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Abstract of the Dissertation

Maximal Foliations in Spacetimes with Spacelike Translational
Symmetry

by

Andrew Bulawa

Doctor of Philosophy

in

Mathematics

Stony Brook University

2009

Foliations of spacetime by maximal (mean curvature zero) spacelike hyper-
surfaces have long been studied in relativity. They allow one to reduce the
Einstein equations to a system of hyperbolic evolution equations coupled with
an elliptic lapse equation. This simplification made possible the celebrated
stability result of Christodoulou and Klainerman, where maximal foliations
were used to show that asymptotically flat Cauchy data which is sufficiently
small gives rise to a complete globally hyperbolic spacetime.

This thesis considers maximal foliations in spacetimes which admit trans-
lational symmetry in the form of a nonvanishing spacelike Killing field. In
this setting, it is generally conjectured that noncompact symmetric Cauchy
data with appropriate asymptotics gives rise to a complete globally hyperbolic
spacetime. While proving the conjecture is beyond the scope of this work,
properties of maximal foliations in the symmetric setting are studied, and
their utility towards proving this conjecture is discussed.
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Chapter 1

Introduction

The analysis of spacetimes (M, ḡ) satisfying the Einstein vacuum equations

Ricḡ = 0 is far from being straightforward. This is due primarily to the fact

that the Einstein equations in general coordinates form a highly nonlinear

system of partial differential equations of no particular type. Fortunately

there are ways to formulate the equations in a more tractable form.

The wavelike gauge, or harmonic gauge, was the first procedure to achieve

significant success for an initial value formulation. This method involves gen-

erating coordinates with respect to which the Einstein equations reduce to a

system of hyperbolic equations. Choquet-Bruhat used this gauge to prove lo-

cal existence and uniqueness for the Cauchy problem [9]. Choquet-Bruhat and

Geroch were able to extend this to existence and uniqueness for inextendible

Cauchy developments [10]. However, these results did not give control of the

asymptotic behavior of the solutions. Success along these lines was achieved
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by Christodoulou and Klainerman in their celebrated proof of the stability of

Minkowski space [11]. There a different gauge was used, the maximal hyper-

surface gauge.

The maximal hypersurface gauge involves a foliation of spacetime by space-

like hypersurfaces each having mean curvature identically zero. These are

referred to as maximal hypersurfaces in the Lorentzian setting. In this frame-

work, solving the Einstein equations may be reduced to solving a reduced

system of quasilinear hyperbolic evolution equations coupled with an elliptic

equation for a lapse function u on the hypersurfaces.

Christodoulou and Klainerman were able to take advantage of this sim-

plification to establish geodesic completeness along with asymptotic estimates

for the evolution of suitably small and asymptotically flat Cauchy data. While

Lindblad and Rodnianski were able to prove stability of Minkowski space in

the wavelike gauge, which came as a surprise given the suspected limitations of

that procedure [19], their proof does not provide the same level of asymptotic

control. It is in this way that the maximal hypersurface gauge stands apart

from other techniques, and this is the motivation for considering it here.

Consider Cauchy data (Σ, g, k) for the Einstein equations consisting of a

noncompact complete three-manifold, a Riemannian metric g, and a symmet-

ric two-tensor k. Suppose that the data is invariant with respect free S1 action.

It is generally conjectured that such data, subject perhaps to suitable small-

ness conditions and fall-off at infinity, will give rise to a geodesically complete

spacetime development M .

The symmetry introduces some simplifications, but it carries with it some
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difficulties as well. An obvious simplification arises from the fact that the

analysis may be performed on the manifolds obtained as quotients with respect

to the symmetry. The vacuum equations on the four-dimensional spacetime M

take the form of gravity coupled with scalar fields representing the geometry

of the S1 bundle over the three-dimensional quotient spacetime. Convenient

examples in this class of spacetimes are given by the Einstein-Rosen waves

discussed in Section 3.3. These are particularly attractive due to the fact that

they are determined by solving the linear wave equation on a flat Minkowski

space.

This first main result, Theorem 3.4, addresses the issue of asymptotic be-

havior of the lapse function. For the maximal gauge in the nonsymmetric

setting, one assumes that the lapse function on asymptotically flat Cauchy

data is asymptotic to a constant. Theorem 3.4 asserts that, for S1-symmetric

data, a bounded lapse function on a maximal hypersurface must be constant

and forces the hypersurface to be totally geodesic. This illustrates that the

maximal hypersurface gauge with a bounded lapse can only give rise to a static

spacetime development, which can be complete only if it is the flat Minkowski

space, or a quotient thereof.

This brings forth a question of what asymptotic behavior is appropriate

for the lapse function. Some control of the lapse function is apparent by the

first assertion in Lemma 3.6.

An issue regarding the asymptotic geometry of Cauchy data is that of

multiple ends. These are unbounded components of the data which remain

after the removal of a compact set. It is on each of these ends where the
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asymptotic flatness conditions are to be imposed. Theorem 3.7 shows that, in

the case of S1-symmetric Cauchy data, it is only necessary to consider a single

end. It is also established that the surface obtained as a quotient of nontrivial

data is conformally equivalent to the Euclidean plane.

A difficulty presented by the symmetry is its incompatibility with the tra-

ditional notion of asymptotic flatness. Efforts have been made (c.f. [4], [5]) to

find a definition of asymptotic decay which accommodates the symmetry. The

most straightforward approach is to impose a condition on the two-dimensional

Cauchy data in the spacetime quotient. There it is found that instead of re-

quiring that the metric asymptotically approach Euclidean space, as in the

nonsymmetric case, it is more natural to ask that it is asymptotic to a Eu-

clidean cone. In the case of Einstein-Rosen waves, this is exactly what happens.

The asymptotic cone angle is determined by the energy of the solution to the

linear wave equation which determines the spacetime. It may be that a bound

on a quantity analogous to this energy will give similar asymptotics for general

S1 symmetric data. This is discussed at the end of Chapter 3 and partially

addressed by Theorem 3.8.
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Chapter 2

Maximal Gauge and the Lapse

Equation

Let (M, ḡ) be a smooth four-dimensional manifold with a smooth Lorentzian

metric ḡ of signature (−,+,+,+). The induced connection is denoted by D̄,

the Ricci curvature by R̄ic, and the scalar curvature by R̄.

The vacuum Einstein equations for (M, ḡ) are given by

R̄ic = 0. (2.1)

When (2.1) is satisfied, (M, ḡ) is called a vacuum spacetime.

Spacetimes of interest here are globally hyperbolic (see [18] or [21]). These

spacetimes admit a global time function, the level sets of which form a foliation

of M by spacelike hypersurfaces. In the next section, some basic geometric

structures relating the geometry of hypersurfaces to that of the spacetime are
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defined. In section 2.2, maximal hypersurfaces are defined and the stability

operator is introduced. Finally, maximal foliations and the lapse equation are

discussed in section 2.3.

2.1 Hypersurface Geometry

Let Σ be a hypersurface in M . At points in Σ, the tangent space TM of

M may be viewed as a vector bundle over Σ which splits as TM = TΣ⊕TΣ⊥,

where TΣ⊥ represents the normal bundle over Σ.

A vector X in TM is called timelike, spacelike or null provided its square

length ḡ(X,X) is nonpositive, nonnegative or zero, respectively. The hyper-

surface Σ ⊂M is called spacelike if TΣ⊥ consists entirely of timelike vectors.

Assume that Σ is spacelike. Then Σ inherits a Riemannian metric h̄, ob-

tained by restricting the action of ḡ to vectors in TΣ. Σ also inherits a con-

nection ∇̄ given by

∇̄xy = (D̄XY )T ,

for x, y ∈ TΣ and where T denotes the orthogonal projection TM→ TΣ, and

X and Y are arbitrary extensions of the vector fields x and y to a neighbor-

hood of Σ in TM . The definition is independent on the choice of extensions.

Therefore, ∇̄ agrees with the canonical connection given by h̄.

Suppose that Σ is orientable. Then a global section ν̄ of TΣ⊥ may be

chosen with unit length, i.e. ḡ(ν̄, ν̄) = −1. The second fundamental form

k̄ : TΣ⊗ TΣ→ R associated to Σ is defined by
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k̄(x, y) = ḡ(D̄XY, ν̄),

From the relation,

ḡ(D̄XY, ν̄) = Xḡ(Y, ν̄)− ḡ(Y, D̄X ν̄) = −ḡ(Y, D̄X ν̄),

one verifies that k̄ is tensorial. In addition, near any point p, one may extend

vectors xp and yp to vector fields X and Y in such a way that LXY = 0. This

shows that k̄ is symmetric.

It will be useful at times to relate the second fundamental form to the Lie

derivative of the metric.

k̄ = −1

2
Lν̄ ḡ (2.2)

This follows from the computation

Lν̄ ḡ(X, Y ) = ν̄ḡ(X, Y )− ḡ(Lν̄X, Y )− ḡ(X,Lν̄Y )

= ḡ(D̄X ν̄, Y ) + ḡ(X, D̄Y ν̄)

= −2 k̄(X, Y ),

where the second line is due to the compatibility of the metric with the con-

nection and the third from the discussion above.

The Gauss equation for hypersurfaces allows one to use the second funda-

mental to relate the scalar curvature s̄ of Σ to the scalar curvature R̄ of M
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by

s̄− |k̄|2 + (tr k̄)2 = R̄ + 2R̄ic(ν̄, ν̄). (2.3)

Also useful is the Codazzi-Mainardi equation which gives

d(tr k̄)− div k̄ = R̄ic(ν̄, ·). (2.4)

The trace trk̄ and square norm |k̄|2 are given at each point p ∈ Σ in terms of

an orthonormal basis {E1, E2, E3} of TpΣ by

tr k̄ =
3∑
i=1

k̄(Ei, Ei),

|k̄|2 =
3∑
i=1

3∑
j=1

k̄(Ei, Ej) · k̄(Ej, Ei),

div k̄(·) =
3∑
i=1

∇̄Ei
k̄(Ei, ·).

Given a tensor T : TM ⊗ TM→ R, its trace at a point p ∈ Σ may be

computed in terms of a orthonormal basis {E1, E2, E3} of TΣ and ν̄ by

trT = −T (ν̄, ν̄) +
3∑
i=1

T (Ei, Ei).

The minus sign arises from the fact that ν̄ is timelike.

One also has the following formula for the square norm of a one-form ω on

M at p ∈ Σ,
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|ω|2M = −ω(ν̄) · ω(ν̄) +
3∑
i=1

ω(Ei) · ω(Ei)

= −ω(ν̄) · ω(ν̄) + |ω|2Σ.

The d’Alembertian operator
−
2 on M is given by its action on a smooth

function f : M→ R by the trace of the Hessian of f on M :

−
2 f = tr D̄df.

One also has the Laplace-Beltrami operator ∆̄ for smooth functions u : Σ→ R

given by the trace of the Hessian of u on Σ,

∆̄u = tr ∇̄du.

The two operators are related by

∆̄f =
−
2 f + D̄df(ν̄, ν̄)− trk̄ · df(ν̄), (2.5)

where on the left, f is taken as its restriction to Σ. This follows from
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−
2 f + D̄df(ν̄, ν̄) =

3∑
i=1

D̄df(Ei, Ei)

=
3∑
i=1

Eidf(Ei)− df(D̄Ei
Ei)

=
3∑
i=1

Eidf(Ei)− df(∇̄Ei
Ei − ḡ(D̄Ei

Ei, ν̄)ν̄)

=
3∑
i=1

∇̄df(Ei, Ei) +
3∑
i=1

ḡ(D̄Ei
Ei, ν̄) · df(ν̄)

= ∆̄f + tr k̄ · df(ν̄).

2.2 The Stability Operator

In the maximal hypersurface gauge, the vacuum equations (2.1) are viewed

relative to a foliation of spacetime by spacelike hypersurfaces with mean cur-

vature identically zero. These are called maximal hypersurfaces.

Definition 2.1. A hypersurface of (M, ḡ) given by data (Σ, h̄, k̄), where h̄

denotes the induced metric and k̄ denotes the second fundamental form, is

called maximal provided tr k̄ vanishes identically on Σ.

The nature of the foliation near a given hypersurface is described by the

lapse function u, discussed in the next section, which solves a differential

equation given by the stability operator L which is defined below.

Maximal hypersurfaces are the analogue of minimal hypersurfaces of Riem-

manian manifolds. They correspond to critical points of volume with respect
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to smooth variations. To see this, consider a spacelike hypersurface Σ ⊂ M

with induced metric h̄. Let ν̄ be a unit length vector field defined in a neigh-

borhood of Σ in M which restricts to a section of TΣ⊥ along Σ. Multiply

ν̄ by a smooth nonnegative function of compact support to obtain a smooth

vector field η compactly supported in M . Let U denote the intersection of the

support of η with Σ. Suppose that U is not empty.

Let φt : M→M denote the one parameter family of diffeomorphisms cor-

responding to the flow of η, with φ0 equal to the identity. Then for small t,

Σt = φt(Σ) is a smooth hypersurface of M . We may pull back by φt the volume

form which ḡ induces on Σt to obtain a volume form dµt on Σ. Integrating

this volume form over U ⊂ Σ defines the functional

V(t) =

∫
U

dµt, (2.6)

which gives the volume of the perturbed region of Σ under the flow. Differ-

entiating once at t = 0 gives the first variation of volume in terms of the the

mean curvature

V ′(0) =

∫
U

trk̄ · v dµ̄, (2.7)

where k̄ denotes the second fundamental form of Σ, v = (−ḡ(η, η))1/2, and dµ̄

is the induced volume form on Σ.

Therefore one finds that when Σ has zero mean curvature, i.e.

tr k̄ = 0,
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the first variation of volume is zero. This is true regardless of the variation,

i.e. the choice of η above. Under the zero mean curvature assumption, the

second variation of volume takes the form

V ′′(0) =

∫
Σ

−|dv|2 − (R̄ic(ν̄, ν̄) + |k̄|2) · v2 dµ̄. (2.8)

Integration by parts reveals that the second variation can be alternatively

written as

V ′′(0) =

∫
Σ

v · Lv dµ̄, (2.9)

where L is the stability operator on Σ defined by

Lw = ∆̄w −
(
|k̄|2 + R̄ic(ν̄, ν̄)

)
· w.

An interesting observation is that (2.8) implies

∫
Σ

w · Lw dµ̄ ≤ 0,

for any nonnegative smooth function w : Σ→ R, provided (M, ḡ) satisfies the

so-called timelike convergence condition, R̄ic(ν̄, ν̄) ≥ 0. In such a spacetime,

this implies that any hypersurface with zero mean curvature will maximize

volume under any compactly supported variation as described above, hence

the terminology, maximal.

In the case where (M, ḡ) is a vacuum spacetime and Σ is a maximal hy-

persurface, one has R̄ic(ν̄, ν̄) = 0 and the Gauss equations for hypersurfaces
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implies s̄ = |k̄|2. One then has

Definition 2.2. In a vacuum spacetime, the stability operator on a maximal

hypersurface Σ is the differential operator given by

Lw = ∆̄w − s̄ · w.

2.3 Maximal Foliations

Let t be a smooth function t : M→ R free of critical points and having

timelike gradient vectorfield D̄t. On any hypersurface Σs given as the level set

t = s, the spacetime metric ḡ may be decomposed as

ḡ = −u2dt2 + h̄s, (2.10)

where u = (−ḡ(D̄t, D̄t))−1/2 is the inverse length of D̄t and h̄s is the induced

metric on Σs extended to act trivially on vectors in TΣ⊥.

Now suppose that M is a vacuum spacetime so that

R̄ic ≡ 0

Then for a given Σ = Σs, the Gauss and Codazzi-Mainardi equations (2.3)

and (2.4) for hypersurfaces in a vacuum spacetime become,
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s̄− |k̄|2 + (trk̄)2 = 0, (2.11)

div k̄ − d(tr k̄) = 0. (2.12)

These are called the constraint equations for (Σ, h̄, k̄).

Using the form (2.10) of the metric, one may also derive the following

evolution equations, relating geometric quantities to the function u : Σ→ R

restricted to Σ:

Lν̄ ḡ = −2k̄

u · Lν̄ k̄ = −∇du+ (r̄ic− 2 tr k̄ · k̄ − 2k̄2) · u,

where r̄ic denotes the Ricci tensor determined by h̄ on Σ and k2 : TΣ⊗Σ→ R

is given in terms of the orthonormal basis {Ei} above as

k̄2 =
∑

k̄(Ei, · )k̄(Ei, · ).

Taking the trace of the second equation with respect to h̄ and using the con-

straint equations one obtains

∆̄u− (2 (trk̄)2 + 2 |k̄|2 − s̄) · u = −Lν̄(trk̄) · u,

In the case where each Σs is maximal, the above constraint equations be-

come
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s̄ = |k̄|2, (2.13)

div k̄ = 0, (2.14)

tr k̄ = 0. (2.15)

So one has Lν(trk) = 0 and s̄ = |k̄|2 on Σ. The above equation for u simplifies

to

∆̄u− |k̄|2 · u = Lu = 0. (2.16)

where L is the stability operator defined above.

This motivates the following definition

Definition 2.3. Given a maximal hypersurface (Σ, h̄, k̄), the lapse equation

on Σ is given by Lu = 0.

It is necessary that u satisfy the lapse equation in order that the foliation

given above be a foliation by maximal hypersurfaces emanating from Σ. u may

be thought of as the velocity which the leaves of the foliation spread away from

the given maximal leaf Σ.

A reduction procedure (see [11]) can now be performed to transform the

above equations to an equivalent system of nonlinear wave equations coupled

with the elliptic lapse equation defined on each slice. The maximal gauge

therefore simplifies the process solving the Einstein equations to solving an

initial value problem where initial data (h̄, k̄) is prescribed on some initial
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slice Σ.

The Cauchy problem involves carrying this procedure through, beginning

only with the data (Σ, h̄, k̄) consisting of a three-manifold Σ, a Riemannian

metric h̄ defined on Σ and some symmetric two-tensor k̄. The goal is to

produce a spacetime (M, ḡ) with metric given by (2.10) and which contains Σ

as an embedded spacelike hypersurface for which k̄ is its second fundamental

form. Of course, to have any hope of success, the above constraint equations

will need to be satisfied by the initial data at the outset.

It was a remarkable achievement of Christodoulou and Klainerman [11]

to carry this process through for small asymptotically flat initial data, small

meaning close to trivial data induced on some spacelike hypersurface in Minkowski

space, and asymptotically flat meaning that the data approaches trivial data

at large distances. Taking advantage of the simplifications made available by

the maximal gauge, they were able to prove the existence of a solution to the

Einstein equations which was geodesically complete. An important aspect of

the maximal gauge choice is that it allowed them to obtain estimates on the

asymptotic behavior of the resulting spacetime solution.

Besides ensuring that the constraint equations are satisfied, one will also

want to know that the lapse equation (2.16) is solvable on a given slice Σ. As

is shown in [14], on any complete noncompact Riemannian manifold P , the

operator Lq given by

Lqu = ∆u− qu,

where q is some smooth function on P , admits a positive solution provided the
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smallest eigenvalue of Lq is nonnegative on P . This is in particular the case

when q nonnegative. It follows that given any data (Σ, h̄, k̄) for the maximal

hypersurface gauge in a vacuum spacetime with Σ noncompact and complete,

there exists a positive solution to the lapse equation (2.16).
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Chapter 3

S1-Symmetric Spacetimes

3.1 The Quotient Structure

The analysis here is concerned with vacuum spacetimes (M, ḡ) which admit

a free isometric S1 action whose orbits are spacelike curves. These will be called

S1-symmetric vacuum spacetimes. The one parameter family of isometries

φ t : R×M→M associated with the action corresponds to a spacelike Killing

vector field defined at each point p via the relation

Xp =
d

dt

∣∣∣∣
t=0

φ t(p).

A spacelike hypersurface of M is given as data (Σ, h̄, k̄) with h̄ denoting

the induced metric and k̄ the second fundamental form, as above. The hyper-

surfaces of interest to us will be those which are preserved by the S1 action on

(M, ḡ). That is, it is assumed that φt(Σ) = Σ and
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LX h̄ = LX k̄ = 0.

It will also be assumed that Σ is complete and noncompact. Such hypersurfaces

will be referred to as S1-symmetric hypersurfaces.

Attention is restricted to the case where the space of orbits corresponding to

the S1 action is a smooth manifold N . Then N inherits a canonical Lorentzian

metric g which makes the quotient map

πM : (M, ḡ)→ (N, g)

a Riemannian submersion (or perhaps “Lorentzian submersion” is more ap-

propriate terminology).

Because (Σ, h̄, k̄) is S1-symmetric, πM restricts to a Riemannian submer-

sion between Σ and its quotient V = Σ/S1 which is a submanifold of N :

πΣ : (Σ, h̄, k̄)→ (V, h, k).

The relationship between the second fundamental forms k̄ and k will be given

below.

The picture to keep in mind is (horizontal arrows are viewed as embed-

dings).

(Σ, h̄, k̄) −−−→ (M, ḡ)

πΣ

y πM

y
(V, h, k) −−−→ (N, g)
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The convention will be that barred quantities are defined on the total spaces

and the nonbarred quantities are defined on the corresponding quotients. D,

Ric and R denote the connection, Ricci curvature, and scalar curvature for N ,

and ∇, ric and s denote the connection, Ricci curvature, and scalar curvature

of V .

Next the geometry of (M, ḡ) is related to that of (N, g). This is done in

terms of two geometric objects. The first is the twist one form ω̄, which reflects

the obstruction to integrability of the horizontal distribution of the S1 bundle

M→N . The second is a function f which gives the length of the S1 fiber

above any point in N .

Consider the one-form ξ dual to the Killing vector X on M . The twist

one-form associated to X is given by

ω̄ = ∗ ξ ∧ dξ,

where ∗ denotes the hodge star operator on (M, ḡ). By the Frobenius theorem,

the condition ω̄ = 0 characterizes the property that X is hypersurface orthog-

onal, or equivalently, that the horizontal distribution of the S1 bundle M be

integrable. As ω̄ is necessarily preserved by the S1 symmetry and satisfies

ω̄(X) = 0, it descends to a one-form ω on N .

It is also useful to consider the function

f = |X|ḡ

giving the length of X. f may and will be assumed to equal the length of
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the S1 through any point. This may be arranged through an appropriate

parameterization of the diffeomorphisms generating X. f may be viewed either

as a function on N or on M .

The vacuum equations R̄ic ≡ 0 may be expressed [15] in terms of the above

quantities as the following system intrinsic to (N, g):

Ric = f−1∇df +
1

2
f−4

(
ω ⊗ ω − |ω|2g

)
, (3.1)

2f = −1

2
f−3|ω|2, (3.2)

div(ω) = 3f−1〈ω, df〉, (3.3)

where metric quantities appearing here are in terms of g on N , 2 denoting the

d’Alembertian tr∇ 2.

ξ restricts to a one form η on Σ. Using the hodge star ∗ determined by h̄,

one can define on Σ the twist scalar

ᾱ = ∗ η ∧ dη.

Just as for ω, the condition α = 0 corresponds to the integrability of the

horizontal distribution for the hypersurface Σ as an S1 bundle over V . As

before, α is taken to represent the corresponding function on the quotient V .

Let ν̄ denote the future directed unit length section of TΣ⊥. It turns out

that

ᾱ = ω̄(ν̄) and α = ω(ν),
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where ν is the future directed unit section of TV ⊥.

From the above relations, one finds that the scalar curvatures of Σ and V

are related as [12]

s = s̄+
1

2
f−4α2 + 2f−1∆f − 2trk · d log f(ν).

In the case where Σ is maximal, this simplifies to

s = s̄+
1

2
f−4α2 + 2f−1∆f. (3.4)

Proposition 3.1. The mean curvatures of the hypersurfaces (Σ, h̄, k̄) and

(V, h, k) are related by

trk̄ = trk − d log f(ν). (3.5)

Proof. Let π = πΣ. Begin by choosing an orthonormal frame {Ē0, Ē1, Ē2} in

TΣ such that Ē0 = f−1X and such that there exist vector fields E1 and E2

on V with E1(π(p)) = π∗Ē1(p) and E2(π(p)) = π∗Ē2(p) for each p ∈ Σ. In

other words, assume Ē1 and Ē2 are basic lifts of E1 and E2. Then E1 and

E2 form an orthonormal basis for V . Note that ν̄ is a basic lift of ν. Extend

these vector fields to vector fields on M (or N on the base) which remain basic.

Extend ν̄ to be a basic lift of a vector field ν normal to V . Then, for each i,
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k̄(Ēi, Ēi) = −1

2
Lν̄ ḡ(Ēi, Ēi)

= −1

2
ν̄ḡ(Ēi, Ēi) + ḡ(Lν̄Ēi, Ēi)

= −ḡ(LĒi
ν̄, Ēi).

Since πM is a Riemannian submersion, for i = 1, 2, one has

ḡ(LĒi
ν̄, Ēi) = g(LEi

ν, Ei).

Using the fact that X is Killing gives

0 = LX ḡ(X, ν̄)

= Xḡ(X, ν̄)− ḡ(LXX, ν̄)− ḡ(X,LX ν̄)

= −ḡ(X,LX ν̄)

= −ḡ(fĒ0, fLĒ0
ν̄) + ḡ(fĒ0, ν̄(f)Ē0)

= −f 2ḡ(Ē0,LĒ0
ν̄) + fν̄(f),

and so

k̄(Ē0, Ē0) = ḡ(Ē0,LĒ0
ν̄) = d log f(ν). (3.6)

It follows from these observations that
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trk̄ =
3∑
i=1

k̄(Ēi, Ēi) =
2∑
i=1

k(Ei, Ei) + k̄(Ē0, Ē0) = trk − d log f(ν)

3.2 Some Preliminaries

Several of the results to follow will refer to volume growth on Σ and V . Fix

a point p in V , and let B(r) denote the geodesic ball in V of radius r centered

at p. Denote by v(r) its volume

v(r) = volV (B(r))

in V , and let

v(r) = volΣ(B(r))

denote the volume in Σ of the preimage B(r) = π−1(B(r)), where π denotes

the quotient map π : Σ→ V . It will be assumed that the boundaries ∂B(r)

and ∂B(r) of these sets are piecewise smooth.

Finally, there are two results which will be useful in the analysis to come.

The following proposition was proved by Anderson (Proposition 4.1 in [3])

Proposition 3.2. Let Σ be a complete noncompact Riemannian manifold with

nonnegative scalar curvature. If Σ admits a free isometric S1 action, then there
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exists a constant c such that the volume of any geodesic ball in V = Σ/S1

satisfies

v(r) ≤ cr2, and v′(r) ≤ cr. (3.7)

If (Σ, h̄, k̄) is a maximal hypersurface in a S1-symmetric vacuum space-

time, then from (2.13) one sees that it satisfies the hypotheses of the above

proposition, and geodesic balls in V satisfy the volume growth given above. It

will be useful to note that this behavior can be extended to any covering of V

since that covering will be a quotient of a covering of Σ.

Several of the results below will appeal to the following lemma motivated

by results in [8].

Lemma 3.3. Let w be a smooth function on V and let w be a smooth function

on Σ. Then

−
∫
B(r)

∆w dµV ≤ [W ′(r)v′(r)]1/2,

where W (r) :=
∫
B(r)
|∇w|2dµV , and

−
∫
B(r)

∆̄w dµΣ ≤ [W′(r)v′(r)]1/2,

where W(r) :=
∫
B(r)
|∇̄w|2dµΣ.

Proof. Choose a small δ > 0. Then for a > 1 we can find a smooth function η

supported on B(r) which satisfies η = 1 on B(r−δ) and |∇η| ≤ a
δ
. Integration

by parts gives
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−
∫
B(r)

η ·∆w =

∫
B(r)\B(r−δ)

〈∇η,∇w〉

≤
[∫

B(r)\B(r−δ)
|∇η|2

]1/2 [∫
B(r)\B(r−δ)

|∇w|2
]1/2

≤
[(a
δ

)2

(v(r)− v(r − δ))
]1/2 [∫

B(r)\B(r−δ)
|∇w|2

]1/2

= a

[
1

δ
(v(r)− v(r − δ))

]1/2 [
1

δ

∫
B(r)\B(r−δ)

|∇w|2
]1/2

Taking the limit δ→ 0 we have

−
∫
B(r)

∆w · η ≤ a[v′(r)]1/2[W ′(r)]1/2.

Letting a→ 1 proves the first inequality.

Imitating the same argument on Σ with η̄ := η ◦ π : Σ→ R establishes the

second inequality.

3.3 Einstein-Rosen Waves

3.3.1 The Framework

S1 symmetric spacetimes which admit an additional spacelike Killing field

representing a rotational symmetry are known as cylindrical waves. Among

these are the Einstein-Rosen waves for which both Killing fields are assumed
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to commute and are hypersurface orthogonal. A key feature of Einstein-Rosen

waves is that they may be determined by solving the wave equation on a flat

background Minkowski space. They thus provide one with easy to construct

examples of S1-symmetric spacetimes and can serve as intuition for the gen-

eral case. Of interest here will be the properties of maximal foliations and

the asymptotic nature of spacelike hypersurfaces which, subject to an energy

condition, tend to be conical at large distances.

Let (M, ḡ) be an S1-symmetric vacuum spacetime for which the twist one-

form ω associated with the Killing field X vanishes identically. Then according

to (3.1), (3.2) and (3.3) the vacuum equations for (M, ḡ) are equivalent to the

following system of equations on the quotient (N, g):

Ric = f−1∇df,

2f = 0.

Write f = eψ and consider the conformally rescaled metric ĝ = e2ψg. Using

standard formulas for the transformation of the Ricci tensor under a conformal

change [21], one finds that the vacuum equations become

R̂ic = 2dψ2

2ĝ ψ = 0,

written in terms of the Ricci tensor R̂ic and d’Alembertian 2ĝ for the rescaled
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metric ĝ.

Einstein-Rosen waves are assumed to admit a second hypersurface orthog-

onal Killing field Y which commutes with X and vanishes precisely along a

timelike curve. It therefore represents a rotational symmetry about an axis.

Linear combinations of Killing fields are also Killing. Therefore it can be ar-

ranged that X and Y are orthogonal. Local coordinates may be found near

the timelike axis, here the t-axis, with respect to which the four-dimensional

spacetime metric ḡ takes the form (c.f. [6]),

ḡ = e2ψdz2 + e2(γ−ψ)(−dt2 + dρ2) + ρ2e−2ψdφ2 (3.8)

The functions ψ and γ depend on ρ and t alone. X is the coordinate vector

∂z and Y is the coordinate vector ∂φ. These coordinates extend through the

connected region where the function W = |X||Y | retains a spacelike gradient.

For Einstein-Rosen waves it is generally assumed that this domain encompasses

the entire spacetime, diffeomorphic to S1 × R3 (or R× R3).

The conformally rescaled quotient metric reads

ĝ = e2γ(−dt2 + dρ2) + ρ2dφ2.

Evaluating R̂ic on the coordinate vectors reveals
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R̂ic(∂t, ∂t) = −γ̈ + γ′′ + ρ−1γ′ = 2ψ̇2, (3.9)

R̂ic(∂ρ, ∂ρ) = γ̈ − γ′′ + ρ−1γ′ = 2ψ′2, (3.10)

R̂ic(∂t, ∂ρ) = ρ−1γ̇ = 2ψ̇ψ′, (3.11)

where ˙ and ′ denote differentiation with respect to t and ρ respectively. The

equation 2ĝψ = 0 takes the surprisingly pleasant form

−ψ̈ + ψ′′ + ρ−1ψ′ = 0.

Summing (3.9) and (3.10) gives γ′ = ρ(ψ̇2 + ψ′2). This combined with the

remaining equations reduces the vacuum equations for an Einstein-Rosen wave

to the system

γ′ = ρ(ψ̇2 + ψ′2), (3.12)

γ̇ = 2ρψ̇ψ′, (3.13)

−ψ̈ + ψ′′ + ρ−1ψ′ = 0. (3.14)

Interestingly, the last equation is nothing more than the axisymmetric wave

equation on flat Minkowski space. This makes apparent a straightforward pro-

cedure for constructing Einstein-Rosen waves. By prescribing suitable initial

data (ψ, ψ̇) on a hypersurface given by constant t, one may solve the wave

equation (3.14) for ψ on 3-dimensional Minkowski space and then determine
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the remaining unknown γ using (3.12) and (3.13).

3.3.2 The C Energy

Corresponding to solutions to the wave equation in Minkowski space is the

energy of the wave, a conserved quantity obtained by integrating data over a

fixed time level set. This can be done for Einstein-Rosen waves. Thorne [20]

interpreted this quantity as the total energy for the spacetime and called it

the C energy. It turns out that the total C energy can be recorded as a conical

defect in the asymptotic geometry of the spacelike hypersurfaces.

In order to produce a wave from initial data, it is most convenient to

consider the quotients of each of the level sets Σs via the action induced by

the Killing field X. This gives surfaces Vs with quotient metric

hs = e2(γ−ψ)dρ2 + ρ2e−2ψdφ2.

Consider the Einstein-Rosen wave generated from initial data ψ(0, ρ) and

ψ̇(0, ρ) prescribed as functions on V0. Let ψ(0, ρ) be supported in the disc

given by {(ρ, φ) ∈ V0 : ρ < ρ0}, and take ψ̇(0, ρ) ≡ 0. Consider the wave

solution generated from this initial data in Minkowski space. It follows from

the theory of the wave that the resulting solution ψ of (3.14) will have support

contained in the domain U = {(t, ρ, φ) | ρ < t+ ρ0}.

The total energy of a wave in Minkowski space is given by
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Ec :=

∫ ∞
0

ρ(ψ̇(s, ρ)2 + ψ′(s, ρ)2)dρ.

This is a conserved quantity on the hypersurfaces Vs, meaning that it does not

depend on s. Thorne [20] refers to this as the total C energy for the Einstein-

Rosen wave. In light of equation (3.12), one finds that γ takes the constant

value γ = Ec outside of U . Therefore on each Vs, outside of U , the metric

reads

hs = e2Ecdρ2 + ρ2dφ2.

This is exactly the metric induced on a flat cone in 3-dimensional Euclidean

space given as the solution to the equation z = (e2Ec − 1)1/2r in cylindrical

coordinates (z, r, θ). This relationship between the energy and the conical

behavior of the hypersurfaces will be of interest later.

3.3.3 Maximal Hypersurfaces

As the analysis to come is concerned with the maximal hypersurface gauge,

it will be interesting to explore the properties of hypersurface foliations in

Einstein-Rosen waves. The most natural spacelike foliation to consider in

this context is given by the level sets Σs ⊂ M obtained by setting t = s.

To match the analysis for the general S1-symmetric setting, one would like

this foliation to be maximal. It turns out that while one can arrange that a
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single hypersurface be maximal, it is impossible to preserve this maximality

on neighboring hypersurfaces of this form unless the spacetime is trivial or has

singularities.

Recall (2.2), that the second fundamental form k̄ on a given Σ = Σs is

given in terms of the unit normal vector field ν̄ = eψ−γ∂t by

k̄ = −1

2
Lν̄ h̄,

where h̄ is the metric on Σ given by

h̄ = e2ψdz2 + e2(γ−ψ)dρ2 + e−2ψρ2dφ2.

An orthonormal basis for h̄ is {E1, E2, E3} = {e−ψ∂z, eψ−γ∂ρ, ρ−1eψ∂φ}. Direct

computation gives

k̄(E1, E1) = −1

2
e−2ψLν̄ h̄(∂z, ∂z) = −1

2
e−ψ−γ∂th̄(∂z, ∂z) = −ψ̇eψ−γ

k̄(E2, E2) = −1

2
e2(ψ−γ)Lν̄ h̄(∂ρ, ∂ρ) = −1

2
e3(ψ−γ)∂th̄(∂ρ, ∂ρ) = (ψ̇ − γ̇)eψ−γ

k̄(E3, E3) = −1

2
ρ−2e2ψLν̄ h̄(∂φ, ∂φ) = −1

2
ρ−2e3ψ−γ∂th̄(∂φ, ∂φ) = ψ̇eψ−γ

From these relations one can compute the trace and metric norm of k̄ with

respect to h̄ to find
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trk̄ = (ψ̇ − γ̇)eψ−γ,

|k̄|2 =
[
2ψ̇2 + (ψ̇ − γ̇)2

]
e2(ψ−γ).

Notice that the hypersurface Σ is maximal precisely when ψ̇ = γ̇ on Σ. Ac-

cording to equation (3.13) this will necessarily be the case where ψ̇ is zero.

Where ψ̇ is not zero, dividing (3.13) through by ψ̇ shows that ψ must be loga-

rithmic as a function of ρ. Consider how this fact relates to the C energy. One

can not insist on bounded energy on a maximal hypersurface and at the same

time allow ψ̇ to remain nonzero over too large a region of that hypersurface

since logarithmic growth in ψ is not compatible with a bounded C energy.

Conversely, a bound on the C energy directly correlates to conical asymp-

totics. This suggests that the quotients of maximal hypersurfaces in a general

S1-symmetric spacetime might necessarily be asymptotically conical, perhaps

if there exists a bound on quantities analogous to the total C energy. If this

were the case, it would eliminate the necessity of imposing such an asymptotic

condition on Cauchy data. The analogous quantity is proposed in the section

on Energy below.

It is also worth pointing out that while one can arrange that a given hy-

persurface Σs be maximal through the appropriate assignment of data on that

hypersurface, the evolution equations (3.12), (3.13) and (3.14) will not permit

maximality to be preserved from one hypersurface to the next, at least not

globally on the hypersurface in a smooth way.
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Even though the focus of this work is on foliations of the four-dimensional

spacetime, as a side note, it is also interesting to consider the second funda-

mental forms of the quotient hypersurfaces V given by

trk = (2ψ̇ − γ̇)eψ−γ,

|k|2 =
[
ψ̇2 + (ψ̇ − γ̇)2

]
e2(ψ−γ).

Maximality of V corresponds to 2ψ̇ = γ̇, but as in the nonquotient case, the

condition ψ̇ = 0 will do, and the discussion above goes through in the quotient

setting verbatim.

3.4 Main Results

In what follows, it is assumed that the length of the Killing vector field X

generated by the S1-symmetry is bounded above

0 < f < f0

In the nonsymmetric setting, for asymptotically flat data, it is typically

assumed that the lapse function u has the asymptotic behavior u→ 1. The

following theorem reveals that in the S1-symmetric setting such a condition

has strong consequences on the data.

Theorem 3.4. Suppose that maximal S1-symmetric Cauchy data (Σ, h̄, k̄) ad-
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mits a bounded solution u of the lapse equation Lu = 0. Then the data is totally

geodesic, i.e. k̄ ≡ 0, and u is constant.

Proof. As in the previous section, let B(r) denote the geodesic ball of radius

r with volume v(r). Then the condition

∫ ∞ 1

v′(r)
dr =∞ (3.15)

implies that any subharmonic function on Σ which is bounded above is nec-

essarily constant on Σ. The proof of this fact follows the arguments in [8]

and is as follows. Let u be any such function bounded above by u0, so that

w := u0 − u is a positive superharmonic function. In particular,

w−1∆̄w = ∆̄ logw + |d logw|2 ≤ 0,

so we have |d logw|2 ≤ −∆̄ logw. Integrating both sides of this inequality over

B(r) and applying Lemma 3.3 gives

W (r) ≤ [W ′(r)v′(r)]1/2,

where W (r) :=
∫
B(r)
|d logw|2 dµ̄Σ.

If W (r) = 0 for all r, then the statement is proved, so assume there exists

r0 so that W (r) > 0 whenever r > r0. Then on the interval (r0,∞) the above

inequality may be rewritten

W ′

W 2
≥ 1

v′
.
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Integrating each side over the interval (r0, r) gives

1

W (r0)
≥
∫ r

r0

W ′

W 2
dr ≥

∫ r

r0

1

v′
dr.

This is incompatible with (3.15), so given (3.15) we must have W ≡ 0, i.e. u

is constant on Σ.

The Lapse equation reads

∆̄u = |k̄|2u.

From the Gauss equation for spacelike hypersurfaces in a vacuum spacetime we

have s̄ = |k̄|2 ≥ 0, so u is subharmonic. Because f is assumed to be bounded,

v′(r) ≤ cr for some c and for all r, which establishes condition (3.15). If u is

bounded it must be constant. Returning to the lapse equation, one sees that

this implies |k̄|2 ≡ 0, i.e. Σ is totally geodesic.

The corollary below demonstrates that imposing the maximal hypersurface

gauge with a bounded lapse can only lead to a static spacetime development.

A spacetime is static provided it admits a hypersurface orthogonal timelike

Killing field. A static spacetime splits as a trivial product R × Σ with its

metric expressible as

ḡ = −dt2 + pr∗h̄,

where h̄ is a fixed metric on the Riemannian manifold Σ and pr : R × Σ→ Σ

is the trivial projection.
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Corollary 3.5. If (M, ḡ) is foliated by maximal S1-symmetric hypersurfaces

(Σ, h̄, k̄), each admitting a bounded solution to the lapse equation, then (M, ḡ)

is static.

Proof. Let ν̄ denote a unit vector field normal to each maximal hypersurface.

Then given any vector fields W,Y tangent to a given hypersurface Σ, we have

Lν̄ ḡ(W,Y ) = 2k(W,Y ) = 0 by Theorem 3.4. Furthermore, for any vector field

Z ∈ TM we have

Lν̄ ḡ(Z, ν̄) = D̄ν̄ ḡ(Z, ν̄) + ḡ(D̄Z ν̄, ν̄)

= ḡ(D̄Z ν̄, ν̄)

= Zḡ(ν̄, ν̄)− ḡ(ν̄, D̄Z ν̄)

= −ḡ(ν̄, D̄Z ν̄)

Equality between the second and fourth lines implies that Lν̄ ḡ(Z, ν̄) = 0.

Therefore the normal vector field ν̄ is a Killing field and (M, ḡ) is static.

Since any geodesically complete static solution to the vacuum Einstein

equations must be isometric to the flat Minkowski space, or a quotient by

a discrete group of isometries [1], Corollary 3.5 implies that one must allow

an unbounded lapse on order to obtain any nontrivial complete S1-symmetric

spacetime in the maximal hypersurface gauge.

It is natural to ask then what behavior of the lapse is acceptable in the

presence of S1 symmetry. The next lemma gives some mild control on solutions
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to the lapse equation and the second statement is a bound which will be used

later.

Lemma 3.6. Suppose that u is a solution to the lapse equation for maximal

S1-symmetric Cauchy data (Σ, h̄, k̄). Then

∫
Σ

|∇̄ log u|2 dµ̄Σ <∞, (3.16)

and∫
Σ

|∇̄ log f |2 + s̄+ f−4α2 dµ̄Σ <∞. (3.17)

Proof. From the constraint equation (2.13), the lapse equation for a maximal

hypersurface may be written

u−1∆̄u = s̄

Relating s̄ to s by (3.4) and lifting S1 invariant quantities to Σ, one finds

2s = ∆̄ log u+ |∇̄ log u|2 + 4∆̄ log f + 4|∇̄ log f |2 + s̄+ f−4α2.

Put

G(r) :=

∫
B(r)

|∇̄ log u|2 + 4|∇̄ log f |2 + s̄+ f−4α2 dµ̄Σ,

and integrate both sides of the above inequality over B(r). Lemma 3.3 gives
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∫
B(r)

2s dµ̄Σ ≥ G− 2[G′v′]1/2

Since the length of the S1 fibers satisfies f < f0, volumes are related as

v′(r) =

∫
∂B(r)

f dµ∂B ≤ f0 · v′(r).

Therefore the above inequality may be expressed on V by

f0 ·
∫
B(r)

2s dµV ≥ G− 2[f0G
′v′]1/2

Since the the scalar curvature s is twice the Gauss curvature, the Gauss-Bonnet

theorem gives

∫
B(r)

s dµV = 4πχ(B(r))− 2κ(r),

where κ(r) denotes the total geodesic curvature of the piecewise smooth bound-

ary ∂B(r). This is the integral of the geodesic curvature of the curves which

define ∂B(r) plus the sum of exterior angles [7], and χ(B(r)) is the Euler

characteristic of B(r). If l(t) denotes the length of ∂B(r) then

v′′(r) = l′(r) ≤ κ(r).

This is the one dimensional analogue of the first variation of volume (2.7),

where the hypersurfaces (with volume l(r) = v′(r)) are curves representing

the boundary ∂B(r), so it is the first variation of length in this case. Geodesic

curvature takes the place of mean curvature (c.f. [17]). The inequality would
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become equality if all exterior angles were nonnegative.

Note that V is orientable since the orientation of Σ along with the nonva-

nishing vector field X induces an orientation on V . So one has χ(B(r)) ≤ 1.

It follows that

f0(8π − 4v′′) ≥ G− 2 [f0G
′v′]

1/2
.

If G(r) ≤ 8π for all r, then the statement is proved, so we assume G(r) >

8πf0 for large r (note that G(r) is an increasing function). Then setting

G̃ = G− 8πf0, one has

2(f0G̃
′)1/2

G̃
≥ 1

(v′)1/2
+

4f0v
′′

(v′)1/2G̃
.

The trick is to integrate both sides from r0 to r. Applying the Cauchy-Schwarz

inequality to the term of the left gives

∫ r

r0

2(f0G̃
′(t))1/2

G̃(t)
dt ≤

(∫ r

r0

4f0G̃
′(t)

G̃(t)2
dt

)1/2(∫ r

r0

dt

)1/2

= 2
√
f0

(
1

G̃(r0)
− 1

G̃(r)

)1/2

(r − r0)1/2

≤ 2
√
f0

(
1

G̃(r0)

)1/2

r1/2

Integrating the other terms and using the bound v′(t) ≤ ct from Proposition

3.2 gives
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∫ r

r0

1

v′(t)1/2
dt ≥ 2

c1/2
(r1/2 − r1/2

0 )

and integration by parts on the last term yields

∫ r

r0

4f0v
′′

(v′)1/2G̃
dt ≥ 8f0

(
v′(r)1/2

G̃(r)
− v′(r0)1/2

G̃(r0)

)
+ 8

∫ r

r0

v′(t)1/2

G̃(t)2
G̃ ′(t) dt

≥ −8f0
v′(r0)1/2

G̃(r0)

Putting these together shows

2
√
f0

(
1

G̃(r0)

)1/2

r1/2 ≥ 2

c1/2
(r1/2 − r1/2

0 )− 8f0
v′(r0)1/2

G̃(r0)

Diving through by r1/2 and letting r→∞, one finds

[G̃(r0)]−1/2 ≥ (cf0)−1/2,

This is true for all r0 sufficiently large. This implies that G is bounded and

completes the proof.

When dealing with Cauchy data, one may consider the possibility that

the Cauchy surface consists of several ends. An end of Σ is determined by

choosing a compact subset of Σ and is defined to be an unbounded component

of Σ\Ω. The existence of multiple ends and the properties of the ends are a

concern when dealing with Cauchy data. The next theorem illustrates that

nontrivial data can consist of only of a single end. Furthermore, the geometry
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of the quotient (V, h) is such that it is conformal to the Euclidean plane, and

because R2 is contractible, the S1 bundle Σ must then be the topologically

trivial product S1 × V .

Theorem 3.7. Given maximal S1-symmetric Cauchy data (Σ, h̄, k̄), Σ is ei-

ther the trivial product S1×S1×R or topologically S1×V with (V, h) conformal

to the Euclidean plane.

Proof. First consider the case where V is simply connected. According to the

uniformization theory for surfaces (see [13]), (V, h) is conformal either to the

Euclidean plane, the hyperbolic plane, or the sphere. Proposition 3.2 states

that volumes v(r) of geodesic balls in V satisfy v′(r) ≤ cr for some constant

c. In particular we have

∫ ∞ 1

v′(r)
dr =∞,

which, as shown in [8], or by adapting the discussion in the proof of Theorem

3.4, implies that the only subharmonic functions on V which are bounded

above must be constant. The sphere is ruled out since V is noncompact and

the hyperbolic plane admits bounded subharmonic functions. Therefore V

must be conformal to the Euclidean plane.

Now, if V is not simply connected then V is topologically equal to S1 ×R

since its only admissible topologies are R × S1 or S1 × S1 and it is assumed

that V is noncompact.

Recall relation (3.4):
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s̄+ 2|d log f |2 +
1

2
f−4α2 = s− 2∆ log f.

Put

F (r) :=

∫
B(r)

s̄+ |d log f |2 +
1

2
f−4α2 dµV ,

and integrate both sides of the above inequality over a geodesic ball B(r) of

radius r. Note that V is orientable since the orientation of Σ along with the

nonvanishing vector field X induces an orientation on V . Therefore, choosing

r large enough guarantees that χ(B(r)) ≤ 0. Then Lemma 3.3 implies

F (r) ≤
∫
B(r)

s dµV + [F ′(r)v′(r)]1/2 (3.18)

≤ −2v′′(r) + [F ′(r)v′(r)]1/2. (3.19)

It follows from Proposition 3.2 that the universal cover Ṽ of V has at most

quadratic volume growth. Since V is a Z quotient of Ṽ , volume growth in V

must in fact satisfy v(r) ≤ cr, for some constant c [2]. Using this fact and

integrating the above inequality over an interval [t0, t], t0 sufficiently large,

gives
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∫ t

t0

F (r) dr ≤ 2v′(t0)− 2v′(t) +

∫ t

t0

[F ′(r)v′(r)]1/2 dr (3.20)

≤ 2v′(t0) +

[∫ t

t0

F ′(r) dr

]1/2 [∫ t

t0

v′(r) dr

]1/2

(3.21)

≤ 2v′(t0) + [F (t)− F (t0)]1/2 [cr]1/2 (3.22)

Lemma 3.6 tells us that F is bounded, so the right hand side grows less than

linearly. Since F is a nonnegative nondecreasing function, F (t0) must be zero,

otherwise the left hand side would grow at least linearly. This is true for all

t0 sufficiently large, and thus for all t, so it must be that F ≡ 0. This implies

that f is constant and α = s = 0, so the surface V is flat and the bundle Σ is

trivial.

3.5 Energy

Recall the total C energy Ec for an Einstein-Rosen wave determined by

initial data (ψ̇, ψ) prescribed on the t = 0 hypersurface V = V0:

Ec = γ(∞) =

∫ ∞
0

(ψ̇2 + ψ′ 2)ρ dρ.

As discussed above, when this quantity is finite it corresponds to the cone

angle inherent in the asymptotic geometry of V . It would be interesting if

there were an analogous quantity in the general S1-symmetric setting. This
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would give one information regarding the asymptotic behavior of hypersurfaces

and would indicate that such asymptotics cannot be prescribed freely.

The integrand was derived in terms of the Ricci tensor R̂icc and the scalar

curvature R̂c for the conformally rescaled three-dimensional spacetime metric

ĝc = e2ψgc by

e2γ
(

2R̂icc(ν̂, ν̂) + R̂c

)
= R̂icc(∂t, ∂t) + R̂icc(∂ρ, ∂ρ) = 2ψ̇2 + 2ψ′ 2,

where ν̂c = e−γ∂t denotes the unit vector field normal to the t = constant

hypersurfaces with respect to ĝc. Expressing Ec as an integral over V with

respect to the volume form dµc = eγ−2ψρ dρ ∧ dφ given by the hypersurface

metric hc gives

Ec =
1

4π

∫
V0

eγ+2ψ
(

2R̂icc(ν̂, ν̂) + R̂c

)
dµc.

The factor 1/4π arises in part because from the factor of 2 which appears on

the right hand side of the above equation and also from integration in the

coordinate φ.

One would like to find an analogous quantity for the general S1-symmetric

setting. However, there is no γ in the general setting. To get around this,

consider the quantity ec given as

ec = e2ψ
(

2R̂icc(ν̂, ν̂) + R̂c

)
.
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Integrating this over the ball B(r) = {ρ < r} in V gives

1

4π

∫
B(r)

ec dµV =

∫ r

0

e−γ(ψ̇2 + ψ′2)ρ dρ

=

∫ r

0

γ′e−γ dρ

= 1− e−γ(r)

Thus

γ(r) = − log

(
1− 1

4π

∫
B(r)

ec dµV

)
.

This illustrates that obtaining an upper bound on γ, and thus the asymp-

totic cone angle of hypersurfaces, is equivalent to bounding the integral which

appears on the right by a number less than 4π.

The analogous quantity in the general S1-symmetric setting is obtained by

rescaling the quotient spacetime metric to produce ĝ = f 2g on N . The unit

vector field normal to the surface V is given by ν̂ = f−1ν. Using standard

formulas for the change in curvature under conformal rescalings one finds

2R̂ic(ν̂, ν̂) + R̂ = f−2e,

where e is given on V by

e = 2|d log f |2V + 2d log f(ν)2 +
1

2
f−4

(
|ω|2V + ω(ν)2

)
.
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Thus, the quantity analogous to γ for general S1-symmetric spacetimes is given

by integrating e over the geodesic ball B(r) in V :

Γ(r) :=

∫
B(r)

e dµV

One may hope that bounding this quantity above by a number less than 4π

would imply conical asymptotics for V . While this has not been established,

the Theorem below shows that, in the case where d log f(ν) = 0, 4π is an upper

bound for Γ. It also shows that when e is nonzero, volumes asymptotically

grow at a rate no less than in Euclidean space.

Theorem 3.8. Suppose (Σ, h̄, k̄) is maximal S1-symmetric data and e is not

identically zero on V . Then

lim
r→∞

v′(r)/r < 2π,

and if d log f(ν) ≡ 0 on V , then

Γ ≤ 4π. (3.23)

Proof. Using the formulation of the vacuum equations given by equations (3.1)

and (3.2) on N , one has
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2Ric(ν, ν) = 2f−1Ddf(ν, ν) + f−4|ω|2V

= 2f−1∆f + 2d log f(ν)2 + 2f−4|ω|2V − f−4ω(ν)2,

and taking the trace of (3.1) gives

R = −3

2
f−4|ω|2N = −3

2
f−4|ω|2V +

3

2
f−4ω(ν)2.

Summing and using (3.2) gives

R + 2Ric(ν, ν) = 2f−1∆f + 2d log f(ν)2 +
1

2
f−4

(
|ω|2V + ω(ν)2

)
From the Gauss equation and (3.5) we have

R + 2Ric(ν, ν) = s− |k|2 + (trk)2

≤ s+ (trk)2

= s+ d log f(ν)2

Combining the above gives

s ≥ 2f−1∆f + d log f(ν)2 +
1

2
f−4

(
|ω|2V + ω(ν)2

)
. (3.24)
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Let B(r) denote a geodesic ball of radius r in V . Then emulating the proof

of Lemma 3.6 with

G(r) :=

∫
B(r)

2|∇ log f |2 + d log f(ν)2 +
1

2
f−4

(
|ω|2V + ω(ν)2

)
dµV ,

shows that G is bounded. However, more can be said from the inequality

G(r) ≤ 4π − 2v′′(r) + [G ′(r)v′(r)]1/2 (3.25)

If G(r) < 4π for all r, then the proof is complete, so assume otherwise. Then

because G is nondecreasing, there exists an r0 so that G(r) ≥ 4π for all r > r0.

Define G̃(r) = G(r)− 4π. Now, observe that the integral

∫ r

r0

[
G̃′(t)v′(t)

]1/2

dt

grows “less than linearly” as a function of r. This follows from (3.2) which

gives a constant c such that v′(r) ≤ cr and the Cauchy-Schwarz inequality

which gives

∫ r

r0

[G̃′(t)v′(t)]1/2 dt ≤
(
G̃(r)− G̃(r0)

)1/2 ( c
2
r2 − c

2
r2

0

)1/2

≤
(
G̃(r)− G̃(r0)

)1/2

(c/
√

2)r
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G̃ is nondecreasing and so converges to its upper bound. Therefore, given any

ε > 0, there is an r0 = r0(ε) sufficiently large so that (G̃(r)− G̃(r0))1/2 < ε on

the interval [r0,∞). This implies that

∫ r

r0(ε)

[G̃′(t)v′(t)]1/2 dt ≤ ε1/2(c/
√

2)r.

Return to (3.25) and integrate both sides from r0 to r,

∫ r

r0

G̃(t) dt ≤ 2v′(r0) + ε1/2(c/
√

2)r. (3.26)

G̃ is nondecreasing, so the left hand side of the above inequality is no less than

G̃(r0)r for all r > r0. In order to ensure that the above inequality holds, one

must therefore have G̃(r0(ε)) ≤ ε1/2(c/
√

2). Take a sequence of ε→ 0. Then

G̃(r0(ε))→ 0, but G̃ is nondecreasing, so this implies G̃ ≡ 0 and G ≤ 4π.

Returning to (3.25), one has

v′′(r) ≤ 2π − 1

2
G(r) +

1

2
[G′(r)v′(r)]1/2

Integrating both sides of this inequality and appealing to the sublinearity of∫ r
r0

[G̃′(t)v′(t)]1/2 dt establishes the statement involving v′.
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Appendix A

A Solution to the Lapse
Equation

Let (Σ, h̄, k̄) be S1-symmetric data which is noncompact and complete. In
this section it is shown that there exists an S1-invariant solution u to the lapse
equation

Lu = ∆̄u− s̄u = 0. (A.1)

If w is a function on Σ which is S1 invariant, i.e. dw(X) = 0, then w may
be considered as a function on the quotient manifold V = Σ/S1. In this case,
Lw = 0 may be expressed on V as

Lw = ∆w + h(∇ log f,∇w)− s̄ · w = 0, (A.2)

where s̄ still denotes the scalar curvature of Σ, but is viewed as a function on
V .

Let B(r) be a geodesic ball of radius r centered at some point p ∈ V .
From standard theory for elliptic differential equations (c.f. [16], Theorem
8.14), there exists a smooth solution to the Dirichlet problem

Lw = 0 on B(r)

w = 1 on ∂B(r).

It follows from the strong maximum principle ([16] Theorem 3.5) that w > 0.
For any r = rk ∈ N\{0}, let ũk denote the solution to the Dirichlet problem.

Set uk := ũk/ũk(p) so that uk(p) = 1 for all k. Now, for a fixed r, the
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Harnack inequality ([16], Theorem 8.20) gives us a constant C so that for all
k sufficiently large, each function uk restricted to B(r) satisfies

uk ≤ C on B(r).

Then by elliptic regularity ([16] Theorem 6.2), one can control the derivatives
of the uk and use the Arzela-Ascoli theorem to find a subsequence {uk} which
converges to a smooth function ur satisfying Lur = 0 on B(r). This can
be done for a every r in a sequence rk tending to ∞. By a diagonalization
argument, one obtains a limiting solution u on V which lifts to an S1-invariant
solution on Σ.
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