now follows

from Theorem O

Recall that in view of Theorem [2.g|for a holonomic space (V,H, L) the holonomy radius
at a point u € V, HolRad(u), is the largest r > 0 for which the metric d; is isometric to the
Euclidean metric when restricted to the ball of radius r around u € V. In the special case
when u = 0, by Corollary [2.20} given a holonomic space (V,H, L),

L
HolRad(0) < inf —2)

act la—idy || (5-34)

Because of this, if one has certain control on the holonomy radii of the sequence, the

following holds.
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5.10 Theorem. Let (V,H,L;) be a convergent sequence of holonomic spaces. Suppose further
that there exists a constant ¢ > 0 such that

¢ < HolRad;(0). (5-35)

Then the limit semi-metric d, is nondegenerate. That is that d, is a metric.

Proof. Consider g € Gy, as in and let {a; } be any defining sequence for g. That is such

that a; — g andlim; _,L; (a; ) = 0. By Lemma ??, for each a; ,

c <HolRad; (0) < M (5.36)
" lla;, —idyll
Thus for any € > 0 and for any N > 0 there exi$ts i, >N,
: L.n(a'n) €
la; —idyll < % < - (5-37)

Therefore there is a subsequence of {a;} that converges to the identity map. Because
{a; } converges to g, it follows that ¢ = idy and now Theorem yields the claim. ]

Finally, as an application of these concepts the upper semi-continuity of the holonomy
radius of a conne&ion over a Riemannian manifold can be asserted (recall Definition|2.2)).
In the case of a holonomic space (V,H, L), by Proposition the holonomy radius is a

continuous function on V.

5.11 Proposition. Given a veétor bundle 1t : E — M with metric connection V and bundle
metric h over a Riemannian manifold (M, g), then the holonomy radius HolRad : M — R is an

upper semicontinuous funétion.

Proof. Let p € M and consider a sequence {p;} C M converging to p. By Remark and
by the fact that the fibers of 7 are equidistant, it follows that the holonomic metrics {d LPi}
converge in the C? sense to the holonomic metric de.

Let p = HolRad(p). Now, since the metrics {dei} converge uniformly when reétricted
to the ball of radius p, and the metric de is Euclidean on that ball, let

p =limsup HolRad(p;).

1—00

Let u,v € E, with [[ul],[[v]| < ¢. Then, there exist (sub)sequences {u;} C E,, {v;} C E,, with
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|lu;], lvill < ¢, converging to u and v respectively such that

dp, (ui,v;) = [[u; = vil. (5-38)

Therefore,
dr (14,0) = lim dy, (15, ) = im [1; = vy = [1u = ] (5:39)
thus proving that p < p as promised. ]

5.2 Stru@tures: emergence and waning.

Since vector bundles (with metric connetions) appear naturally as associated objelts to
Riemannian manifolds, providing the latter with additional §tructures (as Poisson brack-
ets, control §trutures, orientations, holomorphic struétures, etc.), it is natural to investi-
gate the behavior of these bundles under limits of their bases.

One reason to analyze them from the viewpoint of holonomic spaces is given by Theo-

rem Furthermore, the next result gives yet another reason.

5.12 Theorem. Given a veltor bundle 7t : E — M with metric conneétion V and bundle metric
h over a Riemannian manifold (M, g), consider a point p € M and let (V,H, L) be the holonomic
space (Ep, Hol,(V),L,). Then the Gromov-Hausdorff distance between (V,dp) and w1 (Br(p)) C
E (with the redtricted metric from E) is finite and bounded by 2R.

Proof. By Theorem the inclusion (E;,d; ) < E is an isometric embedding in the
sense of metric spaces for any q. Furthermore, because the projection map is a Rieman-
nian submersion, parallel translation along any minimal geodesic in M connecting the
points p,q € M renders the fibers equidiStant. Therefore, the diStance between the cen-
tral fiber and any other fiber over a ball of radius R is bounded by R. From this, for any
p € M and R > 0 the inclusion map of the central fiber

E, < n'(Br(p) CE (5.40)

is an R-isometry. By Proposition the claim now follows. O
In particular, for the tangent bundle:

5.13 Corollary. Given a Riemannian manifold (M, g) and a point p € M let (V,dy) be the
holonomic space (M, Hol,(g),L,) then the Gromov-Hausdorff distance between (V,dy) and
10,y (Br(p)) € TM is bounded by 2R.
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5.14 Theorem (Sasaki-type metric Compactness Theorem). Given a precompa(t collection
of (pointed) Riemannian manifolds M and a positive integer k, the collection BWC(M) of
vector bundles with metric conneltions of rank < k endowed with metrics of Sasaki-type is
also precompact. The distinguished point for each such bundle is the zero seftion over the

distinguished point of their base.

5.15 Remark. Passing to a subsequence is unavoidable as can be seen in Example

Proof of Theorem[5.14] Fix € > 0 and R > 0. Following Theorem and Remark
define C = C(¢,R) > 0 by
C:= maxN(s,R,]Ei), (5.41)

i<k
where E' is the Euclidean space of dimension i.

Let (E,h,V) NCN (M, g) be any bundle with metric conneftion and let N (R, ¢) be the
uniform bound on the number of balls of radius ¢ needed to cover a ball of radius R on
M. Consider p € M and its zero setion 0 = ¢(p).

Since mg is a Riemannian submersion, 7tg(Bg(0)) = Br(p). Let A be any e-net in Bg(p).
Since for each a € A, E, is flat, let A; be any ¢-net in Br(c(a)) € T,M. The cardinality of A,
can be chosen to less than C(g, R), because the identity map is a di§tance non-increasing
map between the (induced) Euclidean metric on E, and the restricted metric.

Let u € Bg(0), then let a € A such that d(a, mg(u)) < €. Let ¥ be any minimal geodesic
connecting 7t,,u to a and let v € T,M be the parallel image of u along y. Finally consider

u, € A, to be such that |u, — v| < €. Hence,
d(u,u,) <d(mpu,a)+d(v,u,) < 2e.

Therefore, given any R > 0, and for any ¢ > 0, the following holds.

N(2¢,R,E)<N(&,R, M)+ C(¢&,R). (5.42)

So that if the assignment M +— N(¢,R, M) is bounded on M, then so is E — N(¢, R, E)
on BWC;(M).
Therefore, in view of Gromov’s Compactness Theorem[1.39} this finishes the proof. [

5.16 Proposition. For any sequence of Riemannian manifolds {(X;, p;)} converging to (X, Xoo)
consider a convergent family of bundles with metric conneétion (E;, h;,V;) over it converging
t0 (Eco, Vo). Then there exist continuous maps T, : Eqo = Xeor Coo : Xoo = Ecor Yoo : Eco = R,

and a subsequence, without loss of generality also indexed by i, such that:

1. the projetion maps m; : E; — X; converge to 1., : E., = X, which is also a submetry;
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2. the zero section maps ¢; : X; — E; converge to Gy, : Xoo — Eo, which is also a isometric

embedding;
3. T 0GCoo = idx_; and

4. the maps p;: E; — Ry, given by
pi(u) =dg,(u,¢; om;(u)) = \Vhi(u,u),
converge to Y, : E.o = Ry, also given by
Poo(y) = dE, (9 Goo © Tao (1)-

Proof. Since all of these maps preserve the distinguished points (consider 0 € R), by the
Arzela-Ascoli Theorem one only has to check equicontinuity. But this is immediate
from the fa&t that the 7t; are submetries [22]], ¢; isometric embeddings, and y; both dis-
tance fun&tions and submetries. In fact, their limits will share these properties, as noted
by Petersen [37, Se&tion 10.1.3].

The equation 7., o ¢, = idx_ holds since the corresponding equation holds for every
i. Finally, the equation u.(v) = dg_ (¥, G © Teo(¥)) holds, since for any sequence {u;} con-
verging to y € Y the geodesics t — tu; = ¢; o 7t;(u;) + tu; are rays (see Proposition [3.34]),
hence isometric embeddings, and thus also converge to a minimal geodesic. N

Because of Theorem the fiberwise behavior is also controlled.

5.17 Proposition. Let 7; : (E;,0,,) — (Xj,*;) be a convergent sequence of pointed spaces as
before. Let Ty, : (Eqo, 0, ) — (Xoos*o) be their limit. Then if q € X, and {q; € X;} is any

sequence converging to q. Then, by passing to a subsequence if needed, for any € > 0,

) t-GH  _
1 (B () —— 1 (Be(q)). (5.43)
Furthermore,
_1 pt*GH _1
7 (qi) — T (). (5.44)

Proof. Since the pointed sequence converges with di§tinguished point #;, it also converges
with respect to the points g;.

Consider, as in the proof of Proposition the minimizing geodesics y; given by
t > tu; for any convergent sequence of points u; € 7;'(¢;). Then, the sequence converges

to a minimizing geodesic and since the sequence of maps 7; o y; = ¢q; also converges,
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it follows that the limit Q of the fibers (which is is known to exist by Theorem or
Corollary [5.2]) is inside the fiber over the limit (see Remark [1.35). More precisely, there
exists an isometric embedding

Q < 1l (q). (5.45)

To prove that this is indeed surjective, and thus proving (5.44)), the §tatement of
will be proved first.

For any ¢ > 0, the sequence (nlfl(Bg(Oqi)), 04,) also converges (or a subsequence thereof)
by Theorem Any sequence of points u; € 7;'(B.(q;)) that converges, necessarily
converges to a point y € t;} (B,(q)) since there exi§ts N > 0 such that for any i > N

di(qi,7;(u;)) < ¢, (5.46)
so that, by continuity,
doo(9) oo (¥)) = llggg di(q;,mi(u;)) < & (5-47)

Conversely, consider any v € 1.} (B,(g)) and any sequence {u;} converging to y. By look-
ing again at y;, the minimizing geodesics from ¢;o7;(u;) to u;, one sees that a subsequence
of {¢; om;(u;)} converges to ¢, o 1, (y). By Proposition Tl 1S an isometry when re-
strited to the image of ¢,,; therefore there exists a subsequence of {r;(u;)} that converges

to 1. (y). Now, because

Tleo(¥) € Be(9), (5-48)

it follows that there exists N > 0 such that for all i > N,

;(u;) € B.(q;). (5.49)
Thus, for all € >0,
. t-GH  _
701 (Be(q:) —— 10 (Be(q)): (5.50)

Furthermore, this convergence is attained in a compatible way with the convergence
of their ambient spaces.

To finish the proof of consider any y € 7;l(g) and any sequence {u;} converging
to y. Since
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for any ¢ > 0, by ([5.43)) the sequence can be assumed to satisfied that

u; € 71, (B(q;)).

It is better to denote this sequence by {u}}, since it in fa¢t depends on ¢. Now, by Theorem

5.12} for any € > 0,
[5.12} y
dGH(ﬂil(Bs(Oqi))/Tlil((%'))) <2e.

One can consider a sequence {u~f € n;l(qi)} with
€ €
dg (u;,uj) <e. (5.51)
Now, again by a diagonalization argument, consider ¢ = % and define

V= uf. (552)

By definition, v; € 71171 (9;) and for any € > 0, there exi$t N for such that for any i > N,

2/i <€,
and as such,
1/i €
dg, (u;",vi) < 5, (5.53)
and
i &
du”,y) < 5 (5-54)

Therefore, for any y over g, a sequence {v;} over g; that converges to y was produced. By
Remark Q = 1;l(¢) and the claim follows. O

5.18 Proposition. For any sequence of Riemannian manifolds {(X;, p;)} converging to (X o, Xoo)
consider a convergent family of bundles with metric connection (E;, h;,V;) over it converging to
(Eoor Vo) and Ty : Eqo = X as in Proposition Then the fibers of T, are equidistant.

Proof. Let p,q € X, be arbitrary and consider sequences {p;},{g;} € X; converging to p,q €
X respeltively. Because for each i the fibers of 7; are equidis$tant, the distance between
the fibers nlfl(pi) and n;l(qi) is equal to the distance between p; and g;.

Let u,v € E,, and consider sequences {u; € n;l(pi)} and {v; € n;l(qi)} converging to u,v

respectively. Then,

dg.(ui,v;) > dx (pi, i); (5.55)
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which in turn implies that

dg_(u,v) > dx_(p,q). (5.56)

This proves that the distance between the fibers is at leat the distance between their
base points.

It remains to show that for any u € 7t} (p) there exists v € 7}l (¢) with

de (u,v) =dx_(p,q) (5-57)

To see this, consider any sequence {u; € TtlTl(pi)} converging to u. Let {v; € n;l(qi)} be a

sequence such that
dg,(u;,v;) = dx,(pi, q;)- (5.58)

Let a; be minimizing geodesics connecting u; to v;. By the Arzela-Ascoli Theorem,
there exists a subsequence of {a;} that converges to a minimizing geodesic in E,, con-
necting u to some point v € E.,. It follows that the corresponding subsequence of {v;}
converges to v. From this it follows, since fibers converge to fibers, that for any p,q € X,

and for any u € 7;}(p) there exists

v e (q), (5.59)

such that, by continuity,
dr,(u,v) = lim d,(u;,v;) = lim dx; (p;, q:) = dx_(p,)- (5-60)
O

The fibers of 7., can be naturally identified with the quotient of any given fiber by a
closed subgroup of the orthogonal group in view of Theorem as stated in the follow-

ing result.

5.19 Theorem. Let 7; : E; — X; be a convergent sequence of vector bundles with bundle metric
and compatible conneltions {(E;, h;,V;)}, with limit 7w : E — X. Then there exisls a positive
integer k such that for any point p € X there exists a compact Lie group G < O(k), called the
wane group that depends on the point, such that the fiber ' (p) is homeomorphic to R¥/G,
i.e. the orbit space under the §tandard action of G on R,

5.20 Remark. Recall that the main feature of G is that its orbits coincide with the “orbits”
of the following set G (see Theorems[5.4/and [5.5). Let p € X and let pX; be a sequence
that converges to p. Suppose, by passing to a subsequence, that the sequence of holonomy
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groups is constant, H = Hol,, (V;), and the fibers have constant dimension. Then let Gy is
given by

a; €H, lim L; (a; )= 0}, (5.61)

i,F>00

Gy = {g = lim a;,

i,F>00

where L;(a;) is the infimum of the lengths of loops at p; € X; that generate a; by parallel

translation (as in Definition [3.54]).
By virtue of Corollaries and the limit metric of 7t'!(p) could, in principle, be

given more explictly, once the behavior of these lengths is known.

Proof of Theorem Let {p;} be a sequence converging to p. Then, by Proposition
there exists a subsequence of {n;l(pi)} that converges to the fiber ! (p). Let V; = n;l(pi),

H;=Hol, (V;), and L; : H; — R the induced length norm. Then by Corollary applied

to the sequence {(V;, H;, L;)}, the conclusion now follows. ]

Summarizing, in the case of the collection of Sasaki metrics on the tangent bundles of

a convergent sequence of Riemannian manifolds, the following holds.

5.21 Theorem. Let {M;} be a family of Riemannian manifolds with an upper bound on their
dimension that converges in the (pointed) Gromov-Hausdorff sense to X. Then there exisls a

subsequence of {T M;}, with their Sasaki metrics, that converges to a space Y. Furthermore,
1. there exists a continuous map 1 : Y — X, that is a submetry with equidistant fibers.

2. there exislts a positive integer k such that for any p € X there exists a closed subgroup
G < O(k) such that '\ (p) is homeomorphic to R*/G.

Proof. Because the sequence {M;} is convergent, by Theorem there is a subsequence

of {TM;} that converges to a space Y. By Propositions [5.16|and |5.18} the promised 7 :
Y — X exifts and has the required properties. Finally, by Theorem the rest of the
claim holds. O]

Theorems [5.10/and [5.19| together give a criterion for the fibers of 7., in Theorem

to be vetor spaces:

5.22 Theorem. Let 7t; : E; — X; be a convergent sequence of vettor bundles with bundle metric
and compatible conneltions {(E;, h;,V;)}, with limit 7w : E — X. Suppose further that exist a
uniform positive lower bound for the holonomy radii of 7; : E; — X; as in Definition Then

the fibers of T, are vector spaces.

Proof. Again, by reduction to the case where the rank is constant, the conclusion follows

from Theorem O
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Another piece of information inherited by the limits is that of “scalar multiplication”.
The §tandard R actions converge to an R action on the limit. This action doesn’t need to

be such that if for a non zero u, au = bu then a = b.

5.23 Theorem. For any sequence of Riemannian manifolds {(X;, p;)} converging to (Xe, Xoo)
consider a convergent family of bundles with metric connection (E;, h;,V;) over it converging to

(Ecos Voo)- There exists a continuous R-action
RxE. — E

such that there exists a subsequence of {E;} such that the $tandard R-altions given by scalar
multiplication converge uniformly on compact sets to it.

Proof. The existence of said map follows from an application of the Arzela-Ascoli theo-
rem by the following reasoning. Regarding R x E; as a metric space with the §tandard

produ&t metric, one sees that by requiring 4,b € R, u,v € E; such that

a2+ d2(0;, ), \JIbP + d2(0;,v) < R,

for some fixed R >> 1. Recall that the distance funtion on E; is given as in (3.43) and that
therefore the diStance between re-scalings of a common vector is bounded above by their

linear distance, that is
d(au,b,u) <||ull;la - bl. (5.62)

Also,

d(bu,bv) = inf \J£2(@) + [bPRIIPeu — v]]2
o

= max(L, bl inf \[¢2(a) + [P — v]]2
04

< Rd(u,v),
and therefore

d(au,bv) < d(au,bu)+d(bu,bv)
<R|a-b|+Rd(u,v)

< VERyfla— b2 + d2(u,v).

This proves that the family of maps (a,u) — au is equicontinuous when restrited to

balls of a given radius. Thus by the Arzela-Ascoli theorem, there exists a convergent
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subsequence and thus the required map exists. Furthermore, since for any a the map
u > au is also a limit of the corresponding re-scaling maps, the defining properties of an

R-action are also verified, namely: For all u € E, and for all 4,b € R

l-u=u, (5.63)
a-(b-u)=(ab)-u (5-64)
O

5.24 Remark. As expected, multiplication by zero yields the zero section (as defined in
Proposition [5.16]), namely

01U =Co0Too(U). (5.65)
5.25 Corollary. For any sequence of Riemannian manifolds {(X;, p;)} converging to (Xeo, Xoo)
consider a convergent family of bundles with metric conneétion (E;, h;,V;) over it converging to
(Ecor Yoo)- For any u € E, the map

t— tu,

for t > 0 is a geodesic parametrized proportional to arc-length.

Proof. This again follows from the faét that the corresponding maps for any sequence
{u;}, with u; € E; are geodesic rays (cf. Proposition [3.34)) and an application of the Arzela-

Ascoli theorem. O

5.26 Corollary. For any sequence of Riemannian manifolds {(X;, p;)} converging to (Xeo, Xoo)
consider a convergent family of bundles with metric conneétion (E;, h;,V;) over it converging to

(Ecos Vo), and let po, : Eoy — R as in Proposition
Then for any u € E, and for any a € R,

Hoolau) = lalptoo(u) (5.66)

Proof. This can be verified in two ways: 1) Since p,, is the limit of the norms and since
scalar multiplication satisfies said equation at the level of norms, then so will the limit
satisfy it; 2) In view of the previous corollary, since p,(v) is also the distance between
vand 0-v = ¢, T(v) and the map t — tau, being part of a geodesic ray, is a minimal

geodesic. ]

5.27 Corollary. For any sequence of Riemannian manifolds {(X;, p;)} converging to (Xeo, Xoo)
consider a convergent family of bundles with metric conneétion (E;, h;,V;) over it converging to
(Ecor Voo)- For any u € E, there exists a sequence {u;}, with u; € E; such that ||u;|| = p(u) for
all i.
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Proof. There are two cases given by whether p,(#) = 0 or no. If it is then for any sequence
of points {x;} converging to 7., (u) it follows that u; = ¢, (x;) converges to u as required.
If poo(u) = 0 then, without loss of generality, one can consider a sequence 1; converging
to u such that for all i, ||i7;]| # 0. Then by letting u; = (po(u)/||17;||)17;, the conclusion also

follows since || - || converges to .. H

5.3 Isolated degenerations.

Consider a sequence of twofolds converging in the pointed Gromov-Hausdorff sense to
a cone in such a way that away from the point the convergence is smooth. Then the
sequence of tangent bundles converges to the tangent bundle with an appropriate fibre
added above the tip. This fibre is determined by the cone angle since it determines the
holonomy group of the cone: the fibre is homeomorphic to the quotient of any tangent
space by the holonomy adtion and its restri¢ted metric is the canonical one. This is the
content of Theorem below.

In order to prove this fa&, as well as to give a more precise Statement, the metric
struGture of the cone, as a Riemannian manifold, will be analyzed. The §tandard way
to produce a metric space $§truéture on an abstra& conneéted Riemannian manifold is
by con$truéting the length Structure on curves and then by defining the infimum over
possible paths connecting two given points. By the Hopf-Rinow Theorem, the metric
completeness guaranties the existence of minimizing geodesics.

Suppose now that a closed submanifold ¥ is removed from a complete Riemannian
manifold N.

5.28 Proposition. Given a complete Riemannian manifold N and a codimension 2 submani-

fold X, the metric completion of N \ X is uniquely isometric to N.

Proof. As a Riemannian manifold itself, the complement M = N \ X can §till be given a
metric struture. If the codimension of said submanifold is at least 2, then by standard
transversality theory, any minimizing geodesic between two points in N can be arbitrarily
approximated by curves that miss .

This proves that the re§tri¢ted metric on M C N coincides with its induced metric;
indeed, the induced di$tance on M can only increase, but by the described approximation
it is seen to be equal.

The metric completion of M is in a sense the smallest metric space X containing M
as a dense set: if Y is any complete metric space and f is any uniformly continuous

function from M to Y, then there exi$ts a unique uniformly continuous function F from
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X to Y, which extends f. In particular, for any such f and any point p € ¥, there exists a
neighborhood (within a coordinate chart) U € N of p such that

UnM=U, (5:67)

and as such, F can be uniquely defined at p. ]

The codimension assumption is necessarily optimal —not only because of potential
disconnections— as can be seen in elementary examples (e.g. consider a 2-torus with a
generating circle removed).

In the Gromov Hausdorff Theory of convergence of metric spaces, one usually restricts
one’s attention to complete metric spaces. In particular, when a limit exists, it is defined
to be complete.

Consider now the case when a sequence of metric spaces converge in the sense that
they satisfy the definition without the assumption of completeness (neither for the terms

in the sequence nor for the “limit” space).

5.29 Proposition. Let {(X;,x;)} be a sequence of (not necessarily complete) pointed metric
spaces. Suppose that there exists a (not necessarily complete) pointed metric space (X, x) such
that together they satisfy the conditions of Definition Then their completion {X;,x;} and
X, x also satisfy the conditions of Definition and thus X is the pointed Gromov-Hausdorff
limit of the sequence of completions.

Proof. Recall that by Definition a sequence {(X;, x;)} of pointed proper metric spaces
is said to converge to (X, x) in the pointed Gromov-Hausdorff sense if the following holds:
For all R > 0 and for all € > 0 there exi$ts N such that for all i > N there exists an ¢-

isometry
fi : Br(x;) = Bg(x), (5.68)

with f;(x;) = x, where the balls are endowed with restri¢ted (not induced) metrics.

A space is proper if diStance balls are compact. In the case of manifolds the conver-
gence essentially says that given a positive number r, the balls of radius r around the
distinguished points x; converge in the Gromov-Hausdorff sense to the ball of radius r
around x in such a way that

lim x; = x. (5.69)

i—00
The original technical reason for completeness is that for bounded metric spaces the
Hausdorff distance between a subspace and its closure is zero, but they don’t need to

be isometric. However, if a sequence of spaces satisfies properties of the definition of
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pointed Gromov-Hausdorff convergence, that means that for arbitrary fixed radius, the
Gromov-Hausdorff distance between the balls of that radius and the corresponding ball
in the expedted limit is going to zero, then by a standard triangle inequality argument,
the distance between the completions of said balls is also going to zero.

For the latter, this is a Statement of complete spaces and thus within the usual Gromov-
Hausdorff theory. The only subtlety is observe that the completion of a closed ball of a
given radius is the closed ball of the same radius in the completion, but this is immediate.

O

5.30 Proposition. Given a convergent sequence of Riemannian metrics {g;} converging C*-
smoothly to a Riemannian metric g, the sequence of Sasaki metrics G(g;) converges CK~!-
smoothly to the Sasaki metric G(g).

Proof. In local coordinates, the tangent bundle is described as follows. Let (x': U - R}
be a local chart for the base. Then u' : 77}(U) — R, given by

i (p,v) = dxj(v). (5:70)

In this terms the Sasaki metric ¢ with respect to a Riemannian metric g is given as
follows (cf. Definition [3.28).

Guiinij = 8ijoT (5.71)
Ginvj = u' (Tjpgik) o @ (5.72)
Gij = gij o T+ ukul (5T gjg) o (5.73)

Because of these expressions, one sees that the Sasaki metric G(g) as a function of {x', u'}
is of class C*~! if g is of class Ck. Furthermore, if a sequence of metrics is converging

smoothly, then so is their corresponding sequence of Sasaki metrics. [

Even though all such cones are homeomorphic to the R?, the geometry of their tangent
bundles is very sensitive to the opening angle. As a working definition of a 2-dimensional

cone consider the following metric in polar coordinates.

r 2
g=dr+(2) a0? (5.74)

As seen before, the geometry of the reStricted metric on individual tangent spaces is

determined by the length-norm on the holonomy group. Now is time to see this local
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structure gives back information about the completion of the Sasaki metric.

5.31 Proposition (Cone completion). The completion of the Sasaki metric of a metric 2-

dimensional cone is obtained by attaching

R? [Hol (5.75)
as the corresponding fibre over the tip. Here Hol denotes the holonomy group of (5.74).

At this point it is important to notice that even when the fibre over the tip is a metric
cone, the re§tri¢ted metric on this cone does not in general coincide with that of the base

cone. This only happens when
o= (5.76)
n
for some integer n. That is that they coincide only when the space was already an orbifold.
This apparent discontinuity is worsen by the misleading illusion that if two cones have
very close opening angles their behavior should be similar. However both the global and

infinitesimal analysis shows that they are indeed quite different:
* These cones are actually infinite Gromov-Hausdoff distance apart.

* Their holonomies may be abysmally different.

Proof of Proposition From ([5.74)), one sees that if one cuts open the cone along a con-
stant O ray, a “fundamental region” for the cone is a hinge of opening angle ¢. Look at the

shaded region in Figure In that case, an angle 0 < ¢ < 7t is considered. The picture is
correct although it might be misleading for values of ¢ larger than 27 (which the fomula
certainly allows for).

Since the metric is flat, the only way to generate nontrivial holonomy is to go around
the tip (Labeled O). The holonomy transformation at a point P with respect to a loop y
based at P is a rotation by

a(y)=wo(y)-¢ mod 27, (5-77)

where wg is the winding number of y around O (for an a priori fixed orientation) and
as such the holonomy group is generated by ¢ mod 2m.

Recall that the length-norm L is given by infimum of lengths of loops generating any
given holonomy. If the angle is larger than or equal to 7 then, regardless of the nontrivial
holonomy element, the infimum is achieved by 2 PO, i.e. twice the diftance from the
point considered to the tip of the cone; indeed, this is achieved by a sequence of very

small loops around the tip.
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Figure 5.1: Cut-open cone of angle 0. A circle with center P and radius PO only contains a
few segments of the form PX, X = Q,Q’,Q”, Q" showing that it is eventually shorter to go by
the tip O instead.

If the angle is smaller, then shortcuts occur for a little while: Let Q be as in the figure,
the perpendicular projection of P onto the slit. Then, there exists a natural number N
such that

N-PQ<PO<(N+1)-PQ, (5.78)

and thus the length norm L(n-¢) is 2n -PQif 0 <|n|< N and 2-PO otherwise. Notice that
_ . (P —_
PQ—SIDE-PO (5.79)

By Theorem the restri¢ted metric on the tangent space at P is a holonomic space

metric

d(u,v) = inf\/L(n ¢ mod 27)? +|[R,.,u — || (5.80)

where R §tands for the corresponding rotation.
Thus, for any sequence of points P converging to O, the holonomic spaces converge to

the quotient of R? given by the following semimetric:
p(u,v):ir];f||Rn,(Pu—v||. (5.81)

There are two possible situations. One where the holonomy group H = () is finite,
and hence closed and discrete; or when it is not, and hence dense. This are determined
by whether

¢ € 2nQ. (5.82)

In either case, let G = H CS! and notice that (5.81) is precisely the metric on the orbit
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space
R?/G, (5.83)

which is again a (non-degenerate 2-dimensional) cone if G is discrete or a ray [0,0) (a
degenerate cone) if G = S!.

Finally, consider any Cauchy sequence on the tangent bundle to the cone with the tip
removed. Because by construction the canonical projection is a Riemannian submersion
the image of this sequence is §till Cauchy. Now, without loss of generality assume that
the limit is the tip. Then consider the sequence of corresponding tangent planes (those
that contain the §tarting sequence).

As per the previous discussion, said sequence of tangent spaces converges to R%/G in
the Gromov-Hausdorff sense. Since this convergence obtained by looking at restricted
metrics, the considered Cauchy sequence remains a Cauchy sequence for any metric on
the disjoint union of the tangent spaces with the limiting cone that realizes the conver-
gence as a Hausdorff convergence. This gives a correspondence between points on the

limiting cone and Cauchy sequences whose projections converge to the tip. N

These falts together yield the following result.

5.32 Theorem. Given a sequence of 2-dimensional metrics converging in the pointed Gromov-
Hausdorff sense to a flat cone with opening angle ¢, such that the convergence is smooth away
from the tip, the sequence of tangent bundles (with their Sasaki metrics) converges to the metric
completion of the tangent bundle of the cone. The fiber over the tip is isometric to the quotient
of R? by the closure of the holonomy group H of the flat cone (with the standard quotient/cone

metric). Since H is generated by a rotation by

O = 2msin(g), (5.84)

the fiber over the tip is in general a different cone (e.g. it can be a ray if sin(¢) is not rational).
Proof. The claim is now justified by the following fa(ts:

1. By assumption the convergence is smooth away from the tip and hence (By Propo-
sition [5.30) the convergence of the Sasaki metrics is also smooth away from the tip;

2. Any given tangent space inside the tangent bundle is of codimension the dimen-
sion of the base; that is 2. Thus the removal of a single fibre affets not the metric
Structure of the tangent bundle as per Proposition

3. The completion of the tangent bundle of a cone minus the tip is described as in the
claim in view of Proposition and
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4. By Proposition Gromov-Hausdorff limits commute with completions.

O]

Since the metric on the cone is flat, this analysis can be extended to 2-folds converging
smoothly away from a discrete set to a flat metric with isolated conic singularities; each
cone point has a cone angle that determines the topology of the fiber above it. Examples
of these spaces are polyhedra —in particular the Platonic solids— with a flat metric on
their faces. Since by assumption a polyhedron is a two-dimensional manifold, the edges
can be smoothen out so that the only singularities of the metric occur at the vertices. In

this case, at each vertex, the ‘angle’ 6 is given as follows.

5.33 Definition. Let P be a flat polyhedron with vertices {V;} and faces {F;}. The angle
defe(t at a vertex V; is the difference

0;:=2m~ ) 6;(V;) (585)

where 6;(V;) is the angle at V; of the face F;.
5.34 Proposition. Let P be a flat polyhedron with vertices {V;} and angle defects {0;}. Then
the metric completion of the Sasaki metric on TP is obtained by attaching, over each vertex V;,

where H is the closure of the group of rotations by 6; in O(2).

Proof. The argument is identical to that of Proposition If desired, this can be seen

by looking at the tangent cone at the given vertex. O

5.35 Corollary. Given a sequence of Riemannian metrics converging smoothly away from a
discrete set to a flat polyhedron, then their Sasaki metrics converge to the completion of the
Sasaki metric on the polyhedron and the singular fibers are homeomorphic to the quotient of R?

by the closure of the group of rotations by the angle defe¢t at the given vertex.

5.4 Further examples.

Other consequences of Theorems [5.16/and[5.5]are the following.

5.36 Example. Given any compact Riemannian manifold (M", g) and let X; be the metric
space obtained by rescaling g into l.lzg. Then tangent spaces converge to R"/Hol(g). Here

Hol(g) denotes the closure in O(n).
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Proof. Let p € M and let (V,H, L) be the associated holonomy space given by Theorem
at p. By Theorem because M is compad, it follows that

der(TM, V) < 2diam(M). (5.87)

Thus, by re-scaling, diam(X;) — 0 and the limit Y = lim; T X; is equal to the limit of the
holonomic metrics at p. To analyze these spaces notice that the Sasaki metric re-scales like
the base metric does; indeed, by re-scaling, the Levi-Civita connection remains constant

and thus the horizontal lifts remain unchanged (cf. Definition ??). Define
(Vi,H;, L;)

to be the corresponding holonomic spaces at p € X;. Again, because the connection is
unchanged, it follows that
Hi =H.

Also, since by Definition L is an infimum of lengths,

Finally, the norm on V;, denoted by || - ||;, is given by
1
-1l = =11l
i
where || || is the norm on V. Notice that by considering the map ¢; : V. — V, given by
¢;:u—iu, (5.88)
one gets an isometry of the holonomic spaces
¢i:(V,H,L;) — (Vi H, Ly). (5-89)

Therefore, the limit Y is the quotient R"/G for some compact Lie group G, by Theorem
[5.5} Furthermore, consider Gy as in Theorem Because for anya € H,

lim L;(a) =0,

i—00

it follows that G, = H; thus proving the claim.
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5.37 Remark. A theorem of Wilking [49]| States that any closed subgroup of O(n) can be
realized as the closure of a holonomy group of a compact smooth manifold. By Theorem
[5.36] one thus recovers all linear metric quotients of R”.

5.38 Example. Let {(M;, g;)} and {(N;, h,)} be two convergent sequences of complete Rie-
mannian manifolds, with limits X and Y respectively. Let {E; — M;} and {F; — N;} be two
convergent sequences of vector bundles with connetions endowed with their metrics of
Sasaki-type. Let E — X and F — Y. Then, for the produét metrics on M; x N; the limit
convergesto ExXF — X x Y.

Proof. For each i the bundles E; x F; — M; x N; are endowed with the produ& connetion,
the produ¢t bundle metric, from which it follows that for any curve y = (yy,y,), the

parallel translation along y splits in the following way.
PY = pn @ P2

From this it follows that the produt metric of metrics of Sasaki-type coincides with
the metric of Sasaki-type on the produt. Now, because the spaces are products, the limit
of the produt is the product of the limits. O

5.39 Remark. Because of this, it follows that for any (p,q) € M; x N;,
HOl(p’q)(gi) :HOZP(Ei)XHOIq(Fi). (590)

Furthermore, the length norm of (a,b) is given by

Lipa) (@) = y/Lp(a) + Lg(b) (5.91)

5.40 Example. Let (M;',g;) and (M,?,¢,) be two complete Riemannian manifolds; sup-
pose further that M, compact. Consider the metrics

3 1
@=&+ﬁ&}

on M; x M,, which to converge to (My,g). If ®:Y — M, is the limit of their correspond-
ing tangent bundles endowed with their metrics of Sasaki-type, then the fibers of 7 are

homeomorphic to
R™ x (R"2/Hol(g,)). (5.92)

However, for the constant sequence {(My, g1)} the limit is the canonical projeétion TM; —

M, . This proves that passing to a subsequence in Theorem|[5.14]is in general unavoidable.
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Proof. Because these metrics are product metrics, where the second factor is re-scaled,
the limit is the limit of the fa&ors, by Example
Now, since only one of the fator is being re-scaled, while the other remains constant,

the group-norm becomes degenerate on {id} x Hol(M;), thus yielding the desired result

by Example O



Chapter 6

A weak notion of parallelism on singular

spaces
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Fifth Postulate, Elements.

EucLip

PERHAPS THE MOST GENERAL SETTING for a notion of parallel translation is that of
a pair of metric spaces and a surjetive submetry between them. Even in this generality
one can talk about parallel translation as long as one is willing to loosen it by consider-
ing, in§tead of functions, relations or —equivalently— set-valued funétions. A notion of
parallelism is this weak sense is the prescription of a class of curves on the domain of the
given submetry: horizontal curves.

Once this class is given, two points are “parallel” if they can be joined by a horizontal
curve. This is seen to be an equivalence relation. Holonomy groups control the extent to
which this notion fails to produce a global notion.

In the setting of limits of ve¢tor bundles with connection endowed with their metrics
of Sasaki type the following general considerations will be considerably better behaved.
Yet, in giving a precise framework the assumptions will be kept to a bare minimum.

Lastly, the wane groups, in controlling the departure of the fibers from veltor spaces,

also effet the non-uniqueness of parallel translates.
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6.1 Definitions

In this section, several concepts are recalled and introduced. In particular, a notion of
holonomy monoid will be given for submetries. Recall that a submetry :Y — X is a map
(a fortiori surjetive and continuous) such that for any radius r the image of any metric

ball of radius r is again a ball of the same radius r.

6.1 Definition. Given a submetry t: Y — X a curve y : [0,1] — Y is horizontal if and only
if
{y) =Lmy). (6.1)

The set of all such curves will be denoted by H().

6.2 Definition. Given a curve a : [0,1] — X and a point u € 7t'a(0) a parallel transport of

u along « is a horizontal y such that y(0) = v and ty = a.

It is easy to produce examples where given a and u there exist no parallel translation
as well as examples where there are even infinitely many such lifts. However, in the case

of limits of metrics of Sasaki type, there will always exist at least one lift given u.

6.3 Definition. Given a curve a : [0,1] — X and a point u € 7t "' «a(0) the parallel translation
of u along a is given as relation P C ! (a(0)) x 7'} (a(1)). This can be regarded as a set-

valued funétion
Pl (a(0) --» wl(a(1)),

given by
P(u) = {y(Dly € H(r),my = a} 1 (a(1)). (6.2)

In the setting of limits of Sasaki-type metrics, there are examples where uniqueness
is not satisfied, and thus such that it is necessary to talk about relations ( as set-valued

functions) and not of single-valued functions.

6.4 Theorem. Given a submetry w:Y — X, and given two curves «, 3 : I — X such that
a(l) = p(0), then
pha =phope, (6.3)

where B - a Stands for the concatenation of a and p. Also,
P = (P, (6.4)

where o~ is the reverse curve.



Furthermore, given a fixed x € X, the set
Hy := {P¥a(0) = a(1) = x} (6.5)

is a *-semigroup with identity.

Proof. Because parallel translation is defined by horizontal curves, and the concatenation
of curves is additive in length, it follows that the the concatenation of horizontal curves
is horizontal, thus proving the fir§t claim. The second claim follows by reversing the
direction of the horizontal curves.

In particular, for the set of parallel translations along loops, since it is closed under

composition and under the involution if follows that it is indeed a monoid. ]

6.5 Definition. Given a submetry 7 : Y — X and a point x € X, the monoid with involu-
tion
Hy:={P%a(0) = a(l) = x} (6.6)

will be called Holonomy monoid of 7 at x.

Notice that this coincides with the usual holonomy group in the case of a metric of
Sasaki type, as well as in the case of Riemannian submersions in general ([22]]). It will be

seen that their departure from being groups is equivalent to the non-uniqueness of loops.

6.2 Existence and invariance

When $tudying limits of spaces, it is important to determine what properties “pass to the
limit”. Take the example of minimal geodesics. It is not true in general that any minimal
geodesic in the limit arises as a limit of minimal geodesics. It is then a natural question
to ask whether the same is true for horizontal curves.

The next results States that this is not true, and that every horizontal curve is the limit

of horizontal curves.
6.6 Theorem. Horizontal curves are the uniform limits of horizontal curves.

Proof. Let m: E — X be, as before, a limit of vector bundles 7; : E; — X; and let y be
a horizontal curve between u € E and v € E and consider a sequence {y;} of piecewise
smooth curves converging uniformly to y such that their lengths £(y;) converge to €(y) .

Let a; = ;;, and let y; be the unique horizontal lifts of a; with ;(0) = y;(0).
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Because a; = 1t; o y; holds, it follows that « is the limit {a;} and since Y; have uniformly
bounded lengths, one can assume that they converge uniformly. Indeed, a uniform upper

bound C on lengths implies that

7/( )EBC(Vz( )) Ezl

and thus the convergence can be regarded as a Hausdorff convergence as in Remark [1.34]
Furthermore, it follows that if ' is the limit of y;, then 7y = a.
The claim is that = y. In fa&, for each i, since the Riemannian §tructure on 7;'q; is

flat and Euclidean, the curve

8i 1t B ((1=1)y;(0)+ HB™) (:(1)) (6.7)

is shorter than y; with the same endpoints, and its length is given by

81) = yJE2(ai) + 1P (34(0)) ~ y, (L. (6.8)

@

Figure 6.1: The geometry on ajE;

Now by the lower semi-continuity of the length functions, it follows that

ty)= }Lrgo(f(yi)) > llifgo(f(ai)) > l(a) =L(y), (6.9)
and that
t(y)= }Lrgo(ﬁ(Vz)) > lim (€(y7)) 2 £(y) 2 £a) = £(y). (6.10)
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Therefore, ¥ is horizontal. For the curves 9;, since

5(7,‘)25(9{)25(6!1'), (6.11)
it follows from that
1P (i(0) - (Dl —> 0, (6.12)
which means
I7:(1) = (0l —>0. (6.13)

This now says that {y;(1)} converges to (1), as required.
Now, to see that this is true not only at the endpoints, notice that any segment of a
horizontal curve is §till horizontal, and that one can re$trict the y; and the a; accordingly.

The claim now follows and with it the end of the proof. N

6.7 Corollary. Horizontal curves have constant norm and constant re-scalings of horizontal

curves are horizontal.

Proof. This is true since, before passing to the limit, the class of horizontal curves is closed

under re-scaling and scalar multiplication is a uniform limit of scalar multiplications. [J

6.8 Theorem (Parallel translation exi$tence Theorem). For any sequence of Riemannian
manifolds {(X;, p;)} converging to (X,p) consider a convergent family of bundles with metric
connection (E;, h;, V;) over it converging to (E,¢(p)) with t : E — X as in Proposition|s.16] Let
a : I — X be any reétifiable curve. Then for any u € ' (a(0)) there exists v € 7! (a(1)) such

that there exi$ts a horizontal path y from u to v. In other words,
P*(u) = 2. (6.14)

Proof. Let a; be piecewise smooth curves converging uniformly to a. Let u; € nlfl(ai(O))
be a sequence of points converging to u € 7t'!(a(0)), Let y; be the parallel translation
along a; with y;(0) = u;. Since

t(yi) =)

by constrution, the convergence in length of {«;} gives a uniform upper bound on the
lengths of ;. Thus, by the Arzela-Ascoli theorem, there exists a subsequence of {y;},
without loss of generality labeled again by y;, that converges uniformly to a curve y with
7(0) = u.

Now, by the lower semi-continuity of the the lengths,
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{(a)=1lim{l(a;) = im {(y;) = 0(y) = €(a), (6.15)

i—00

which implies equality and thus finishes the proof. ]

It will now be seen that the limit of the total spaces of a sequence of vector bundles
with corresponding Riemannian metrics of Sasaki type contains many flats, i.e. isometric
embeddings of [a,b] x [0, c0) C R

6.9 Definition. Let X be a (pointed) limit of complete geodesic spaces X; (e.g. Rieman-

nian manifolds)and x,y € X. A curve a : [0,1] — X is a minimal limit geodesic if
1. a(0)=xand a(1) =y;
2. {(a)=d(x,p), i.e. if it is a minimal geodesic; and

3. there exist sequences {x; € X;}, {y; € X;} and minimal geodesics «;, with «a;(0) = x;

and «;(1) = y; such that {a;} converges to a.

6.10 Proposition. For any sequence of Riemannian manifolds {(X;, p;)} converging to (X,p)
consider a convergent family of bundles with metric conneétion (E;, h;,V;) over it converging to
(E,c(p)) with 1t : E — X as in Proposition Let a : I — X, parametrized by arc-length, be

a limit geodesic. Then for any u € ! (a(0)) there exists an isometric embedding

@ =@uq:[0,4(a)]x[0,00) = E, (6.16)
with
T ®(t,5) = alt) (6.17)
and such that
= (0, pioo(1)). (6.18)

Furthermore, if y(t) := @(t, poo(tt)), then y is horizontal and

P(t,s) = (1) (6.19)

Proof. Let a; be geodesics (parametrized by arc-length) such that a = lim;_,,a;. Let

u; € 70;*(;(0)), with [|lu;]| = p;(u) and such that {u;} converges to u. Let y; be the unique

parallel translation along a; with initial value u;; that is that
yilt) = B (u;). (6.20)
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It is only needed to show that the map
(t5) = ——yi(t) (6.21)
PR ) |

is an isometric embedding for each i. Once this is done an application of the Arzela-Ascoli
theorem completes the proof.
Indeed, by (3.43) the distance between two images is given by

d(gp(t,s), (t),s) = i%f\/ﬁz(/i) +IPP(e(t,5)) = p(t', )12 (6.22)
= irﬁlf\/fz(ﬁH Wll(sPﬁPf‘ =P (u)II%, (6.23)
(6.24)

where the infimum is over curves 8 connecting 7t;(@(t,s)) = a;(t) to w;(@(t’,s") = a;(t').

Now, given that parallel translation is by linear isometries of the fiber, then
I(sPP P = "B ) (i)l > Is = sl (6.25)

since the closes$t points between the spheres of radius s||u;|| and s’||u;|| with common center

is given by the right hand side. Also, for any
((B) =t —t] (6.26)

which is the distance between its endpoints. Thus

d(@(t,s),(t',s") =Vt =112 +1]s - 52, (6.27)

However, by chosing 8 = a|[min{t, '}, max{t,t’}] in (6.23), the reverse inequality from
(6.27) is obtained, thus yielding the claim and finishing the proof. O

6.3 Influence of the wane groups and holonomy

Since one can think of examples of non uniqueness (consider any isolated conic singular-
ity as in Theorem [5.32), it is only natural to wonder what conditions guarantee unique-
ness in parallel translation. In principle, there are two ways in which parallel translation
can fail to be unique along a curve a. One pertaining the relation P%: whether or not this

relation is in faét a fun¢tion; and another, seemingly more drastic: whether there is more
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than one horizontal curve with given initial value over a. These are in fa¢t the same as

per the following result.

6.11 Proposition. Suppose 1w : E — X is a pointed Gromov-Hausdorff limit of a sequence
metrics of Sasaki type. Then for all curves a : I — X, P* is a function if and only if for all

curves p: 1 — X there exists a unique horizontal curve over it with given initial point.

Proof. The necessity is immediate since given a curve «, if given initial data there is ex-
altly one horizontal curve, then the relation determined is such that there is only one
pair (x,y) € P% for any given x € ! (a(0)). Conversely, to see that it is sufficient, if there
is a curve such that there are two distin&t horizontal curves with common initial point
and common endpoint (thus keeping the overall relation a function), then —since they
are di$tinct curves after all— there exists a time for which their endpoints are different.
Now, since they are projected onto the same curve, by restri¢ting the curve down$tairs,

there exists a curve g with a parallel translation relation that is not a function. O]

In fa&, the holonomy monoids defined in Definition [6.5| already determine the non-

uniqueness of parallel translation globally, as seen in the next result.

6.12 Theorem. Suppose 1t : E — X is a pointed Gromov-Hausdorff limit of a sequence metrics
of Sasaki type. The holonomy monoids are indeed groups if and only if parallel translation is

unique.

Proof. Since, if at all, the inverse is given by * (by Proposition [1.28), if follows that parallel
translations along loops are functions if and only if holonomy monoids are groups. Now,
if there is a curve a such that there are two distin¢t horizontal curves over it with same

1

initial value but different endpoints, then o a will be a curve for which the parallel

translation relation is not a fun&ion. O

The condition that parallel translations be unique already implies some further control

on the possible collapses of the fibers, namely the following fact.

6.13 Theorem. Suppose 1t : E — X is a pointed Gromov-Hausdorff limit of a sequence metrics
of Sasaki type. For any x € X and consider G, < O(k), the subgroup guaranteed by Theorem
If parallel translations are unique then for all x,y € X, the corresponding wane groups
are isomorphic,

G, =G (6.28)

y}

up to conjugation by an element in O(k).
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Proof. Now, the contrapositive statement says that if the exi$t two points with non iso-
morphic groups then parallel translation is not unique. To prove this let {x;},{y;} C X; be
sequences that converge to x,y € X respectively, such that G, and G, are not isomorphic.

Let u; € nlfl(xi) converging to some u € 7' (x). To bring this to the level of holonomic

spaces, fix a minimal geodesic «; from x; to y; and isomorphisms

¢;: nz‘.l(xl-) - Rk, and (6.29)
@; 1 11 (y;) — RE, (6.30)
such that for all 4, j,
¢i(u;) = ¢j(u;), and (6.31)
(pl-(P“iui) = (pj(P“fu]-). (632)

Let i1 = ¢;(u;),v = ¢;(P*(u;)), and

P. = ¢; o P% o ¢;'; (6.33)

thus for all i,
P(i) =v (6.34)

Again without loss of generality, {P;} converges in O(k) to a map P, with

P(ii) = v. (6.35)

By assumption, since G, # G, there exi$ts g € G, such that for all h € G, (or reversely
there exists h € G, such that for all g € G,),

P(gil) = hP(i1), (6.36)

for otherwise PG},P'1 = G,, a contradiction to them being different. Suppose without
loss of generality that it is not the parenthetical case, i.e. that it is ¢ € G, that exi$ts. It
follows that g is necessarily not the identity map.

Back at the level of fibers, this says that I can find elements i; = ¢;1(1Z) € n;l(xi) that
converge to u but such that their parallel translates along «; remain away from the par-
allel translates along a; of the u; by a definite amount. Passing to the limit (and taking

a further subsequence if needed), the corresponding horizontal curves connelting them
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converge to distint horizontal curves with the same §tarting point u. H

6.14 Corollary. Suppose 1t : E — X is a pointed Gromov-Hausdorff limit of a sequence metrics

of Sasaki type. If parallel translations are unique then all fibers of 1@ are homeomorphic.

Proof. This again follows from Theorem since for each x € X the topology of the
fiber is determined by G,. O]

The proof of Theorem hints that the not only do the wane groups have to be
conjugate to each other, but that the conjugating element has to occur as a limit or parallel

translations. It has yet to be seen to what extent is the converse true.
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Chapter 7

Future dire&ions

Time was when all the parts of the subject were dissevered, when al-
gebra, geometry, and arithmetic either lived apart or kept up cold re-
lations of acquaintance confined to occasional calls upon one another;
but that is now at an end; they are drawn together and are constantly
becoming more and more intimately related and connected by a thou-
sand fresh ties, and we may confidently look forward to a time when

they shall form but one body with one soul.

Presidential Address to British Association, 186g9.

J.J. SYLVESTER

SEVERAL QUESTIONS HAVE ARISEN during the research that lead to this report. The
original motivation was to investigate the geometry of the Riemannian metric of Sasaki
type. This lead to the introdution of the notions of holonomic space and of holonomy
radius of a Riemannian manifold.

Even though the notion of holonomic space can seem artificial, it serves the purpose of
displaying the §trong geometric interactions —at the level of the fibers— of the holonomy
groups with the fibers’ metric; and, as a side-effect, it produces a metric §truéture on
the said groups that is geometric in nature. At a philosophical level, this shows that
nature doesn’t need to be smooth or even continuous, given that the length-norms are not
continuous and yet are useful.

In trying to understand the limits of tangent bundles and their relations to the limit of
their bases, the notion of holonomy radius (a slight weakening of the convexity radius of
the Sasaki-type metric at the zero section) controls the collapsing in the fiberwise direc-
tion. This collapse is further described by the wane groups; their existence is yet another

surprising consequence of the robust algebraic nature of Parallelism in smooth spaces.
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On the wane groups

In order to exhibit the wane group at a point x € X there are several choices involved.
In particular, the realization of the fiber as a limit of holonomic spaces. Changing these
choices, only changes the group up to conjugation.

As seen in the case of conical singularities, the isomorphism type seems to be such that
the groups can only ‘decrease’ in a neighborhood; i.e. for any point p in the example there
exists a neighborhood U such that for any g € U, there exi$ts an element g € O(V) such
that

§G,8' CG,. (7.1)

7.1 Question. Is there a meaningful topology on the conjugacy classes of subgroups of the
orthogonal group for which the assignment of wane groups is continuous? Does the ‘natural’

partial order —given by inclusion— topology work?

7.2 Question. Given a limit space X, what are the defining properties of the wane group map?

Is there a sheaf-theoretic description of said map?
Even if this is not the case, a classification problem §till arises:

7.3 Question. How many conjugacy classes of wane groups are there for a particular limit

space?

Again, in the conic example it was seen that only at the tip is the space singular and

only at the tip is the wane group nontrivial.

7.4 Question. What is the exa(ll relationship between a non-trivial wane group and the pres-

ence of singularities on the base space?

And, of course, one can hope that in unders§tanding this, a natural $tratification, in

terms of wane-types, could yield more information about the limiting process.

7.5 Question. Is there a meaningful stratification of the limit space according to wane groups?

If so, are the $trata smooth in any sense?

On holonomy groups, monoids, and lengths.

Given a notion of horizontality, holonomy follows. In the limits, holonomy is not given
by groups, or even by isomorphic $§tructures (since the domains of definition change).

However, it can be seen that the holonomy monoids at different points p,q € X are §till
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weakly related: Consider any parallel translation P from p to g, then the corresponding

holonomy monoids are related as follows. Let a,b € H,, then the map to H, given by
aw PaP* (7.2)

is satisfies that
PabP* C PaP*PbP". (7.3)

Which is the best one expects without further assumptions (since P* will in general not

be the inverse of P).

7.6 Question. How far are the holonomy monoids from groups? Is there a ‘big” submonoid
that is a group?

In the smooth case, the holonomy groups come with a length-norm associated to them.
In the singular case, a function £ =L, : H, — R satisfying the same properties of a group

norm and
E(a") = E(a) (7.4)

is produced in the same way: by looking at the infimum of length of loops generating a
given holonomy. In particular it follows that if a is not the identity, then £(a) > 0. It is not
immediate the it induces a metric (or a reasonable topology) on H,: in the group case,
this follows from the existence of inverses.

The fact that the con$truction of this norm is entirely metric raises several question in

the smooth setting.

7.7 Question. To what extent does the length-norm determine the algebraic nature of the
holonomy group?

7.8 Question. What can be said about the length topology on the holonomy group? Heuristi-

cally, is it close to the Lie group topology? How can this be measured?

As examples show, this length can fail to be continuous. However, in the 2-dimensional
space forms considered, the funtion was in fat continuous (yet not smooth).
7.9 Question. When is the length-norm continuous with respect to the $tandard Lie group
topology?

In the book of Hille [26], the mere assumption of measurability of a subadditive func-

tion essentially already yields its boundedness. In the work of Bingham and OStaszewski

[9], the assumption is weakened to being Baire.

7.10 Question. Is the length-norm at least Baire or measurable (with respect to the Lie group
Haar measure)?
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On the limiting metrics and parallelism

The existence of a function L and the scaling-invariant notion of parallelism were essen-
tial ingredients in giving an explicit expression of the diStance function of a Sasaki-type
metric in terms of holonomy and the metric on the fibers. However, the linear struture

of the fibers was also used in changing any path in the total space for a linear path.

7.11 Question. Is the metric on the limit given by a formula similar to (3.43) or (3.44))?

Namely, is the metric given as follows?

d(u,v) = inf JE(P) + d2(w,v) (7.5)

weP(u)

where, P is the parallel translate along any curve from m(u) to 7(v) and dp $tands for the
induced metric on the fibers.

Even if this is not true, one can §till ask the following partial question. In the smooth
setting, the induced metric on the fibers is flat Euclidean. In view of the possible nontriv-
iality of the wane group, the fiber is not expected to be flat in that sense. However, the
fibers, as quotients of Euclidean space are equipped with a natural quotient metric. For

simplicity, one says that this is the natural flat metric.
7.12 Question. Are the limit fibers intrinsically flat?

In Theorem|[6.13]it was seen that a necessary condition for uniqueness of parallel trans-

lates was that there be a unique wane group up to conjugation.

7.13 Question. Are there examples of limits with unique wane groups and non-unique parallel

translates?

In faét (as seen earlier in this chapter), to exhibit a particular wane group, one has to
give an explicit presentation of the fiber as a quotient of holonomic space V/G. Given

a curve a : I — X, and two such holonomic space presentations, the following subset of
O(k) needs to be understood.

7.14 Definition. Let a : I — X, and let G, and G, be representatives of the wane groups
(well-defined up to choice of basis) at the end points x = @(0) and y = a(1), then the set
A, € O(k), given by

Ay, ={P € O(k)|P = lim P%,a = lim a;}, (7.6)

i—00 i—00

is the set of parallel translation germs along a with respet to G, and G,.
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7.15 Conje&ure. Suppose 7 : E — X is a pointed Gromov-Hausdorff limit of a sequence
metrics of Sasaki type. For any x € X and consider G, < O(k), the subgroup guaranteed by
Theorem Let a : I — X, let G, and G, be representatives of the wane groups at the
end points x = a(0) and vy = a(1), then the corresponding set of parallel translation germs
A is invariant under the left and right actions of G, and G, given by group multiplication.

Furthermore, if parallel translation is unique along « if and only if the second orbit space
G,\A/Gy (7.7)

consists of a single element.

As mentioned in the introdu&tion, Rieffel [39] introduces a Lipschitz seminorm of a
very natural space of matrix-valued functions to control distances between veétor bun-
dles. In essence, he regards Euclidean vector bundles as a certain type of map into the
space of self-adjoint idempotent matrices. In light of this, together with the existence of
the limit sets A of germs of parallel translates, one can imagine taking limits of these

maps of matrices.

7.16 Question. Does there exist a “virtual” vector bundle over the limit space together with
a canonical identification that recovers the limit of total spaces? If so, is there a well-defined
parallel translation on it, such that the identifications of which give the one described in this

report? How is it related to the A’s described in this Chapter?

It seems that this vector bundle would depart even further from the geometry of the
limiting space. However, this departure occurs already at the level of the limit fibers.The
cone example shows that the fibers of a limit of tangent bundles need not coincide with
the tangent cone. However, there might be a relationship between them since both are in

a way compatible with re-scalings.

7.17 Question. Under what conditions are the fibers of a limit of tangent bundles and the

tangent cones related?

Holonomy radius and tangency

Already in the smooth setting, the analysis of the holonomic-space §tructure of the fibers

of a metric bundle produces the new synthetic notion of a holonomy radius. Because of
Corollary [2.20} it follows that

1
|IP* —id|| <

= HolRad, ") (7:8)
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for any loop a at p. This suggests that there must be a functional relation between the
holonomy radius and curvature. The surprising fact is that it seems to indicate that the

relation with curvature is at p itself, not necessarily in a neighborhood.

7.18 Question. What is the exact relationship (if any) between the holonomy radius and the

curvature at the point (or in a neighborhood thereof)?
Also, in the particular case when 7 : Y — X is a limits of tangent bundles.

7.19 Question. What is the defining property of a vector? More explicitly, of an element of Y,
when can a curve on X be associated to it?

Isoperimetry

In the case of space forms in dimension 2, the problem of finding the minimizers for the
length norm is the same as finding minimizers for area. This is the classical isoperimetric
problem. In that setting, it is know that solutions have to have constant geodesic —read

“mean”— curvature.
7.20 Question. What are the conditions for a curve to be a minimizer?

In the isoperimetric case, the absolute minimizer path need not contain an a priori
given point. If such a condition is imposed, then the solution might not be smooth at the

given point (but will remain so elsewhere).

7.21 Question. Are the minimizers of the isoholonomic problem smooth away from the base

point?

Closing remarks

The list of questions presented here is but a subtle hint of this beautiful and rich field;
it will serve as a basis for pursuing further the topics already discussed in this report.
The results obtained here required very few additional assumptions; therefore they nec-
essarily give information about robust geometric properties that were not apparent when
restricting the attention to smooth spaces.

Further assumptions can and will be made in order to give more precise formulations
of the aforementioned questions in hope to find the beautiful answers that Nature has so
far hinted.
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