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Abstract of the Dissertation

Renormalization and Non-Rigidity

by

Vasu Venkata Mohana Sarma Chandramouli

Doctor of Philosophy

in

Mathematics

Stony Brook University

2008

The aim of the thesis is to study the renormalization of unimodal maps with low smoothness and
the dynamics of Hénon renormalization.

M. Feigenbaum and by P. Coullet and C. Tresser in the nineteen-seventieth to study the asymp-
totic small scale geometry of the attractor of one-dimensional systems which are at the transition
from simple to chaotic dynamics. This geometry turns out to not depend on the choice of the map
under rather mild smoothness conditions. The existence of a unique renormalization fixed point
which is also hyperbolic among generic smooth enough maps plays a crucial role in the correspond-
ing renormalization theory. The uniqueness and hyperbolicity of the renormalization fixed point
were first shown in the holomorphic context, by means that generalize to other renormalization
operators. It was then proved that in the space of C2+α unimodal maps, for α > 0, the period
doubling renormalization fixed point is hyperbolic as well.

In this thesis work we study what happens when one approaches from below the minimal
smoothness thresholds for the uniqueness and for the hyperbolicity of the period doubling renor-
malization generic fixed point. Indeed, our main result states that in the space of C2 unimodal
maps the analytic fixed point is not hyperbolic and that the same remains true when adding enough

smoothness to get a priori bounds. In this smoother class, called C2+|·|, the failure of hyperbolicity
is tamer than in C2. Things get much worse with just a bit less of smoothness than C2 as then
even the uniqueness is lost and other asymptotic behavior become possible. Furthermore, we show
that the period doubling renormalization operator acting on the space of C1+Lip unimodal maps
has infinite topological entropy.

The second part of the thesis work is devoted to the renormalization of Hénon maps. It was
shown that for strongly dissipative Hénon maps, there is a short curve in the parameter space which
consists of infinitely renormalizable Hénon maps of period doubling type. In this thesis we study
numerically, the extension of this curve in the parameter space up to the conservative map. More
precisely, we describe the combinatorial changes which occur along this curve. The second part
of this study is to describe, how the one-dimensional Cantor set deforms into the Cantor set of
conservative map. To show this we compute the distribution of angles of the line fields along the
Cantor set and explain how this geometry becomes more complicated for maps close to the infinitely
renormalizable conservative maps.
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Chapter 1

Introduction

The study of time evolution of the systems under consideration plays an im-
portant role in many natural sciences. Experiments and simulations in these
fields often show very complicated, chaotic behavior. However, a rigorous un-
derstanding of chaotic dynamical systems are far from complete. There are not
many real world systems which can be modeled by one dimensional dynamical
systems. That is, systems described by iteration of a map of the interval. Nev-
ertheless, during the last forty years an extensive and rather complete theory
has been developed to explain their dynamics. The surprising fact is that many
of the one dimensional phenomena are observed in nature. Although one di-
mensional systems are very simple models, they contain mechanisms which are
relevant for real world systems. The natural strategy is to explore, how far we
can extend the one dimensional theory and get a better understanding of higher
dimensional systems.

The central theme of the one-dimensional theory is the geometric rigidity
of the attractors. The main technique is renormalization. Renormalization is
a method to study the microscopic geometric properties of attractors. It was
introduced into dynamics in the late seventies by P. Coullet and C.P. Tresser
[7] and independently M.J. Feigenbaum [14]. Initially the goal was to study
the dynamics at the accumulation of period doubling. Systems which are at
the accumulation of period doubling have very specific combinatorial behavior.
This behavior occurs when a system is at transition to chaos, when it is at the
boundary of chaos in the space of systems.

The attractors of the maps at transition to chaos have a special property.
They are Cantor sets and on arbitrarily small scale the attractor can be iden-
tified with a rescaled version of the attractor of another one-dimensional map.
This allows to introduce an operator on the set of one-dimensional maps at
transition which assigns to a map, the map which describes its attractor at the
smaller scale. This operator acts as a microscope. For maps at the transition
we can describe the dynamics at arbitrarily small scale. That is, we can apply
the renormalization operator infinitely many times to study the dynamics. It
was conjectured in [7] and [14], that the maps at transition form exactly the
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stable manifold of a unique fixed point f∗ of the renormalization operator. This
conjecture explains why the fine scale structure of the attractor is independent
of the original map being considered. The microscopic geometry of an attractor
at transition to chaos is universal. The fine scale geometrical structure can not
be deformed. The attractors are rigid.

During the following thirty years the renormalization idea was extended
and applied to general types of combinatorics of one-dimensional maps. Our
understanding of one-dimensional dynamics is a consequence of the maturity of
one-dimensional renormalization.

A general theory for smooth dynamics is still completely out of reach. There
are two natural directions in which one can extend the theory using the results
from one-dimensional smooth dynamics. The first one is one-dimensional dy-
namics with low smoothness and the second is dynamics of Hénon maps.

Models of real world systems are usually very high dimensional or even in-
finite dimensional as in fluid dynamics. However, there is a phenomenon of
dimension reduction, the essence of the dynamics happens on low dimensional
attractors. On some cases these attractors can be described, even in terms
of one-dimensional systems. This is the reason why one-dimensional dynamical
systems are more than just toy models. The theory for one-dimensional systems
is well developed in the case, when the systems are smooth. Unfortunately, the
one-dimensional systems which arise from applications are usually not smooth.
In dissipative systems the states are groups in so-called stable manifolds, dif-
ferent states in such a stable manifold have the same future. The packing of
the stable manifold usually does not occur in a smooth way. For example, the
Lorenz flow is a flow on three dimensional space approximating a convection
problem in fluid dynamics. The stable manifolds are two dimensional surfaces
packed in a non smooth foliation. This flow can be understood by a map on the
interval whose smoothness is usually below C2.

The first part of the thesis discusses renormalization of one-dimensional maps
with low smoothness. The first group of results deals with the maps which are
C2. All maps under consideration will be the maps with a quadratic tip. These
maps are unimodal, they have a single maximum at their critical point, it is
denoted by c and this maximum is well approximated by a quadratic polynomial.
The collection of unimodal maps with quadratic tip and a certain smoothness
is denoted by Ur.

The main results lead to the fact that renormalization on the space of C2

unimodal maps is not hyperbolic and the convergence to the analytic fixed point
can be arbitrarily slow.

Theorem 1.0.1. Let dn > 0 be any sequence with dn → 0. There exists an
infinitely renormalizable C2 unimodal map f ∈ U2 such that

dist0 (Rnf, fω∗ ) ≥ dn.

The distance is measured in the C0 topology.

2



Corollary 1.0.2. The analytic unimodal map fω∗ is not a hyperbolic fixed point
in the space of C2 unimodal maps.

We introduce a new type of differentiability of a unimodal map, called C2+|·|,
which is the minimal needed to be able to apply the classical proofs of a priori
bounds for the invariant Cantor sets of infinitely renormalizable maps, see for
example [24],[26],[11]. This type of differentiability will allow us to represent
any C2+|·| unimodal map as

f = φ ◦ q,

where q is a quadratic polynomial and φ has still enough differentiability to
control cross-ratio distortion.

Theorem 1.0.3. If f is an infinitely renormalizable C2+|·| unimodal map then

lim
n→∞

dist0 (Rnf, fω∗ ) = 0.

A construction similar to the one provided for C2 unimodal maps leads to
the following result:

Theorem 1.0.4. Let dn > 0 be any sequence with
∑

n≥1 dn <∞. There exists

an infinitely renormalizable C2+|·| unimodal map f such that

dist0 (Rnf, fω∗ ) ≥ dn.

The analytic unimodal map fω∗ is not a hyperbolic fixed point in the space of
of C2+|·| maps.

Our second set of theorems deals with renormalization of C1+Lip unimodal
maps with a quadratic tip.

Theorem 1.0.5. There exists an infinitely renormalizable C1+Lip unimodal
map f which is not C2 but

Rf = f.

The topological entropy of a system defined on a non-compact space is defined
to be the Supremum of the topological entropies contained in compact invariant
subsets. As a consequence of a Theorem of Davie [8], we get that renormalization
on U2+α has entropy zero, for any α > 0.

Theorem 1.0.6. The renormalization operator acting on the space of C1+Lip

unimodal maps has infinite entropy.

The last theorem illustrates a specific aspect of the chaotic behavior of the
renormalization operator on the space of C1+Lip unimodal maps.

Theorem 1.0.7. There exists an infinitely renormalizable C1+Lip unimodal
map f such that {cn}n≥0 is dense in a Cantor set. Here cn is the critical point
of Rnf .

3



The second possibility is to use the successful one-dimensional renormal-
ization theory to study two-dimensional dynamics. In the case of dissipative
dynamics we should start with the Hénon family. The maps in this family act
on a two-dimensional domain and are given by

Fa,b(x, y) = (fa(x) − by, x),

where b ≥ 0, is the Jacobian and fa(x) is a unimodal map. This family arises
when one creates chaos from a homoclinic bifurcation in a dissipative system.
Strongly dissipative Hénon maps, b << 1, are perturbations of one dimensional
dynamics and one-dimensional renormalization theory is a powerful starting
point for the development of a theory. The Hénon family has many realistic
applications because of its relevance in the creation of chaos.

Rigorous understanding of Hénon map is fragmented. There are three well
understood phenomena. The first one is the Newhouse phenomenon [28]. There
are smooth maps (also in the Hénon family) which have periodic attractors of
arbitrarily high period. This behavior is quite different form the chaotic maps
constructed by M. Benedicks and L. Carleson [3]. They proved that for a set
of parameters with positive measure the corresponding Hénon map has a non-
trivial attractor with an ergodic invariant measure, describing the statistical long
term behavior of typical orbits. This fundamental work from the late eighties
was recently refined by L.S. Young and Q.D. Wang to apply higher dimensions,
Hénon-like maps [33].

The third part of our knowledge of Hénon maps deals with the maps in a
neighborhood of the accumulation of period doubling. This is an area in the
parameter space where chaos is created. The first study of this area was done
by P. Collet, J-P. Eckmann and H. Koch, [6]. They used analytical tools to
extend the one-dimensional renormalization operator to a space of strongly dis-
sipative Hénon-like maps and proved the hyperbolicity of the operator. A. de
Carvalho, M.Lyubich, and M. Martens constructed a renormalization operator
on the space of strongly dissipative Hénon-like maps using geometric ingredi-
ents, [9]. The specific construction and the hyperbolicity of this renormalization
operator allowed to study the geometry of Cantor attractors of Hénon maps at
the accumulation of period doubling. It opened a source of surprising phenom-
ena. The results obtained, discuss the geometric (non)-rigidity of the Cantor
attractors of maps at the accumulation of period doubling, the topology of such
maps as well as the bifurcation pattern in a neighborhood of the accumulation
of period doubling. The main theme is that the theory for two-dimensional
dissipative dynamics is far from a straightforward generalization of the one-
dimensional theory, even for maps which are the simplest combinatorial type,
period doubling. However, renormalization is again a very powerful tool which
is able to describe the dynamics of Hénon maps.

The second part of the thesis discusses renormalization for Hénon maps. It
is a numerical study. The present renormalization theory deals with strongly
dissipative Hénon maps. These maps form a short curve in parameter space of
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a generic Hénon family. An important question is whether the observed phe-
nomena of (non-)rigidity and universality can be extended to the maps which
are (not strongly) dissipative and even up to the conservative maps. Briefly
speaking, can we extend the curve of infinitely renormalizable strongly dissipa-
tive Hénon maps up to the conservative maps? The first numerical study shows
that, indeed, the curve extend that far. More importantly, the study describes
the combinatorial changes which occur along this curve. These changes are
denoted by “top-down breaking of the boxes”.

Most of the results for Hénon maps discuss strongly dissipative maps, b << 1.
We do not yet have the tools to study maps which are not strongly dissipative,
maps which are not small perturbations of one-dimensional maps. The numer-
ical description of “top-down breaking of boxes” indicates that, how one can
proceed to rigorously extend the curve up to the conservative maps.

One-dimensional dynamics is controlled by the critical points of these sys-
tems. Infinitely renormalizable Hénon maps also have a topologically defined
critical points which plays a crucial role. At the present moment we are at the
starting point of developing a renormalization theory for Hénon maps with more
general combinatorial types. Part of the problem is to describe the combinato-
rial type of Hénon map.

History inspires us to consider Hénon-like maps of Fibonacci type. Unfor-
tunately, the situation is far more complex than the period doubling case for
Hénon maps. There are infinitely many critical points. However, a numerical
study presented in this thesis shows that there is a curve in the Hénon family
whose maps have an invariant Cantor set of Fibonacci type. This is a strong
support for the possibility of constructing a renormalization operator for Hénon
maps of Fibonacci type.

Infinitely renormalizable Hénon maps of period doubling type have a Cantor
attractor. This Cantor set has geometrical aspects which are exactly the same
as the counter part in the Cantor attractors of infinitely renormalizable one-
dimensional systems. This phenomenon is called universality. Contrary to the
one-dimensional situation, these Hénon Cantor sets are not rigid. There are
parts of the Hénon Cantor set where the geometry on asymptotically small scale
is different from the one-dimensional situation. By changing the Jacobian b one
can change the asymptotic geometry of the Cantor set. The non-rigidity was up
to recently an unexpected phenomenon. Strongly dissipative two-dimensional
systems are geometrically different from the one-dimensional world. Although,
two and one-dimensional systems do have some universal geometrical aspects.

The numerically constructed curve of infinitely renormalizable dissipative
Hénon maps ends at conservative map. This conservative map has an invariant
Cantor set. The geometry of this Cantor set is not at all similar to the Cantor
attractor of the dissipative maps. Our third numerical study on Hénon maps
discusses how the one-dimensional Cantor set deforms into the Cantor set of the
conservative map. To describe this deformation we studied the invariant line
field which is carried on the Cantor set. This line field has zero characteristic
exponent. One could think about this line field as if it was aligned along the
Cantor set. However, one should be careful. It has been shown that this line
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field is not continuous for truly two-dimensional Hénon maps [9]. The Cantor
set does not lie on a smooth curve.

We study numerically, the distribution of the angles of the lines in the line
field with respect to a fixed direction. Initially, for strongly dissipative maps,
the angles are distributed in a Cantor set. This is not surprising. However, if
we consider infinitely renormalizable maps on the curve closer towards the end
with the conservative map, the distributions are assigning weight to all angles.
These distribution of angles in extreme cases, b = 0 and b = 0.95, are illustrated
in Figure 1.1.
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Figure 1.1: Left: distribution of angles for b = 0.0; Right: for b = 0.95

Observe that, these Cantor sets are always having Hausdorff dimension
smaller than one. It is not filling more and more the space. The appearance
of more and more angles is a result from the more and more complexity of the
geometry of Cantor set. It gets more and more away from being on a smooth
curve.

This refined understanding might play a crucial role in further studies of
Hénon maps. Simple questions like the existence of wandering domains is closely
related to the geometry of the line field. The non-existence of wandering do-
mains is still open.

The short term goals of this thesis is to contribute to our understanding at
the accumulation of period doubling and get a complete understanding of this
type of dynamics. The second short term goal is to develop a renormalization
theory which can be applied to more general types of combinatorics, beyond
period doubling and study the corresponding dynamics. This will provide fun-
damental pieces of the larger Hénon puzzle.

The long term goal is to understand two-dimensional dynamics. The conjec-
ture which describes the behavior of smooth dynamics in general was formulated
by J. Palis [29]. It is the central theme of smooth dynamics. The essence of the
conjecture is as follows. Almost every map in a generic family has finitely many
attractors: almost every orbit accumulates at one of them. Furthermore, each
attractor carries an invariant measure which describes the statistical behavior
of a typical orbit in its basin. Systems with zero entropy can be understood in
purely topological terms. Namely, the Morse-Smale systems are dense among
zero entropy systems.
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The conjecture has a long history. In particular, it took several decades
to observe that, as well topological as measure theoretical ingredients are nec-
essary to understand smooth dynamics. The first context in which the Palis
Conjecture was proved is unimodal dynamics on the interval. The main tech-
niques used to prove the Palis Conjecture in one dimension are centered around
renormalization. Indeed, the fine geometrical properties of unimodal maps are
closely related to the phenomena described in the conjecture.

The Palis Conjecture is the long term goal of smooth dynamics. We are
still far from such a general understanding. However, it as been proved in one-
dimension.

The next natural step is to go to two-dimensional dynamics, the Hénon
family. The results by M. Benedicks and L. Carleson are the first fundamental
steps towards the Palis Conjecture for Hénon maps. The renormalization work
done at the accumulation of period doubling was used to show that the Morse-
Smale maps are dense in the set of strongly dissipative Hénon maps with entropy
zero, [22]. Although, even this result on density of Morse-Smale maps is more
involved than the one-dimensional counterpart, renormalization technique is
able to deal with the situation.

As in one-dimension, renormalization should become an intrinsic part of a
comprehensive picture of two-dimensional dynamics.
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Renormalization of C1+Lip and C2 unimodal maps



Chapter 2

Chaotic Period Doubling

The period doubling renormalization operator was introduced by M. Feigenbaum
and by P. Coullet and C. Tresser in the nineteen-seventieth to study the asymp-
totic small scale geometry of the attractor of one-dimensional systems which are
at the transition from simple to chaotic dynamics. This geometry turns out to
not depend on the choice of the map under rather mild smoothness conditions.
The existence of a unique renormalization fixed point which is also hyperbolic
among generic smooth enough maps plays a crucial role in the corresponding
renormalization theory. The uniqueness and hyperbolicity of the renormaliza-
tion fixed point were first shown in the holomorphic context, by means that
generalize to other renormalization operators. It was then proved that in the
space of C2+α unimodal maps, for α > 0, the period doubling renormalization
fixed point is hyperbolic as well. In this work we study what happens when one
approaches from below the minimal smoothness thresholds for the uniqueness
and for the hyperbolicity of the period doubling renormalization generic fixed
point. Indeed, our main results states that in the space of C2 unimodal maps
the analytic fixed point is not hyperbolic and that the same remains true when
adding enough smoothness to get a priori bounds. In this smoother class, called
C2+|·| the failure of hyperbolicity is tamer than in C2. Things get much worse
with just a bit less of smoothness than C2 as then even the uniqueness is lost
and other asymptotic behavior become possible. We show that the period dou-
bling renormalization operator acting on the space of C1+Lip unimodal maps has
infinite topological entropy.

2.1 Introduction

The period doubling renormalization operator was introduced by M. Feigen-
baum [14], [15] and by P. Coullet and C. Tresser [7], [32] to study the asymptotic
small scale geometry of the attractor of one-dimensional systems which are at
the transition from simple to chaotic dynamics. In 1978, they published certain
rigidity properties of such systems, the small scale geometry of the invariant

9



Cantor set of generic smooth maps at the boundary of chaos being indepen-
dent of the particular map under consideration. Coullet and Tresser treated
this phenomenon as similar to universality that has been observed in critical
phenomena for long and explained since the early seventieth by Kenneth Wilson
(see, e.g., [23]). In an attempt to explain universality at the transition to chaos,
both groups formulated the following conjectures that are similar to what was
conjectured in statistical mechanics.

Renormalization conjectures: In the proper class of maps, the period doubling
renormalization operator has a unique fixed point that is hyperbolic with a one-
dimensional unstable manifold and a codimension one stable manifold consisting
of the systems at the transition to chaos.

These conjectures were extended to other types of dynamics on the inter-
val and on other manifolds but we will not be concerned here with such gen-
eralizations. During the last 30 years many authors have contributed to the
development of a rigorous theory proving the renormalization conjectures and
explaining the phenomenology. The ultimate goal may still be far since the uni-
versality class of smooth maps at the boundary of chaos contains many sorts of
dynamical systems, including useful differential models of natural phenomena
and there even are predictions about natural phenomena in [7], which turned
out to be experimentally corroborated. A historical review of the mathematics
that have been developed can be found in [10] so that we recall here only a few
milestones that will serve to better understand the contribution to the overall
picture brought by the present work.

The type of differentiability of the systems under consideration has a crucial
influence on the actual small scale geometrical behavior (like it is the case in
the related problem of smooth conjugacy of circle diffeomorphisms to rotations:
compare [17, 34] to [18] and [19]). The first result dealt with holomorphic
systems and were first local [20], and later global [30], [27], [21] (a progression
similar to what had been seen in the problem of smooth conjugacy to rotations:
compare [1] to [17] and [34]). With global methods came also means to consider
other renormalizations. Indeed, the hyperbolicity of the unique renormalization
fixed point has been shown in [20] for period doubling, and later in [21] by
means that generalize to other sorts of dynamics. Then it was shown in [8]
that the renormalization fixed point is also hyperbolic in the space of C2+α

unimodal maps with α > 0 (using [20]). These results were later extended in
[10] to a more general types of renormalization (using [21]). After the results
of Lanford [20], the existence of renormalization fixed points has been proved
in more generality. First Epstein [13] constructed period doubling fixed points
with arbitrary critical behavior. Renormalization fixed points do exist for any
given combinatorics and arbitrary critical behavior, see [25].

In this study, we are interested in exploring from below the limit of smooth-
ness that permits hyperbolicity of the fixed point of renormalization. Our main
result concern a new smoothness class, C2+|·|, which is bigger than C2+α for any
positive α ≤ 1, and is in fact wider than C2 in ways that are rather technical as
we shall describe later (this is the bigger class, where the usual method to get
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a priori bounds for the geometry of the Cantor set works). We are interested
here in the part of hyperbolicity that consists in the attraction in the stable
manifold made of infinitely renomalizable maps (hence the part covered in [30],
[27] while the expansion along the unstable manifold comes from [21] as far as
the global theory is concerned: see [20], [12] for the local picture). We show
that in the space of C2+|·| unimodal maps the analytic fixed point is not hyper-
bolic for the action of the period doubling renormalization operator. We also
show that nevertheless, the renormalization converges to the analytic generic
fixed point (here generic means that the second derivative at the critical point
is not zero), proving it to be globally unique, a uniqueness that was formerly
known in classes smaller than C2+|·| (that is assuming more smoothness). The
convergence might only be polynomial as a concrete sign of non-hyperbolicity.
The failure of hyperbolicity happens in a more serious way in the space of C2

unimodal maps since there the convergence can be arbitrarily slow. The unique-
ness of the fixed point in this case, remains an open question. The uniqueness
was known to be wrong in a serious way among C1+Lip unimodal maps since a
continuum of fixed points of renormalization could be produced [31]. Here we
show that the period doubling renormalization operator acting on the space of
C1+Lip unimodal maps has infinite topological entropy.

After this informal discussion of what will be done here and how it relates to
universality theory, we now give some definitions, which allow us next to turn
to the precise formulation of our main results.

A unimodal map f : [0, 1] → [0, 1] is a C1 mapping with the following
properties.

• f(1) = 0,

• there is a unique point c ∈ (0, 1), the critical point, where Df(c) = 0,

• f(c) = 1.

A map is a Cr unimodal maps if f is Cr. We will concentrate on unimodal
maps of the type C1+Lip, C2, and C2+|·|. This last type of differentiability will
be introduced in Section 3.1.

The critical point c of a C2 unimodal map f is called non-flat if D2f(c) 6= 0.
A critical point c of a unimodal map f has a quadratic tip if there exists a
sequence of points xn → c and constant A > 0 such that

lim
n→∞

f(xn) − f(c)

(xn − c)2
= −A.

The set of Cr unimodal maps with a quadratic tip is denoted by Ur. We will
consider different metrics on this set denoted by distk with k = 0, 1, 2 (in fact
the usual Ck metrics).

A unimodal map f : [0, 1] → [0, 1] with quadratic tip c is renormalizable if

• c ∈ [f2(c), f4(c)] ≡ I1
0 ,
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• f(I1
0 ) = [f3(c), f(c)] ≡ I1

1 ,

• I1
0 ∩ I1

1 = ∅.

The set of renormalizable Cr unimodal maps is denoted by Ur0 ⊂ Ur. Let f ∈ Ur0
be a renormalizable map. The renormalization of f is defined by

Rf(x) = h−1 ◦ f2 ◦ h(x),

where h : [0, 1] → I1
0 is the orientation reversing affine homeomorphism. This

map Rf is again a unimodal map. The nonlinear operator R : Ur0 → Ur defined
by

R : f 7→ Rf

is called the renormalization operator. The set of infinitely renormalizable maps
is denoted by

W r =
⋂

n≥1

R−n(Ur0 ).

There are many fundamental steps needed to reach the following result by Davie,
see [8]. For a brief history see [10] and references therein.

Theorem 2.1.1. (Davie) There exists α < 1 such that the following holds. In
the space of U2+α, there exists a unique renormalization fixed point fω∗ , with
the following properties

• fω∗ is analytic,

• fω∗ is a hyperbolic fixed point of R : U2+α
0 → U2+α,

• the codimension one stable manifold of fω∗ coincides with W 2+α,

• fω∗ has a one dimensional unstable manifold which consists of analytic
maps.

In our discussion we only deal with period doubling renormalization. How-
ever, there are other renormalization schemes. The hyperbolicity for the corre-
sponding generalized renormalization operator has been established in [10].

Our main results deal with R : Ur0 → Ur where r ∈ {1 + Lip, 2, 2 + | · |}.

Theorem 2.1.2. Let dn > 0 be any sequence with dn → 0. There exists an
infinitely renormalizable C2 unimodal map f with quadratic tip such that

dist0 (Rnf, fω∗ ) ≥ dn.

Corollary 2.1.3. The analytic unimodal map fω∗ is not a hyperbolic fixed point
of
R : U2

0 → U2.
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In Section 3.1 we will introduce a type of differentiability of a unimodal
map, called C2+|·|, which is the minimal needed to be able to apply the classical
proofs of a priori bounds for the invariant Cantor sets of infinitely renormalizable
maps, see for example [24],[26],[11]. This type of differentiability will allow us
to represent any C2+|·| unimodal map as

f = φ ◦ q,

where q is a quadratic polynomial and φ has still enough differentiability to
control cross-ratio distortion. The precise description of this decomposition is
given in Proposition 3.1.7. For completeness we include the proof of the a priori
bounds in Section 3.3.

Theorem 2.1.4. If f is an infinitely renormalizable C2+|·| unimodal map then

lim
n→∞

dist0 (Rnf, fω∗ ) = 0.

A construction similar to the one provided for C2 unimodal maps leads to
the following result:

Theorem 2.1.5. Let dn > 0 be any sequence with
∑

n≥1 dn <∞. There exists

an infinitely renormalizable C2+|·| unimodal map f with a quadratic tip such
that

dist0 (Rnf, fω∗ ) ≥ dn.

The analytic unimodal map fω∗ is not a hyperbolic fixed point of R : U
2+|·|
0 →

U2+|·|.

Our second set of theorems deals with renormalization of C1+Lip unimodal
maps with a quadratic tip.

Theorem 2.1.6. There exists an infinitely renormalizable C1+Lip unimodal
map f with a quadratic tip which is not C2 but

Rf = f.

The topological entropy of a system defined on a non-compact space is defined
to be the Supremum of the topological entropies contained in compact invariant
subsets: we will always mean topological entropy when the type of entropy is
not specified. As a consequence of Theorem 2.1.1 we get that renormalization
on U2+α

0 has entropy zero.

Theorem 2.1.7. The renormalization operator acting on the space of C1+Lip

unimodal maps with quadratic tip has infinite entropy.

The last theorem illustrates a specific aspect of the chaotic behavior of the
renormalization operator on U1+Lip

0 :

Theorem 2.1.8. There exists an infinitely renormalizable C1+Lip unimodal
map f with quadratic tip such that {cn}n≥0 is dense in a Cantor set. Here cn
is the critical point of Rnf .
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The results presented in chapter2 and chapter3 of the thesis work are based
on the following article.

V.V.M.S. Chandramouli, M. Martens, W. de Melo, C.P. Tresser, Chaotic
Period Doubling, Ergodic Theory and Dynamical Systems (Accepted),
doi:10.1017/S0143385708000370.

2.2 Notation

Let I, J ⊂ R
n, with n ≥ 1. We will use the following notation.

• cl(I), int(J), ∂I, stands for resp. the closure, the interior, and the bound-
ary of I.

• |I| stands for the Lebesgue measure of I.

• If n = 1 then [I, J ] is smallest interval which contains I and J .

• dist (x, y) is the Euclidean distance between x and y, and

dist (I, J) = inf
x∈I, y∈J

dist (x, y).

• If F is a map between two sets then image(F ) stand for the image of F .

• Define Diffk+ ([0, 1]), k ≥ 1, is the set of orientation preserving
Ck−diffeomorphisms.

• |.|k, k ≥ 0, stands for the Ck norm of the functions under consideration.

• distk, k ≥ 0, stands for the Ck distance in the function spaces under
consideration.

• There is a constant K > 0, held fixed throughout the context, which lets
us write Q1 ≍ Q2 if and only if

1

K
≤
Q1

Q2
≤ K.

There are two rather independent discussions. One on C1+Lip unimodal
maps and the other on C2 unimodal maps. There is a slight conflict in the
notation used for these two discussions. In particular, the notation In1 stands
for different intervals in the two parts, but the context will make the meaning
of the symbols unambiguous.
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2.3 Renormalization of C1+Lip unimodal maps

2.3.1 Piece-wise affine infinitely renormalizable maps.

Consider the open triangle ∆ = {(x, y) : x, y > 0 and x + y < 1}. A point
(σ0, σ1) ∈ ∆ is called a scaling bi-factor. A scaling bi-factor induces a pair of
affine maps

σ̃0 : [0, 1] → [0, 1] ,

σ̃1 : [0, 1] → [0, 1] ,

defined by

σ̃0(t) = −σ0t+ σ0 = σ0(1 − t)

σ̃1(t) = σ1t+ 1 − σ1 = 1 − σ1(1 − t).

A function σ : N → ∆ is called a scaling data. For each n ∈ N we set
σ(n) = (σ0(n), σ1(n)), so that the point (σ0(n), σ1(n)) ∈ ∆ induces a pair of
maps (σ̃0(n), σ̃1(n)) as we have just described. For each n ∈ N we can now
define the pair of intervals:

In0 = σ̃0(1) ◦ σ̃0(2) ◦ · · · ◦ σ̃0(n)([0, 1]) ,

In1 = σ̃0(1) ◦ σ̃0(2) ◦ · · · ◦ σ̃0(n− 1) ◦ σ̃1(n)([0, 1]) .

I10 I11

I20

I30 I31

I21

c

Figure 2.1: {c} = ∩n≥1I
n
0 .

A scaling data with the property

dist (σ(n), ∂∆) ≥ ǫ > 0

is called ǫ−proper, and proper if it is ǫ−proper for some ǫ > 0. For ǫ−proper
scaling data we have

|Inj | ≤ (1 − ǫ)n

with n ≥ 1 and j = 0, 1. Given proper scaling data define

{c} = ∩n≥1I
n
0 .
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The point c, called the critical point, is shown in Figure 2.1. Consider the
quadratic map qc : [0, 1] → [0, 1] defined as:

qc(x) = 1 −

(

x− c

1 − c

)2

.

I1
0 I1

1

I2
0

I3
0

I2
1

qc

c

fσ

Figure 2.2: The graph of fσ|In
1

Given a proper scaling data σ : N → ∆ and the set Dσ = ∪n≥1I
n
1 induced

by σ, we define a map
fσ : Dσ → [0, 1]
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by letting fσ|In
1

be the affine extension of qc|∂In
1
. The graph of fσ is shown in

Figure 2.2.

In0 In1

In−1
0

xn−1xn−1
xn+1 xn yn xn−2yn+1 ccc

Figure 2.3: Next generation of intervals around the critical interval

Define x0 = 0, x−1 = 1 and for n ≥ 1

xn = ∂In0 \ ∂In−1
0 ,

yn = ∂In1 \ ∂In−1
0 .

These points are illustrated in Figure 2.3.

Definition 2.3.1. A map fσ corresponding to proper scaling data σ : N → ∆
is called infinitely renormalizable if for n ≥ 1

(i) [fσ(xn−1), 1] is the maximal domain containing 1 on which f2n−1
σ

is defined affinely.

(ii) f2n−1
σ ([fσ(xn−1) , 1]) = In0 .

Define W = {fσ : fσ is infinitely renormalizable}. Let f ∈ W be given by
the proper scaling data σ : N → ∆ and define

În0 = [qc(xn−1), 1] = [f(xn−1), 1].

Let
hσ, n : [0, 1] → [0, 1]

be defined by
hσ, n = σ0(1) ◦ σ0(2) ◦ · · · ◦ σ0(n).

Furthermore let
ĥσ, n : [0, 1] → În0

be the affine orientation preserving homeomorphism. Then define

Rnfσ : h−1
σ,n(Dσ) → [0, 1]

by
Rnfσ = ĥ−1

σ, n ◦ fσ ◦ hσ, n.

17



0 1 0 1

In0 În0

hσ,n ĥσ,n

fσ

Rnf

Figure 2.4: Rnfσ

It is shown in Figure 2.4. Let s : ∆N → ∆N be the shift

s(σ)(k) = σ(k + 1).

The construction implies the following result:

Lemma 2.3.2. Let σ : N → ∆ be proper scaling data such that fσ is infinitely
renormalizable. Then

Rnfσ = fsn(σ).

Next, let fσ be infinitely renormalizable, then for n ≥ 0 we have

f2n

σ : Dσ ∩ In0 → In0

is well defined. Define the renormalization R : W →W by

Rfσ = h−1
σ, 1 ◦ f

2
σ ◦ hσ, 1.

The map f2n−1
σ : În0 → In0 is an affine homeomorphism whenever fσ ∈W . This

implies immediately the following Lemma.

Lemma 2.3.3. One has Rnfσ : Dsn(σ) → [0, 1] and Rnfσ = Rnfσ.

Proposition 2.3.4. One has W = {fσ∗} where σ∗ is characterized by

Rfσ∗ = fσ∗

Proof. Let σ : N → ∆ be proper scaling data such that fσ is infinitely renor-
malizable. Let cn be the critical point of fsn(σ). Then

qcn
(0) = 1 − σ1(n) (2.3.1)

qcn
(1 − σ1(n)) = σ0(n) (2.3.2)

cn+1 =
σ0(n) − cn
σ0(n)

. (2.3.3)
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We also have the conditions

σ0(n), σ1(n) > 0 (2.3.4)

σ0(n) + σ1(n) < 1 (2.3.5)

0 < cn <
1

2
(2.3.6)

From conditions (2.3.1), (2.3.2) and (2.3.3) we get

σ0(n) =
2c2n − 6c3n + 5c4n − 2c5n

(cn − 1)6
≡ A0(cn) (2.3.7)

σ1(n) =
c2n

(cn − 1)2
≡ A1(cn) (2.3.8)

cn+1 =
c6n − 6c5n + 17c4n − 25c3n + 21c2n − 8cn + 1

2c4n − 5c3n + 6c2n − 2cn
≡ R(cn) (2.3.9)

A0(c)

c

A1(c)

c

A0(c) +A1(c)

c

C

Figure 2.5: The graphs of A0, A1 and A0 +A1

The conditions (2.3.4), (2.3.5) and (2.3.6) reduces to c ∈ (0, 1/2) and
A0(c) + A1(c) < 1. In particular, using Figure 2.5, this defines the feasible
domain to be:

C =

{

c ∈ (0, 1/2) : 0 ≤
c2(3 − 10c+ 11c2 − 6c3 + c4)

(c− 1)6
< 1

}

= [0, 0.35...]
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R

cc

C

C

c∗

Figure 2.6: R : C → R

Notice that the map R : C → R is expanding (see Figure 2.6). It follows
readily that only the fixed point c∗ ∈ C and R(c∗) = c∗ corresponds to an
infinitely renormalizable fσ∗ . Otherwise speaking, consider the scaling data
σ∗ : N → ∆ with

σ∗(n) =
(

q2c∗(0), 1 − qc∗(0)
)

, n ≥ 1.

Then s(σ∗) = σ∗ and Lemma 2.3.2 implies

Rfσ∗ = fσ∗ .

Remark 2.3.5. Let In0 = [xn−1, xn] be the interval corresponding to σ∗ then

fσ∗(xn−1) = qc∗(xn−1).

Hence fσ∗ has a quadratic tip.

Remark 2.3.6. The invariant Cantor set of the map fσ∗ is next in complexity
to the well known middle third Cantor set in the following sense:

- like in the middle third Cantor set, on each scale and everywhere the same
scaling ratios are used,

- but unlike in the middle third Cantor set, there are now two ratios (a small
one and a bigger one) at each scale .
This situation of rather extreme tameness of the scaling data is very different
from the geometry of the Cantor attractor of the analytic renormalization fixed
point in which there are no two places where the same scaling ratios are used
at all scales, and where the closure of the set of ratios is itself a Cantor set [4].
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Lemma 2.3.7. Let f∗ = fσ∗ where σ∗ : N → ∆ is the scaling data with
σ∗(n)(σ∗

0 , σ
∗
1). Then

(σ∗
0)2 = σ∗

1 .

Proof. Let În0 = f∗(I
n
0 ) = [f∗(xn−1), 1] and În+1

1 = f∗(I
n+1
1 ). Then

f2n−1
∗ : În0 → In0 is affine, monotone and onto. Further, by construction

f2n−1(În+1
0 ) = In+1

1 .

Hence,
|În+1

0 |

|În0 |
= σ∗

1 .

So |In0 | = (σ∗
0)n and |În0 | = (σ∗

1)n. Now fσ∗ has a quadratic tip with

fσ∗(xn) = qc∗(xn).

Hence,

σ∗
1 =

|În+1
0 |

|În0 |
=

(

xn − c

xn−1 − c

)2

=

(

|In+1
0 |

|In0 |

)2

= (σ∗
0)

2
.

This completes the proof.

2.3.2 C1+Lip extension

In this sub-section we will extend the piece-wise affine map f∗ to a C1+Lip

unimodal map. Let S : [0, 1]2 → [0, 1]2 be the scaling function defined by

S

(

x
y

)

=

(

−σ∗
0x+ σ∗

0

σ∗
1y + 1 − σ∗

1

)

≡

(

S1(x)
S2(y)

)

and let F be the graph of f∗ = fσ∗ , where fσ∗ : Dσ∗ → [0, 1], Dσ∗ = ∪n≥1I
n
1 .

Then the idea of how to construct an extension g of f∗ is contained in the
following lemma:

Lemma 2.3.8. One has F ∩ image(S) = S(F ).

Proof. Let ĥ = ĥσ∗,1 and h = hσ∗,1. Let (x, y) ∈ graph(f∗) ∩ image(S). Say
(x, y) = (S1(x

′), S2(y
′)) with S2(y

′) = f∗(S1(x
′)). Since S1(x

′) = h(x′) and

S2(y
′) = ĥ(y′), we can write y′ = ĥ−1 ◦ f∗ ◦ h(x

′). By Lemma 2.3.2

y′ = R1f∗(x
′) = f∗(x

′),

which gives (x′, y′) ∈ graph(f∗). This in turn implies (x, y) ∈ S(graphf∗). By
reading the previous argument backward, we prove

S(graph f∗) ⊂ F ∩ image(S).
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Lemma 2.3.9. One has S(graph qc∗) ⊂ graph(qc∗).

Proof. Let S(graph(qc∗)) be the graph of the function q. Since S is linear and
qc is quadratic we get that q is also a quadratic function. Then both qc∗(c

∗) = 1
and q(c∗) = 1, because of S(c∗, 1) = (c∗, 1). Furthermore, by construction

S(1, 0) = (0, qc∗(0)) = (0, q(0)).

Hence qc∗(0) = q(0). Differentiate twice S2(y) = q(S1(x)) and use (σ∗
0)2 = σ∗

1

from Lemma 2.3.7, which proves q
′′

(c∗) = q
′′

c∗(c
∗). Now we conclude that the

quadratic maps q and qc∗ are equal.

Let F0 be the graph of f∗|I1
1
. Then by Lemma 2.3.8, F = ∪k≥0S

k(F0). Let

g be a C1+Lip extension of f∗ on Dσ∗ ∪ [x1, 1] and G0 = graph (g|[x1, 1]). Then

G = ∪k≥0S
k(G0) is the graph of an extension of f∗. We prove that g is C1+Lip

and also has a quadratic tip. Let Bk = Sk([0, 1]2), where

Bk = [xk−1, xk] × [x̂k−1, 1] for k = 1, 3, 5, . . .

Bk = [xk, xk−1] × [x̂k−1, 1] for k = 2, 4, . . .

where x̂k−1 = qc(xk−1) = 1 − (σ∗
1)k. Let bn = (xn−1, x̂n−1) = Sn(1, 0).

Remark 2.3.10. Notice that the points bn lie on the graph of qc∗ . This follows
from Lemma 2.3.9.

....

.

.

.

B0

B1

B2

B3
B4

b1b1

b2

b3

b4

G0

G1

x0 x1x2 x3

x̂0

x̂1

x̂2

Figure 2.7: Extension of fσ∗

Lemma 2.3.11. One has that G is the graph of a C1 extension of f∗.
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Proof. Note that Gk = Sk(G0) is the graph of a C1 function on [xk−1, xk+1] for
k odd and on [xk+1, xk−1] for k is even. To prove the Lemma we need to show
continuous differentiability at the points bn, where these graphs intersect (see
Figure 2.7). By construction G0 is C1 at b2. Namely, consider a small interval
(x1 − δ, x1 + δ). Then on the interval (x1 − δ, x1), the slope is given by an affine
piece of f∗ and on (x1, x1 +δ) the slope is given by the chosen C1+Lip extension.
Let Γ ⊂ G be the graph over this interval (x1 − δ, x1 + δ). Then locally around
bn the graph G equals Sn−1(Γ). Hence G is C1 on [0, 1] \ {c∗}. From Lemma
2.3.7, notice that the vertical contraction of S is stronger than the horizontal
contraction. This implies that the slope of Gn tends to zero. Indeed, G is the
graph of a C1 function on [0, 1].

Proposition 2.3.12. Let g be the function whose graph is G then g is C1+Lip

with a quadratic tip.

Proof. Since f∗|Dσ
has a quadratic tip, the extension g has a quadratic tip.

Because g is C1 we only need to show that Gn is the graph of a C1+Lip function

gn : [xn−1, xn+1] → [0, 1]

with an uniform Lipschitz bound. That is, for n ≥ 1

Lip(g′n+1) ≤ Lip(g′n).

Assume that gn is C1+Lip with Lipschitz constant Lipn for its derivative. We
prove that Lipn+1 ≤ Lipn, and in particular Lipn ≤ Lip0. For, given (x, y) on
the graph of gn there is (x′, y′) = S(x, y), on the graph of gn+1. Therefore, we
can write

gn+1(x
′) = σ∗

1 gn(x) + 1 − σ∗
1 .

Since x = 1 −
x′

σ∗
0

, we have

gn+1(x
′) = σ∗

1 gn

(

1 −
x′

σ∗
0

)

+ 1 − σ∗
1 .

Differentiate,

g
′

n+1(x
′) =

−σ∗
1

σ∗
0

g
′

n

(

1 −
x′

σ∗
0

)

.

Therefore,

∣

∣g
′

n+1(x
′
1) − g

′

n+1(x
′
2)

∣

∣ =
∣

∣

∣

−σ∗
1

σ∗
0

∣

∣

∣ ·
∣

∣

∣g
′

n

(

1 −
x′1
σ∗

0

)

− g
′

n

(

1 −
x′2
σ∗

0

)

∣

∣

∣

≤
σ∗

1

(σ∗
0)2

Lip(g
′

n) |x
′
1 − x′2|

From Lemma 2.3.7 we have
σ∗
1

(σ∗
0
)2 = 1. Hence

Lip(g
′

n+1) ≤ Lip(g
′

n) ≤ Lip(g
′

1).

Which completes the proof.
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If fσ is infinitely renormalizable then every extension g of fσ maps I1
0 onto

I1
1 and I1

1 monotonically onto I1
0 . Hence, g is renormalizable in the classical

sense. Observe that Rg is an extension of Rfσ. Hence, Rg is renormalizable in
the classical sense. Infact, g is infinitely renormalizable.

Theorem 2.3.13. There exists an infinitely renormalizable C1+Lip unimodal
map f with a quadratic tip which is not C2 but

Rf = f.

2.3.3 Entropy of renormalization

For all φ ∈ C1+Lip, φ : [x1, 1] → [0, 1], which extends f∗, we constructed
fφ ∈ C1+Lip in such a way that

(i) Rfφ = fφ

(ii) fφ has a quadratic tip.

Now choose two C1+Lip functions which extend f∗, say φ0 : [x1, 1] → [0, 1] and
φ1 : [x1, 1] → [0, 1]. For ω = (ωk)k≥1 ∈ {0, 1}N, define

Fn(ω) = Sn (graph φωn
)

and
F (ω) = ∪k≥1Fk(ω).

Use the same argument as was given before to show that the set F (ω) is the
graph of a C1+Lip map with a quadratic tip. Now let

τ : {0, 1}N → {0, 1}N

be the shift map defined by
τ(ω)n = ωn+1,

(so that the map τ acting on the set {0, 1}N is the full 2-shift).

Proposition 2.3.14. For all ω ∈ {0, 1}N

f2
ω : [0, x1] → [0, x1]

is a unimodal map. In particular fω is renormalizable and

Rfω = fτ(ω).

Proof. Note that fω : [0, x1] → I1
1 is unimodal and onto. Furthermore,

fω : I1
1 → [0, x1] is affine and onto. Hence fω is renormalizable. The con-

struction also gives
Rfω = fτ(ω).
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Theorem 2.3.15. Renormalization acting on the space of C1+Lip unimodal
maps has positive entropy.

Proof. Note that ω → fω ∈ C1+Lip is injective. Hence the domain of R contains
a copy of the full 2-shift (i.e., contains a subset on which the restriction of R is
topologically conjugate to the full 2-shift).

Remark 2.3.16. We can also embedded a full k-shift in the domain of R by
choosing φ0, φ1, . . . , φk−1 and repeat the construction. The entropy of R on
C1+Lip is actually unbounded.

2.4 Chaotic scaling data

In this section we will use a variation on the construction of scaling data as
presented in 2.3 to obtain the following

Theorem 2.4.1. There exists an infinitely renormalizable C1+Lip unimodal
map g with quadratic tip such that {cn}n≥0, where cn is the critical point of
Rng, is dense in a Cantor set.

The proof needs some preparation. For ǫ > 0 we will modify the construction
as described in Section 2.3. This modification is illustrated in Figure 2.8. For
c ∈ (0, 1

2 ), let

σ1(c, ǫ) = 1 − qc(0),

σ0(c, ǫ) = ǫ q2c (0),

where ǫ > 0 and close to 1. Also let

R(c, ǫ) =
σ0(c, ǫ) − c

σ0(c, ǫ)
= 1 −

c

q2c (0)
·
1

ǫ
.

In Section 2.3 we observed that R(c, 1) has a unique fixed point c∗ ∈ (0, 1
2 )

with feasible σ0(c
∗, 1) and σ1(c

∗, 1). This fixed point is expanding. Although
we will not use this, a numerical computation gives

∂R

∂c
(c∗, 1) > 2.

Now choose ǫ0 > ǫ1 close to 1. Then R(·, ǫ0) will have an expanding fixed point
c∗0 and R(·, ǫ1) a fixed point c∗1. In particular, by choosing ǫ0 > ǫ1 close enough
to 1 we will get the following horseshoe as shown in Figure 2.9; more precisely
there exists an interval A0 = [c∗0, a0] and A1 = [a1, c

∗
1] such that

R0 : A0 → [c∗0, c
∗
1] ⊃ A0

and
R1 : A1 → [c∗0, c

∗
1] ⊃ A1
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*

qc

c

σ0(c, ǫ) σ1(c, ǫ)

q2c (0)

ǫ q2c (0)

fσ

Figure 2.8: ǫ variation of fσ

are expanding diffeomorphisms (with derivative larger than 2, but larger than
one would suffice to get a horseshoe). Here

R0(c) = R(c, ǫ0)

and
R1(c) = R(c, ǫ1).

Use the following coding for the invariant Cantor set of the horseshoe map

c : {0, 1}N → [c∗0, c
∗
1]

with
c(τω) = R (c(ω), ǫω0

)

where τ : {0, 1}N → {0, 1}N
is the shift. Given ω ∈ {0, 1}N

define the following
scaling data σ : N → ∆.

σ(n) = (σ0 (c(τnω), ǫωn
) , σ1 (c(τnω), ǫωn

)) .

Again, by taking ǫ0, ǫ1, close enough to 1, we can assume that σ(n) is proper

scaling data for any chosen ω ∈ {0, 1}N
. As in Section 2.3 we will define a piece

wise affine map
fω : Dω = ∪n≥1I

n
1 → [0, 1].

The precise definition needs some preparation. Use the notation as illustrated
in Figure 2.10. For n ≥ 0 let

In0 = [xn, xn−1]
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R0R0

R1

c∗0

c∗1

A0 A1

Figure 2.9: Horseshoe

where xn = ∂In0 \ ∂In−1
0 , n ≥ 1 and

In1 = [yn, xn−2]

where yn = ∂In1 \ ∂In−1
0 , n ≥ 1.

*

In0 În0

In+1
0 In+1

1

xn xn−1yn+1 x̂n−1 x̂nŷn+1c 1
qc

În+1
1 În+1

0

Figure 2.10: Illustration of the next generation intervals of In0 and În0

Let
În0 = qc([xn−1, 1]) = qc(I

n
0 ) = [x̂n−1, 1]

where x̂n−1 = qc(xn−1). Finally, let În+1
1 = [x̂n−1, ŷn+1] ⊂ În0 such that

|În+1
1 | = σ0(n) · |În0 |.

Now define fω : In+1
1 → În+1

1 to be the affine homeomorphism such that
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fω(xn−1) = qc(xn−1) = x̂n−1.

Lemma 2.4.2. There exists K > 0 such that

1

K
≤

|În0 |

|In0 |
2
≤ K.

Proof. Observe, c(n) = c(τnω) ∈ [c∗0, c
∗
1] which is a small interval around c∗.

This implies that for some K > 0

1

K
≤

|c− xn−1|

|In0 |
≤ K.

Then
|În0 |

|In0 |
2

=
|qc([c, xn−1])|

|In0 |
2

=
(c− xn−1)

2

(1 − c)2
·

1

(In0 )2

which implies the bound.

Let Sn2 : [0, 1] → În0 be the affine orientation preserving homeomorphism and
Sn1 : [0, 1] → In0 be the affine homeomorphism with Sn1 (1) = xn−1. Define

Sn : [0, 1]2 → [0, 1]2

by

Sn
(

x
y

)

=

(

Sn1 (x)
Sn2 (y)

)

.

The image of Sn is Bn.
Let Fn = (Sn)−1(graph fω). This is the graph of a function fn. We will

extend this function (and its graph) on the gap

[σ0(n), 1 − σ1(n)].

It is shown in Figure 2.11. Notice, that

σ0(n), 1 − σ1(n), Dfn(σ0(n)), and Dfn(1 − σ1(n))

vary within a compact family. This allows us to choose from a compact family
of C1+Lip diffeomorphisms an extension

gn : [σ0(n), 1] → [0, fn(σ0(n))]

of the map fn. The Lipschitz constant of Dgn is bounded by K0 > 0. Let Gn
be the graph of gn and

G = ∪n≥0 S
n(Gn).

Then G is the graph of a unimodal map

g : [0, 1] → [0, 1]
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qc

cn
σ0(n) σ1(n)

Fn

Gn

Figure 2.11: Chaotic extension

which extends fω. Notice, g is C1. It has a quadratic tip because fω has a
quadratic tip. Also notice that Sn(Gn) is the graph of a C1+Lip diffeomorphism.
The Lipschitz bound Ln of its derivative satisfies, for a similar reason as in
Section 2.3,

Ln ≤
|În0 |

|(In0 )|2
·K0.

This is bounded by Lemma 2.4.2. Thus gω is a C1+Lip unimodal map with
quadratic tip. The construction implies that g is infinitely renormalizable and

graph (Rngω) ⊃ Fn.

One can prove Theorem 2.4.1 by choosing ω ∈ {0, 1}N
such that the orbit under

the shift τ is dense in the invariant Cantor set of the horseshoe map.

Remark 2.4.3. Let ω = {0, 0, . . . }, then we will get another renormalization
fixed point which is a modification of the one constructed in Section 2.3.
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Chapter 3

Renormalization of C2

unimodal maps

In this chapter we introduce a new smoothness class, called, C2+|·|, which is big-
ger than C2+α for any positive α < 1. This smoothness is minimal, needed to
be able to apply the classical proofs of a priori bounds for the invariant Cantor
sets of infinitely renormalizable maps. This type of differentiability, allow us to
represent any C2+|·| unimodal map as f = φ ◦ q, where q is a quadratic poly-
nomial and φ has still enough differentiability to control cross ratio distortion.
We show that in the space of C2+|·| unimodal maps the analytic fixed point is
not hyperbolic for the action of the period doubling renormalization operator.
We also show that nevertheless, the renormalization converges to the analytic
generic fixed point, proving it to be globally unique, a uniqueness that was for-
merly known in classes smaller than C2+|·|. The convergence might only be
polynomial as a concrete sign of non-hyperbolicity. Furthermore, we show that
the renormalization operator acting on C2 unimodal maps is not hyperbolic and
the convergence to the analytic fixed point can be arbitrarily slow.

3.1 C2+|·| unimodal maps

Let f : [0, 1] → [0, 1] be a C2 unimodal map with critical point c ∈ (0, 1). Say,
D2f(x) = E(1 + ε(x)), where

ε : [0, 1] → R

is continuous with ε(c) = 0 and E = D2f(c) 6= 0. Let then

ε̄ : [0, 1] → R

be defined by

ε̄(x) =
1

x− c

∫ x

c

ε(t)dt.
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Notice, ε̄ is continuous with ε̄(c) = 0. Furthermore, 1+ε̄(x) 6= 0 for all x ∈ [0, 1].
Since

Df(x) = E(x− c)(1 + ε̄(x))

and Df(x) equals zero only when x = c. Let the map

δ : [0, 1] → R

defined by
δ(x) = ε(x) − ε̄(x).

Notice that δ is continuous and δ(c) = 0. Finally, define

β : [0, 1] → R

by

β(x) =

∫ x

c

1

t− c
δ(t)dt.

Lemma 3.1.1. The function β is continuous and ε = δ + β.

Proof. The definition of δ gives ε̄ = ε− δ, which is differentiable on [0, 1] \ {c},
and

ε(x) = ((x− c)(ε− δ)(x))
′

= ε(x) − δ(x) + (x− c)(ε− δ)
′

(x).

Hence,
δ(x) = (x− c)(ε− δ)

′

(x).

This implies

ε(x) = δ(x) +

∫ x

c

1

t− c
δ(t)dt = δ(x) + β(x).

Definition 3.1.2. Let f : [0, 1] → [0, 1] be unimodal map with critical point
c ∈ (0, 1). We say f is C2+|·| if and only if

β̂ : x 7−→

∫ x

c

1

|t− c|
|δ(t)|dt

is continuous.

Remark 3.1.3. Every C2+α Hölder unimodal map, α > 0, is C2+|·|.

Remark 3.1.4. If D2f is monotone, then β̂ = β or β̂ = −β. So β̂ is continuous
according to Lemma 3.1.1. Hence, the very weak condition of local monotonicity
of D2f is sufficient for f to be C2+|·|.

Remark 3.1.5. C2+|·| unimodal maps are dense in C2.
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Remark 3.1.6. There exists C2 unimodal maps which are not C2+|·|. See also
remark 3.7.2.

The non-linearity ηφ : [0, 1] → R of a C1 diffeomorphism φ : [0, 1] → [0, 1] is
given by

ηφ(x) = D lnDφ(x),

wherever it is defined.

Proposition 3.1.7. Let f be a C2+|·| unimodal map with critical point
c ∈ (0, 1). There exist diffeomorphisms

φ± : [0, 1] → [0, 1]

such that

f(x) =

{

φ+ (qc(x)) x ∈ [c, 1]
φ− (qc(x)) x ∈ [0, c]

with
ηφ± ∈ L1([0, 1]).

Proof. It is plain that there exists a C1 diffeomorphism

φ+ : [0, 1] → [0, 1]

such that for x ∈ [c, 1]
f(x) = φ+ (qc(x)) .

We will analyze the nonlinearity of φ+. Observe that:

Df(x) = −2
(x− c)

(1 − c)2
· Dφ+ (qc(x))

and

D2f(x) = 4
(x− c)2

(1 − c)4
· D2φ+ (qc(x)) − 2

1

(1 − c)2
·Dφ+ (qc(x))

= E (1 + ε(x)). (3.1.1)

As we have seen before, we also have

Df(x) = E (x− c) · (1 + ε̄(x)) .

This implies that

ηφ+
(qc(x)) =

−(1 − c)2

2
·
ε(x) − ε̄(x)

1 + ε̄(x)
·

1

(x− c)2
. (3.1.2)

Therefore, by performing the substitution u = qc(x), we get:
∫ 1

0

|ηφ(u)| du =

∫ c

1

−2 |ηφ+
(qc(x)) |

x− c

(1 − c)2
dx (3.1.3)

=

∫ 1

c

|ε(x) − ε̄(x)|

1 + ε̄(x)

1

x− c
dx (3.1.4)

≤
1

min (1 + ε̄)

∫ 1

c

|δ(x)|

|x− c|
dx < ∞ (3.1.5)
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We have proved ηφ+
∈ L1([0, 1]). Similarly one can prove the existence of a C1

diffeomorphism
φ− : [0, 1] → [0, 1]

such that for x ∈ [0, c]
f(x) = φ−(qc(x))

and
ηφ− ∈ L1([0, 1]).

3.2 Distortion of cross ratios

Definition 3.2.1. Let J ⊂ T ⊂ [0, 1] be open and bounded intervals such that
T \ J consists of two components L and R. Define the cross ratios of these
intervals as

D(T, J) =
|J ||T |

|L||R|
.

If f is continuous and monotone on T then define the cross ratio distortion of
f as

B(f, T, J) =
D(f(T ), f(J))

D(T, J)
.

If fn|T is monotone and continuous then

B(fn, T, J) =

n−1
∏

i=0

B
(

f, f i(T ), f i(J)
)

.

Definition 3.2.2. Let f : [0, 1] → [0, 1] be a unimodal map and T ⊂ [0, 1]. We
say that

{

f i(T ) : 0 ≤ i ≤ n
}

has intersection multiplicity m ∈ N if and only if for every x ∈ [0, 1]

#
{

i ≤ n | x ∈ f i(T )
}

≤ m

and m is minimal with this property.

Theorem 3.2.3. Let f : [0, 1] → [0, 1] be a C2+|·| unimodal map with critical
point c ∈ (0, 1). Then there exists K > 0, such that the following holds. If T
is an interval such that fn|T is a diffeomorphism then for any interval J ⊂ T
with cl(J) ⊂ int(T ) we have,

B(fn, T, J) ≥ exp {−K ·m}

where m is the intersection multiplicity of
{

f i(T ) : 0 ≤ i ≤ n
}

.
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Proof. Observe that qc expands cross-ratios. Then Proposition 3.1.7 implies

B
(

f, f i(T ), f i(J)
)

>
Dφi(ji) ·Dφi(ti)

Dφi(li) ·Dφi(ri)

where φi = φ+ or φ− depending whether f i(T ) ⊂ [c, 1] or [0, c] and

ji ∈ qc
(

f i(J)
)

,

ti ∈ qc
(

f i(T )
)

,

li ∈ qc
(

f i(L)
)

,

ri ∈ qc
(

f i(R)
)

.

Thus

ln B(fn, T, J) =

n−1
∑

i=0

ln B
(

f, f i(T ), f i(J)
)

≥

n−1
∑

i=0

(ln Dφi(ji) − ln Dφi(li)) + (ln Dφi(ti) − ln Dφi(ri)) ≥

−
n−1
∑

i=0

|ηφi
(ξ1i )| |ji − li| + |ηφi

(ξ2i )| |ti − ri| ≥

−2 m

(∫

|ηφ+
| +

∫

|ηφ− |

)

= −K ·m.

Therefore
B(fn, T, J) ≥ exp {−K ·m}.

The previous Theorem allows us to apply the Real-Koebe-Lemma. See [11]
for a proof.

Lemma 3.2.4. (Real-Koebe-Lemma) For each K1 > 0, 0 < τ < 1/4, there
exists K <∞ with the following property:
Let g : T → g(T ) ⊂ [0, 1] be a C1 diffeomorphism on some interval T . Assume
that for any intervals J∗ and T ∗ with J∗ ⊂ T ∗ ⊂ T one has

B(g, T ∗, J∗) ≥ K1 > 0,

for an interval M ⊂ T such that cl(M) ⊂ int(T ). Let L,R be the components
of T \M . Then, if:

|g(L)|

|g(M)|
≥ τ and

|g(R)|

|g(M)|
≥ τ

we have:

∀x, y ∈M,
1

K
≤

|g
′

(x)|

|g′(y)|
≤ K.

Remark 3.2.5. The conclusion of the Real-Koebe-Lemma is summarized by say-
ing that g|M has bounded distortion.
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3.3 A priori bounds

Let f be an infinitely renormalizable C2+|·| unimodal map with quadratic tip at
c ∈ (0, 1). Let In0 = [f2n

(c), f2n+1

(c)] be the central interval whose first return
map corresponds to the nth-renormalization. Here, we study the geometry of
the cycle consisting of the intervals

Inj = f j(In0 ), j = 0, 1, . . . , 2n − 1.

Notice that
In+1
j , In+1

j+2n ⊂ Inj , j = 0, 1, . . . , 2n − 1.

Let Inl and Inr be the direct neighbors of Inj for 3 ≤ j ≤ 2n.

Lemma 3.3.1. For each 1 ≤ i < j, There exists an interval T which contains
Ini , such that f j−i : T → [Inl , I

n
r ] is monotone and onto.

Proof. Let T ⊂ [0, 1] be the maximal interval which contains Ini such that
f j−i|T is monotone. Such interval exists because of monotonicity of f j−i|In

i
.

The boundary points of T are a, b ∈ [0, 1]. Suppose f j−i(b) is to the right
of Inj . The maximality of T ensures the existence of k, k < j − i such that

fk(b) = c. Because i + k < j ≤ 2n, we have c /∈ Ini+k and so fk+1(T ) ⊃ In1 .

Moreover, f j−i−(k+1)|fk+1(T ) is monotone. Hence f j−i−(k+1)|In
1

is monotone.

So 1 + j− i− (k+ 1) ≤ 2n. This implies that f j−i(T ) contains In1+j−i−(k+1). In

particular f j−i(T ) contains Inr . Similarly we can prove f j−i(T ) contains Inl .

Lemma 3.3.2. (Intersection multiplicity) Let f j−i : T → [Inl , I
n
r ] be monotone

and onto with T ⊃ Ini . Then for all x ∈ [0, 1]

#{k < j − i | fk(T ) ∋ x} ≤ 7.

Proof. Without loss of generality we may restrict ourselves to estimate the in-
tersection multiplicity at a point x ∈ U , where

U = [Inl , I
n
r ] = [ul, ur].

Let cl ∈ Inl such that f2n−l(cl) = c and

Cl = [ul, cl] ⊂ Inl .

Similarly, define
Cr = [cr, ur] ⊂ Inr .

Let Tk = fk(T ), k = 0, 1, ....j − i.
Claim: If i+ k /∈ {l, j, r} and Tk ∩ U 6= ∅ then

(i) Ini+k ∩ U = ∅

(ii) U ∩ Tk = Inl or Cl or Inr or Cr.
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Let T \ Ini = L ∪ R and then we may assume U ∩ Tk = U ∩ Lk where
Lk = fk(L). This holds because Ini+k ∩ U = ∅. Consider the situation where

Inr ∩ Lk 6= ∅.

The other possibilities can be treated similarly. Notice that Inr cannot be strictly
contained in Lk. Otherwise there would be a third “neighbor” of Inj in U. Let
a = ∂L ∩ ∂T. Notice that

fk(a) ∈ ∂Lk ∩ I
n
r .

Furthermore,
f j−k(fk(a)) ∈ ∂U.

This means f j−k(fk(a)) is a point in the orbit of c. This holds because all
boundary points of the interval Inj are in the orbit of c. Hence, fk(a) is a

point in the orbit of c or fk(a) is a preimage of c. The first possibility implies
fk(a) ∈ ∂Inr . This implies

U ∩ Tk = U ∩ Lk = Inr .

The second possibility implies fk(a) = cr which means

U ∩ Tk = U ∩ Lk = Cr.

This finishes the proof of claim. This claim gives 7 as bound for the intersection
multiplicity.

Proposition 3.3.3. For j < 2n, f2n−j : Inj → In0 has uniformly bounded
distortion.

Proof. Step1 : Choose j0 < 2n, such that for all j ≤ 2n, we have |Inj0 | ≤ |Inj |.

By Lemma 3.3.1 there exists an interval neighborhood Tn = L0
n ∪ I

n
1 ∪R0

n such
that f j−1 : Tn → [Inl , I

n
r ] ⊃ Inj0 is monotone and onto. Lemma 3.3.2 together

with Theorem 3.2.3 allow us to apply the Koebe Lemma 3.2.4. So, there exists
τ0 > 0 such that

|L0
n|, |R

0
n| ≥ τ0 |In1 |.

Let Un = In0 , Vn = f−1
(

L0
n ∪ In1 ∪R0

n

)

and let L1
n, R

1
n be the components of

Vn \ Un. From Proposition 3.1.7 we get τ1 > 0 such that

|L1
n|, |R

1
n| ≥ τ1 |Un|.

Step2 : Suppose Wn = [Inln , I
n
rn

], where Inln , I
n
rn

are the direct neighbors of Un.
We claim that Vn ⊂ Wn. Suppose it is not. Then, say Inrn

⊂ int(Vn) implies
that f(Inrn

) ⊂ int(L1
n). So, f j0−1|f(In

rn
) is monotone, implies that rn + j0 ≤ 2n

and f j0(Inrn
) ⊂ int([Inl , I

n
r ]). This contradiction concludes that Vn ⊂Wn.

Step3 : Let Ln, Rn be the components of Wn \ Un. Then

|Ln|, |Rn| ≥ τ1 |Un|.
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Step4 : For all j < 2n, there exists an interval neighborhood Tj which contains Inj
such that f2n−j : Tj →Wn is monotone and onto. Now Proposition 3.3.3 follows
from the Lemma 3.3.2 together with Theorem 3.2.3 and the Koebe Lemma
3.2.4.

Corollary 3.3.4. There exists a constant K such that

∣

∣Df2n

|In
0

∣

∣ ≤ K.

Proof. Let x ∈ In1 . Then from Proposition 3.3.3 we get K1 > 0 such that for
some x0 ∈ In1

|Df2n−1(x)| =
|In0 |

|In1 |
·

{

Df2n−1(x)

Df2n−1(x0)

}

≤
|In0 |

|In1 |
·K1.

Proposition 3.1.7 implies that there exists K2 > 0 such that for x ∈ In0

|Df(x)| ≤ K2 · |x− c|

and

|In1 | ≥
1

K2
· |In0 |

2.

Now for x ∈ In0

|Df2n

(x)| ≤ K2 · |x− c| ·
|In0 |

|In1 |
·K1

≤ K2 ·K1 ·
|In0 |

2

|In1 |
≤ K2

2 ·K1 = K

Therefore, we conclude that
∣

∣Df2n

|In
0

∣

∣ ≤ K.

Definition 3.3.5. (A priori bounds) Let f be infinitely renormalizable. We say
f has a priori bounds if there exists τ > 0 such that for all n ≥ 1 and j ≤ 2n

we have

τ <
|In+1
j |

|Inj |
,

|In+1
j+2n |

|Inj |
(3.3.1)

τ <
|Inj \

(

In+1
j ∪ In+1

j+2n

)

|

|Inj |
(3.3.2)

where, In+1
j , In+1

j+2n are the intervals of next generation contained in Inj .

For a general discussion on real a priori bounds, see [11] and the references
there in. The proof of the following Proposition follows closely the argument in
[26].
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Proposition 3.3.6. Every infinitely renormalizable C2+|·| map has a priori
bounds.

Proof. Step1. There exists τ1 > 0 such that
|In+1

0 |

|In0 |
> τ1.

Let In0 = [an, an−1] be the central interval, and so an = f2n

(c). A similar
argument as in the proof of Corollary 3.3.4 gives K1 > 0 such that

|f2n

([an, c])| ≤

(

|an − c|

|In0 |

)2

· |In0 | ·K1.

Notice that
f2n

([an, c]) = In+1
2n .

Thus

|In+1
2n | ≤

|an − c|2

|In0 |
·K1.

Note
f2n

(In+1
2n ) = In+1

0 ⊃ [an, c].

Therefore, by Corollary 3.3.4

|an − c| ≤ |f2n

(In+1
2n )| ≤ K · |In+1

2n | ≤ K ·
|an − c|2

|In0 |
·K1.

This implies

|an − c| ≥
1

K
· |In0 |.

Which proves
|In+1

0 |

|In0 |
> τ1.

Step2. There exists τ2 > 0 such that
|In+1

2n |

|In0 |
≥ τ2.

From above we get

τ1|I
n
0 | ≤ |In+1

0 | = |f2n

(In+1
2n )| ≤ K · |In+1

2n |

This proves
|In+1

2n |

|In0 |
≥ τ2.

Step3. There exists τ3 > 0 such that the following holds.

|In+1
j |

|Inj |
,

|In+1
j+2n |

|Inj |
≥ τ3.

Because
f2n−j(In+1

j ) = In+1
0 , f2n−j(Inj ) = In0
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and from Proposition 3.3.3 we get a K > 0 such that

|In+1
j |

|Inj |
≥

1

K
·
|In+1

0 |

|In0 |
≥
τ1
K
.

Hence,
|In+1
j |

|Inj |
≥ τ3. Similarly we prove

|In+1
j+2n |

|Inj |
≥ τ3.Which completes the proof

of (3.3.1).
Step4. To complete the proof of the Proposition, it remains to show that the gap
between the intervals In+1

0 , In+1
2n and as well as In+1

j , In+1
j+2n are not too small.

Let
Gn = In0 \

(

In+1
0 ∪ In+1

2n

)

.

We claim that there exists τ4 > 0 such that

|Gn|

|In0 |
≥ τ4.

Let Hn be the image of Gn under f2n

. Then Hn = f2n

(Gn) ⊃ In+2
3·2n . The claim

follows by using Corollary 3.3.4 and the bounds we have so far. Namely,

K · |Gn| ≥ |Hn| ≥ |In+2
3·2n | ≥ τ3 · |I

n+1
2n | ≥ τ3 · τ2 · |I

n
0 |.

This implies
|Gn| ≥ τ4 · |I

n
0 |.

Step5. Let Gnj = Inj \
(

In+1
j ∪ In+1

j+2n

)

, then there exists τ5 > 0 such that

|Gnj |

|Inj |
≥ τ5.

We have f2n−j(Gnj ) = Gn and f2n−j(Inj ) = In0 . Since f2n−j has bounded
distortion, we immediately get a constant K > 0 such that

|Gnj |

|Inj |
≥

1

K
·
|Gn|

|In0 |
≥
τ4
K
.

This implies
|Gnj | ≥ τ5 · |I

n
j |.

This completes the proof of (3.3.2).

3.4 Approximation of f |Inj by a quadratic map

Let φ : [0, 1] → [0, 1] be an orientation preserving C2 diffeomorphism with non-
linearity ηφ : [0, 1] → R. We identify a C2 diffeomorphism with its non-linearity,
which is a continuous function. Hence, we identify the set of C2 diffeomorphisms
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with the vector space of continuous functions equipped with the C0− norm. In
this context

|φ| = |ηφ|0

becomes a norm (nonlinearity norm), see [25]. Let [a, b] ⊂ [0, 1] and
f : [a, b] → f([a, b]) be a diffeomorphism. Let

1[a b] : [0, 1] → [a, b]

and
1f([a,b]) : [0, 1] → f([a, b])

be the affine homeomorphisms with 1[a,b](0) = a and 1f([a,b])(0) = f(a). The
rescaling f[a,b] : [0, 1] → [0, 1] is the diffeomorphism

f[a,b] =
(

1f([a,b])

)−1
◦ f ◦ 1[a,b].

We say that 0 ∈ [0, 1] corresponds to a ∈ [a, b].

Proposition 3.4.1. Let f be an infinitely renormalizable C2+|·| map with crit-
ical point c ∈ (0, 1). For n ≥ 1 and 1 ≤ j < 2n we have

fIn
j

= φnj ◦ qnj

where
qnj = (qc)In

j
: [0, 1] → [0, 1]

such that 0 corresponds to f j(c) ∈ Inj and φnj : [0, 1] → [0, 1] a C2 diffeomor-
phism. Moreover

lim
n→∞

2n−1
∑

j=1

|φnj | = 0

Proof. If Inj ⊂ [c, 1] then use Proposition 3.1.7 and define

φnj = (φ+)qc(In
j

) : [0, 1] → [0, 1]

such that 0 ∈ [0, 1] corresponds to qc
(

f j(c)
)

∈ qc(I
n
j ). In case Inj ∈ [0, c] then

let
φnj = (φ−)qc(In

j
) : [0, 1] → [0, 1]

where again 0 ∈ [0, 1] corresponds to qc
(

f j(c)
)

∈ qc(I
n
j ). Let ηnj be the non-

linearity of φnj . Then the chain rule for non-linearities [25] gives

|ηnj (x)| = |qc(I
n
j )| · |ηφ±(1nj (x))|

where 1nj : [0, 1] → qc(I
n
j ) is the affine homeomorphism such that 1nj (0) =

qc(f
j(c)). Now use (3.1.2) to get

|ηnj |0 ≤ |qc(I
n
j )| ·

(1 − c)2

2
·

1

minx∈In
j

(1 + ǭ(x))
· sup
x∈In

j

|δ(x)|

(x− c)2

≤
1

minx∈[0,1] (1 + ǭ(x))
· |ζnj − c| · |Inj | · sup

x∈In
j

|δ(x)|

|x− c|2
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where

|Dqc(ξ
n
j )| =

|qc(I
n
j )|

|Inj |

and ξnj ∈ Inj . The a priori bounds gives K1 > 0 such that

dist(c, Inj ) ≥
1

K1
· |Inj |.

This implies that for some K > 0

|ηnj | ≤ K · sup
x∈In

j

|δ(x)|

|x− c|
· |Inj |.

Therefore,

2n−1
∑

j=1

|φIn
j
| ≤ K ·

2n−1
∑

j=1

sup
x∈In

j

|δ(x)|

|x− c|
· |Inj |

= K · Zn

Let Λn = ∪2n−1
j=0 Inj . The a priori bounds imply that there exists τ > 0 such that

|Λn| ≤ (1 − τ) |Λn−1|.

In particular |Λ| = 0 where Λ∩ Λn is the Cantor attractor. Now we go back to
our estimate and notice that Zn is a Riemann sum for

∫

Λn

|δ(x)|

|x− c|
dx.

Suppose that lim sup Zn = Z > 0. Let n ≥ 1 and m > n. Then we can find a
Riemann sum Σm,n for

∫

Λn

|δ(x)|

|x− c|
dx

by adding positive terms to Zm. Then
∫

Λn

|δ(x)|

|x− c|
dx = lim sup

m→∞
Σm,n ≥ lim sup

m→∞
Zm ≥ Z > 0.

Hence,
∫

Λ

|δ(x)|

|x− c|
dx ≥ Z > 0.

This is impossible because |Λ| = 0. Thus we proved

2n−1
∑

j=1

|φIn
j
| −→ 0.
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3.5 Approximation of Rnf by a polynomial map

The following Lemma is a variation on Sandwich Lemma from [25].

Lemma 3.5.1. (Sandwich) For every K > 0 there exists constant B > 0 such
that the following holds. Let ψ1, ψ2 be the compositions of finitely many φ, φj ∈
Diff2

+ ([0, 1]), 1 ≤ j ≤ n;

ψ1 = φn ◦ · · · ◦ φt ◦ . . . φ1

and
ψ2 = φn ◦ · · · ◦ φt+1 ◦ φ ◦ φt ◦ . . . φ1.

If
∑

j

|φj | + |φ| ≤ K

then
|ψ1 − ψ2|1 ≤ B |φ|.

Proof. Let x ∈ [0, 1]. For 1 ≤ j ≤ n let

xj = φj−1 ◦ · · · ◦ φ2 ◦ φ1(x)

and

Dj = (φj−1 ◦ · · · ◦ φ2 ◦ φ1)
′

(x).

Furthermore, for t+ 1 ≤ j ≤ n, let

x′j = φj−1 ◦ · · · ◦ φt+1(φ(xt+1))

and
D′
j = (φj−1 ◦ · · · ◦ φt+1)

′

(x′t+1) φ
′

(xt+1) Dt+1.

Now we estimate the difference of the derivatives of ψ1, ψ2. Namely,

Dψ2(x)

Dψ1(x)
= Dφ(xt+1) ·

∏

j≥t+1

Dφj(x
′
j)

Dφj(xj)
.

In the following estimates we will repeatedly apply Lemma 10.3 from [25] which
says,

e−|ψ| ≤ |Dψ|0 ≤ e|ψ|.

This allows us to get an estimate on |Dψ1 −Dψ2|0 in terms of
Dψ2

Dψ1
. Now

Dφj(x
′
j) = Dφj(xj) +D2φj(ζj) (x′j − xj).
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Therefore,

Dφj(x
′
j)

Dφj(xj)
≤ 1 +

|D2φj |0
Dφj(xj)

· |x′j − xj |

= 1 +O(φj) · |x
′
j − xj |

To continue, we have to estimate |x′j − xj |. Apply Lemma 10.2 from [25] to get

|x′j − xj | = O
(

|x′t+1 − xt+1|
)

= O(|φ|).

Because
∑

|φj | + |φ| ≤ K there exists K1 > 0 such that

Dψ2(x)

Dψ1(x)
≤ e|φ|

∏

j≥t+1

(1 +O(|φj | |φ|))

≤ e|φ| eK1·
P

|φj | |φ|

Hence,
Dψ2

Dψ1
≤ e|φ|(1+K1·K).

We get a lower bound in similar way. So there exists K2 > 0 such that

e−K2·|φ| ≤
|Dψ2|

|Dψ1|
≤ eK2·|φ|.

Finally, there exists B > 0 such that

|Dψ2(x) −Dψ1(x)| ≤ B |φ|.

This completes proof of the lemma.

Let f be an infinitely renormalizable C2+|·| unimodal map.

Lemma 3.5.2. There exists K > 0 such that for all n ≥ 1 the following holds

∑

1 ≤ j ≤2n−1

|qnj | ≤ K.

Proof. The non-linearity norm of qnj , j = 1, . . . , 2n − 1, is

|qnj | =
|Inj |

dist (Inj , c)
.

Let

Qn =

2n−1
∑

j=1

|qnj |.
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Observe that there exists τ > 0 such that for j = 1, 2, . . . , 2n − 1

|qn+1
j | + |qn+1

j+2n | ≤
|In+1
j | + |In+1

j+2n |

dist (Inj , c)

= |qnj |
|In+1
j | + |In+1

j+2n |

|Inj |

= |qnj |
|Inj −Gnj |

|Inj |
≤ |qnj |(1 − τ).

Therefore
Qn+1 ≤ (1 − τ) Qn + |qn+1

2n |.

From the a priori bounds we get a constant K1 > 0 such that

|qn+1
2n | ≤

|In+1
2n |

|Gn2n |
≤ K1.

Thus
Qn+1 ≤ (1 − τ)Qn +K1.

This implies the Lemma.

Consider the map f : In0 → In1 , and rescale affinely range and domain to
obtain the unimodal map

f̂n : [0, 1] → [0, 1].

Apply Proposition 3.1.7 to obtain the following representation of f̂n. There
exists cn ∈ (0, 1) and diffeomorphisms φn± : [0, 1] → [0, 1] such that

f̂n(x) = φn+ ◦ qcn
(x), x ∈ [cn, 1]

and
f̂n(x) = φn− ◦ qcn

(x), x ∈ [0, cn].

Furthermore
|φn±| → 0

when n → ∞. Let qn0 = qcn
. Use Proposition 3.4.1 to obtain the following

representation for the nth renormalization of f .

Rnf = (φn2n−1 ◦ q
n
2n−1) ◦ · · · ◦ (φnj ◦ qnj ) ◦ · · · ◦ (φn1 ◦ qn1 ) ◦ φn± ◦ qn0 .

Inspired by [2] we introduce the unimodal map

fn = qn2n−1 ◦ · · · ◦ q
n
j ◦ · · · ◦ qn1 ◦ qn0 .

Proposition 3.5.3. If f is an infinitely renormalizable C2+|·| map then

lim
n→∞

|Rnf − fn|1 = 0.
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Proof. Define the diffeomorphisms

ψ±
j = qn2n−1 ◦ · · · ◦ q

n
j ◦ (φnj−1 ◦ q

n
j−1) ◦ · · · ◦ (φn1 ◦ qn1 ) ◦ φn±

with j = 0, 1, 2, . . . 2n. Notice that

Rnf(x) = ψ±
2n ◦ qn0 (x)

and that
fn(x) = ψ±

0 ◦ qn0 (x).

where we use again the ± distinction for points x ∈ [0, cn] and x ∈ [cn, 1]. Apply
the Sandwich Lemma 3.5.1 to get a constant B > 0 such that

|ψ±
j+1 − ψ±

j |1 ≤ B · |φnj |

for j ≥ 1, and also notice that

|ψ±
1 − ψ±

0 |1 ≤ B · |φn±| −→ 0.

We can now apply Proposition 3.4.1 to get

lim
n→∞

|ψ±
2n − ψ±

0 |1 ≤ lim
n→∞

B ·
∑

1 ≤ j ≤2n−1

|φnj | + |φn±| = 0,

which implies that:
lim
n→∞

|Rnf − fn|1 = 0.

3.6 Convergence

Fix an infinitely renormalizable C2+|·| map f .

Lemma 3.6.1. For every N0 ≥ 1, there exists n1 ≥ 1 such that fn is N0 times
renormalizable whenever n ≥ n1.

Proof. The a priori bounds from Proposition 3.3.6 gives d > 0 such that for
n ≥ 1

|(Rnf)i(c) − (Rnf)j(c)| ≥ d

for all i, j ≤ 2N0+1 and i 6= j. Now by taking n large enough and using Propo-
sition 3.5.3 we find

|f in(c) − f jn(c)| ≥
1

2
d

for i 6= j and i, j ≤ 2N0+1. The kneading sequence of fn (i.e., the sequence of
signs of the derivatives of that function) coincides with the kneading sequence of
Rnf for at least 2N0+1 positions. We proved that fn is N0 times renormalizable
because Rnf is N0 times renormalizable.
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The polynomial unimodal maps fn are in a compact family of quadratic like
maps. This follows from Lemma 3.5.2. The unimodal renormalization theory
presented in [21] gives us the following.

Proposition 3.6.2. There exists N0 ≥ 1 and n0 ≥ 1 such that fn is N0 renor-
malizable and

dist1 (RN0fn, W
u) ≤

1

3
· dist1 (fn, W

u).

Here, Wu is the unstable manifold of the renormalization fixed point con-
tained in the space of quadratic like maps [21]. Recall that dist1 stands for the
C1 distance.

Lemma 3.6.3. There exists K > 0 such that for n ≥ 1

dist1 (Rnf, Wu) ≤ K.

Proof. This follows from Lemma 3.5.2 and Proposition 3.5.3.

Let fω∗ ∈Wu be the analytic renormalization fixed point.

Theorem 3.6.4. If f is an infinitely renormalizable C2+|·| unimodal map. Then

lim
n→∞

dist0 (Rnf, fω∗ ) = 0.

Proof. For every K > 0, there exists A > 0 such that the following holds. Let
f, g be renormalizable unimodal maps with

|Df |0, |Dg|0 ≤ K

then

dist0(Rf, Rg) ≤ A · dist0(f, g). (3.6.1)

Let N0 ≥ 1 be as in Proposition 3.6.2. Now

dist0(R
n+N0f,Wu) ≤ dist0

(

RN0(Rnf), RN0fn
)

+ dist0
(

RN0fn, W
u
)

≤ AN0 · dist0 (Rnf, fn) +
1

3
dist0 (fn, W

u)

Notice,
dist0(fn, W

u) ≤ dist0(fn, R
nf) + dist0(R

nf, Wu).

Thus there exists K > 0,

dist0(R
n+N0f, Wu) ≤

1

3
dist0(R

nf, Wu) +K · dist0(R
nf, fn).

Let
zn = dist0(R

n·N0f, Wu)

and
δn = dist0(R

nf, fn).
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Then

zn+1 ≤
1

3
zn +K · δn·N0

.

This implies

zn ≤
∑

j<n

K · δj·N0
· (

1

3
)n−j .

Now we use that δn → 0, see Proposition 3.5.3, to get zn → 0. So we proved
that Rn·N0f converges to Wu. Use (3.6.1) and R(Wu) ⊂ Wu to get that Rnf
converges to Wu in C0 sense. Notice that any limit of Rnf is infinitely renor-
malizable. The only infinitely renormalizable map in Wu is the fixed point fω∗ .
Thus

lim
n→∞

dist0 (Rnf, fω∗ ) = 0.
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3.7 Slow convergence

Theorem 3.7.1. Let dn > 0 be any sequence with dn → 0. There exists an
infinitely renormalizable C2 map f with quadratic tip such that

dist0 (Rnf, fω∗ ) ≥ dn.

The proof needs some preparation. Use the representation

fω∗ = φ ◦ qc

where φ is an analytic diffeomorphism. The renormalization domains are de-
noted by In0 with

c = ∩n≥1I
n
0 .

Each In0 contains two intervals of the (n + 1)th generation. Namely In+1
0 and

In+1
2n . Let

Gn = In0 \
(

In+1
0 ∪ In+1

2n

)

,

Ĝn = qc(Gn) ⊂ În0 = qc(I
n
0 )

and În+1
2n = qc(I

n+1
2n ). The invariant Cantor set of fω∗ is denoted by Λ. Notice,

qc(Λ) ∩ În0 ⊂
(

În+1
0 ∪ În+1

2n

)

.

The gap Ĝn in În0 does not intersect with Λ. Choose a family of C2 diffeomor-
phisms

φt : [0, 1] → [0, 1]

with

(i) Dφt(0) = Dφt(1) = 1.

(ii) D2φt(0) = D2φ(1) = 0.

(iii) For some C1 > 0
dist0 (φt, id) ≥ C1 · t.

(iv) For some C2 > 0
|ηφt

|0 ≤ C2 · t.

Let m = min Dφ and tn = 1
m C1 |Ĝ1|

dn. Now we will introduce a perturbation

φ̃ of φ. Let
1n : [0, 1] → Ĝn

be the affine orientation preserving homeomorphism. Define

ψ : [0, 1] → [0, 1]

as follows

ψ(x) =

{

x x /∈ ∪n≥0Ĝn
1n ◦ φtn ◦ 1−1

n (x) x ∈ Ĝn.
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Let
f = φ ◦ ψ ◦ qc = φ̃ ◦ qc.

Then f is unimodal map with quadratic tip which is infinitely renormalizable
and still has Λ as its invariant Cantor set. This follows from the fact that the
perturbation did not affect the critical orbit and it is located in the complement
of the Cantor set. In particular the invariant Cantor set of Rnf is again Λ ⊂
I1
0 ∪ I1

1 and G1 is the gap of Rnf . Notice, by using that fω∗ is the fixed point of
renormalization that for x ∈ G1

Rnf(x) = φ ◦ 11 ◦ φtn ◦ 1−1
1 ◦ qc(x)

Hence,

|Rnf − fω∗ |0 ≥ max
x∈Ĝ1

|Rnf(x) − fω∗ (x)|

≥ max
x∈Ĝ1

m · |
(

11 ◦ φtn ◦ 1−1
1

)

qc(x) − qc(x)|

≥ m · max
x∈Ĝ1

|
(

11 ◦ φtn ◦ 1−1
1

)

(x) − x|

= m · |Ĝ1| · |φtn − id|0

≥ m · |Ĝ1| · C1 · tn = dn.

It remains to prove that f is C2. The map f is C2 on [0, 1] \ {c} because
f = φ̃ ◦ qc with φ̃ = φ ◦ ψ, where φ is analytic diffeomorphism and ψ is by
construction C2 on [0, 1). Notice that, from (3.1.1) we have,

D2f(x) = 4 ·
(x− c)2

(1 − c)4
·D2φ̃ (qc(x)) (3.7.1)

− 2 ·
1

(1 − c)2
·Dφ̃ (qc(x)) .

We will analyze the above two terms separately. Observe

Dψ(x) =

{

1, x /∈ ∪n≥0Ĝn
|Dφtn

(

1−1
n (x)

)

|, x ∈ Ĝn.

This implies for x ∈ Gn

Dφ̃ (qc(x)) = Dφ (ψ ◦ qc) ·Dψ(qc(x))

= Dφ(1) ·
(

1 +O(În0 )
)

· (1 +O(tn))

For x /∈ ∪n≥1Gn we have

Dφ̃(qc(x)) = Dφ(qc(x))

This implies that the term

x 7−→ −2 ·
1

(1 − c)2
·Dφ̃(qc(x))
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extends continuously to the whole domain. The first term in (3.7.1) needs more
care. Observe, for u ∈ Ĝn,

D2φ̃(u) = D2φ(ψ(u)) · (Dψ(u))2 +Dφ(ψ(u)) ·D2ψ(u)

= D2φ(1) ·
(

1 +O(În0 )
)

· (1 +O(tn)) +

Dφ(1) ·
(

1 +O(În0 )
)

· (1 +O(tn)) ·D
2ψ(u)

= D2φ(1) ·
(

1 +O(În0 )
)

· (1 +O(tn)) +

Dφ(1) ·
(

1 +O(În0 )
)

· (1 +O(tn)) ·
1

|Ĝn|
·O(tn).

This implies that

4
(x− c)2

(1 − c)4
·D2φ̃(qc(x)) =

{

O
(

(x− c)2
)

+O(tn), x ∈ Ĝn
O

(

(x− c)2
)

, x /∈ ∪n≥0Ĝn

In particular, the first term of D2f

x 7−→ 4
(x− c)2

(1 − c)4
·D2φ̃(qc(x))

also extends to a continuous function on [0, 1]. Indeed, f is C2.

Remark 3.7.2. If the sequence dn is not summable (and in particular not expo-
nential decaying) then the example constructed above is not C2+|·|. This follows
from

∫

Ĝn

|ηφ̃(x)|dx ≍ tn.

Thus
∫

|ηφ̃| ≍
∑

dn = ∞.

Now, Proposition 3.1.7 implies that f is not C2+|·|. If the sequence dn is
summable, the previous construction will give an example of a C2+|·| unimodal
map whose renormalizations converges only polynomially. Any reasonable met-
ric used on C2+|·| will be stronger than the C0 distance in which the polynomial
convergence occurs. Hence the renormalization fixed point cannot be hyperbolic
in any space of C2+|·| unimodal maps.
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Hénon Renormalization



Chapter 4

Hénon Renormalization

In this chapter we study the renormalization of Hénon-like maps. It was known
from the work [9], that there exists a short curve in the Hénon-family

Fa, b : (x, y) 7→ (a− x2 − b y, x)

which consisting of infinitely renormalizable Hénon-maps of period doubling
type. In this work we study numerically, the extension of this curve in the
parameter space up to the conservative map. In particular, we describe the
combinatorial changes which occur along this curve. These changes are called,
“top-down breaking process” of Hénon renormalization. The second part of our
study is to describe, how the one-dimensional Cantor set deforms into the Can-
tor set of the infinitely renormalizable conservative map. To explain this, we
compute the distribution of angles of the invariant line fields along the Cantor
set. It is known that for highly dissipative maps, the geometry of the Cantor
set is different from the corresponding unimodal Cantor set. Finally, we show
how this geometry becomes more complicated for maps close to the conservative
map.

4.1 Introduction

The Renormalization theory for the Hénon family was initiated in the work of
Collet, Eckmann and Koch [6]. It was shown that the one-dimensional renor-
malization fixed point f∗ is also a hyperbolic fixed point for nearby dissipative
two-dimensional maps. Later, a subsequent article by Gambaudo, van Strien
and Tresser [16] demonstrated that, similar to the one-dimensional situation, the
infinitely renormalizable two-dimensional maps which are close to f∗ have an
attracting Cantor set O on which the map acts as an adding machine. However,
the geometry of the Cantor sets and global topological properties of these maps
are very interesting to study. Recently, de Carvalho, Lyubich and Martens, [9],
discovered that for these maps universality features can coexist with unbounded
geometry. This happens due to the lack of rigidity, which makes it quite different
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from the familiar one-dimensional theory. In this work, we study numerically
the approximation of the stable manifold of the renormalization operator in pa-
rameter space and explain numerical computations related to the geometry of
the invariant Cantor sets of these maps. The precise statement of the results
are formulated below.
Structure of the problem and Numerical results: This study is organized
in the following way.

In Section 4.3, we explain the construction of the locus of period 2n points
such that the trace Tr of the first derivative of the 2nth iterate of the Hénon
map satisfies Tr = 0. This locus consists of all (x, y, a, b) such that (x, y) is
an attracting period 2n point for the Hénon map with parameters (a, b). This
is a smooth surface which projects to the (a, b) parameter plane by a local
diffeomorphism. We conjecture that as n → ∞, this locus of period 2n points
will converge to the space of infinitely renormalizable maps. Furthermore, we
show that graphically this locus of parameters, Γ2n = {(a(b), b) | 0 ≤ b ≤ 1},
will be a smooth curve in the (a, b) parameter plane.

In Section 4.5, we describe the possible extension of the renormalization the-
ory globally in the parameter space up to the boundary, where the map become
conservative. To describe this, we use the topological definition of renormaliz-
ability, which was introduced in [9]. In particular, we describe the “top-down
breaking process” of Hénon renormalization on the curve Γ2n . To explain, we
compute numerically the heteroclinic tangencies for the fixed points and for the
periodic points up to the period 2n−1, and describe their asymptotic behavior
as n→ ∞. Finally, we conjecture that these heteroclinic tangencies satisfy the
following relation,

lim
n→∞

b2n
bn−1

= 1.

In the second part of this work we focus on the geometry of the Cantor set
of infinitely renormalizable Hénon-like maps. It was shown in [9], for highly
dissipative maps the corresponding Cantor set is not contained in a smooth
curve. It is interesting to study the geometry of the maps close to b = 1. We
notice that, for high b values, the corresponding Cantor set has complicated
geometry (compare to the situation of the degenerate map, where the Cantor
set lies on a smooth curve). This means, the geometry of the Cantor set turns
out to be, more away from the degenerate case. To describe this, we compute
the distribution of angles of invariant line fields for various values of b on the
curve Γ2n and compare these distributions with the distribution of line fields for
the degenerate map. These results are presented with more details in section 4.6.

Finally, in last section 4.7, we construct the renormalization of Hénon boxes
around the point lp, the extreme right most point in the orbit, and compute
the average angles versus b value, in each of zooming levels around the point
lp. These pictures are illustrated in Figure 4.44. It has been proved in [22],
that the average Jacobian b is topologically invariant. This gives us, if we take
any other Hénon family and compute their average angles by constructing the
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renomalization boxes around the point lp, then we see, same kind of graph
(piece-wise affine nature) as Figure 4.44. From this, we conjecture that there
exist universal angles on the Cantor set around the point lp.

4.2 Notation

Let Ωh,Ωv ⊂ C be neighborhoods of [−1, 1] ⊂ R and Ω = Ωh × Ωv.
Let B = [−1, 1] × [−1, 1] and ǫ > 0. Consider the class HΩ(ǫ), consists of
maps F : B → B of the following form,

F (x, y) = (fa(x) − ǫ(x, y), x),

where fa : [−1, 1] → [−1, 1] is a unimodal map which admits a holomorphic
extension to Ωh and ǫ : B → R admits a holomorphic extension to Ω and finally
|ǫ| ≤ ǫ. The critical point c of f is non-degenerate, if Df(c) < 0. A map
F ∈ HΩ(ǫ) is said to be Hénon-like map, if F maps vertical lines to horizontal
lines.

According to the topological construction, a Hénon map is said to be renor-
malizable if there exists a domain D ⊂ B such that F 2 : D → D. The con-
struction of the domain D is inspired by renormalization of unimodal maps. In
particular it is a topological construction. The precise analytical definition of
renormalization can be found in [9]. If the renormalizable Hénon map is given
by F (x, y) = (f(x) − ǫ(x, y)) then the domain, D ⊂ B, is essentially a vertical
strip which is bounded by two curves of the form

f(x) − ǫ(x y) = Const.

These curves are graphs over the y−axis with a slope of order ǫ > 0. The domain
D satisfies similar combinatorial properties as the domain of renormalization of
a unimodal map. Namely,

F (D) ∩D = ∅,

and
F 2(D) ⊂ D.

However, the restriction F 2|D is not a Hénon-like map as it does not map vertical
lines into horizontal lines. In [9], a non-linear change of variables was used to
define the renormalization of F . This is given by

RF = φ−1 ◦ (F 2|U ) ◦ φ,

where U is a certain neighborhood of the “critical value” v = (f(0), 0) and φ is
an explicit non-linear change of variables. The set of n−times renormalizable
maps is denoted by

Hn
Ω(ǫ) ⊂ HΩ(ǫ)

. If F ∈ Hn
Ω(ǫ) we use the notation

Fn = RnF.
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The set of infinitely renormalizable maps is denoted by

WΩ(ǫ) =
⋂

n≥1

Hn
Ω(ǫ)

It was shown that the degenerate map F∗(x, y) := (f∗(x), x), where f∗ is
the fixed point of the one-dimensional renormalization operator, is a hyperbolic
fixed point for R with a one-dimensional unstable manifold (consisting of one-
dimensional maps) and that the renormalizations RnF of infinitely renormaliz-
able maps converge at a super-exponential rate towards the space of unimodal
maps [9]. For any infinitely renormalizable map F , there exists a hierarchical
family of boxes Bnσ ,with 2n on each level and organized by the inclusion in the
dyadic tree, such that

O = OF =
⋂

n≥1

⋃

σ

Bnσ

is the Cantor set on which F acts as an adding machine. Furthermore, the di-
ameters of the boxes Bnσ shrink at least exponentially with rate O(λ−n), where
λ = 1

σ
= 2.6... and σ is the universal scaling factor of one-dimensional renor-

malization fixed point. This means that the Hausdorff dimension of the Cantor
set is less than one. This makes it possible to control the distortion of the
renormalizations. Ultimately, this leads to the following asymptotic formula,

RnF (x, y) = (fn(x) − b2
n

a(x) y (1 +O(ρn)), x ),

where fn → f∗ exponentially fast and

b = bF = exp

∫

O

log JacF dµ,

is the average Jacobian of F . Here µ is the unique invariant measure on O
and the Jacobian is the absolute value of the determinant of the derivative
ρ ∈ (0, 1) and a(x) is a universal function. This is a new universality feature
of two-dimensional dynamics: f∗ controls the zeroth order shape of the renor-
malization and a(x) gives the first order control. Also in [9], they had noticed
striking differences between the one- and two-dimensional situations. Namely,
the Cantor set O is not rigid. That means that if F and G are two infinitely
renormalizable maps with bF < bG, then a conjugacy h : OF → OG , does not
admit a smooth extension to R

2. Thus, in dimension two, universality and rigid-
ity phenomena do not necessarily coexist. This non-rigidity phenomenon is also
observed in one-dimensional unimodal maps. There the influence of the smooth-
ness of the maps has been considered played a vital role for the non-rigidity, see
[5], for more details.
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4.3 Hénon cycles

4.3.1 Construction of the period 2n points

Consider the Hénon family

Fa,b (x, y) 7→ (fa(x) − b y, x)

where 0 ≤ b ≤ 1, a > 0 and fa(x) is a unimodal map. For these maps the
Jacobian bFa,b

= b, is constant. In the case of the degenerate map (b = 0),
there is an unique a∗ for which the map Fa∗,0 is infinitely renormalizable. This
is the accumulation point of period doubling bifurcations. Here, our numerical
computations show that there is a curve,

b 7→ (a(b), b) for b ∈ [0, 1],

which is attached to the point (a∗, 0) in the parameter plane, consisting of
infinitely renormalizable Hénon-like maps. To show this, we constructed the
“attracting period 2n locus”, consisting of all (x, y, a, b) such that the trace Tr
of the first derivative of the 2nth iterate of the Hénon map satisfies Tr = 0.
This means, start with the sequence of one dimensional quadratic maps fan

,
which have the critical orbit of period 2n and converge to the Feigenbaum map.
For each of these maps, we extend it to a curve in the Hénon parameter plane
which has the most attracting period 2n orbit. We explain this construction in
the following.

Algorithm: Consider the Hénon map

Fa,b(x, y) =
(

a− x2 − b y, x
)

(4.3.1)

where 0 ≤ b ≤ 1. For b = 0, we can easily compute the sequence of parameters

{a21

0 , a
22

0 , a
23

0 , · · · , a
2n

0 · · · },

for the quadratic map fa(x) = a − x2, as strongly contracting periodic points.
We obtain this sequence {a2n

0 }, by solving the following polynomial

f2n

a (0) = 0,

for each n = 1, 2, · · · , 15.
The next step is to increment b as bi, where bi = bi−1 + δ, with δ = 10−10 and
we compute the sequence of parameters {a2n

i }, corresponding to the sequence
of strongly contracting periodic points. This means, for each bi we need to find
a vector v2n

i =
(

x2n

i , y
2n

i , a2n

i

)

in such a way that
(

x2n

i , y
2n

i

)

is a periodic point

of period 2n at the parameter (a2n

i , bi), and the trace of the first derivative of
2nth map is equal to 0. This leads to the following equations.
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F 2n

(a,b)

(

x
y

)

−

(

x
y

)

= 0 (4.3.2)

Tr D

(

F 2n

(a,b)

(

x
y

))

= 0 (4.3.3)

Let X0 = x, Y 0 = y and F ia,b(x, y) =
(

Xi, Y i
)

. Note that all of the

(

Xk+1, Y k+1
)

=
(

a− (Xk)2 − b Y k, Xk
)

for k ≥ 0, can be expressed explicitly as functions of x, y, and a. Use subscripts
to indicate the partial derivatives,

Xk
x =

∂Xk

∂x
, Xk

y =
∂Xk

∂y
, Xk

a =
∂Xk

∂a
,

and the second derivatives as

Xk
xx, X

k
xy, X

k
xa, X

k+1
yx , Xk+1

yy , Xk+1
ya .

Rewrite the Equations (4.3.2), (4.3.3) as,

φ1 ≡ X2n

−X0 = 0 (4.3.4)

φ2 ≡ Y 2n

− Y 0 = 0 (4.3.5)

φ3 ≡ X2n

x + Y 2n

y = 0 (4.3.6)

We employ the Newton algorithm to solve the above equations. Let u2n

i (t) =
(

x2n

i , y
2n

i , a2n

i

)

be the initial vector such that
(

x2n

i , y
2n

i

)

is a periodic point of

period 2n with parameter a2n

i . Then the updated vector u2n

i (t+ 1) is given by

u2n

i (t+ 1) = u2n

i (t) − (Dφ)−1 · φ
(

u2n

i (t)
)

(4.3.7)

where

φ =





φ1

φ2

φ3





and

Dφ =





φ1x
φ1y

φ1a

φ2x
φ2y

φ2a

φ3x
φ3y

φ3a





Computation of Dφ will involve not only the first partial derivative but also the
second derivatives of

(

X2n

, Y 2n)

. We calculate these derivatives recursively.
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Thus, we have

φ1x
= −2 X2n

X2n

x − b Y 2n

x − 1

φ1y
= −2 X2n

X2n

y − b Y 2n

y

φ1a
= −2 X2n

X2n

a − b Y 2n

a + 1

φ2x
= X2n

x ; φ2y
= X2n

y ; φ2a
= X2n

a

φ3x
= −2 (X2n

x )2 − 2 X2n

X2n

xx − b Y 2n

xx +X2n

xy

φ3y
= −2 X2n

x X2n

y − 2 X2n

X2n

xy − b Y 2n

yx + Y 2n

yy

φ3a
= −2 X2n

a X2n

x − 2 X2n

X2n

ax − b Y 2n

ax +X2n

ay

Once we have these derivatives, it is straightforward to obtain the updated
vector u2n

i (t+1), using the Equation (4.3.7). We continue this process until the
error term e2

n

i = u2n

i (t+ 1)− u2n

i (t) ≤ 10−13, then the algorithm will stop. Let
v2n

i = u2n

i+1 be the final updated vector obtained from the Newton process. It will
act as initial vector for the next increment of bi+1. Suppose that, we start in the
attracting basin of the period 2n orbit, then one can easily find the orbit, simply
by repeated iteration. Then slowly change b from bi to bi + δ, and compute the
corresponding parameter a2n

i , by repeating the above Newton algorithm, so as to
plot the corresponding “most-attracting” curve in the (a, b)−parameter plane.
We call this curve parameter curve, with period 2n and it is denoted by Γ2n .
These curves are illustrated in Figure 4.1, for n = 1, · · · , 15.

For b close to 0, it was shown that these curves Γ2n , as n→ ∞ will converge
to a fixed curve Γ2∞ , which consist of infinitely renormalizable maps [9]. Figure
4.2, illustrates the fact that these smooth curves, Γ2n , will not intersect each
other, for n ≥ 1. It is difficult to see that these curves Γ2n , for n ≥ 7, are
separated from each other in the (a, b) parameter plane. To emphasize this
fact, we calculated the ratios of successive period doubling, strongly contracting
points of these one-dimensional quadratic maps. We observed that these ratios
will converge to the Feigenbaum constant, as n→ ∞, for all a2n

i corresponding
to each bi, where 0 ≤ bi ≤ 1. That is,

(a2n−1

i − a2n

i )

(a2n

i − a2n+1

i )
→ 4.69920160910299.....

It is interesting to study the geometry as well as the topological properties
of these maps on this curve Γ2∞ and also the bifurcation pattern that occurs.
We discuss these issues in the next section.
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Figure 4.1: most attracting curve Γ2n in the (a, b)−parameter plane
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Figure 4.2: the parameter curves Γ2n for n < 7
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4.3.2 Construction of period k points with Fibonacci com-

binatorics

In this section we construct the parameter curves of period−k, with Fibonacci
combinatorics. Consider the Hénon map

Fa.b(x, y) = (fa(x) − by, x)

with b ≥ 0 and fa(x) a unimodal map. Consider the following kneading sequence

1, 10, 1001, 1001110, 100111011001, 10011101100101001110,

100111011001010011100100111011001, · · · .

For each of the above kneading sequence there a quadratic map fa(x) = a− x2

with parameter a. Here, we compute the sequence of parameters ak0 for the
quadratic map fa(x) = a − x2, such that the trace of the first derivative of
kth iterate of Hénon map is zero and the other condition we consider that, the
corresponding periodic orbit has to satisfy the Fibonacci combinatorics.

We start with this known sequence of Fibonacci periodic points of period
k and slowly change the b value and we compute the corresponding sequence
of period k points, such that the periodic orbit will follow the above kneading
sequence. This is a similar construction as that described in section Section
4.3.1, but here the condition we imposed is that the periodic orbit should satisfy
the Fibonacci combinatorics. We illustrate these curves in Figure 4.3, Figure
4.4, and Figure 4.5. We notice that the parameter curves corresponding to the
periods 3, 8, 21, 55, · · · , will move in the backward direction, whereas the other
periods 2, 5, 13, 34, · · · will move in the forward direction. We call these curves,
good parameter curves. Furthermore, we conjecture that the sequence of these
good parameter curves will converge super exponentially to a particular curve,
called, Fibonacci parameter curve and is denoted by ΓFib. The maps in this
curve are defined to be the Fibonacci Hénon maps.
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Figure 4.3: Fibonacci parameter curves of periods 2 and 3
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Figure 4.4: Fibonacci parameter curves of periods 5 and 8
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Figure 4.5: Fibonacci parameter curves of periods 13 and 21
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Figure 4.6: The sequence of good parameter curves 2, 5, 13, 34, · · ·

The sequence of good parameter curves are shown in Figure 4.6. Here, it is
difficult to see that the Fibonacci parameter curve of period 5, 13 and 34 are
separated. We plotted these curves in a smaller scale (see Figure 4.7) and it
illustrates the fact that they are actually separated.
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Figure 4.7: Top: period 5, 13 and 34; Bottom: Magnification of period 13 and
34

4.4 Flow of periodic orbits

We describe how the periodic orbits move along the curve Γ2n as we vary the
parameter from b = 0 to b = 1. For a Hénon map Fa,b with parameters (a, b) on
the curve Γ2n , we compute the attracting periodic orbit of length 2n, and project
this orbit onto the x−axis, plotting these points against the corresponding b
values. We call this, flow of periodic orbits. This flow of periodic orbits for
different periods are illustrated in Figure 4.8 and Figure 4.9.

It is known that, for b close to zero, crossings in the periodic flow will hap-
pen. This is shown in Figure 4.10. This is because of the occurrence of Hénon
renormalization boxes on top lying of each other. This will lead to the destruc-
tion of the geometry of the Cantor set and so produces non-rigidity. This was
explained more in [9].

We notice that, for higher values of b, the same phenomenon will occurs, with
even more crossings happening everywhere in the periodic orbit. This means
that the corresponding renormalization boxes will overlap, in many places in
the orbit. This appears to destroy the geometry of the corresponding Cantor
set and produce non-rigidity.
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Figure 4.8: projection of periodic orbit of periods 25 and 26
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Figure 4.9: projection of periodic orbit 27 and 28
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Figure 4.10: crossing of periodic flow of period 26
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We repeated the same experiment for the Hénon maps with Fibonacci com-
binatorics. The projected flow of these periodic orbits are shown in Figure 4.11
and Figure 4.12. These flows of periodic orbits along on the curve ΓFib indicates
that there will still be a Cantor set.

At this point, we do not have a renormalization theory for Hénon maps with
Fibonacci combinatorics (maps on ΓFib). Further research is needed to develop
a renormalization theory for Fibonacci Hénon maps. This experiment motivates
the conjecture that such a theory can be developed.
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Figure 4.11: projection of periodic orbit 5 and 13 with Fibonacci combinatorics
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Figure 4.12: projection of periodic orbit 34 with Fibonacci combinatorics
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4.5 Break-up process of Hénon renormalization

In an attempt to describe a global renormalization theory, we focused the hetero-
clinic web and we used the topological definition of renormalizability, as was in-
troduced in
[9], and considered extending this globally in the parameter domain. In this
section we discuss the breaking procedure of renormalizability, along the curve
Γ2n .

Definition 4.5.1. A Hénon-like map is said to be 2-renormalizable if it has two
saddle fixed points. One is a regular saddle β0, with positive eigenvalues and
the other is a flip saddle β1 with negative eigenvalues, such that the unstable
manifold Wu(β0) intersects the stable manifold W s(β1) in a single orbit.

It is illustrated in Figure 4.13. If F is 2−renormalizable then there exists
a disc D which is bounded by the local unstable manifold of the point β0 and
local stable manifold of the point β1, such that F 2|D is invariant.
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Figure 4.13: A renormalizable Hénon-like map

When the unstable manifold Wu(β0), touches or crosses the stable manifold
W s(β1), then it it not 2−renormalizable. In this case, there is no disk of period
2, hence no period 2 cycle exists. This is illustrated in Figure 4.14 and Figure
4.15.

Definition 4.5.2. First bifurcation moment: The unstable manifold Wu(β0)
touches the stable manifold W s(β1) at a point p0. This is the point where the
first bifurcation happens. It is illustrated in Figure 4.14.
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Figure 4.14: Left:first bifurcation moment at b1 on Γ2n ;Right:Magnification
around the point, where the unstable manifold touches the stable manifold
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Figure 4.15: Non 2− renormalizable Hénon-like map

In the previous section 4.3.1 we explained the construction of the periodic
curves of period 2n. Let Γ2n be the parameter curve for a fixed n > 1, as shown
in Figure 4.16. For each point on this curve we have the parameters (ai, bi)
such that the Hénon map has a strongly attracting periodic point (xi, yi) of
period 2n. We slowly change the parameter b along this curve and compute the
first bifurcation moment. This will happen at some point b1 on Γ2n , such that,
at this point, the corresponding Hénon map has heteroclinic tangency. This is
shown in the Figure 4.17.

Let Γ1
2n be a piece of the curve on Γ2n such that it is a graph over [0, b1].

We call it as the first window, denoted by Γ1
2n on Γ1

2n . In this window, for any
map Fa,b with (a, b) ∈ Γ1

2n , then F is infinitely 2−renormalizable. In particular,
it has a Cantor attractor OF and a collection of disks

D1 ⊃ D2 ⊃ D3 ⊃ · · · ⊃ Dn

such that
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Figure 4.16: the curve Γ2n

(i) F 2k

(Dk) ⊂ Dk

(ii) F i(Dn) ∩ F
j(Dn) = ∅ for i 6= j, and i, j ≤ 2k.

(iii) These disks are bounded by pieces of Wu
loc(βn−1) and W s

loc(βn).

The orbit of Dn is denoted by Cn, where

Cn = {Dn, F (Dn), F
2(Dn), · · · .F

2n−1(Dn)}.

This is called a cycle. Therefore, the Cantor set OF is

OF =
⋂

n≥1

2n−1
⋃

i=0

F i(Dn)

Note that in this first window Γ1
2n , all maps are infinitely 2-renormalizable

with the Cantor set OF satisfying

C1 ⊃ C2 ⊃ C3 ⊃ · · · ⊃ OF .

This means that all cycles will survive in this window Γ1
2n .

Let Γ2
2n be a piece of curve on Γ2n such that it is a graph over [b1, b2],

we call it the second window on Γ2n . Here, b2 is the point where the second
heteroclinic tangency occurs. This means that, the unstable manifold Wu(β1)
touches the stable manifold W s(β2) in a single orbit, where β1 is a saddle fixed
point and β2 is a period−2 point. This is shown in Figure 4.18. Notice that, if
we flip the second picture in Figure 4.18, it looks like the first Figure 4.17.

Let F be any map in Γ2
2n , then F is not 2−renormalizable but it is 4−renormalizable.

This means that, there exists an invariant disk D4 and a non-affine rescaling φ
such that

R4F = φ−1F 4|D4
φ.

67



β0

β1

Wu(β0)
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Wu(β0)

W s(β1)

Figure 4.17: first heteroclinic tangency at b1; β0, β1 are fixed points; Wu(β0) is
the unstable manifold of β0 and W s(β1) is the stable manifold of β1.

Furthermore, R4F is infinitely 2−renormalizable.

Observe that, in this window Γ2
2n , there is no cycle of period 2 and therefore,

the invariance of the disk D1 disappears because of the heteroclinic tangency
of Wu(β0) and W s(β1). This we called, breaking of the cycle. However, all the
other cycles will survive. Therefore,

C2 ⊃ C3 ⊃ · · · ⊃ OF .

In particular, the Cantor set

OF =
⋂

n≥2

2n−1
⋃

i=0

F i(Dn)

will survive.
Similarly, there exist b3 on Γ2n , such that the third window Γ3

2n , is the graph
over [b2, b3]. For any map F ∈ Γ3

2n , F is not 2−renormalizable and not 4−
renormalizable, but it is 8−renormalizable. Therefore, there exists a non-affine
rescaling φ

R8F = φ−1F 8|D8
φ.

such that R8F is infinitely 2−renormalizable. At this point b3, the unstable
manifold Wu(β2) intersects the stable manifold W s(β3) in a single orbit, where
β3 is periodic point of period 23. This is illustrated in Figure 4.19.

Similarly, as before, observe that there is no period 2 and period 4 cycle.
This is because of the heteroclinic tangency at b3. But the other cycles

C3 ⊃ C4 ⊃ · · · ⊃ OF
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W s(β2)

β2

Wu(β1)
W s(β2)

Figure 4.18: second heteroclinic tangency at b2; β1 is a fixed point and β2 is
period−2 point; Wu(β1) is the unstable manifold of β1 and W s(β2) is the stable
manifold of β2.

will survive with the corresponding Cantor set

OF =
⋂

n≥3

2n−1
⋃

i=0

F i(Dn).

(a) (b)

β2

β3

Wu(β2)

W s(β3)

Figure 4.19: Left: Third heteroclinic tangency at b3; β2 is period 2 point and β3

is period 4 point; Wu(β2) is unstable manifold of β2 and W s(β3) is the stable
manifold of β3; Right: Magnification of the box in Figure(a).

Definition 4.5.3. A Hénon like map is said to be 2n−renormalizable if there
exists βn, a saddle of period 2n−1, and there exists βn−1, a saddle of period
2n−2, such that the following holds:
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• The unstable manifold Wu(βn−1) intersects the stable manifold W s(βn)
in a single orbit.

• A piece of local stable manifold of βn and a piece of local unstable manifold
of βn−1 bound a topological disk Dn, which is invariant under F 2n

.

• int
(

F i(Dn)
)

are piecewise disjoint, for i = 0, 1, · · · , 2n−1.

Using the above definition, we continue the process of computing the hete-
roclinic tangencies {bk}, such that for each bk there exists a window Γk2n , is a
piece of curve on Γ2n and moreover it is a graph over [bk−1, bk]. Notice that, in
each of these windows, the cycles Cn, for n = 1, · · · , k will break. This process
of breaking the cycles corresponding to the heteroclinic tangency positions is
called the top-down breaking process of Hénon renormalization.

The breaking of these cycles will happen as we continue the process of con-
structing the pieces of windows on this curve Γ2n , as n → ∞, in such a way
that

Γ2n =

n
⋃

k=1

Γk2n ∪ {a∗b=1},

where Γk2n is the graph over [bk−1, bk] and a∗b=1 is the parameter, with strongly
contracting periodic orbit of period 2n, for the corresponding Hénon map with
b = 1.

This means that, if any map F is in Γk2n , then F is 2k−renormalizable. In
particular, the Cantor set

OF =
⋂

n≥k

2n−1
⋃

i=0

F i(Dn)

will survive.
We present these computations up to the 8th heteroclinic tangency position

on the curve Γ2n and illustrated in Figures 4.20; 4.21; 4.22; 4.23 and 4.24.
In these pictures the unstable manifold Wu(βn−1) is plotted by constructing
the manifold around the periodic point βn−1 of period 2n−2, by taking 25000
points on each side with in radius of 10−9 on the line segment in the direction of
unstable eigen-vector and extend this manifold by iterating the Hénon system up
to 30 times. To get the stable manifoldW s(βn) of the periodic point βn of period
2n−1, we computed the unstable manifold of the inverse map by taking the same
measurements as above, but the number of times the manifold extended was
reduced to only two, as the stable manifold grows a lot faster than the unstable
manifold.
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(a) (b)

β3

β4

Wu(β3)

W s(β4)

Figure 4.20: Left: Fourth heteroclinic tangency at b4; β4 is period 8 point and
β5 is period 16 point; Wu(β4) is the unstable manifold of β4 and W s(β5) is the
stable manifold of β5; Right: Magnification of the box in Figure (a)

(a) (b)

β5

Wu(β4)

W s(β5)

Figure 4.21: Left: Fifth heteroclinic tangency at b5; β5 is period 24 point and β4

is period 23 point; Wu(β5) is unstable manifold of β5 and W s(β4) is the stable
manifold of β4; Right: Magnification of the box in Figure (a(.

Note that the degenerate map Fa∗,0 on Γ2∞ has the collection of disks

D1 ⊃ D2 ⊃ D4 ⊃ D8 · · · ⊃ Dn ⊃ · · ·

with F 2n

(Dn) ⊂ Dn and the cycle Cn = Orb(Dn). For small perturbation of
the parameter (a∗, 0) to (a, 0), (with b = 0), the map has a period−m collection
of disks such that

D1 ⊃ D2 ⊃ · · · ⊃ Dm.

However there is no domain of period 2k, k ≥ m+1. This means that the higher
boxes will break first at deep levels for deformations of a degenerate map. This
gives us the following observation.
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(a) (b)

β6

Wu(β5)

W s(β6)

Figure 4.22: Left: Sixth heteroclinic tangency at b6; β6 is period 25 point and
β5 is period 24 point; Wu(β6) is the unstable manifold of β6 and W s(β5) is the
stable manifold of β5; Right: Magnification of the box in Figure (a)
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β7

Wu(β6)

W s(β7)

Figure 4.23: Left: Seventh heteroclinic tangency at b7; β7 is period 26 point
and β6 is period 25 point; Wu(β7) is unstable manifold of β7 and W s(β6) is the
stable manifold of β6; Right: Magnification of the box in Figure (a).

Observation: This bifurcation process on Γ2∞ is exactly opposite to the bi-
furcation process in the case of the degenerate map, where the cycles of higher
period breaks first on deep levels.

We are interested in computing the heteroclinic tangencies for fixed points as
well as for the periodic points on the curve Γ2n (using Definition 4.5.3). These
numerical values are presented in Table 4.1.

On the curve Γ2n , n ≤ 9, we noticed the top-down breaking procedure of
the cycles. This happens at specific bifurcation moments bi(n) ∈ Γ2n , these are
illustrated in the Table 4.1, it indicates a convergence

bi(n) ∈ Γ2n → bi ∈ Γ2∞ .

The breaking of the boxes from the top-down process seems to be the com-
binatorial explanation for why the stable manifold of renormalization can be
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(a)
(b)

β8 Wu(β7)
W s(β8)

Figure 4.24: Left: Eighth heteroclinic tangency at b8; β8 is period 27 point and
β7 is period 26 point; Wu(β8) is the unstable manifold of β8 and W s(β7) is the
stable manifold of β7; Right: Magnification of the box in Figure (a).

bi period 25 period 26 period 27 period 28 period 29

b1 0.0311405 0.03099086 0.03095879 0.03095192 0.03095045
b2 0.1715389 0.16961800 0.16920269 0.16911365 0.16909453
b3 0.4255566 0.41529040 0.41295748 0.41245413 0.41234636
b4 0.6814848 0.65226240 0.64433498 0.64249999 0.64213923
b5 0.8669798 0.82551980 0.80765004 0.80270981 0.80158498
b6 - 0.93085480 0.90799999 0.89849968 0.88802243
b7 - - 0.96499998 0.95309998 0.95549798
b8 - - - 0.98224989 0.97748565
b9 - - - - -

Table 4.1: bi is the heteroclinic tangency position on the curves Γ2n

extended up to the conservative map.

Conjecture 4.5.4. The points bn, of the heteroclinic tangencies on Γ2n satisfy
the following relation

lim
n→∞

b2n
bn−1

= 1.

Remark 4.5.5. The above conjecture has been verified numerically, for another
family of Hénon-map

Fa, b : (x, y) 7→

(

a− x4 −
1

2
x2 − b y, x

)

.
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4.6 Line fields on the Cantor set

In this section we describe the distribution of angles of the invariant line field of
the Cantor set. It is known that, for the degenerate map, the Cantor attractor
OF lies along a smooth curve. Let F ∈ Γ1

2∞ , be an infinite 2−renormalizable
non-degenerate Hénon map. From the work [9], it possesses the Cantor attractor
O = OF on which it acts as adding machine. Furthermore, they showed that F
does not have a continuous invariant line field on O. This leads to interesting
consequences that the attractor O does not lie on a smooth curve, which is
contrary to one dimensional situation. The question raised here is, for high b
values (increasingly b close to 1), does this Cantor set move further away from
the degenerate case? To answer this question, we construct the line fields on
the Cantor set and analyze the distribution of angles of the line fields on the
Cantor set.

Let F be a Hénon map with fixed parameters (a, b) on the curve Γ2∞ , so it
is infinitely 2−renormalizable. Then, it has a sequence of invariant disks

D1 ⊃ D2 ⊃ D3, ⊃ · · · Dn · · ·

where F 2n

(Dn) ⊂ Dn. Let βn = (x2n

0 , y2n

0 ) ∈ Dn be the periodic point of period
2n. One can easily find the complete orbit of βn, simply by repeated iteration.
This orbit is denoted by

Orb2n(βn) =

2n

⋃

k≥0

F ka,b

(

x2n

0 , y2n

0

)

.

Using the algorithm which is described in section 4.3, one can compute
the periodic point αn = (x2n−1

0 , y2n−1

0 ) ∈ Dn−1 of period 2n−1, which is an
immediate neighbor of βn in the combinatorial sense.

We now approximate the line field around the point βn, by constructing a
line segment l(βn, αn), passing through the two periodic points βn and αn. Let
θ be the angle between the line l(βn, αn) made with the vertical axes (which is
asymptotically equivalent to the local stable manifold of W s(βn)). We measure
this angle by

sin θ =
(x2n

0 − x2n−1

0 )

dist(βn, αn)

where dist(βn, αn) stands for the distance between the two periodic points βn
and αn. The next is to find the image of this pair (βn, αn) under the Hénon
map Fa, b and approximate the line field around the point Fa,b(βn), compute the
corresponding vertical angle. Repeat this process of approximation of line fields
at each point in the orbit Orb2n(βn), with their corresponding line segments
and make a list of these angles θi for i = 1, to 2n. We plot the histogram for
the list of these angles, considering a 29 subintervals on [−1, 1] and the number
of angles present in each sub interval on vertical axes. We call this, distribution
of angles. We compute these distributions for various parameters (a, b) on the
curve Γ2n , n = 11, starting with b = 0 and varying up to the maps close to the
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conservative case. These distributions are presented in the following: Figure
4.25, Figure 4.26, Figure 4.27, Figure 4.28 and Figure 4.29.
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Figure 4.25: distribution of the angles of line fields for b = 0; and b = 0.1.

In Figure 4.25, Left: distribution of the angles of line fields for the Hénon
map Fa,b with parameters (a, b) = (1.401155102022464, 0.0);
βn = (1.401155102022464, 0.0);
αn = (1.401155097786218, 0.000065086447868);
Right: The Hénon map with parameters (a, b) = (1.561508978886665, 0.1);
βn = (1.435044734303848, 0.035951740078672);
αn = (1.435042626769772, 0.036014120582835).
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Figure 4.26: distribution of the angles of line fields for b = 0.2 and b = 0.3

In Figure 4.26, Left: distribution of the angles of line fields for the Hénon
map Fa,b with parameters (a, b) = (1.744828106932014, 0.2);
βn = (1.475726990664949, 0.06628544699326);
αn = (1.475723239186915, 0.066344549254490);
Right: The Hénon maps with parameters (a, b) = (1.951646371711716, 0.3);
βn = (1.523438381392653, 0.091750669145353);
αn = (1.523433452119411, 0.091805941595849).
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Figure 4.27: distribution of the angles of line fields for b = 0.4 and b = 0.5

In Figure 4.27, Left: distribution of the angles of line fields for the Hénon
map Fa,b with parameters (a, b) = (2.182768010790645, 0.4);
βn = (1.578302824145569, 0.113227149452719);
αn = (1.578297165342688, 0.113278026146582);
Right: The Hénon map with prameters (a, b) = (2.439153110310706, 0.5);
βn = (1.640300814146864, 0.131617526429658);
αn = (1.640294843823455, 0.131663397820682).
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Figure 4.28: distribution of the angles of the line fields for b = 0.6 and b = 0.7

In Figure 4.28, Left: distribution of the angles of line fields for the Hénon
map Fa,b with parameters (a, b) = (2.721829067829454, 0.6);
βn = (1.70927675739446, 0.14770692997098);
αn = (1.709270867094986, 0.147747102534229);
Right: The Hénon map with parameters (a, b) = (3.031843160671423, 0.7);
βn = (1.785002442125404, 0.161870772855787);
αn = (1.785004856836326, 0.161855764134139).
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Figure 4.29: distribution of angles of the line fields for b = 0.8 and b = 0.95

In Figure 4.29, Left: distribution of angles of the line fields for the Hénon
map Fa,b with parameters (a, b) = (3.370236565105158, 0.8);
βn = (1.867105947046825, 0.174689500267944);
αn = (1.867107962878618, 0.174677917712148);
Right: The Hénon map with parameters (a, b) = (3.933243998542534, 0.95);
βn = (2.001337170806964, 0.191500529607978);
αn = (2.001338052860656, 0.191495919395331).

Notice that from these distributions, as the parameter b changes, the distri-
bution becomes increasingly fat (we don’t want to give a precise definition of
fat). In the case of degenerate map, these angles are distributed in a Cantor
set. As b increases, the other angles are generate slowly. Finally, for the maps
close to the conservative map the distribution is weighted with all angles. This
means that more angles are generated compare to the situation of degenerate
map. This illustrates the complexity of the geometry of the corresponding Can-
tor set, indicates that it is does not lie on a smooth curve any more. This type
of Cantor set is called a Twisted Cantor set. It is illustrated in Figure 4.30.

The same phenomenon is also described by plotting these angles, taking
time on horizontal axes and corresponding angles on vertical axes. In these
pictures observe that the dispersion of angles are slowly started, see Figure 4.31
and become more when the maps move away from the degenerate case, see
Figure 4.32 and Figure 4.33. Finally, the comparison of the list of angles for
the degenerate map and the map with high b value are presented in the Figure
4.34.
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Figure 4.30: Top: distribution of angles for the degenerate map; Below: for the
map b = 0.95
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Figure 4.31: time versus angle for b = 0.0 to b = 0.3
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Figure 4.32: time versus angle for b = 0.4 to b = 0.7
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Figure 4.33: time versus angle for b = 0.8 and b = 0.95
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Figure 4.34: comparison of angles; Top:b = 0.0; Below: b = 0.95
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We plotted the lines, which are the approximation of line field along the
Cantor set, for different values of b on the curve Γ2n . Notice that, in the case of
degenerate map the lines has only few directions. But as we consider the maps
close to the conservative map, the lines has all other possible directions. The
appearance of more and more directions is a result of complexity of the geometry
of the Cantor set. These line fields are illustrated in Figure 4.35, 4.36,4.37,4.38
and Figure 4.39.

Figure 4.35: Left: line fields for b = 0.0; Right: b = 0.1

Figure 4.36: Left: line fields for b = 0.2; Right: b = 0.3
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Figure 4.37: Left: line fields for b = 0.4; Right: b = 0.5

Figure 4.38: Left: line fields for b = 0.6; Right: b = 0.7

Figure 4.39: Left: line fields for b = 0.8; Right: b = 0.95
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4.7 Distributional Universality

It was discovered, in the work [9], that the Cantor set O does not have bounded
geometry and so it is not quasiconformally equivalent to the standard Cantor
set of one-dimensional unimodal map. Moreover, the Cantor set O cannot be
embedded into a smooth curve. These properties are different from their one-
dimensional counterparts. They come from a tilting and bending phenomenon:
near the “tip” of a Hénon-like map the renormalization boxes are not rectangles
but rather slightly tilted and bent like parallelograms. This tilt significantly
affects the b−scale geometry of O. For highly dissipative maps, the Jacobian b
is replaced by b2

n

under the nth renormalization, the geometry gets affected at
arbitrarily small scales.

We calculate the amount of “tilting” for the Hénon renormalization boxes,
zooming in to the deep levels around the point βn, which is an approximation
of the “tip”. Renormalization around the tip of the Hénon map which becomes
the critical value in the degenerate case. From Definition 4.5.3, the existence of
the invariant disk Dn is called the Hénon renormalization box.

The line fields constructed in the previous section, are aligned in the direction
of these Hénon renormalization boxes. For each of these boxes, we compute
the distribution of angles. Now at this point, we separate each distribution
into two different distributions, one with the angles pointing in the upward
direction and other one with the angles pointing downward direction. The
first one we call the distribution with upward angles and the second one the
distribution with downward angles. In each of these distributions we compute the
average of the angles. This average angle gives us, the amount of tilting of the
corresponding boxes. We illustrate this “tilting phenomenon” by plotting the b
value on horizontal axes and the corresponding average angle of the distribution
on vertical axes. It is shown in the Figure 4.40 and Figure 4.41. Here, n. lev
indicates that the zoom level of the boxes around the point βn. Notice that,
from these pictures, as the b value increases the average angle is also increased.
This can be observed only after the 4th zoom level of the boxes. This emphasizes
the fact that for high b value the “tilt” will happen more.

Similar phenomenon is also observed if we construct the renormalization
boxes around the point lp. It is illustrated in Figure 4.42. Here, the zooming of
the boxes considered around the point lp, which is the right most periodic point
of the projected orbit on x−axes. Figure 4.42, is magnified for the period 213

and illustrated in Figure 4.44 and Figure 4.45.
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Figure 4.40: b versus average for downward angles on the curve Γ211 ; “n. lev”
indicates the nth zoom level around the point βn.
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Figure 4.41: b versus average for downward angles on the curve Γ213 ; “n lev”
indicates the nth zoom level around the point βn
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Figure 4.42: b versus average for downward angles on the curve Γ211 ; “n lev”
indicates the nth zoom level around the point lp.
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Figure 4.43: b versus average for downward angles on the curve Γ213 ; “n lev”
indicates the nth zoom level around the point lp.
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Figure 4.44: b versus average for downward angles; periodic orbit of period 213;
11. lev indicates the zoom level at the point lp

Figure 4.45: b versus average for upward angle; periodic orbit of period 213; 11.
lev indicates the zoom level at the point lp

It has been proved that in the work [22], the average Jacobian b is topologi-
cally invariant. From the above Figure 4.44, and Figure 4.45, one can conclude
that, if we take any other Hénon family and compute the average angles by con-
structing the distributions in the corresponding renormalization boxes around
the point lp, which is the right most periodic point in the orbit then we get
a similar piece-wise affine nature as above. This means that, these angles are
universal, related to the parameter dependence. We call this phenomenon Dis-
tributional universality.

This refined understanding might play a crucial role in further studies of
Hénon maps. Simple questions like the existence of wandering domains is closely
related to the geometry of the line field. The non-existence of wandering do-
mains is still open.
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Chapter 5

Summary

One-dimensional smooth dynamics has become a refined theory. The central
theme of this theory is the geometric rigidity of the attractors. The main
technique is renormalization. A general theory for smooth dynamics is still
completely out of reach. There are two natural directions in which one can ex-
tend the theory using the results from one-dimensional smooth dynamics. The
first one is one-dimensional dynamics with low smoothness and the second is
dynamics of Hénon maps.

Renormalization is a method to study microscopic geometrical properties of
attractors. This microscope is an operator on some space of one-dimensional
systems. Given a one-dimensional systems its renormalization is a similar sys-
tem which describes the dynamics at a smaller scale. Infinitely renormalizable
systems are the ones, for which you can repeatedly apply the renormalization
operator and study the dynamics at arbitrarily small scales.

The most important property of the renormalization operator is that it is
hyperbolic. In particular, the fine scale geometry of maps of the simplest non
trivial combinatorial type, the so-called period doubling type, is described com-
pletely in terms of one single hyperbolic fixed point of the renormalization op-
erator. If you zoom in to a spot in the attractor the geometry will converge to
the geometry of the equivalent spot in the attractor of the renormalization fixed
point. In particular, these fine scale geometrical properties are independent of
the original system. This phenomenon is called Universality. The attractors
can not be deformed on small scale. Their microscopic geometry is rigid.

These universality and rigidity phenomena are rigorously understood for
smooth systems. Smooth means C2+α, α > 0. This thesis discusses renormal-
ization for one-dimensional systems whose smoothness is still C2 and systems
whose smoothness is C1+Lip, just below C2. The main result is that hyperbolic-
ity of renormalization in C2 breaks down although there is still slow convergence
to the renormalization fixed point. In C1+Lip the situation changes completely.
Even one can study renormalization for period doubling, the simplest combina-
torial type, and can see the chaotic behavior of the geometry on smaller and
smaller scale. One more interesting result is that, the period doubling renor-
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malization is chaotic, even it has infinite entropy. There is no universality and
rigidity when the smoothness gets below C2.

The second possibility is to use the successful one-dimensional renormaliza-
tion theory, to study the two-dimensional dynamics. In the case of dissipative
dynamics we should start with the Hénon family. Strongly dissipative Hénon
maps are perturbations of one-dimensional dynamics and one-dimensional renor-
malization theory is a powerful starting point for the development of a theory.
The Hénon family has many realistic applications because of its relevance in the
creation of chaos.

Our rigorous understanding of Hénon maps is fragmented. There are three
well understood phenomena. The first is the Newhouse phenomenon. Secondly,
there are the chaotic maps constructed by M. Benedicks and L. Carleson. The
third part of our knowledge of Hénon maps deals with maps in a neighborhood of
the accumulation of period doubling. This is an area in parameter space where
chaos is created. A. de Carvalho, M.Lyubich, and M. Martens constructed a
renormalization operator on the space of strongly dissipative Hénon-like maps
using geometric ingredients. The specific construction and the hyperbolicity of
this renormalization operator allowed to study the geometry of Cantor attractors
of Hénon maps at the accumulation of period doubling. It opened a source of
surprising phenomena. The main theme is that the theory for two-dimensional
dissipative dynamics is far from a straightforward generalization of the one-
dimensional theory, even for maps which are the simplest combinatorial type,
period doubling. However, renormalization is again a very powerful tool which
is able to describe the dynamics of Hénon maps.

The second part of the thesis is devoted to the renormalization for Hénon
maps. It is mainly a numerical study. The present renormalization theory
deals with strongly dissipative Hénon maps. These maps form a short curve in
parameter space of a generic Hénon family. The first numerical study shows that
the curve actually extends up to the conservative systems. More importantly,
the study describes the combinatorial changes which occur along this curve.
These changes are denoted by “top down breaking of the boxes”.

One-dimensional dynamics is controlled by the critical points of these sys-
tems. Infinitely renormalizable Hénon maps also have a topologically defined
critical points which plays a crucial role. At the present moment we are at the
starting point of developing a renormalization theory for Hénon maps with more
general combinatorial types. History inspires us to consider maps of Fibonacci
type. Unfortunately, the situation is far more complex than the period doubling
case for Hénon maps. There are infinitely many critical points. However, a nu-
merical study presented in this thesis shows that there is a curve in the Hénon
family whose maps have an invariant Cantor set of Fibonacci type. This is a
strong support for the possibility of constructing a renormalization operator for
Hénon maps of Fibonacci type.

Infinitely renormalizable Hénon maps of period doubling type have a Can-
tor attractor. This Cantor set has geometrical aspects which are exactly the
same as the counter part in the Cantor attractors of infinitely renormalizable
one-dimensional systems. This phenomenon is called universality. Contrary to
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the one-dimensional situation, these Hénon Cantor sets are not rigid. There are
parts of the Hénon Cantor set where the geometry on asymptotically small scale
is different form the one-dimensional situation. The non-rigidity was up to re-
cently an unexpected phenomenon. Even, strongly dissipative two-dimensional
systems are geometrically different from the one-dimensional world. Although,
two and one-dimensional systems do have some common universal geometrical
aspects.

The numerically constructed curve of infinitely renormalizable dissipative
Hénon maps ends in a conservative map. This conservative map has an invariant
Cantor set. The geometry of this Cantor set is not at all similar to the Cantor
attractor of the dissipative maps. Our third numerical study on Hénon maps
describe that, how the one-dimensional Cantor set deforms into the Cantor set
of the conservative map. To describe this deformation we studied the invariant
line field which is carried on the Cantor set. This line field has zero characteristic
exponent. One could think about this line field as if it was aligned along the
Cantor set. However, one should be careful. It has been shown that this line
field is not continuous for truly two-dimensional Hénon maps. The Cantor set
does not lie on a smooth curve.

Numerically we studied the distribution of the angles of the lines in the line
field with respect to a fixed direction. Initially, for strongly dissipative maps, the
angles seem to be distributed in a Cantor set. This is not surprising. However,
if we consider infinitely renormalizable maps on the curve closer towards the end
with the conservative map, the distributions are assigning weight to all angles.
It gets more and more away from being on a smooth curve.

This refined understanding might play a crucial role in further studies of
Hénon maps. Simple questions like the existence of wandering domains is closely
related to the geometry of the line field. The non-existence of wandering do-
mains is still open.
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