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2005

It is well known that every closed 3-manifold has a Heegaard split-
ting and the combinatorics of the Heegaard splitting identifies the
3-manifold. Yet it has been hard to use Heegaard splittings to ob-
tain information about topology and geometry of the manifold. We
develop a new approach to use hyperbolic geometry and in partic-
ular deformation theory of compressible ends of hyperbolic man-
ifolds to study closed 3-manifolds. Using this approach, we have
been able to prove that a big class of 3-manifolds which admit a
Heegaard splitting with what we call “bounded combinatorics” ad-
mit a negatively curved metric with sectional curvatures pinched

about —1. This answers some interesting questions about these
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manifolds and in fact gives a coarse description of the geometry of

these manifolds equipped with the negatively curved metrics.

The description of these geometries is motivated by work of Minsky
in constructing models for hyperbolic manifolds with incompress-
ible boundary. In fact, much of our work is aimed at developing a

similar theory in the compressible boundary case.
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Chapter 1

Introduction

“I was unable to find the flaws in my ‘proof’ for quite a while,
even though the error is very obvious. It was a psychological prob-
lem, a blindness, an excitement, an inhibition of reasoning by an
underlying fear of being wrong. Techniques leading to the aban-
donment of such inhibitions should be cultivated by every honest
mathematician.”

— John R. Stallings, How not to prove the Poincaré conjecture

The main motivation for this work is to use combinatorial data from a
3-manifold and arrive at topological and geometrical information about the
manifold. In particular, we study this question about closed 3-manifolds by
using the Heegaard splittings. Our study leads us to the understanding of the
deformation theory of hyperbolic structures on three manifolds with compress-

ible boundary and in particular on handlebodies.



Suppose H'™ and H~ are 3-dimensional handlebodies whose boundaries
are identified with an oriented closed surface of genus g > 1 in a way that
the orientation of S agrees with the orientation of dH™ and does not agree
with the one of 0H~. If we glue the handlebodies along .S, we obtain a closed
oriented 3-manifold M = H"UgH~. Such a decomposition is called a Heegaard
splitting and it is well known that every closed orientable 3-manifold admits
such a splitting. We call the surface S a Heegaard surface and two Heegaard
splittings for M are equivalent if the associated Heegaard surfaces are isotopic
in M. The only 3-manifolds with a Heegaard splitting of genus < 1 are S3,
S5? x 81 and Lens spaces. These manifolds are not interesting in our discussions
and therefore we always assume that a Heegaard splitting has genus at least
2.

An important problem in studying 3-manifolds is using the combinatorics
of the Heegaard splitting and obtain topological and geometrical information
about the 3-manifold and its geometries. Hempel [He01] introduced an invari-
ant of the Heegaard splitting, which we call handlebody distance, and conjec-
tured that the 3-manifold is hyperbolic (admits a hyperbolic metric) if it has
a Heegaard splitting with handlebody distance at least 3. The handlebody
distance is the distance between sets of meridians of handlebodies H™ and H~
in the complex of curves of S.

Work of Haken [Ha68], Casson-Gordon [CG87], Hempel [He01], Thompson
[Tho99] and Moriah-Schultens [MS98| shows that every Heegaard splitting
of a 3-manifold that is reducible, toroidal or Seifert fibered has handlebody
distance at most 2. Therefore Hempel’s conjecture agrees with the description

of 3-manifolds given by Thurston’s Hyperbolization Conjecture.



For a constant R > (, we restrict ourselves to the Heegaard splittings which
satisfy a combinatorial condition called R-bounded combinatorics. This is ob-
tained by taking P* to be a pants decomposition on S whose components are
all compressible in H*. Then similar to Masur-Minsky [MMO00], we associate
to the pair P*, P~ a collection of non-negative integers {dy (P*, P~}, where
Y runs over all isotopy classes of proper essential subsurfaces in S. We say
Pt and P~ and the Heegaard splitting have R-bounded combinatorics if all
these numbers are bounded above by R (see section 2.6). Our main theorem

here is the following:

Main Theorem. Given € > 0 and R > 0 there exists n > 0 depending only
on €, R and x(S) that if M = H* Us H™ has R-bounded combinatorics and
handlebody distance > n¢ then M admits a Riemannian metric v such that
the sectional curvature of v is pinched between —1 — € and —1 + €. Moreover
v has a lower bound for the injectivity radius independently of the handlebody

distance and e.
This immediately implies that

Corollary 1.1. If the Heegaard splitting M = H'™ Ug H~ has R-bounded
combinatorics and sufficiently large handlebody distance, then w1 (M) is infinite

and word hyperbolic. 0]

On the other hand, Tian [Ti90] has claimed a theorem that in presence
of the metric constructed in the Main Theorem for € small implies that M is
hyperbolic.

Even when we know that a 3-manifold M is hyperbolic, an important

question is to be able to describe the geometry of the hyperbolic metric and



use it to get topological information about M. The important feature of our
construction of the metric for the Main Theorem is that it gives a concrete
description of the metric in terms of known hyperbolic manifolds.

In particular, assume (M; = H;tUsH;") is a sequence of Heegaard splittings
with R-bounded combinatorics and handlebody distances tending to infinity
as 1 — 0o. Using the Main Theorem, we can assume that each M; is equipped
with a Riemannian metric v;, whose sectional curvatures are pinched in the

interval [—-1 —¢;, —1 + ¢;] and ¢; — 0 as © — 0o. Then we have the following

Theorem 1.2. Every geometric limit of the sequence (M;); is hyperbolic and
either homeomorphic to a genus g handlebody or to the trivial interval bundle

S x R.

As a matter of fact, we construct a bi-Lipschitz model for the geometry of
M; outside uniform bounded cores of handlebodies H* and H~. The model
is described in terms of the canonical marked hyperbolic surface bundle over a
Teichmiiller geodesic, where the Teichmiiller geodesic is determined using the
combinatorics of the splitting.

Our approach to the proof of the above results is by studying the deforma-
tion theory of hyperbolic structures on a handlebody. This approach is highly
motivated by works of Minsky and others in proving the Ending Lamination
Conjecture and constructing a bi-Lipschitz model for hyperbolic manifolds
with incompressible boundary. Once we have a good understanding of the
hyperbolic structures on the handlebody, we construct two such structures
which are appropriate for our purpose and glue them in a way that we have

a manifold homeomorphic to M = H™ Ug H~ and with a Riemannian metric



with pinched negative curvature as required by the Main Theorem.

In chapter 3, we prove a version of Thurston’s uniform injectivity theorem
for hyperbolic structures on handlebodies. This is a starting point for studying
these structures. We follow this in chapter 4, by some observations about the
pleated surfaces in these structures.

In chapter 5, we prove the following theorem, which is in fact a joint work
with Juan Souto. I am thankful that he allowed me to present this here.
Suppose N is a hyperbolic structure on handlebody H. The theory of Ahlfors-
Bers, Thurston, Bonahon and Canary attaches to N an invariant lying in a
combination of Teichmiiller space and lamination space of 0H and its sub-
surfaces up to actions of Mody(H), where Mody(H) is the subgroup of the
mapping class group of 0H whose elements extend to self-homeomorphisms of
H homotopic to identity. When the hyperbolic structure is geometrically infi-
nite and without parabolics, it follows from work of Canary [Can89, Can93b]
that the associated invariant is a filling Masur domain lamination: it is a lam-
ination that intersects every essential simple closed curve on 0H and is not
limit of meridians of H. In particular, the ending lamination is not realized
in N: there does not exist a map f : 0H — N homotopic to the inclusion
OH — H that maps every leaf of A to a geodesic in N. We prove a converse

to this statement.

Theorem 1.3. Suppose A is a filling Masur domain lamination on OH and A
1s not realized in N, where N 1is a hyperbolic structure on H. Then X is the

ending lamination of N (defined up to actions of Mody(H) ).

This theorem answers a question about these structures which we think has



been overlooked. We should remind the reader that Ohshika [Oh] has claimed
a proof of the above theorem in a special case where N is a strong limit of
convex cocompact structures on H.

Using this theorem, we can prove the following corollary:

Corollary 1.4. Given a filling Masur domain lamination A\ on OH, there
exists a hyperbolic structure on H, whose ending lamination (defined up to

actions of Modo(H)) is A.

A more general version of the above corollary also has been claimed by
OhshikaOh. In chapter 6, we introduce the family By(R) of marked hyperbolic
structures with R-bounded combinatorics on a handlebody H. The definition
of the R-bounded combinatorics for hyperbolic structures is similar to the
definition for Heegaard splittings. Suppose N is a hyperbolic structure on
H. We assume N has no parabolics and there is no essential short curve on
the conformal structure at infinity of N when N is convex cocompact. In
either case, the end invariant gives a combinatorial object o which is either a
lamination or a marking with bounded length on the conformal structure at
infinity. There is a projection from such an object to a pants decomposition
whose components are all meridians of H in the complex of curves of 0H and
we take P to be such a projection. We say N is a hyperbolic structure with
R-bounded combinatorics on H if dy(a, P) < R for every essential proper
subsurface Y C 0H. (For a precise definition see 2.6 and definition 6.2.) We
prove that this family is compact in the strong topology and this is the main
tool that helps us make our arguments work.

In chapters 7 and 8, similar to Minsky [Min0O1], we prove a quasi-convexity



result for the set of short curves in a hyperbolic structure in By(R) and then
we use it to show that all hyperbolic structures with R-bounded combinatorics

on H have uniform bounded geometry.

Theorem 1.5. (Bounded geometry) There exists ) depending only on R and
X(OH) such that the injectivity radius of every hyperbolic structure with R-

bounded combinatorics on H, N € By(R), is bounded below by 7.

The above theorem should be compared with the main theorem of Minsky
in [Min01] where he proves that such bounded combinatorial condition implies
bounded geometry for surface groups.

We use the bounded geometry in chapters 9 and 10 to construct a uniform
model for the end of hyperbolic structures in By(R). We use a description
of the model which was given by Mosher [Mo03] for the case of hyperbolic
structures on S x R. This gives a description of the structure in terms of the
canonical marked hyperbolic surface bundle over a Teichmiiller geodesic that
is determined by the end invariant of the structure.

We should remark that our results in producing uniform models for this
family of hyperbolic structures could not be directly implied from such de-
scriptions for hyperbolic structures on manifolds with incompressible bound-
ary given by Minsky and others. (Cf. Ohshika’s [Oh98] description of a bi-
Lipschitz model for a single hyperbolic structure with bounded geometry with
constants that depend on the structure.) The question of constructing such
models in the general case remains an open question.

Finally in chapter 11, we use all these to construct appropriate hyperbolic

structures on H™ and H~. Then we use the model to show that these two are



almost isometric on two subsets homeomorphic to S x [0, 1] and if we glue them
along these subsets, we obtain a manifold homeomorphic to M = H* U H™.
All this is provided when the handlebody distance is sufficiently large. This
proves the Main Theorem and theorem 1.2 immediately. We briefly describe
Tian’s result and its consequence in our setting in chapter 12.

We should point out that the first known examples of Heegaard splittings
with sufficiently large handlebody distance were constructed by Luo using an
idea of Kobayashi (cf. Hempel [He01]). In our construction in the beginning
of the introduction we constructed the manifold by gluing H* and H~ along S
using the identity map; now suppose f is what we call a generic pseudo-Anosov:
the stable (resp. unstable) lamination is not limit of meridians of H* (resp.
H~). Then the handlebody distance for Heegaard splittings H* Uy H™ tends
to infinity as n — oo. In fact, in a joint work with Juan Souto [NS], we proved
the same results as our Main Theorem and theorem 1.2 for these examples
when n is sufficiently large. One can show that all these Heegaard splittings
have some bounded combinatorics depending on f. Therefore those results
follow from our theorems here; but the proofs there were more elegant and less
involved in the analysis of the ends of hyperbolic structures on handlebodies
and construction of uniform models for such structures.

On the other hand, work of Farb-Mosher [FM02] produces many more
examples of mapping classes S which satisfy our bounded combinatorics con-
dition once used as a gluing map of a Heegaard splitting H* Uy H~. In
their work, they study what they call Schottky subgroups of the mapping class
group. Using their work and work of Rafi [Ra05], we can see that if G is

such a Schottky subgroup of the mapping class group, there exists R > 0,



such that every Heegaard splitting H* Uy H~ has R-bounded combinatorics,
where f € G. On the other hand Farb-Mosher [FM02, Thm. 1.4] prove
that if ¢4, ..., ¢, are pseudo-Anosov elements of the mapping class group of
S whose axes have pairwise disjoint endpoints in Thurston’s compactification
of Teichmiiller space, then for all sufficiently large positive integers a4, ..., a,
the mapping classes ¢{*, ..., ¢% freely generate a Schottky subgroup G. In
particular, if these pseudo-Anosovs are generic, then there exists R > 0 and
we can choose ay, ..., a, such that Ht* Uy H~ satisfies the hypothesis of our
theorems for every f € G.

In [NS], we also used our description of the negatively curved metric on
H*Ug H~ to obtain a variety of topological results about the manifolds. Since,
all we used was the classification of the geometric limits of these hyperbolic
structures and we have a similar classification here, we can prove the same

results here.

Theorem 1.6. IfT" C m(H™) is a finitely generated subgroup of infinite indez,
then if M = H" Ug H~ has R-bounded combinatorics and sufficiently large
handlebody distance, the map I' — (M) induced by the inclusion H — M

18 tnjective.

Every minimal generating set for 7 (H™) or 7 (H ") gives a generating set

for (M) where M = H" Ug H~ and we call these standard.

Theorem 1.7. The fundamental group of M = HY Ug H~ has rank g if the
Heeqgaard splitting has R-bounded combinatorics and large handlebody distance.
Moreover, every minimal generating set of w1 (M) is Nielsen equivalent to a

standard generatling set.



For a definition of Nielsen equivalence see [NS].

Theorem 1.8. For a Heegaard splitting M = HT Ug H  with R-bounded
combinatorics and large handlebody distance, every proper subgroup I' C (M)

with rank < 2g — 2 is free.

Theorem 1.9. If M = H* Ug H~ has R-bounded combinatorics and large
handlebody distance then the Heegaard genus of M 1is g and every minimal

Heegaard surface is isotopic to S.

Here, we only discus case of Heegaard splittings of closed 3-manifolds and
hyperbolic structures on handlebodies. We should point out that most of our
arguments easily generalize to a much broader setting. Heegaard splittings can
be extended to compact orientable 3-manifolds by decomposing it to a pair
of compression bodies which are identified along the exterior boundary. The
definitions of handlebody distance and bounded combinatorics easily extend
to this case and the same methods should give similar results in that case. In
particular, provided that we have R-bounded combinatorics and large handle-
body distance, we can construct Riemannian metrics with sectional curvatures
e-pinched about —1. Also similar to theorem 1.2, we are able to describe the
geometry of these metrics concretely. In that case, instead of studying the de-
formation theory of hyperbolic structures on compression bodies. Our results
will be still true and in fact some of the results were previously known for the
case of compression bodies.

Even more, we could start with a pair of compact atoroidal and orientable
3-manifolds with two boundary components that are homeomorphic. We can

develop the same kind of ideas for 3-manifolds which are obtained by gluing

10



these two along the homeomorphic boundary. For sake of bravery and since
handlebodies are in fact the interesting case, we decided not to allow these
generalities. For a similar treatment in the case where the gluing map is

obtained by iterations of generic pseudo-Anosovs, we refer the reader to [NS].
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Chapter 2

Preliminaries

2.1 Coarse geometry

A metric space is geodesic if for any z, y there is a rectifiable path p from z to
y whose length is equal to d(z,v).
Let X and Y be metric spaces. A map f : X — Y is (K, ¢)-quasi-isometric

embedding if

%dx(fc,a:') —c<dy(f(z), f(2') < Kdx(z,2") + ¢

for z, 2’ € X. We say f is uniformly proper with respect to a proper, monotonic

function p : [0,00) — [0, 00) and constants K and c if
pldx(z,2") < dy(f(z), f(z") < Kdx(z,2") +¢ for z,2" € X.

The function p is called a properness gauge for f. The map f is c-coarsely
surjective if for all y € Y, there exists € X such that dy (f(z),y) < c¢. The

map f is a (K, ¢)-quasi-isometry if it is (K, ¢)-quasi-isometric embedding and

12



c-coarsely surjective.

Fact 2.1. Suppose X and Y are geodesic metric spaces. Any coarsely sur-
jective, uniformly proper map f : X — Y is a quasi-isometry with constants

depending only on the constants in the hypothesis.

Given a geodesic metric space X, a (), c¢)-quasigeodesic in X is a (A, ¢)-
quasi-isometric embedding v : I — X, where [ is a closed connected subset of
R. When [ is a compact interval we have a quasigeodesic segment, when I is a
half-line we have a quasigeodesic ray, and when I = R we have a quasigeodesic
line.

Recall that the Hausdorff distance between two subsets A, B C X is the
infimum of 7 € Ry U {+00} such that A is contained in the r-neighborhood of
B, and B is contained in the r-neighborhood of A.

Two paths v : I — X,~' : I' — X are asynchronous fellow travelers with
respect to a (K, ¢)-quasi-isometry ¢ : I — I" if there is a constant A such that
d('(o(t)),v(t)) < Afort el

Two paths v : I — X, : I' — X where 7y is a quasigeodesic are asyn-
chronous fellow travelers if and only if ' is a quasigeodesic and the sets
v(I),~'(I") have finite Hausdorff distance in X with constants that are uni-
formly related.

We say a geodesic metric space is Gromouv hyperbolic if there exists § > 0
such that for every triple of points of X and geodesics [z, y], [y, z] and |z, z],
which pairwise connect them, every side is in the d-neighborhood of the union

of the other two.
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2.2 Laminations and Masur domain

Let S be a closed surface of genus g > 1. Let Diff(S) be the group of dif-
feomorphisms of S and let Diffy(S) be the normal subgroup of homeomor-
phisms isotopic to the identity. The mapping class group of S is MCG(S) =
Diff(S)/Diffy(S).

Suppose S is equipped with a hyperbolic metric 79. A geodesic lamination
on S is a closed subset of S which is a disjoint union of simple geodesics. We
denote the space of all these by GL(S). A measured lamination is a geodesic
lamination A together with an invariant (with respect to projection along \)
measure on arcs transversal to A and supported on A\. ML(S) is the space of
all measured laminations on S and the projective lamination space PML(S)
is (ML(S)\{0})/R*. We identify PML(S) with the set of measured lamina-
tions which have unit length.

We also use the set UML(S) which is a quotient of PML(S) obtained
by forgetting the measure. We say a geodesic lamination is filling or fills S
if it intersects every essential non-peripheral simple closed curve on S. By
a mazimal lamination we mean an element of GL(S) whose complementary
components are ideal triangles.

It is a standard that the different spaces of laminations defined above do
not depend on the hyperbolic metric 7. This means that there is a natural
homeomorphism from the spaces associated to o to the ones associated to
o', if o0 and o' are different hyperbolic metrics on S. This homeomorphism
is naturally induced from the identification of the circles at infinity of the

universal covers ¢ and ¢’, via the Gromov boundary of the group m(S). For
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more on the spaces of laminations and more see Casson-Bleiler [CB] or Fathi-
Laundenbach-Poénorou [FLP].

Also notice that if Cy represents the set of homotopy classes of essential
simple closed curves on S, then there is an embedding Cy — ML, where
image of a € Cy(S) is a measured lamination whose single leaf is « with total
transverse measure 1. This also induces a natural embedding Co — PMJL and
an embedding R, x Cy — ML whose images are dense. Using the embedding
R, x Cy — ML, we can extend the geometric intersection number for simple

closed curves to a continuous intersection number

ML x ML — [0, 00),

denoted i(p1, p2), pi1, o € ML. Notice that for elements p, ' € PML, it
makes sense to say i(u, ') is zero or nonzero. In particular, we say p and u/
are transverse if i(u, p') # 0.

Now assume H is a handlebody of genus g and S its boundary. We de-
note the group of (isotopy classes of) homeomorphisms of S which extend to
homeomorphisms of H, homotopic to identity by Modg(H). In studying, the
hyperbolic structures on H a subset of ML(S) called Masur Domain O(H)
appears frequently. Recall that by a meridian for H, we mean an essential
simple closed curve on OH that bounds a disk in H. Let’s denote the set
of projective measured laminations that are supported on a finite union of
meridians by M C PML(S) and its closure by M’. A measured lamination
i belongs to O(H) iff it has nonzero intersection with every element of M'.

If every measured lamination supported on a (geodesic) lamination is in the

15



Masur domain, then we say the geodesic lamination is in the Masur domain.
The Masur domain has been studied by Masur [Mas86] and Otal [Ota88] and

Masur proved the following:

Theorem 2.2. The Masur domain O is open and invariant under the action
of Modo(H) on PML. Moreover, the action of Modo(H) on O is properly

discontinuous.

We also will make use of the following theorem of Otal [Ota88]. Recall
that a multi-curve is a set of finite pairwise disjoint and non-parallel essential

simple closed curves on a surface.

Theorem 2.3. Let o and B be multi-curves in the Masur domain. If o and 3

are freely homotopic in H then there exists ¢ € Modo(H) such that ¢(a) = 3.

Kerckhoff [Ker90] proved that O(H) has full measure in PML(S). Also,
Otal [Ota88] proved that

Lemma 2.4. The complement of a Masur domain multi-curve is incompress-

tble and acylindrical in H.

2.3 The complex of curves

For a finite type surface S = S,;, the surface of genus g with b boundary
components, the complex of curves was originally defined by Harvey [Ha81].
Here we usually use the definitions and description used by Masur-Minsky
[MM99, MMO00]. The definition is slightly different for an annulus S = Sj 5 but
the complex of curves, which we denote by C(S) is a locally infinite simplicial

complex with a path metric on its 1-skeleton when it is nonempty.
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If 3g + b > 4, we consider the vertices of C(S) to be the set of homotopy
classes of essential non-peripheral simple closed curves and essential properly
embedded arcs relative to 0S. Here, non-peripheral curves are those which are
not boundary parallel and essential arcs which are not homotopic (rel. 9S) to
subarcs of S. A (k + 1)-tuple of different vertices makes a k-simplex if they
have mutually disjoint representatives on the surface.

Notice that Cy = Cy(S) is the set of vertices of C(S) and when S is a closed
surface it will be the set of homotopy classes of essential simple closed curves
on S which is the same as our previous definition for Cj.

When S = S 2 is a compact annulus, we consider the set of vertices of C(.S)
to be the homotopy classes of arcs that connect the two boundary components
of S relative to their endpoints. This of course will be an uncountable set of
vertices; we connect two vertices with an edge when they have representatives
with disjoint interiors. For all other surfaces, we define C(S) to be empty.

To define the metric, we make every edge isometric to the interval [0, 1]
and define dc(z,y) of points x and y in the 1-skeleton of C(S) to be length of

the shortest path in the 1-skeleton that connects them.

Remark 2.1. We should note that what we defined as the curve complex is
slightly different from what Masur-Minsky define as the curve complex. (They
only allow simple closed curves in the vertices and they call what we define
above as the arc complez.) Yet it is not hard to see that their complex quasi-
isometrically embeds in our complex. Because of this we can translate most of

their results about the curve complex to here with possibly different constants.

From now on, by a surface we mean an orientable finite type surface which

17



is an annulus or has negative Euler characteristic. We also assume that every
subsurface Y C S that we take is essential: the map induced on the funda-
mental groups from the inclusion Y < §' is injective and if Y is an annulus,
its core is not peripheral.

Masur-Minsky [MM99] proved that C(S), when nonempty, has infinite di-
ameter and is hyperbolic in sense of Gromov. In particular, we can define its
boundary at infinity in sense of Gromov, which we denote by 0C(S).

Notice that since C(S) is hyperbolic in sense of Gromov, one can consider
the Gromov boundary of C(S) which we denote by dC(S). Recall that this is
obtained by fixing a base point £y € C(S). Then we take sequences (z,) C C(S)
where d¢(zg, z,) — 00 as n — oo. Two sequences (z,) and (y,) are equivalent
if the distance from z to a geodesic |z, y,| that connects x,, and y, tends to
infinity as n — oco. A sequence (z,) converges to a point of the boundary if it
belongs to the equivalence class determined by that point.

E. Klarreich [Kla] gave a description of the Gromov boundary of C(S). In
this description, OC(S) consists of filling laminations in UM L(S). She proved
that a sequence (o) C Co(S) converges to u € 9C(S), iff the corresponding
sequence in UML(S) converges to p.

Following Masur-Minsky [MMO0O0], we also define a projection 7y from
Co(S) UUML(S) (where Co(S) denotes the 0O-skeleton of C(S)) to subsets
of Co(Y) with diameter at most one, where Y C S is an essential subsurface.

We assume S is equipped with a finite area hyperbolic metric. If o €
Co(S)UUML(S) does not intersect Y essentially or YV is a three-holed sphere,

we define my () = . If not we have two cases:
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e Y is non-annular. Consider o NY’; this is a set of disjoint curves and
arcs. At least one of the components is an essential curve or arc in Y
since we assumed « intersects Y essentially. Therefore a N'Y gives a

subset of diameter at most one in C(Y'), which we define to be 7y («).

e Y is an annulus. We can identify the universal cover of S with H? and
we know that the universal cover has a compactification as a closed disk
and the action of 7;(S) on its universal cover extends to this compact-
ification. Take the annular cover Y = H2/my(Y) of S to which Y lifts
homeomorphically. The group m;(Y) is a cyclic subgroup of isometries
of H? with two fixed points at infinity. The quotient of the closed disk
minus these two points is a closed annulus Y that compactifies Y natu-

~

rally. We identify C(Y) with C(Y') and define 7y as a map from Cy(S)
to set of subsets of Co(Y) with diameter at most one. All lifts of the
geodesic representative of « to Y naturally give properly embedded arcs
in the closed annulus Y. We define 7y (c) to be the set of those which

connect the two boundary components. Again this cannot be empty

since « intersects Y essentially and has diameter at most one.

We also denote the distance between projections of @ and 3 in C(Y') by
dy (c, 8) and when Y is an annular neighborhood of the simple closed curve ~,
we sometimes use the notations C(), ., and d, instead of C(Y'), my and dy.

Masur-Minsky [MMOO] also proved the following theorem:

Theorem 2.5. (Bounded geodesic image) Let Y be a proper subsurface of S
which s not a three punctured sphere and let g be a geodesic segment, ray or

biinfinite line in C(S) such that wy (v) # 0 for every vertez of g.
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There is a constant M only depending on the Euler characteristic of Y, so
that

diamy (g) < M.

2.4 Handlebody distance

Suppose H is a handlebody of genus > 1. The set of meridians of H is a subset
of the 0-skeleton of C(0H) which we denote by A(H). Masur-Minsky [MMO03]

proved that:

Theorem 2.6. There erists a constant d > 0 depending only on x(0H) that

A(H) is d-quasiconvez as a subset of C(S).

When M = H" Ug H™ is a Heegaard splitting, since we have identified
boundaries of H* and H~ with S, we can consider A(H') and A(H ") as
subsets of Cy(S). Following Hempel [He01], we define the handlebody distance
for the splitting to be de(A(H™'), A(H™)).

2.5 Pants decompositions and markings

For a surface S, a multi-curve is a subset of Cy(S) whose elements are simple
closed curves with pairwise distance 1. In particular, a pants decomposition P
is a maximal multi-curve on S. Each component of S\ P is called a pair of
pants. We sometimes consider a multi-curve or a pants decomposition a as an
element of ML or PML; in this case we assume it is a measured lamination or

a projectivized measured lamination supported on « where all the components
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are equipped with equal transverse measure 1 or is the projection of such
element in PML.
Suppose a, ..., q, are components of a pants decomposition P. One can

see that the component of

S\(OQU"'UO%)

that contains o is either a 1-holed torus or a 4-holed sphere Y. If we replace
a; with an essential simple closed curve § in Y that i(aq,) = 1 when YV
is a 1-holed torus and i(ay,3) = 2 when Y is a 4-holed torus, we obtain
another pants decomposition Q = fUapU---ay. We say (@ is obtained by an
elementary move on P and we denote this move by P — (). By an elementary
move sequence

P1—>P2—)"'—)Pk

we mean a sequence of pants decomposition, where P;; is obtained from P,
by an elementary move for every 1 =1,...,k — 1.

The following lemma is easy and we will be using it in chapter 5.

Lemma 2.7. Given a path oy, q,...,a, in C(S), we can extend it to an

elementary-move sequence of pants decompositions Py, P, ..., P, for which:
every pants decomposition P;, 0 <14 < m, contains an element o for some

0<j<nand Py and P,, are arbitrary pants decompositions that contain oy

and oy, respectively.

Following Masur-Minsky [MMO00], we define a marking on a surface S as

follows. A marking o on S is a pants decomposition P, denoted by base(a),
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together with a transversal for every component of P. For every component y
of P, a transversal is a simple closed curve ¢ such that a regular neighborhood
of vy U4 is either an essential 1-holed torus or an essential 4-holed sphere and
0 does not intersect any other component of P.

Notice that what we have defined above are actually complete clean mark-
ings in [MMO00].

By support of a marking «, we mean the union of all the components of
base(«) and the transversals. When we consider a marking in Cy(S) we are in
fact considering its support.

We can also extend our definition of 7y in a way that it includes markings:
If Y is an annulus whose core is some 7 € base(«) and 0 is the transversal asso-
ciated to 7, we define 7y () = 7y (6). In all other cases, 7y () = 7y (base(a)).
This also defines dy («, ) where § is a multi-curve, a geodesic lamination or
another marking.

If H is a handlebody, by a handlebody pants decomposition, we mean a
pants decomposition on H, whose elements are all in A(H). Also by a han-
dlebody marking, we mean a marking « such that base(«) is a handlebody

pants decomposition.

Proposition 2.8. For a handlebody H, there exists a finite set of handle-
body markings my(H) such that every other handlebody marking is obtained by

action of Modo(H) on an element of my(H)
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2.6 Bounded combinatorics

Suppose « and 8 are multi-curves, geodesic laminations on S or markings; we
say they have R-bounded combinatorics for a constant R > 0 if for every proper
essential subsurface Y C S either dy(«, 3) is undefined or dy (o, 8) < R.
Suppose H is a handlebody and « is a marking or a multi-curve on Co(0H),
we say « has R-bounded combinatorics respect with to to H if there exists
a handlebody pants decomposition P C A(H) such that « and P have R-

bounded combinatorics and

de(a, A(H)) = de(a, P).

We say P is the projection of o to A(H). (There could be more than one
projection for o but they all have bounded distance depending on the qua-
siconvexity constant of A(H).) When p € 0C(0H) is given, we say u has
R-bounded combinatorics with respect to H if there exists a sequence (ay,) of
markings whose base converges to p in C(0H) U OC(OH) and every «, has
R-bounded combinatorics with respect to H and the same projection P for
every n. It is not hard to see that in this case p and P have (R + 1)-bounded
combinatorics because dy (i, ;) < 1 for n > 0 and every proper subsurface
Y C 0H. Again we call P the projection of u to A(H).

Finally, when M = H*™ Ug H ™~ is a Heegaard splitting, we say two han-
dlebody pants decompositions P* C A(H") and P~ C A(H") realize the
handlebody distance if de(P*,P~) = de(A(H'), A(H™)). We say this Hee-

gaard splitting has R-bounded combinatorics if there exists handlebody pants
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decompositions PT C A(H") and P~ C A(H~) which realize the handlebody
distance and have R-bounded combinatorics.
We can easily see that in the above definitions we could replace handlebody

pants decompositions with handlebody markings:

Lemma 2.9. Suppose « is a multi-curve, a marking or an element of OC
with R-bounded combinatorics with respect to H and P is the projection of o
to A(H). Then we can extend P to a handlebody marking (3, base(8) = P,
such that o and 8 have R-bounded combinatorics. When M = H* Ug H™
is a Heegaard splitting with R-bounded combinatorics and Pt and P~ are
the handlebody pants decompositions used in the definition of the R-bounded
combinatorics. Then we can extend PT and P~ to handlebody markings o™

and o which have R-bounded combinatorics.

Proof. For every v € P, if m,(«) is empty choose an arbitrary transversal for
7; otherwise choose a transversal that belongs to m,(P). Repeat the same
process for every component of P.

The construction for the case of Heegaard splittings is the same except
that we have to do the construction for P* using projections of P~ and then

repeat it for P~ using projections of P*. O

2.7 Teichmiller space and Thurston’s bound-
ary

Like before, assume S is a fixed surface of genus > 2. The Teichmiiller space

of S, denoted ¥(5), is the set of hyperbolic structures on S modulo isotopy, or
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equivalently the set of conformal structures modulo isotopy. There is a natural
actions of MCG(S) on %(S).

The length pairing ¥ x Cy — R, , assigns to each 0 € T and a € Cy(S) the
length of the unique closed geodesic on the hyperbolic surface ¢ in the isotopy
class of . This induces a MCG-equivariant embedding T — [0, c0)° and gives
< the MCG-equivariant structure of a smooth manifold of dimension 6g — 6
diffeomorphic to R®~¢. The action of MCG on ¥ is properly discontinuous
and noncocompact, and so the moduli space M = T/ MCG is a smooth, non-
compact orbifold of dimension 6g — 6.

The length pairing can be extended to a continuous function:

T x ML — (0,00)

(o, 1) = 1o ()

We also have a MCG-equivariant embedding i : ML — [0,00)% by con-
sidering i(u, «) for p € ML and every a € Cy. This induces an embedding
PML — P[0, 00)¢, whose image is homeomorphic to a sphere of dimension

6g — 5. The composed map

T — [0, 00)% — P[0, 00)

is an embedding, the closure of whose image is a closed ball of dimension 6g— 6
with interior ¥ and boundary sphere PML called the Thurston compactifica-

tion.
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2.8 Teichmiiller geodesics

Suppose S with a conformal structure is given. A quadratic differential asso-
ciates to each conformal coordinate z an expression ¢(z)dz? with ¢ holomor-
phic, such that whenever z, w are two overlapping conformal coordinates we

have g(z) = q(w)(42)°.

For such a quadratic differential, we have the area
form expressed in the conformal coordinate z = x + iy as |¢(z)| |dz| |dy|, and
the integral of this form is a positive number ||g|| called the area. We say q is
normalized if ||q|| = 1.

Away from zeros of ¢, there is a canonical conformal coordinate ( = = + 1y,
defined locally up to translation and sign, such that ¢ = d(? in this coordinate.
The lines {y = x} and {x = ¢} are thus consistently defined and form what
are known as the horizontal and vertical foliations, respectively or ¢, and g,.
The metric |q| = |d{|> = dz*+dy? is also canonically defined, and is Euclidean
with isolated singularities at the zeros of ¢ where there is concentrated negative
curvature.

Now for every ¢ € R consider a new conformal structure obtained by taking
the singular Euclidean metric e*dz? + e ?!dy? and let g(¢) be the associated
point of ¥(S). This gives path in ¥ which we call a Teichmiiller geodesic.
Teichmiiller’s theorem states that any two points o # o' € ¥ lie on a Te-
ichmiiller line g, and that line is unique up to an isometry of the parameter
in R. Moreover, if 0 = g(s) and o' = ¢(t), then dg(o,0") = |s — t| defines a
proper, geodesic metric on ¥, called the Teichmiiller metric.

For a Teichmiiller geodesic constructed as above, the horizontal and vertical

foliations of ¢ correspond to two transverse elements of PML(S), called the
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negative and positive ending laminations or ideal endpoints of g. It turns out
that the image of g is completely determined by this pair. Also given 0 € T
and pu € PML, there is a unique geodesic ray with finite endpoint o and given
by the above description in a way that u is associated to the vertical foliation
and we call u the ideal endpoint of the ray.

The group MCG acts isometrically on ¥, and so the Teichmiiller metric
descends to a proper geodesic metric on the moduli space M. A subset A C ¥
is said to be cobounded if its projection to M has bounded image. When I a
bounded subset of M is given, we say A is K-cobounded if the projection of
A to M is contained in K.

Mumford’s theorem provides a criterion for coboundedness. Given € > 0,
let T, be the set of hyperbolic structures o whose shortest closed geodesic has
length > € (we sometimes say o is e-thick) and define M, to be the projected
image of ¥.. Mumford’s theorem says that the sets M, are all compact and
their union is evidently all of M. It follows that a subset A C ¥ is cobounded

if and only if it is contained in some ..

2.9 Canonical bundles over Teichmiiller space

For the closed surface S of genus > 2, there is a smooth fiber bundle § — %(5)
whose fiber S, over o € ¥ is a hyperbolic surface representing the point o € .
More precisely, as a smooth fiber bundle we identify S with S x ¥, and we
impose smoothly varying hyperbolic structures on the fibers S, = S x o,
o € T, such that under the canonical homeomorphism S, — S the hyperbolic

structure on S, represents the point ¢ € ¥. The action of MCG on ¥ lifts to an
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fiber-wise isometric action of MCG on §. Each fiber S, is a marked hyperbolic
surface, i.e. it comes equipped with an isotopy class of homeomorphisms to S.
The bundle & — ¥ is called the canonical marked hyperbolic surface bundle
over ¥.

The canonical hyperbolic plane bundle H — T is defined as the composition
H — S — % where H — § is the universal covering map. Each fiber H,,
o € T, is isometric to the hyperbolic plane, with hyperbolic structures varying
smoothly in o. The group 7 (S) acts as deck transformations of the covering
map H — S and this action preserves each fiber H, with quotient S,. The
action of m1(S) on H extends to a fiber-wise isometric action of MCG(S, p)
on H, such that the covering map H — § is equivariant with respect to the
group homomorphism MCG (S, p) — MCG(S). Bers [Be73| proved that H can
be identified with the Teichmiiller space of the once-punctured surface (.5, p),
and the action of MCG(S,p) on H is identified with the natural action of the
mapping class group on Teichmiiller space.

Suppose T'S denotes the tangent bundle of S and 7,5 denotes the wver-
tical subbundle of TS, i.e. the kernel of the derivative of the fiber bundle
projection & — T. It follows from standard methods that there exists an
MCG-equivariant connection on §. Choose a locally finite, equivariant open
cover of ¥, and an equivariant partition of unity dominated by this cover. For
each MCG-orbit of this cover, choose a representative U C ¥ and choose a
linear retraction TSy — T,Sy. Use the action of MCG to define this retrac-
tion on all elements of orbit of U and take a linear combination using the
partition of unity to obtain an equivariant linear retraction TS — T,S. The

kernel of this retraction is one such connection. Also by lifting to H we obtain
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a connection on the bundle H — ¥, equivariant with respect to the action of
the group MCG(S,p). We fix a choice of such a connection once and forever.

The connection obtains a smooth sub-bundle 7,8 of T'S which is comple-
mentary to 7,5: TS = T,S & T,S. Lifting to H we also have a sub-bundle
Ty H of the bundle TH.

By a closed interval, we mean a closed connected subset of R. Given a
closed interval I C R, a path v : I — ¥ is affine if it satisfies dz(y(s),v(t)) =
K|s — t| for some constant K > 0, and ~y is piecewise affine if v is affine
restricted to pieces of a decomposition of I into subintervals. In particular v
is Z-piecewise affine if it is affine restricted to [n,n+ 1] NI for every integer n.

Given an affine path v : I — ¥, by pulling back the canonical marked
hyperbolic surface bundle § — ¥ and its connection 7S, we obtain a marked
hyperbolic surface bundle &, — I and a connection 7,S,. This connection
canonically determines a Riemannian metric on S, as follows. Without loss
of generality, assume K = 1 in the definition of the affine path . Since
TS, is 1-dimensional, there is a unique vector field V' on &, parallel to 73,8,
such that the derivative of the map S, — I C R takes each vector in V' to
the positive unit vector in R. The fiber-wise Riemannian metric on S, now
extends uniquely to a Riemannian metric on S, such that V is everywhere
orthogonal to the fibration and has unit length.

Even when 7 is piecewise affine, the above construction gives a Riemannian
metric over each affine subpath, and at any point ¢ € I where two such sub-
paths meet, the metrics agree along the fibers, thereby producing a piecewise
Riemannian metric on S,.

We can lift the above construction to H, to produce an MCG-equivariant
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(piecewise affine) Riemannian metric such that the covering map H, — S,
is local isometry. One can see that these path metrics are proper geodesic
metrics.

A connection line in either of the bundles S, — I, H, — I is a piecewise
smooth section of the projection map which is everywhere tangent to the
connection. By construction, given s,¢ € I, a path p from a point in the fiber
over s to a point in the fiber over ¢ has length > |s — ¢|, with equality only
if p is a connection path. It follows that the min distance and the Hausdorff
distance between these fibers are both equal to |s — ¢|. By moving points
along connection paths, for each s,t € I we have well-defined maps §; — S,
Hs — H;, both denoted hy. By a result of Farb-Mosher [FM02, Lem. 4.1],
for a bounded set L C M and p > 1 there exists K such that if y: I — T is
a IC-cobounded, p-Lipschitz, piecewise affine path, then for each s,t € I the

connection map hy; is K*~t-bi-Lipschitz.

2.10 Singular SOLV spaces

When v : I — % is a geodesic there is another pair of natural geometries,

the singular SOLV space S5O

and its universal cover Hgow_ Recall that
a Teichmiiller geodesic (t) (parametrized by length) is given by a quadratic

differential ¢ and a family of singular Euclidean metrics

dsy ) = e*|dz|* + e~ |dy|?
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where |dy| and |dz| are associated to the horizontal and vertical measured
foliations of ¢ and the conformal class of ds., ) represents y(t) = S;.

We can use the above to define the singular SOLV metric on S, by
ds* = e*|dz|* + e *|dy[* + dt?

and we denote this metric space by S;°™V. The lift of this metric to the
universal cover ch, produces a metric space denoted by HEOLV.

Farb-Mosher [FM02, Porp. 4.2] proved the following:

Proposition 2.10. For any p > 1, any bounded subset K C M, and any
A > 0 there exists K > 1,¢ > 0 such that the following holds. If v,v' : [ - %
are two p-Lipschitz, K-cobounded, piecewise affine paths defined on a closed
interval I, and if d(v(s),7'(s)) < A for all s € I, then there erists a map
S, — 8y taking each fiber S,y to the fiber Sy by a homeomorphism in the
correct isotopy class, such that any lifted map H, — H, is a (K, c)-quasi-
1sometry.

If v is a geodesic, the same is true with S,/, H., replaced by the singular

SOLV spaces S5O, HEPMWY.

2.11 Hyperbolic Manifolds

By a hyperbolic manifold, we always mean a Riemannian 3-manifold with
finitely generated fundamental group and constant sectional curvature —1. A

hyperbolic manifold NV is also recognized by the conjugacy class of a discrete
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and faithful representation

m1(N) = PSLy(C).

We recall the definition of the injectivity radius of N at a point =, denoted
by inj(z), is half the length of shortest (homotopically nontrivial) loop through
x. By Margulis lemma, there exists a universal constant €;; > 0, such that for

any € < €7, every component of the e-thin part of N

N<¢:={z € N| inj(z) < €}

is either
1. a torus cusp: a horoball in H?> modulo a parabolic action of Z @ Z,
2. a rank one cusp: a horoball in H> modulo a parabolic action of Z, or
3. a solid torus neighborhood of a geodesic

(see Thurston [Thu79] or Benedetti and Petronio [BP].) We also denote the
complement of N<¢ by N2¢ that is the e-thick part of N and the complement
of all cuspidal parts of the thin part by N¢. We call the components of type (1)
and (2), e-cusps or simply cusps of N and we call the components of type (3),
e-Margulis-tubes or simply Margulis-tubes. The radius of an e-Margulis tube
grows as the length of the core curve shrinks (cf. Brooks-Matelski [BM82] and

Meyerhoff [Me87]).
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Suppose N is a hyperbolic manifold and
p:m(N) — PSLy(C)

is the associated representation which gives a discrete subgroup I' = p(m(N))
of the group of isometries of H?. We can consider the limit set A(T") and its
convex hull CH(T'); the projection of this set gives a subset CH(N) C N,
which we call the convez core of N. We say N is convex cocompact if CH(N))
is compact.

The following lemma is an easy observation using hyperbolic geometry.
Lemma 2.11. Let N be a hyperbolic manifold and o a homotopically non-
trivial closed curve in N and o its geodesic representative. Then

coshdy(a, ") <In(a)/In(a"),

where Iy () is length of o as a curve in N.

2.12 Geometrically finite and infinite

A hyperbolic manifold N is geometrically finite if its convex core has finite
volume; otherwise it is geometrically infinite. Works of Bers, Maskit [MasT71],
Kra [Kr72] and Sullivan give a description of the space of geometrically finite
structures on a 3-manifold in terms of the Teichmiiller space of its boundary.

Even when N is geometrically infinite, there exists a compact submanifold

C of N ¢ called the relative compact core such that the inclusion of C' into N
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is a homotopy equivalence, C intersects each component of (9]\76 in an annu-
lus, if the corresponding component is a rank one cusp, or in a torus, if the
corresponding component is a torus cusps (see Feighn-McCullough [FMc87)).
The ends of N¢ are in one-to-one correspondence with components of dC \ P,
where P := ONNC is the parabolic locus. In general N¢ can have several ends.
Each end is either a geometrically finite end when it intersects the convex core
in a bounded set or a geometrically infinite end otherwise.

Suppose E C Neis a neighborhood of an end of Ne¢ associated to a com-
ponent R of 0C \ P. Now suppose we have a sequence of simple closed
curves (o) on R which converge to an element of PML that is supported
on y € UML(R). Also assume ¢, is homotopic to a closed geodesic o in
N, with a homotopy that stays within £ and the sequence (o) exits the end
E. In this case, following Thurston, we say E is simply degenerate and u
is the ending lamination of E. It follows that the ending lamination fills R
and is unique for a given parametrization of a simply degenerate end. In fact,
Thurston proved that E is simply degenerate if and only if there exists a se-
quence of simplicial or pleated hyperbolic surfaces {h, : R — U} leaving every
compact set such that for each n, h,(R) is homotopic to R x {0} within U.
(We postpone definitions of these surfaces to 2.14.)

Canary [Can89], [Can93b] proved that if the manifold is topologically tame,
(it is homeomorphic to the interior of a compact manifold), then each geomet-
rically infinite end is simply degenerate. In this case, we can assume F a
neighborhood of an end of N¢ is homeomorphic to R x [0,00), where R is the
closure of a component of C \ P and R x {0} is homotopic to the inclusion

R — 0C with a homotopy that stays away from C. In this situation, Canary
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[Can93b, Thm. 10.1] proved E is simply degenerate with an ending lamina-
tion p(F) that fills R. He also proved that if {;} is a collection of closed

geodesics exiting £ which are homotopic (within E) to curves -; on R, then

every limit of the sequence ( lo?é,-)) in the space of currents is a measured lam-
ination supported on u(E). Here, ly(~y;) denotes length of ~; in a fixed finite
area hyperbolic metric on R.

Recall that a (geodesic) current on a hyperbolic manifold M (in any di-
mension) is a (positive) transverse invariant measure on the geodesic flow of M
whose support is contained within the projective tangent bundle of the convex
core. (The convex core of a hyperbolic manifold is the smallest convex sub-
manifold such that the inclusion is a homotopy equivalence.) Equivalently, if
M = H" /T, we may think of a current as a I'-invariant measure on Lp x Lp\A,
where Ly is the limit set of ' and A is the diagonal. We denote the space of
currents on M by € (M). When the support of a current c is a closed geodesic,
we define its length, {3/(c), to be the length of its support times the transverse
measure of c. This extends to a continuous map I, : (M) — R, U{0}, which
is continuous when M is convexr cocompact: it has a compact convex core. If
S is a hyperbolic surface and o and [ two closed geodesics, we define their
geometric intersection number i(a, ) to be the number of points in o N 3.

This extends to a symmetric, bilinear map
i:€(S)x€(S) - R, U{0}

which is again continuous if S is convex cocompact. Note that ML(S) is

naturally a subset of %(S) consisting of the currents ¢ such that i(c,c) = 0.
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(See Bonahon [Bo86] for a discussion of currents and for the above definitions
and facts.)

We should emphasize here that even when N is topologically tame, the
ending lamination depends on the choice of the relative compact core and the
provided parametrization of a neighborhood of the end using a homeomor-
phism from R x [0,00). (The parametrization is considered up to homotopy
that takes place outside of the relative compact core.) In particular when N
has no parabolics the relative compact core is called simply a compact core or
a Scott core. Suppose C; is a compact core of N and R is a component of
0C;. As we mentioned there is an end of N associated to R and the inclusion
R — 0C determines a parametrization of a neighborhood of this end with
a homeomorphism from R X [0,00). In this case, a theorem of McCullough-
Miller-Swarup [MMS85] shows that if Cy are is any other compact core of N,
then there exists a homeomorphism h : C; — Cy such that h, = (i2); ' o (i1),
where i; : C; — N is the inclusion map. From this one can see that (the homo-
topy class outside of compact core of ) the parametrization of the neighborhood
of the end given above is well defined up to actions of Mody(R) which consists
of elements of mapping class group of R that extend to a homeomorphism

(C, P) — (C, P) homotopic to identity.

2.13 Hyperbolic structures on handlebodies

A hyperbolic structure on the handlebody H (or simply a structure) is a com-
plete hyperbolic manifold N with a homeomorphism ¢ : H — N. Two

structures (Ny,¢1) and (N, o) are equivalent if there exists an isometry
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f : Ni — N, such that ¢,' o f o ¢ is homotopic to identity. Equivalently,
a hyperbolic structure on H is given by the conjugacy class of a representa-
tion p : m(H) — PSLy(C). (The equivalence, in fact, follows from the recent
proof of the Tameness Conjecture (Agol [Ag] and Calegari-Gabai [CG].) If we
choose a base frame (a base point together with a basis for the tangent space
at the base point), this uniquely determines a representation of w1 (H). By a
hyperbolic structure with a base frame, we mean a hyperbolic structure with a
choice of a base frame.

A marked hyperbolic structure on the handlebody H (or simply a marked
structure) is a complete hyperbolic manifold NV and an embedding j : 0H — N,
called marking, such that j can be extended to an embedding j : H — N and
N\ j(H) is homeomorphic to dH x R. Two marked structures (Ny,7;) and
(Na, j2) are equivalent if there exists an isometry f : Ny — Ny such that f o j;
and jo are isotopic. We can think of a marked hyperbolic structure on H as
a complete hyperbolic metric on the interior of H defined up to deformations
induced by self-homeomorphisms of H isotopic to identity. In this case, the
marking j is simply any embedding of 0H into the interior of H isotopic to
the inclusion 0H — H. When we speak of a marked structure N, always a
choice of a marking j : 0H — N is implicit. Also when we have a compact
core C' C N, we can isotope the marking j and assume that j(0H) does not
intersect C' and the component of N\ j(0H) that gives a neighborhood of the
end of N does not intersect C either. Notice that the class of embeddings that
are homotopic to j in N \ C is included in the class of maps that are isotopic

to J.
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Remark 2.2. In the literature, usually a marked hyperbolic structure is a
hyperbolic manifold with a marking for the fundamental group (a choice of an
isomorphism from a fixed group to the fundamental group of the manifold).
Here our markings not only mark the fundamental group but mark the isotopy

class of identification of the manifold with a fixed copy of the manifold.

We say a sequence of hyperbolic structures with base frame converge alge-
braically to a hyperbolic manifold N, if the associated representations do. A
sequence of hyperbolic structures converge algebraically if by choosing a base
frame for each of the elements of the sequence, they converge algebraically
(equivalently if the associated representations converge algebraically up to
conjugation). Also a sequence of hyperbolic structures (/N;) converge geo-
metrically to a hyperbolic manifold N if with an appropriate choice of base
points p; € N; and p € N, the pointed manifolds (N;, p;) converge to (N, p)
in the Gromov-Hausdorff topology. In other terms, there exists a sequence of
maps

ki © (Ni(p),p) = (Ni,pi) >0,

called the approzimating maps, where N;(p) is the ball of radius i about p,
such that on every compact subset of NV the maps k; converge to an isometry
in the C'*™° topology as i — o0.

We use the geometric topology and the approximating maps in many places
of our arguments; in order to shorten the arguments we are usually careless

and consider the approximating maps by

HZN—)NZ

38



It should be understood that the approximating maps do not have to be defined
on all of N and by the above notation we simply mean that x; is defined on
larger and larges neighborhoods of the base point as ¢ — co.

We say a sequence of hyperbolic structures converge strongly to N if for
an appropriate choice of base frames, they converge both algebraically and
geometrically to N. For a sequence (IV;) of marked structures on H, we say
(N;) converge strongly, if there exists a marked hyperbolic structure N and
base-points p; € N; and p € N such that (NV;,p;)) — (IV,p) strongly as a

sequence of hyperbolic manifolds and if

ki o (N, p) = (Ni pi)

are the approximating maps, then k;07 is isotopic to j;, where j; is the marking
of N; and j is the marking of V.

When a (marked) hyperbolic structure N on H is convex cocompact, the
associated representation and subgroup of PSLy(C) is called a Schottky group.
Suppose N = H3/T is a convex cocompact hyperbolic structure on H and
j : OH — N is a marking. If 2 is the domain of discontinuity for the action of I'
on the boundary at infinity, then we know that (H* UQ)/T" is homeomorphic to
H and gives a compactification for N. Also we know that Q/T" has a conformal
structure which is induced by the Poincaré metric on 2. The marking j can
be used to obtain a marking for €2/I" and this together with the conformal
structure uniquely determines a point 7 of T(0H ), which we call the conformal

structure at infinity. We sometimes say 7 is associated to the marked structure

on N.
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It follows from works of Bers, Maskit [Mas71], Kra [Kr72] and Sullivan
that the above map gives a parametrization of the space of marked convex co-
compact hyperbolic structures on H by ¥(0H), the Teichmiiller space of 0H.
In fact, it follows from their work that the parametrization is a homeomor-
phism between T(0H) and the space of marked convex cocompact structures
on H with the quasi-isometric topology. We should only point out that this
topology is finer than the geometric and algebraic topology considered above
and therefore this also parametrizes these structures with the strong topology.
This also can be used to show that the space of unmarked convex cocom-
pact hyperbolic structures on H is parametrized by T(0H)/Mody(H). Note
that the statements of these results are usually made for unmarked structures.
But using standard arguments, we can extend this convergence to the domain
of discontinuity and from there it will be clear that the marking has to be
preserved.

Suppose N; — N strongly and N;, N are marked convex cocompact struc-
tures on H. the convex core of NV is compact and we can see that image of
OCH(N) by approximating maps is very close to CH (IV;) for i > 0. Now we
can keep

We can see that the the conformal structure on the boundary of the convex
core of N; marked by using the markings converges to the one of N

once we have strong convergence, then we know that image of the boundary
of the convex core the approximating maps take boundary of the convex core
to the

In this case, also recall that 0CH(N), the boundary of the convex core of

N, is equipped with a hyperbolic metric induced by N and there is a natural
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nearest point retraction from the conformal structure at infinity to CH (V).

The following follows from a theorem of Bridgeman and Canary [BC03]:

Theorem 2.12. Given € there exists J > 0 such that if N is a convexr cocom-
pact hyperbolic structure on handlebody H associated to the conformal structure
at infinity T and the injectivity radius of the hyperbolic metric correspondent

to T is bounded below by €y, then the nearest point retraction

r:(0H,7) — OCH(N)

15 J-Lipschitz and has a J-Lipschitz homotopy inverse.

On the other hand for a marked hyperbolic structure N on H, we can
choose a relative compact core C' C N which is homeomorphic to H and
N\ C is homeomorphic to 0H x R and is a neighborhood of the end of N.
The marking j : 0H — N determines a homotopy equivalence from 0H to
N\ C and gives an identification of C with OH up to isotopy. By Canary’s
theorem [Can93b] all geometrically infinite ends of N are simply degenerate.
In this case P, the parabolic locus, can be represented by a set of disjoint non-
parallel essential simple closed curves on 0H, which we still call the parabolic
locus. The ends of N¢ correspond to the components of the complement of
the parabolic locus in 0H.

In particular, when N is geometrically infinite without parabolics, N¢ has
exactly one end with a neighborhood N\ C. Since we have an identification of
0C with OH (using the marking j), this uniquely determines an ending lam-
ination on JH, which we call the ending lamination for the marked structure

N. (Notice that for unmarked structures, the ending lamination is defined
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only up to actions of Mody.) Even more, Canary [Can93b, Cor. 10.2] proved
that in this case, the ending lamination is in the Masur domain of H and fills

0H.

2.14 Hyperbolic surfaces in 3-manifolds

Following Thurston [Thu79] (cf. Canary-Epstein-Green [CEG87]), we define a
pleated surface in a hyperbolic 3-manifold NV to be a map f : S — N together
with a hyperbolic metric oy on S, called the induced metric, and a oy-geodesic
lamination A on S, so that the following holds: f is length-preserving on paths,
maps leaves of A to geodesics and is totally geodesic on the complement of A.
We say f realizes X' if \' is a sublamination of \. With an abuse of notation,
when we consider a pleated surface f : S — N, we usually assume that S is
equipped with the induced metric already.

When N is a hyperbolic structure on H, by pleat, we denote the set
of pleated surfaces f : 0H — N which induce the same map as 0H — H
on the level of fundamental groups. If p is a geodesic lamination on 0H, by
pleat (1) we denote the subset of pleat, whose elements realize .

Similar to Bonahon [Bo86] and Canary [Can96|, we define simplicial hy-
perbolic surfaces and recall some facts about them.

First recall a generalized definition of a triangulation for a surface (cf.
Harer [Ha86| and Hatcher [Ha91]). Let S be a closed surface and Let V denote
a finite collection of points in S. (We often restrict to the case where V is a
single point.) A curve system {aq, ..., o} is a collection of arcs with disjoint

interiors and endpoints in V, no two of which are ambient isotopic (rel V), and
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none of which is homotopic to a point (rel V). A triangulation T of (S,V)
is simply a maximal curve system for (S,V). We say two triangulations are
equivalent if they are ambient isotopic (rel V).

Suppose N is a hyperbolic 3-manifold. A continuous map f : S — N from
a closed surface S into N is said to be a simplicial pre-hyperbolic surface if
there exists a triangulation 7 of S such that image of each face of T is an
immersed, totally geodesic, non-degenerate triangle. The map f induces a
piecewise Riemannian metric on S, and f is said to be a simplicial hyperbolic
surface if the angle about each vertex of 7 is at least 2. We say a simplicial
hyperbolic surface realizes a multi-curve o on S if there exists a subset of the
1-skeleton of 7 homotopic to o, and f maps each component of o to a closed
geodesic in V..

Here, we only use a special class of simplicial hyperbolic surfaces where all
the vertices of T are contained on a subset of the 1-skeleton that is homotopic
to a multi-curve and that multi-curve is realized by the simplicial hyperbolic
surface.

We say a complete Riemannian 3-manifold has pinched negative curvature
if there exist nonzero constants —a? and —b* such that the sectional curvatures
of N lie between the two constants. When N has pinched negative curvature,
instead of simplicial hyperbolic surfaces, we use simplicial ruled surfaces. Re-
call that a ruled triangle is constructed by taking 3 totally geodesic arcs ey, ey
and ez which form a triangle in NV and taking the collection of geodesics (in the
appropriate homotopy class) with one endpoint v;5, the mutual endpoint of e,
and ey, and the other endpoint on e3. A map f : S — N is called a simplicial

ruled surface if there exists a triangulation 7 of S, such that each face of the
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triangulation is taken to a non-degenerate ruled triangle and the total angle
about each vertex is at least 2r. We say a simplicial ruled surface f realizes a
simple closed « if there is a closed loop in the 1-skeleton of the triangulation
associated to f which is homotopic to « and is mapped to a closed geodesic
in N.

Suppose an incompressible map f : S — N and a multi-curve « on S are
given such that f(«) is freely homotopic to a a set of closed geodesics. Then
it follows from work of Bonahon [Bo86| that there exists a simplicial ruled
surface which realizes a.

For N hyperbolic or with pinched negative curvature by N<¢ we mean the
set of points of N where the injectivity radius is less than € and N2¢ denotes
its complement. Also, for subsets X,Y C N, by dlz\f(X ,Y) we denote the
infimum of length of P N N2¢ among all paths that connect X to Y and by
diamzf(X), we denote the supremum of d3(x,y) for points z,y € X. Various
versions of the next theorem have been proved by Thurston, Bonahon [Bo86]

and Canary [Can93b, Can96].

Lemma 2.13. (Bounded diameter lemma) Let f : S — N be a pleated surface
or a simplicial hyperbolic surface or a simplicial ruled surface, where in the
last case we assume N has pinched negative curvature for constants —a? and
—b% and otherwise N is hyperbolic. Also assume f(v) has length at least € if

v is a compressible curve on S. Then

diamz“(f(S)) < D,

where D depends only on € and x(S) and the pinching constants in case N
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has pinched negative curvature.

2.15 Constants

Suppose H is a fixed handlebody.

We say a collection I' of simple closed curves and measured laminations
binds the surface, if it has nonzero intersection with every nonzero element of
ML. Tt is a standard fact that the set of points 0 € T(OH) where the total
length of components of I' is bounded by a constant K > 0 is compact and
has bounded diameter depending on K and x(0H). Notice that support of a

marking a always binds the surface.

Lemma 2.14. Given D there ezists K depending only on D and x(S) such

that for every marking o on S,

{r € 2(S)[i-(e) < D}

has diameter bounded by K in %(S), where l.(a) denotes the total length of

elements in the support of a.

It also follows from an observation of Kerckhoff [Ker80] that there exists a
unique point of T(0H), where the total length of I' is minimized. The set of
markings on 0H is finite up to actions of MCG. Using this we can see that
the total length of support of « in 7(a) is bounded by B, where B depends
only on x(0H).

It follows from an observation of Bers [Be74, Be85| (cf. Buser [Buser]) that

there exists a universal constant By depending only on x(0H) where on every
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o € ¥ there exists a pants decomposition with total length at most By. We
also assume B is bigger than the constant B.

We fix ¢y smaller than the Margulis constant for dimensions 2 and 3 and
smaller than e above such that two distinct €p-Margulis tubes are at least
distance 1 apart. We also assume ¢, is sufficiently small that on a hyperbolic
surface, any simple closed geodesics is disjoint from any €,-Margulis tube but
its own and that if 7 € T(0H) has a marking of length at most By then 7 is

€o-thick.
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Chapter 3

Uniform injectivity for handlebodies

Our purpose in this chapter is to obtain a parallel version of Thurston’s uniform
injectivity theorem and the efficiency of pleated surfaces for hyperbolic struc-
tures on a handlebody H. All we are doing is assuming that our pleated sur-
faces are incompressible in a nice neighborhood of the end and then once they
are far from a compact core, we can argue similar to Thurston [Thu86, Thu98].

Suppose N is a hyperbolic structure on H. Here in this chapter we assume
that a compact core C C N is already chosen. Following Canary-Minsky
[CM96], we say a continuous map f : 0H — N is end-homotopic, if there
exists a neighborhood of the end homeomorphic to 0H x (0,00) and f(0H)
is homotopic to 0H x {0} within N \ C. We concentrate on end-homotopic
pleated surfaces in N. In fact, our proofs work in a more general setting. It is
enough to have a closed subset C' of any hyperbolic manifold NV and consider
pleated surfaces which are acylindrical in N \ C. Then once we are far from

C the conclusions of our theorems hold.

Fact 3.1. Suppose N is a homeomorphic to a handlebody and C' C N is a
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compact core. Then H \ C is acylindrical. In particular, if

f:0H - N\C

1s end-homotopic, we have

(a) every disk in N whose boundary is the f-image of an essential curve of

OH intersects C,

(b) every homotopy in N between f(«) and f(B), where « and B are non-

homotopic closed curves on OH hits C and

(c) every homotopy between f(«) and a non-trivial power in N intersects C,

if a is primitive in OH.

By N,(C) we denote the set of points of N which have distance at most a
from C.

Lemma 3.2. Suppose N 1is a hyperbolic structure on H with a compact core C
and f : OH — N is an end-homotopic surface such that f(OH) C N \ N,(C).

Then every compressible curve on f(OH) has length at least a.

Proof. Suppose f(a) is compressible. Choose a point z € f(0H) and by
coning from z construct a ruled disk that is bounded by f(«). Length of
every geodesic between z and another point of f(c) is bounded by 3 of the
circumference of f(«). This gives a disk bounded by f(«) such that every
point of the disk has distance at most 1 of the circumference from f(a). If
is nontrivial in OH, every such disk has to intersect C' and therefore length of

f(a) is at least 4 times the distance of f(0H) from C. O
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The next lemma is a variation of an observation of Thurston about pleated

surfaces.

Lemma 3.3. Suppose N is a hyperbolic structure on the handlebody H and C
1s a compact core of N. There exists Dy such that the following holds:

for any € there exists 6 = §(e, x(0H)) < € with

F((OH)<) C N=°,  f((0H)>*) Cc N>°

for every end-homotopic f € pleaty that f(0H) C N \ Np,(C).

Proof. Using lemma 3.2, the first statement

f((OH)=) C N=*

is immediate once f(OH) has distance € or more from C because the f-image
of a curve of length < € will be an essential curve of length < e.

Suppose, x is a point in the eg-thick part of 0H then it has two loops
through it of length not exceeding some constant a/4, depending only on
X(0H), such that the two loops generate a free subgroup of rank 2 in m (0H).
The commutator of these two loops also will have length at most a. But
by what we said above, if f(OH) does not intersect N,(C)and « is a closed
curve of length at most a on 0H, then f(«) is essential in N by lemma 3.2.
Therefore the loops that we considered on 0H and their commutator map to
nontrivial loops in N. This provides two loops of length at most a based at
f(z) whose representatives do not commute. Because of Margulis lemma, this

immediately implies that the injectivity radius of N at f(z) is greater than
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some &y > 0 which depends on a.

Now if z is in the e-thick part of OH for any e, its distance from the ey-thick
part of 0H is bounded depending only on e. Hence the distance of f(z) from
the dp-thick part of NV is bounded with the same bound as well. From this,
one can easily see that f(x) has to be in the ¢-thick part of N for some ¢

depending only on € and x(0H). O

If f:S — N is a pleated surface with pleating locus A, it naturally lifts
to a map Pf of A into the tangent line bundle PN of the target hyperbolic

manifold.

Theorem 3.4. (Uniform injectivity) Let H be a handlebody and €y a given
constant. For every hyperbolic structure N on H, a compact core C C N
and an end-homotopic pleated surface f : OH — N, that realizes a geodesic
lamaination X\, the map

Pf: A - PN

is uniformly injective on the ey-thick part of OH, provided that dy(f(0H),C)
is large. That is, for every ¢ > 0, there ts D and 6 > 0 such that for any N,
C C N, X and an end-homotopic f € pleaty with dy(f(0H),C) > D, if =

and y € A are given whose injectivity radit are greater than €y,

do,(z,y) > € = dpx(Pf(x), Pi(y)) > 0.

Proof. Suppose we are given a sequence of hyperbolic structures N; on H,
and for every i, we have a compact core C; C N; and an end-homotopic

pleated surfaces f; : O0H — N; realizing a geodesic laminations A;. Also
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assume for every i, there are points z; and y; € A; with inj(z;),inj(y;) > € and
dpx, (Pfi(xi), Pfi(yi)) — 0 and dy,(fi(0H),C;) — oo. Theorem 3.4 (Uniform
injectivity) will follow when we show that d,,(x;,v;) — 0, where o; is the
metric induced by f;.

By lemma 3.3, we know that inj(f;(x;)) and inj(f;(y;)) are bigger than
do = 6(eo, x(0H)) for i > 0. We take z; and f;(z;) to be base points for
(0H,0;) and N;. Therefore these pleated surfaces and the domain and target
manifolds converge in the geometric topology (after passing to a subsequence).
Suppose X, N and f : ¥ — N are limits of (0H,0;), N; and f; respectively.
Notice that > and N are not necessarily hyperbolic structures on 0H and H
anymore, but we know that x(X) > x(0H). By taking a further subsequence,
we can also assume that the laminations \; converge in the Hausdorff topology
and A is the limit lamination on X.

Recall Thurston’s [Thu86] notion of weakly doubly incompressible surfaces:
if 3 is a hyperbolic surface of finite area and if f : ¥ — N is a map to a
hyperbolic 3-manifold which takes cusps to cusps, then f is weakly doubly

incompressible if
(a) fo:m(X) = 7 (V) is injective,

(b) homotopy classes of maps (I,0I) — (X, cusps(X)) relative to cusps map

injectively to homotopy classes of maps (I, 0I) — (N, cusps(N)),

(c) for any cylinder ¢ : S x I — N with a factorization of its boundary
dc = focy:d(S' x I) — X through ¥, if 7((c) is injective then either
the image of 71 (cpy) consists of parabolic elements of 7 (X), or ¢y extends

to a map of S' x I into ¥ and
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(d) Each maximal cyclic subgroup of 7 (S) is mapped to a maximal cyclic

subgroup of 7 (N).

Lemma 3.5. The limit pleated surface f : ¥ — N is weakly doubly incom-

pressible.

Proof. The proof is very similar to Thurston’s proof [Thu86, Lem. 5.10],
where he proves that limits of doubly incompressible pleated surfaces are weakly
doubly incompressible. The main difference is that here we do not have doubly
incompressibility of the maps f;, but instead using fact 3.1 and the fact that
image of f; is a closed surface, we know that f; is doubly incompressible in
N; \ C; and its distance from C; tends to infinity as i — oo.

Suppose f is not mi-injective. Then there exists a closed geodesic & on X
such that f(a) bounds a disk D in N. Since arbitrary large compact subsets
of N are approximately isometric to subsets of V; for large 7, we obtain similar
disks D; in N;. But since D; has bounded diameter for every i, we conclude
that D; does not intersect C; for ¢ > 0. Then fact 3.1 shows that, there is
a disk D, C 0H, whose f;-image has the the same boundary as D;. Because
0D; has bounded length, we can assume D, has bounded diameter in o; and
therefore they converge to a disk D' C ¥ with boundary « and we have a
contradiction.

To check condition (c), suppose we have an incompressible cylinder A :
S1x I — N in the limit manifold, with a factorization of its boundary through
f- Again by using the approximating maps, we can push this cylinder to obtain
similar cylinders A; in N; with bounded diameter. By fact 3.1 (for i > 0) there

is a cylinder A} in 0H, whose f;-image has the same boundary as A;. The core
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curve of these cylinders cannot be inessential in N;, otherwise we can take a
sequence of bounded diameter compressing disks for A; and in the limit we
get a compressing disk for A, which contradicts incompressibility of A. If the
lengths of the core curves of these cylinders tend to 0, then the boundary
components of A are parabolics and (c) is satisfied. Otherwise since length of
0A; is bounded, there is a bounded diameter homotopy in (0H, 0;) between
boundaries of A; and in the limit we will have a homotopy in ¥ between
boundaries of A and (c) is satisfied.

For condition (d), suppose « is a non-trivial element of 71 (X), and f,(a) =
B for some 3 € w(N). If we take representatives ¢ C ¥ and b C N for «
and /3 respectively, together with a cylinder C' giving the homotopy from b*
to f(a), we can push this configuration to approximates N;. Again by fact
3.1, it follows that we can push the homotopy to f;(0H). Therefore, if a; is
the approximation to a on (0H,o;), there is a loop ¢; on OH such that c
is homotopic to a;. In fact, we can assume that ¢; is contained in a small
neighborhood of a; independently of i and the homotopy between ¢ and a;
does not leave this neighborhood either. Then in the limit a will be a kth
power in ¥ and this proves (d).

To prove (b), let o and 3 be two arcs on ¥ with ends in cusps(X) which

represent different homotopy classes of maps

(1,0I) — (X, cusps(X))

relative to cusps. Suppose that they are mapped to the same element of the

homotopy classes of maps (I,0I) — (N, cusps(N)) relative to cusps. This
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means that there are arcs p and v in cusps(V) such that

fla)xvx f(B71) * p

is null-homotopic in N. Note that if we push «, 3, f(a) and f(8) to the

approximates, we get arcs

O!z',ﬁi : (I, 8]) — (aH, thin(oi))

and

Even more, we can push p and v to y; and v; C thin(/V;) in the approximates

and

filow) * v = f;(B7) * i

bounds a disk with bounded diameter in N;.

Suppose P is the component of cusps(/N) which contains «(0) and £(0)
and P; is the corresponding component of thin(/NV;) in an approximate and
note that P is either a rank 1 cusp or a rank 2 cusp and for every i, P; is either

a rank 1 cusp or a Margulis tube. Now we have two different cases:

Case 1: P is a rank 2 cusp. Then 0P has bounded diameter and in
the approximates dF; has bounded diameter as well and therefore P; is a
Margulis tube in /N; whose distance to I'; tends to infinity as i — oo. Because
the thin components of (0H, 0;) corresponding to «;(0) and §;(0) map to P,

some power of their cores are homotopic within P;. Because of fact 3.1 and
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lemma 3.3, it is possible only when these cores are homotopic in JH and
they represent the same component of thin(c;). In addition, it easily follows
that we can connect «;(0) and 53;(0) with an arc y such that f(u!) and p;
are homotopic relative their endpoints with a homotopy that stays in P; and

therefore does not intersect Cj.

Case 2: P is a rank 1 cusp. The components of cusps(X) corresponding
to «(0) and $(0) map to the same component of cusps(N): P. Hence by
condition (d), the images of their cores are homotopic to the core of P and
there is a cylinder A C P that gives the homotopy. One can easily assume
that p is in A. Now if we push A to the approximates /V;, we get cylinders
A; whose boundaries are on f;(0H) and because they have bounded diameter
they stay in N; \ C; for 4 > 0. Also note that p; C A;. Again fact 3.1 implies
that there is a homotopy within N; \ C;, which fixes 0A; and pushes A; to
fi(thin(o;)). In particular, p; is homotopic (rel. endpoints) to an arc f;(u})

with a homotopy that does not intersect C;, where y; C thin(o;).

In both these cases, we could find an arc p; C thin(o;) such that f;(u})
is homotopic to y; (rel. endpoints) within N; \ C; for ¢ > 0. We can do the
same for v; and find and arc v/ C thin(o;) such that f;(v) is homotopic to
v; (rel. endpoints) within N; \ C;. Then fi(oy * v} * B;* % u}) bounds a disk
in N; \ C; and by fact 3.1, ; and f; are homotopic as maps from (I,9I) to
(0H, thin(o;)).

We claim that we can assume p; and v} have bounded length. We certainly

can assume that p and v} are geodesics (since thin(o;) is convex). Consider
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geodesics o and [ homotopic to «; and f; (rel. endpoints) respectively.
Lengths of o) and g/ are bounded uniformly. If x} and v} had very long length
then because of hyperbolicity of o; they have to get arbitrary close and this
means that the two components of thin(o;) get arbitrary close using an arc
in the homotopy class (rel. cusps) of a and 8. Which is impossible since we
always assume that components of the thin part have distance at least 1 from
each other.

Using the above claim, we can assume that the homotopy between «; and
B; has bounded diameter in thick(o;) and therefore in the limit it gives a
homotopy between a and 3 relative to cusps(X) and we have a contradiction.

O

Thurston proved [Thu86, Thm. 5.6] that for a weakly doubly incompress-
ible map f : ¥ — N which takes each leaf of A\, a geodesic lamination on 3,
to a geodesic in N, the canonical lifting Pf: A — PN is an embedding. Once
we know this and the above lemma, we can conclude that the limit points
x = lim; z; and y = lim; ; must be equal, since their images in PN are equal.

Therefore, dy,(z;, ;) — 0 and we have proved theorem 3.4. O

If X is a lamination in S, a bridge arc for A is an arc in S with end points
on A, which is not deformable rel endpoints into A. A primitive bridge arc
is a bridge arc whose interior is disjoint from A. If o is a hyperbolic metric
on S and 7 is a bridge arc for A, let [7] denote the homotopy class of 7 with
endpoints fixed, and let [, ([7]) denote the length of the minimal representative
of [1].

Suppose f, f’ realize a lamination A in a hyperbolic manifold N, we say that
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f and f’ are homotopic relative to X if there is a homotopy between them fixing
A point-wise. One can see that after precomposing f’ by a homeomorphism
isotopic to identity, we can obtain a map that is homotopic to f relative to A.
(Cf Minsky [Min00, Lem. 3.3].)

Similar to Minsky [Min92, Min00], we can strengthen uniform injectivity

as follows:

Corollary 3.6. (Short bridge arcs) Fiz the handlebody H and €y. Given §; > 0
there exists 9o > 0 and D such that the following holds: Let N be a hyperbolic
structure on H and C C N a compact core. Also let g € pleaty be an end-
homotopic map with dy(g(0H),C) > D that realizes a lamination .
Suppose that T a bridge arc for X is either primitive or contained in the

€o-thick part of o,. Then

lpn(Pg(1)) < 02 = 1, ([7]) < 01

Moreover if f is another map that realizes \, chosen so it is homotopic to f
relative to A\, then

Lo ([T]) < 02 = I, ([7]) < b1

We can use our uniform injectivity theorem and similar to Thurston we can
prove a version of efficiency of pleated surfaces. Recall the notion of alternation
number a(A,~y) where ) is a lamination with finitely many leaves and ~ is a
simple closed curve. This is defined carefully in Thurston [Thu98] and Canary
[Can93a]. For our purpose, we need only to know that if 7y does not intersect

the recurrent part of A then a(},~y) is bounded by the number of intersection
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points of A and . We also need a variation in the statement of the theorem
to allow short curves in the pleating locus. This will be similar to Minsky’s

statement and proof in [Min00, Thm. 3.5].

Theorem 3.7. (Efficiency of pleated surfaces) Given € > 0 smaller than €,
there ezist constants ¢ > 0 and D > 0 depending only on x(0H) and € such
that the following holds. Let N be a hyperbolic structure on H with a compact
core C C N and f € pleat,, is end-homotopic realizing a mazrimal finite leaved
lamination A and dy(f(0H),C) > D. Also suppose 7 is a simple closed curve
which does not intersect any closed leaf of A whose length is less than € and
f(7y) is homotopic to a closed geodesic v* with a homotopy that stays in N\ C.
Then

In(Y") < lo(y) < In(y") + caly, A), (3.1)

where o s the metric induced by f.

Sketch of proof. The proof follows Thurston’s [Thu98] original proof. Similar
to Thurston, we can find a polygonal representative +' of v on 0H, equipped
with o, which consists of a(7y, A) segments on leaves of A connected by a(y, A)
“jumps” of bounded length. It follows that I, (v") < I, (7) +coa(7y, A). (In what
follows constants ¢; will depend only on € and x(0H).)

Thurston observed that by moving the points where the bounded jumps
occur, we can assume that those jumps never occur inside any e-Margulis tube
whose core is not a leaf of A\. In our situation, when  does not intersect short
closed components of ), as we will show later, we can assume that that +' does
not enter ¢;-Margulis tubes whose cores are leaves of A, for a uniform e;.

The image f(7') consists of the images of arcs along A, which remain
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geodesic, and of the jumps, which still have bounded length. After straight-
ening the images of the bounded jumps, we obtain a polygonal curve v in N,
and the difference between [, () and length of v is at most cia(y, A).

There exists a pleated annulus A in N which represents the free homotopy
between v and v*. By Gauss-Bonnet theorem the area of A with the induced
hyperbolic metric is bounded proportional to the number of corners of v, which

is 2a(y, A).

Figure 3.1: Construction of /.

Fix some ¢ > 0 and let v be the union of segments of 7' which admit collar
neighborhoods of width €' in A, together with all the bounded length jumps.
Because of the area bound on A, length of 14 is bounded by cya(7y, A)/€'. Let
v1 denote those segments that are distance €’ from «*. The total length of 4
is at most In(y*) + cza(y, ). We can see that 7'\ (v U 1) consists of pairs

of segments {o1,01,...,0m,0.,} such that o; and o] have Hausdorff distance
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at most €. We can use a pair o;, o, to construct a rectangle R; on A with two
opposite sides that cover o; and o] except for a bounded length and the other
two sides are € short. Now we can remove these rectangles from A, we will be
left with a number of disks and one annulus. One boundary of the annulus is
~* and the other boundary consists of subsegments of 7' and jumps 61, ...,
of length €¢’. We call this other boundary v'. Notice that except for a set of
length at most cya(7y, A)/€ every other point of 2/ has distance at most € from
~*. In particular, we see that v/ and ~v* are homotopic with a homotopy that
is contained in a bounded neighborhood of f(0H) depending on €.

Consider a component §;, 2 = 0, ..., k obtained above. We claim that if we
choose €; < € small depending on ¢ and e then the endpoints of §; are images
of points in the €;-thick part of ;. Suppose the endpoints of J; are images
of points in the €;-thin part of o. First note that the endpoints have to be
in the same component of the thin part of o;. This is because the distance
between their images is small and therefore the homotopy between their cores
will stay away from C' and since f is end-homotopic, by fact 3.1 they have to
be homotopic in 0H.

Let « be core of this component. Because of our hypothesis, v does not
intersect closed leaves of A with length < e and therefore « is not realized by
f- Leaves of A which enter the associated e-thin component of o from one
side have to exit the other side and the images of their intersections with this
component are e-close geodesic segments in N. If [; and [, are leaves of X that
contain endpoints of J; then we can see that /; and [y (and their images in
N) stay e-close to each other along long subsegments centered at endpoints

of §;. These subsegments are exponentially large depending on €¢/e; which is
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because of the part where [; and ls run between e-thin and €;-thin collars of
a. In particular along these subsegments, they cannot be e-parallel to v* in
opposite directions. But we know that if we follow ¢/ starting from endpoints
of §; in a bounded distance (depending on €') and in opposite directions, we
get to segments that are parallel to v* in opposite directions. We can lift the
picture to the universal cover and note that once these two are parallel to «*
in opposite directions, they cannot be parallel to each other and we have a
contradiction with the fact that they were fellow traveling in the e-Margulis
tube of the surface. Therefore we should have seen a jump along our way on
v and since the jumps only occur in the e-thick part of oy, this gives a lower
bound for the injectivity radius of o; at endpoints of J; depending only on ¢
and e.

Once we know that endpoints of §; are images of points in the e;-thick
part of o, we can use corollary 3.6 (Short bridge arcs) and imply that ¢; is
homotopic (rel. endpoints) to a short arc f(d}) in f(OH) with a homotopy
that stays away from C| if D is large depending on ¢ and ;.

Using the arcs 9§}, i = 0,...,k, we can follow the recipe given by v’ to
construct a closed curve 7" from «' such that f(v”) is the same as v/ except
for the straightening of the jumps and replacing §; with f(6}). From this we
also conclude that length of 4" is at most Ix(7*) + csa(7y, A).

We claim that +" is homotopic to v in 0H. This is because we showed that
each f(6!) is homotopic (rel. endpoints) to ¢; within N \ C. Therefore f(y")
is homotopic within N \ C to v/ and thus to v*. But f(vy) was homotopic to

v* within N \ C as well and by fact 3.1, v and  are homotopic in 0H.
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Chapter 4

Pleated surfaces in handlebodies

In this chapter, we prove some useful properties of pleated surfaces in hy-
perbolic structures of handlebodies. The main corollary of these results is
corollary 4.7, which allows us sweep through the convex core of a structure
once we have a definite distance from the compact core. In these results, we
assume that the compact core contains what we call a diskbusting geodesic.
These were originally used by Canary in [Can89, Can93b]. In particular, he

proved:

Proposition 4.1. Let H be a handlebody. There is a collection I' of disjoint

simple closed curves on OH with the following properties:

1. T intersects at least three times every essential simple closed compressible

curve on OH,

2. T intersects the boundary of every essential and properly embedded an-

nulus (A,0A) C (H,0H) and

3. 0=[I] € H,(H; 7).
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For a hyperbolic structure N on H, by a diskbusting geodesic in N, we
mean the geodesic representative of a collection of curves which satisfy the
conclusion of the above. In fact, Canary proved that we can always choose
[ such that none of its components represent parabolic elements of N and
therefore there always exist a diskbusting geodesic.

Let N be a marked hyperbolic structure on H and I' a diskbusting geodesic
in N which we assume is fixed. Suppose we have chosen a compact core C C N
which contains a diskbusting geodesic and as always, we assume that image
of the marking j does not intersect C' and the component of N\ j(0H) that
is a neighborhood of the end of N does not intersect C either. We call such
a compact core a useful compact core for N. If « is a multi-curve on 0H, by
a geodesic representative of o in N \ C, we mean a closed geodesic which is
freely homotopic to j(«) with a homotopy that stays in N \ C.

In the rest of this work, except in chapter 5, we assume that our compact
cores contain a diskbusting geodesic. It should be pointed out that the next
lemma is the only place where we use this property of the compact cores and
Canary’s idea of branched covers. This lemma is crucial for the rest of the
paper, since we use end-homotopic pleated surfaces to control the geometry of
the manifold and this lemma gives a sufficient condition for existance of such

pleated surfaces.

Lemma 4.2. Given € > 0 and d > 0 there exists a constant Dy > 0 depending
only on €,d and x(O0H) such that if N is a marked hyperbolic structure on H

with a useful compact core C' and if o is a simple closed curve on OH which
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has a geodesic representative o* in N \ C with

djzve(a*ac) Z Dl;

then there erists f € pleaty(u) that is homotopic to j within N \ C and

dy (f(0H),C) 2 d,

for every finite leaved lamination u that contains c.

Proof. Suppose p is a finite leaved maximal lamination that contains o and let
v be the recurrent part of y. Consider a diskbusting geodesic I' C C. The idea
is to lift to the 2-fold branched cover of N, branched along I, which we call N.
Similar to Canary [Can93b], one can see that N has a compact core C with
incompressible boundary which is lift of C'. We also know that we can put a
Riemannian metric with pinched negative curvature on N , which is hyperbolic
and is lift of the metric of N outside C. By construction, there is a component
of N\ C which is isometric to N\ C and we can lift j and o* to j and &*.
Notice that j is incompressible. (Note that there is a minor problem, when T’
has self intersection, but as Canary [Can93b] showed, we can get around this
problem by perturbing the metric of N in a small neighborhood of I without
affecting the metric in N \ C and pursue as before.)

As we mentioned in 2.14, it follows from work of Bonahon [Bo86] and
Canary [Can93b] that there exists a simplicial ruled surface § : 8H — N
homotopic to j that realizes . Note that &* has to be in the image of this

surface. Since the covering map is an isometry when restricted to N \ C’, we
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have

d (a*,C) = d3f(a*,C) > Dy,

But diam%e(g(aH )) is bounded from above depending only on € and x(0H)
because of lemma 2.13 (Bounded diameter lemma). Therefore if we assume
D, is large enough depending only on € and x(0H), the image of § has to be
contained in N \ C. Even more, we can see that there is a homotopy between
§ and 7 that stays within N\ C. (Note that in our statement of the bounded
diameter lemma, D depended on the curvature bounds; but here since N is
hyperbolic outside C, it is enough to assume D; > D + 1 where D is the
upper-bound for the hyperbolic case.)

Then we can project § down to N \ C to obtain a simplicial ruled surface
g : OH — N which is homotopic to j within N \ C and realizes 7. Re-
place ruled triangles of g(0H) with totally geodesic triangles and similar to
Thurston’s construction of pleated surfaces [Thu79], spiral vertices of the as-
sociated triangulation about components of v in a way that it approximates pu.
In the limit, we get a pleated surface that realizes yx and one can see that dur-
ing this process, we stay in a small neighborhood of g(0H) and the obtained

pleated surface has all the required properties of our statement. O

For f € pleaty, we define short(f, B) to be the set of essential simple

closed curves on 0H whose length in the induced metric does not exceed B.

Theorem 4.3. Given € > 0 and d there exists Dy > d and A > 0 depending
only on d, R and x(OH) such that the following holds. Let N be a marked
hyperbolic structure on H and C C N a useful compact core. If a has a

geodesic representative o in N \ C with dx‘(a*,C) > Dy, then for every
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B € Co(S) with de(c, B) < 1:
(a) there exists f € pleaty (8) homotopic to j within N \ C
(b) there erxists f € pleaty(a) N pleaty (8) homotopic to j within N \ C
(c) every f € pleaty(B) has dx*(f(0H),C) > d

(d) for every end-homotopic f and g € pleaty(3), the set

short(f, B) U short(g, B)

has diameter bounded by A in C(OH).

Proof. Using lemma 4.2, we know that for every d > 0 if we assume D, is
bigger than the constant obtained there and «, 8 and N as in the hypothesis,

there exists f € pleat,(« U ) homotopic to j within N \ C' and with

dy'(f(0H),C) > d.

This already proves (a) and (b). In particular, this implies that § has a

geodesic representative §* in N \ C with

dz<(*,0) > d.

By assuming that d is larger than the constant in lemma 2.13 (Bounded di-

ameter lemma) for ¢, this implies (¢) too. In fact, given d > 0, we can choose
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D, large such that for every f € pleat,(f)

dy(f(0H),C) > d.

For part (d), the idea is to use an argument similar to Minsky’s [Min01,
Lem. 3.2]. There, the pleated surfaces are doubly incompressible and in
particular 7i-injective; but here we use theorem 3.4 and lemma 3.3 instead.

Before explaining the proof, note that

diam¢ (short(f, B)) < B’ (4.1)

for every pleated surface f, where B’ depends only on x(0H) and B.

Suppose f and g are as in the statement and o; and o, are the hyper-
bolic metrics induced on 0H. After possibly precomposing g with a self-
homeomorphism of 0H homotopic to identity, we can assume that f and g
are homotopic via a homotopy that fixes image of 8 point-wise. As we showed
in proving part (c), by assuming d > Dy we can make sure that both f(0H)
and g(0H) have distance more than Dy from 'y, where Dy is the constant in
lemma 3.3.

Let € be a constant smaller than the Margulis constant and the injectivity
radii within distance D; of 'y and let 6 = §(€¢/, x(OH)) be the constant chosen
in lemma 3.3. Suppose B meets the d-thin part of either o or o4, say oy.
Then its f-image meets the d-thin part of N and so does its g-image (since
they agree). But then because of our choice of the constant ¢ from lemma

3.3, the pleated surface g(0H) intersects this component of the thin part of

67



N in a component of its €’-thin part. The images of the cores of the thin part
components of oy and o, are homotopic (up to taking a power) within N \ C.
By fact 3.1 these have to be homotopic in 0H and therefore there is a simple

closed curve v that is short in both oy and o,; hence

v € short(f, B) Nshort(g, B).

Together with (4.1), this implies a bound on

diame (short(f, B) Ushort(g, B)).

Hence we can assume that 3 stays in the J-thick part of oy and o,. By
the second part of corollary 3.6, there exists a d, > 0 and D such that if
dn(9(0H),T'y) > D and 7 is a bridge arc for 8 in the d-thick part of oy and
whose of-length is at most d,, then 7 is homotopic rel endpoints to an arc of
og-length €.

Given this d, we may construct a simple closed curve 5, in the €-thick
part of oy, whose oy length is at most a constant L depending only on d, and
Xx(0H), and which is composed of at most two arcs of 8 and at most two bridge
arcs of length d5 or less (Cf. Minsky [Min01, Lem. 8.5]).

The bridge arcs can be homotoped to have o,-length at most €, and hence
75, can be realized in o, with length at most L + 2¢/. In each surface, this

bounds its C-distance from the curves of length B, and together with (4.1) we
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again obtain a bound on
diame (short(f, B) Ushort(g, B)).

Hence by simply assuming d > D and choosing Dy accordingly, we will be

done. =

We relax our definition of realization of a multi-curve P by considering
goody (P; A)
to denote the set of end-homotopic pleated maps f € pleat, such that
lo;(a) <Iy(a) + A

for all components « of P, where [y () is length of the geodesic representative
of « if there exists one and is zero otherwise.

For a hyperbolic metric o on 0H and a € Cy(0H), we define collar(a, o)
to be the set of points which have distance < w(l,(«)) from the geodesic

representative of « on o, where
w = max(wy/2,wy — 1)

and

wo(t) = sinh ™" <m) |

It is well known that this set is always an embedded annulus, and f a4, ..., o
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are disjoint and homotopically distinct then collar(«;) are pairwise disjoint
with a definite distance between every pair. (C.f. Minsky [Min01, Sec. 8] or
Buser [Buser, Chap. 4].)

Let f,g € pleat, and let P be a curve system. We say f and ¢g admit a
(K, €)-good homotopy with respect to P if there is a homotopy F : 0H x[0, 1] —
N such that

(a) Fp and F} are respectively the same as f and g up to precomposing with

a homeomorphism of 0H isotopic to identity.

(b) collar(P, 0y) = collar(P, 01) where o; denotes the metric induced by F;
for =0, 1.

(¢) The metrics oy and oy are locally K-bi-Lipschitz outside collar (P, oy).

(d) Suppose Py denotes the subset of P consisting of curves a with Iy (a) <
e. The tracks F(p x [0,1]) are bounded in length by K when p ¢
collar(P,, o).

(e) For each o € Py, the image F'(collar(w,op) x [0,1]) is contained in a

K-neighborhood of the Margulis tube T, (¢).
Similar to Minsky [Min01, Lem. 4.1], we have:

Lemma 4.4. (Homotopy bound) Given A and € > 0, there exists K = K (A, ¢)
and D > 0 so that for any hyperbolic structure N on the handlebody H, a useful

compact core C C N and a mazximal curve system P on OH, if

f,g € goody(P; A)
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and dx5(f(0H),C) > D then f and g admit a (K, €)-good homotopy with

respect to P that stays outside of C.

Sketch of proof. Without loss of generality, we assume € < €. Suppose « is a
component of P and f(«) is compressible in N. Then Iy (a) = 0 and therefore
lo; (o) < A. Then using lemma 3.2, we can see that f(«) is not compressible
by assuming that dy(f(0H),C) > A. On the other hand, using lemma 2.11,
one can see that the distance from f(a) to the geodesic representative of «
or its e-Margulis tube, if it is short, is uniformly bounded depending on A
and e. Hence, we can assume that dz‘(a*, C) is large by making D large. In
particular, then we can use lemma 4.2 and see that there exists some h €
pleat y (P, A) which is homotopic to f within N\ C. (In lemma 4.2, we had a
marked structure but here we can simply choose an embedding homotopic to
f within N \ C and use that as our marking. In fact, by increasing D we can
assume that A(OH) has large distance from C.

From here we sketch Minsky’s proof and point out the modifications in
our case. First, we can replace ¢ with g o h, where h : 0H — OH is a
homeomorphism isotopic to identity, such that collar(P, o) = collar(P, o,)
(which from now on we call just collar(P)), and oy and o, are locally K-
bi-Lipschitz off collar(P), and have bounded additive length distortion on
Ocollar(P), with K depending only on A (see Minsky [Min01, Lem. 8.2]).

Then define F' : 0H x [0,1] — N to be the homotopy between f and g
whose tracks F|{z}x[0,1] are geodesics parametrized at constant speed and we
will bound tracks of F' on successively larger parts of the surface.

Let Y be a component of 0H \ P and let Y; = Y \ (collar(0Y))°, where
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(collar(0Y))° denotes the interior of collar(dY). Note that length of any
boundary component of Y} is at most 2 more than its corresponding geodesic

in 0H and we have

lo(7) < Iv(y) + A +2 (4.2)

for o = oy or oy.

Let ¢ = (¢, x(0H)) and suppose D > Dy where 6(€, x(0H)) and D, are
the constants obtained in lemma 3.3. Consider the lift F : 0H x [0,1] — H?
where OH denotes the cover of OH associated to Ker(f. : m(0H) — m(N)).

In [Min01], Minsky considers an essential tripod on every hyperbolic pair
of pants Y. This is obtained by taking a copy of the 1-complex A obtained
from three disjoint copies of [0, 1], called “legs”, by identifying the three copies
of {0}. The three copies of {1} are called the boundary of A. An essential
tripod in Y} is an embedding of A taking 0A to 0Yy, such that each subarc of
A obtained by deleting on copy of (0, 1] is not homotopic rel endpoints into
0Y;. Minsky [Min01, Lem. 8.1] proves the following:

Lemma 4.5. There exists a constant & such that for any hyperbolic pair of
pants Y and each boundary component v of Yy, there is an essential tripod
A C Yy whose three legs have length at most 6 and which meets v. On the
other hand, there exists &' > 0 such no essential tripod in Yy has all three legs

of length less than &'

Use the above lemma and consider an essential tripod A in Y, whose length

have o¢-length at most d and let X be a component of the preimage of A in

OH.

First we need to show that there is a uniform bound on the lengths of the
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tracks F({z} x [0,1]) for z € X.

The image of F (X x{0}) connects three lifts of boundary curves of Y, each
invariant by a primitive deck translation v, k¥ = 1,2, 3, in 7 (IV) considered as
a subgroup of isometries of H?. Let L; be the axis of ;. Notice that L; and
Ly, k # [, cannot be identified because then the third isometry has to be trivial
and this contradicts the fact that components of f(P) are incompressible in
N. If v, has translation length less than €; /2, define Ny to be the lift of the
corresponding e-Margulis tube in N. Otherwise define Ny = L.

It follows from [Min01, Lem. 8.4] and (4.2) that the homotopy between
image of each boundary curve of Y; (under f or g) and its geodesic represen-
tative in N can be made in uniformly bounded distance to reach either the
geodesic or its e-Margulis tube if it is short. Lifting to the covers, we conclude
that the endpoints of F(X x {i}),i = 0,1 are within bounded distance of the
corresponding Ny.

Since we have a uniform diameter bound 2K6 on F(X x {0}) and F(X x
{1}), we find that

F(X x {i}) C Ny, (N1) N Ny, (No) N Ny, (N3) (4.3)

for : = 0,1 with a uniform d;.

Now similar to Minsky, we claim that the triple intersection above cannot
have very large diameter. If two of the L;s are Margulis tubes this follows
from their strict convexity.

Recall that we picked a pleated surface h € pleat, (P). Suppose N; corre-

sponds to a curve of length less than €; /2. Let Ni(e1) C Ng, k= 1,2, 3, denote
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a lift of the corresponding e¢;-Margulis tube. We claim that L, is disjoint from
Ni(e1). Otherwise in (by our choice of €;) o, the geodesic representative of 7,
enters the e-Margulis tube associated to ;. By our choice of € < ¢y, a simple
geodesic cannot meet an e-Margulis tube in a surface unless it is the core of
the tube or it intersects the core of the Margulis tube, which is a contradic-
tion. Knowing this we can argue as in the previous case and get a bound on
diameter of Ny, (N1) NNy, (Ng).

Finally suppose all three -; have translation length at least ¢, /2. Then the
three axes {L;} come within bounded distance 2d, for some constant dy. If
the intersection of all three Ny, (L) has diameter L then Ly, L, and L3 contain
segments of length at least L — 2dy that remain distance dy apart. Therefore,
there are two a-prior constants ds, b > 0 such that there exists a point p € H?
which is at most €(L) = dse °L from all three L;, and so that the tangent
directions to Lj at the points z; closest to p are at most 2¢(L) apart in PH?.

We can extend A to a tripod A’ with endpoints in Y (after lifting to oOH
and applying 71) map to xx. Note that each pair of legs of A’ is a primitive
bridge arc for Y, whose h-image is homotopic rel endpoints to an arc of length
at most 2¢(L).

Using lemma 3.6 (Short bridge arcs) suppose d2 = ¢’ is the constant in
lemma 4.5 and consider §; which is obtained there. Also suppose D is large
enough that h is further than the constant in lemma 3.6 from C.

If L is sufficiently large that 2¢(L) < d;, then each pair of legs of A’ is
homotopic to an arc of length at most ¢; in o,. This gives a triangle in Y
with the same vertices as endpoints of A’ whose side lengths are at most ¢'.

Joining the barycenter to its vertices we obtain a new tripod A" all of whose
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legs are bounded by ¢’ which contradicts lemma 4.5. We conclude that the
triple intersection of (4.3) has diameter at most L.

The diameter bound and (4.3) now gives a uniform bound on the track
lengths of F restricted to X and hence F restricted to A.

The rest of the argument is exactly the same as Minsky’s [Min01, Lem.
4.1] where we refer the reader.

O

Lemma 4.6. (Halfway surface) Given €, there exist constants Ay and D such
that given pants decompositions P and ) on O0H which differ by an elementary

move and a hyperbolic structure N on H with a useful compact core C' then

goody (P, A1) Ngoody(Q, Az) # 0

if there exists an end-homotopic f € pleaty(P) with

dy'(f(0H),C) > D.

Proof. In [Min0O1, Lem. 4.2] Minsky considers a finite leaved lamination p
whose recurrent part is P N Q. To be able to use lemma 4.2, assume we have
changed the marking of N to one which is homotopic to f within N\ C. If
d%*(f(0H), C) is bigger than the constant in lemma 4.2, since f(P N Q) is a
geodesic representative of P N (@) it follows that there exists a pleated surface
h € pleat, that realizes u. Because f and h have the same image restricted
to PN Q, and diamx(h(9H)) is bounded depending only on € and x(0H), by

assuming that D is large, we can guarantee that dy(h(0H),C) is bigger than
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the constant in theorem 3.7 (Efficiency of pleated surfaces).
Suppose oy € P and a; € @Q are curves that are exchanged by the elemen-

tary move. Similar to Minsky, we can see that

CL(,LL, ai) <4

for : = 0,1. Hence by using theorem 3.7 and noticing that o; and as do not

intersect any closed leaf of i, we have

lgh (sz) S lN(CYi) + A

for i = 0,1 and a uniform A. Thus h € goody (P, A) Ngood(Q, A) and the

lemma is proved. O

Using the above lemmas, we can prove the following corollary.

Corollary 4.7. Given € there exists D > 0 and K > 0 such that for a hyper-
bolic structure N on H and a useful compact core C the following holds. Let
Py — P, — --- — P, be an elementary-move sequence of pants decomposi-

tions on OH and let fy € pleat, (F,) be end-homotopic then there exists some

0<k<nand F:0H x[0,k] > N\ C such that
o Fo=Jo,
o F; = Flyux{iy € pleaty(P),
o Ii_1/o = Flonxgi-12) € pleaty(Pi_1) N pleaty(P;) and

e I is a (K, e€)-good homotopy restricted to OH X [i — 1,1 — %] and OH x

[i — %, i] with respect to P,y and P; respectively
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for every i =1,... k. Moreover, if k # n then d3*(Fy(0H),C) < D.
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Chapter 5

Non-realizability and ending laminations

Assume H is a handlebody and let N be a hyperbolic structure on H. Suppose
C C N is a relative compact core homeomorphic to H, choose a marking
j:0H — N\ C and as usual we assume that the component of N \ J(0H)
that is a neighborhood of the end does not intersect C'.

As we explained in 2.12, Canary [Can93b] proved that if N is geometrically
infinite then there exists an ending lamination which is not realizable in N.
Recall that a geodesic lamination A on 0H is realizable, if there exists a pleated
surface f : 9H — N homotopic to j such that f is totally geodesic restricted
to leaves of A\. He also proved that when N has no parabolics, the ending
lamination is filling and in the Masur domain.

One can ask the converse question:

Question. Suppose A is a filling lamination in the Masur domain of 0H and

A is non-realizable in N, is A the ending lamination of N7

Recall that the ending lamination for hyperbolic structures on H is defined
only up to actions of Mody(H) and for marked structures where we have a well-

defined and unique ending lamination, the translates of the ending lamination
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are unrealizable too. Hence in the statement of our question above we are
considering A only up to actions of Mody(H) and if N is marked the ending
lamination is ¢(\) for a unique element ¢ € Mod,(H).

Aside from being an interesting problem, to prove that given a Masur
domain filling lamination A, there exists a hyperbolic structure with ending
lamination A one needs to know a solution to the above question or a variation
of that. In fact, this is what we will prove and use in chapter 6. Work of
Kleineidam-Souto [KS03] answers a similar question for hyperbolic structures
on a compression body that is not a handlebody.

In case of handlebodies, we think this problem was not noticed before. Here
we give an affirmative answer to the above question in case of handlebodies
and as we explained in the introduction, the proof is a joint work with Juan
Souto. We should also point out that Ohshika [Oh] has also recently claimed
an answer to the above question when N is the strong limit of a sequence of

convex cocompact structures on H.

Theorem 1.3 Suppose X is a filling Masur domain lamination on OH and A
1s not realized in N, where N 1is a hyperbolic structure on H. Then X is the

ending lamination of N (defined up to actions of Modo(H) ).

As we mentioned in the introduction, we can use the above theorem and

prove the following:

Corollary 1.4 Given a filling Masur domain lamination A on OH, there exists

a hyperbolic structure on H, whose ending lamination (defined up to actions

of Mody(H)) is A.
Proof. Choose a sequence of marked convex cocompact structures (/V;) whose
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conformal structure at infinity (7;) converges to a point supported on A in
Thurston’s compactification of Teichmiiller space, which we denote by A as
well. Let p; : m1(H) — PSLy(C) be the representation associated to N;: Nj is
isometric to H? /p; (7 (H)).

In [KS02], Kleineidam and Souto proved that a sequence of convex co-
compact structures whose conformal structures at infinity converge to a filling
lamination in Masur domain has an algebraically convergent subsequence (up
to conjugation). This shows that up to passing to a subsequence and conjuga-
tion the sequence (p;) converges algebraically to a representation p : m(H) —
PSL,(C).

By recent proof of the Tameness Conjecture (Agol [Ag], Calegari-Gabai
[CG] and Brock-Souto [BS]), we know that N = H? /p(m(H)) is topologically
tame and is homeomorphic to the interior of a compact 3-manifold. An ele-
mentary argument shows that /N has to be homeomorphic to the interior of H
(cf. Hempel [He86)).

Using the above theorem, it is enough to show that A is not realized in V.
This would follow immediately if we had continuity of the length function for
these structures similar to Brock [Br00]. Here in lack of such statement, we
assume A is realized in N and seek a contradiction.

By convergence of (7;) to A, there exists a sequence of simple closed curves

(7:) in Masur domain which converge to A in PML and

L (i) /1o (i) — 0, as & — o0 (5.1)

From convergence of 7; to A, we know that there exists a sequence of
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measured laminations (y;) € ML(OH) and K > 0, such that for any closed

curve m on OH

Wiy m) <y (m) < i(pi, m) + Kl (m) (5.2)

such that I, (u;) stays bounded and the sequence (y,) converges to A in PML.
We claim that given A > 0 there exists i4 > 0 such that I,,(m) > A for every
i > 14 and every meridian m. Otherwise, there exist compressible curves
(m;) with length less than A for arbitrary large i. Suppose the sequence
(mi/l:,(m;)) converges (up to subsequence) to u € ML that is in the closure
of set of meridians. Then (), u) = 0 which contradicts our assumption that
A is in the Masur domain.

In this situation, Canary [Can91] proved that the lengths of curves in the
conformal structure at infinity of N; gives an upper-bound for their length
inside N;, up to a multiplicative error that depends on A. In other terms,

there exists ¢ > 0 such that for all 7 > i4

In; (i) < el () (5.3)

where Iy, (7;) is the length of the geodesic representing p;(7;) in V.

Let A be the Hausdorff-limit of the sequence (7;). The geodesic lamination
A contains ) as a sublamination and A\ A consists of a finite number of biinfinite
geodesics. Seeking a contradiction, assume \ is realized in N. Then ) is also
realized in N by work of Otal [Ota88] (cf. Kleineidam-Souto [KS03, Lem.

4.2]). Suppose f € pleaty realizes A. This implies that for all > 0 the curve
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f(7:) is nearly geodesic and in particular we have Iy(v;) < l,,(7:), i.e. there

is a constant ¢; > 1 with

() S oy (1) < el ()

for all e > 0.

Since (p;) converges to p algebraically, on the level of manifolds there are
smooth homotopy equivalences h; : N — N;, compatible with p; and p, such
that on any compact subset of N, h; tends C* to a local isometry for all > 0.
(Cf. McMullen [McM].)

Therefore for large 4, the curve h;(f(7;)) has small geodesic curvature and

we have

v, (i) < v (i) X oy (7)-

But [,,(7:) — 0o as i — co. This contradicts (5.3) and we have proved that A

is not realized. U

Now we start proof of theorem 1.3 which takes the rest of this chapter. For
now on we assume N, marking j : 0H — N and the relative compact core
C C N are fixed and suppose A is not realized in N.

Recall that for a hyperbolic structure N on a handlebody H a lamination
A € UML(0H) is an ending lamination if there exists a sequence of simple
closed curves a; on OH which converge to a lamination supported on A in
PML, such that j(a;) is homotopic to a closed geodesic «f within N \ C

and (o) exits the end of N. In our case, non-realizability of A gives us a

sequence of closed geodesics (and in fact pleated surfaces which realize them)
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that exit the end and they have representatives on j(0H) which converge to a
lamination supported on A; but the homotopy between these and j(0H) may
pass through the core and the difficulty is to prevent that from happening.
Equivalently, we have a sequence of pleated surfaces that exit the end but we
cannot use them since they are not necessarily end-homotopic.

Here our idea is to use the fact that ) is a Masur domain filling lamination
and seek a contradiction using topological arguments.

Otal [Ota88] extended Thurston’s construction of pleated surfaces to the
compressible boundary case and proved that if N has no parabolics then every
multi-curve « in the Masur domain is realized in N. Kleineidam-Souto [KS03]
generalized this and proved that if a multi-curve o in the Masur domain inter-
sects every simple closed curve v on 0H where j(7y) represents a parabolic in
N, then « is realized in N. If « satisfies the above condition and a lamination
4 is union of support of o and finitely many noncompact leaves, then is not
hard to see and can be deduced from arguments of Otal [Ota94] that p is
realized too.

Using this we can prove the following:

Fact 5.1. Suppose a sequence of multi-curves vy, converges to a lamination
supported on X\ then for n sufficiently large, v, and every lamination p that s

a unton of v, and finitely many noncompact leaves is realized in N.

Proof. Using what we just said, it is enough to prove that for n sufficiently large
7n intersects every simple closed curve -y, where j() represents a parabolic in
N. If this is not the case then, up to taking a subsequence, we can assume for

every n there exists a simple closed curve §,, disjoint form -, such that j(d,)
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represents a parabolic in N.

After passing to a further subsequence, assume the sequence (6,) converges
to X' in PML. Tt should be obvious that ¢(A',\) = 0 and since A is filling, \'
and A have the same support and )\’ is in the Masur domain O(H). Since the
Masur domain is open, ¢, is in the Masur domain too, for ¢ > 0.

On the other hand by Sullivan’s finiteness theorem [Sul81], there are only
a finite number of free homotopy classes of parabolics in N. Hence we may
extract a subsequence such that for all ¢ > iy, d; and J;, are freely homotopic
in N. Then by theorem 2.3 the curves ¢; are in a single orbit of Mody(H) and

they are bounded in O(H) which contradicts theorem 2.2. O

Choose a sequence of multi-curves (o) that converges to a lamination
supported on A. Using the above suppose f, : 0H — N realizes «,, for every
n > 0. The next proposition directly follows from work of Kleineidam-Souto

[KS03, Prop. 4.3].

Proposition 5.2. A filling Masur domain lamination A is realized in N if
there is a sequence (o) of multi-curves converging to A and a compact set K C
N such that «; is realized by a pleated surface f; : OH — N with f(OH)NK # ()
for all 1.

They proved this by showing that for the sequence of pleated surfaces (f;)
in the hypothesis, there exists a uniform diameter bound. Then up to passing
to a subsequence, the pleated surfaces converge to a pleated surface and they
prove that this limit pleated surface realizes .

From this, we conclude that the sequence of maps (f,,) ezxits the end of N,

i.e. every compact subset of IV intersects at most a finite number of pleated
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surfaces f,(0H).

Claim 5.3. We can assume, perhaps after considering sufficiently large in-

dexes, that f, and f,, are homotopic in N \ C for every m and n.

Proof. Using Klarreich’s work [Kla], we know that A represents a point on
the Gromov boundary of the curve complex of 0H and «, converges to this
point in sense of Gromov. Also we can assume that the sequence (o) is an
infinite path in the curve complex, i.e. d¢(an, ant1) = 1 for every n. Then we
can extend it to an elementary-move sequence of pants decompositions (P,)
as in lemma 2.7. Notice that still every limit of the sequence (P,) in PML is
supported on A.

Now for n > 0 choose a maximal lamination u, that contains P, as a
sublamination and such that all noncompact leaves of u, that approach a
component v of P, (from either side) spiral about v in the same direction.
Fact 5.1 shows that p, is realized for n > 0. Suppose f, realizes u, and f, 1
realizes p,1. It will be enough to prove that for n sufficiently large, there
exists a homotopy between f, and f,,; that stays away from C.

Suppose o, ay,...,a and B, a1, ..., q are components of P, and P,
respectively and let Y C OH be the closure of a component of 0H\{c, ..., ax}
that contains o and . We know that Y is either a 4-holed sphere or a 1-holed
torus.

First we construct a triangulation 7 on 0H as follows. Restricted to Y, we
assume that 7 is one of the triangulations in figure 5.1. Then extend this to a
triangulation for the entire OH in a way that all the vertices are on components

oanﬂPn+1:{a1,...,ak}.
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Figure 5.1: The triangulation on Y.

What is important for us about this triangulation is that P, and P, are
homotopic to subgraphs of the 1-skeleton of 7 and every triangle on Y has at
least one vertex on 0Y.

For any choice for images of vertices of 7 on geodesic representative of P,
(resp. P,11) that preserves their ordering, we can construct a simplicial hy-
perbolic surface with associated triangulation 7 that realizes P, (resp. Pp,y1).
The construction is standard, simply make the map identical to f,, (resp. fri1)
restricted on P, (reps. P,;1). Change the triangulation by an ambient iso-
topy such that the vertices get mapped to the chosen points on the image of
P, (resp. P,;1). Extend this to the 1-skeleton of 7 by sending each edge to
a geodesic in the homotopy class of its f, (resp. f,1) image (rel. endpoints).
Finally extend the map to the entire surface by mapping the 2-simplices totally
geodesically.

Using an idea of Thurston, we can construct a continuous family g’ (resp.
gl .1 of simplicial hyperbolic surfaces as above that converge to f, (resp. fn+1)
in Hausdorff topology. This is possible by starting from one such map g2 (resp.

¢2.,) and for each component 7 of P, (resp. P,i1) continuously twist the
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images of vertices on v about the geodesic representative of v in the direction
that noncompact leaves of p, (resp. p,+1) spiral about v when approaching
and then construct the simplicial hyperbolic surface g/, (resp. ¢/ .,) as above.
(Here we are assuming that the image of P, (resp. P,y1) is fixed and we are
twisting the vertices of the triangulation about the components.)

Notice that a maximal lamination containing P, (resp. P,1) is identified
by the direction that its noncompact leaves spiral about components of P,
(resp. P,11) on each side. Hence the limit of the simplicial hyperbolic surfaces
gl (resp. gl.,) has to be a pleated surface that realizes y, and since p,, is
maximal it has to be identical with f, (resp. f,+1) up to precomposition with
a self-homeomorphism of OH isotopic to the identity. From here we can see
that when ¢ is large there is a homotopy with bounded length tracks between
fn and ¢ (vesp. fn41 and g, ). Fix t large such that this homotopy stays
away from C and denote h = ¢, h' =g},

It will be enough to show the existence of a homotopy between h and A’
whose image is contained in a uniformly bounded neighborhood of h(0H) U
K (0H). First of all, we precompose h or h’ with a self-homeomorphism of 0H
isotopic to identity to make h and A’ identical restricted to P, N P,.1. We
know that there is a homotopy between h and A’ and we can consider this as
a map from 0H x [0,1] — N, where restricted to 0H x {0} and 0H x {1} the
map induces h and h'. The simplicial structure of A and b’ makes 0H x {0,1}
triangulated with two triangulations which are isotopic to 7 on 0H. Extend
this to a triangulation of 0H x [0, 1] first connecting every vertex on 0H x {0}
to the corresponding vertex on 0H x {1}. Then add faces homeomorphic to

rectangles where two opposite sides of the rectangle are corresponding edges
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of the triangulations on 0H x {0} and 0H x {1}. Finally we are left with
regions that are homeomorphic to a triangle times an interval, we call them
prisms, and simply divide each of these to 3 tetrahedral arbitrarily. Now we
can assume that the homotopy is totally geodesic restricted to the 1-skeleton
and 2-skeleton of the constructed triangulation and extend it to the 3-skeleton
(the prisms) by coning of from a vertex of each tetrahedral and map every line
segment geodesically.

D!

ﬁ (@)

h(D)

Figure 5.2: The image of a prism.

It will be enough to show that image of every prism stays in a bounded
diameter neighborhood of h(0H) U h'(0H). In fact it is enough to do this for
faces of the prism. Every prism @ has two triangular faces D and D’ which
we call them horizontal and we call the other faces and edges that connect
these horizontal faces vertical. The image of horizontal faces are contained
in h(OH) U h'(OH). In our construction of the triangulation 7, each triangle
has at least one vertex on a component of P, N P,,; and the image of the

vertical edge e associated to this vertex will be a single point v on the geodesic
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representative of P, N P,.;. The picture of image of a prism is suggested in
figure 5.2.

Every point in the image of the prism is contained in a triangle with a
vertex v and two sides on h(D) and A'(D’) and from this and hyperbolicity of
N we can see that it has to have bounded distance from h(D) U h'(D') and
therefore from h(0H) U h'(0H) and we are done.

]

Note that every o := f,(a,) is homotopic to a closed curve j(3,) in
N\ C, because j : 0H — N \ C' is a homotopy equivalence. Then because the
sequence o, exits the end and the homotopy stays outside of the compact core
C, the sequence of closed curves (8,) has to converge in the space of currents
to a lamination supported on p: an ending lamination for some end of N. (See
2.12.) On the other hand, because maps (f,,) are homotopic outside of C' and
they are homotopic to the inclusion 0H — H in H, there exists a single map
g : 0OH — OH that extends to a map g : H — H homotopic to identity and

g(ay,) is homotopic to S, in OH for every n.

Remark 5.1. Note that if g is homotopic to a homeomorphism, since g ex-
tends to the handlebody, it has to be in Modg(H). Then p = g(A) is the
ending lamination and we have nothing more to prove. So it will be enough

to prove that g is homotopic to a homeomorphism on 0H.

Without loss of generality, we can assume that the sequence (a,) converges
to a lamination A in the Hausdorff topology. Note that A contains A as a

sublamination.
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Fix a marked convex cocompact structure Ny on H with a marking jg :
OH — Ny. By a theorem of Otal [Ota88], A is realized in Ny by a map
fo : OH — Ny homotopic to 7.

Suppose 0H is equipped with the hyperbolic metric oy, induced from f;.
Recall that a train track on OH is an embedded 1-complex 7 C 0H whose
edges (called branches) are smooth arcs with well-defined tangent vectors at
endpoints. At any vertex (called a switch) the incident edges are mutually
tangent. The branches which are incident to a switch are divided into two
nonempty subsets: “incoming” and “outgoing” branches according to their
inward pointing tangent at the switch.

A geodesic lamination v is carried by the train track 7, if there is a C'-
map F': 0H — 0H which is isotopic to the identity and maps v to 7 in such
a way that the restriction of its differential dF' to every tangent line of v is
non-singular. We say 7 fully carries v if the image of v by F' in the above
definition surjects to 7.

Here for A\, we consider a family of special train tracks which carry )\ and
are obtained in the following way. Fix a point zo on A\ C dH throughout the
construction. Take a transversal x to A of some definite length centered at
xo. For e > 0 small take a subarc I, of xk of length 2¢ centered at z;,. Now
we squeeze all intersections of I, with ) to z, using a smooth map 0H — 0H
which preserves zy and the tangent to A at zy and collapses I, to xy. After
doing this we get a smooth embedded graph in 0H with a single vertex xy.
Some of loops of this graph may be parallel, we identify all these. Then we
have a set of simple loops and it is not hart to see that the number of loops

is bounded depending on the genus of OH. This gives a train track 7. and
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it should be obvious that 7, fully carries A\. In fact our process gives a well-
defined map from A to the train track 7. for every €, which we refer to it as
the projection map. Notice that if a positive € < € is given the train track 7.
is also carried by 7. (it can be isotoped to a small neighborhood of 7).

There is a single leaf of A which passes through zy and we call it ezceptional;
in some part of our argument we exclude this leaf. Now we claim that if €
is sufficiently small, all branches of 7. will have length at least L for a given
constant L. If not then we have a sequence of subarcs of A with length bounded
and endpoints ¢;-close to each other, where ¢, — 0 as 1 — oo. But if we
consider the Hausdorff limit of these subarcs as i — oo, it is either a simple
closed geodesic or a monogon. Neither of these two can be a sublamination of
A and we have a contradiction. (A is not disjoint from any simple closed curve
or monogon.)

In fact using the above claim, it is not hard to see that given § > 0, if ¢ > 0
is small, fy d-realizes 7. in Ny. With a slight modification to Otal’s definition

[Ota96], we say a continuous map F' : 0H — Ny, 6-realizes 7 in Ny if:

(i) Restricted to every branch, F' is injective and its image is a (1 + 6,)-

quasigeodesic in N.

(ii) If two branches b; and b, lie on opposite sides of the same switch v, then
the angle between the tangent vectors to the geodesics F'(b;) and F(by)

at their intersection point F'(v) is in the interval [7 — 6, 7.

(In our definition is hidden that the angle in (ii) should be well-defined.)
Notice that fy and fy o g are homotopic in Ny where g is the map defined after

proof of claim 5.3. Suppose F': 0H x [0,1] — N, is this homotopy.
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Claim 5.4. There exist constants ¢, > 0, K and c such that for every € < ey,

the image of every route of 7. by g is a (K, ¢)-quasigeodesic in oy.

Proof. Suppose € is small and fix a route of 7.. Also assume  is a long closed
curve carried along this route. Then fy(f) is nearly geodesic and therefore its
length is nearly the smallest among the closed curves in its free homotopy class
in Ny. In particular, since fo(g(5)) is freely homotopic to fo(53), its length has
to be bigger than [4(3)(1 — €’') where € is small depending on € and [/ denotes
the length in 0. On the other hand g has bounded Lipschitz constants and
increases the length in bounded proportion and therefore length of ¢(3) is at
most a uniform constant times length of 5.

This shows that g(f) is a quasigeodesic with constants that depend on
€. In fact the constants only become better if we choose a smaller €. This
argument shows that images of larger and larger subsegments of a route of 7,
are quasigeodesics with the same constants. From here a standard argument
shows that the image of the entire route has to be a quasigeodesic with uniform

constants. O

Now consider g : H2 — H? the lift of g to the universal covers and assume
X is the lift of \. The above claim shows that g(1) is a quasigeodesic for every
leaf | of \. Hence g(1) uniquely determines a geodesic in H?. We consider g to

be the map from leaves of I to geodesics in H? induced by g.

Lemma 5.5. If I and ly are leaves of X then g(l,) and §(lo) do not intersect.
Also if Iy and ly are asymptotic leaves ofx then their g-images are asymptotic

geodesics.
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Proof. Suppose g(l;) and g(lo) intersect. Equivalently, this means that the
end points of the quasi geodesics g(l;) and g(l,) at infinity separate each other
(they alternate). Without loss of generality we can assume neither of these
leaves project to the exceptional leaf of A. The argument is not hard and
basically follows from the fact that a single leaf of \ is an accumulation of
lifts of any leaf of A. Choose lifts of unexceptional leaves which are sufficiently
close to l; and ly. Since g is Lipschitz and [; and [, intersect these new leaves
have to intersect too.

Using the fact that [;, + = 1,2, is not exceptional, we can see that for any
subsegment k; C [;, if € is sufficiently small, image of x; by the projection map
will be contained in a single branch b; of 7.. Using this and the fact that g(I;)
is a quasigeodesic, we can assume that images of endpoints of x; are close to
the endpoints of ¢g(l;). Suppose a route ~;, i = 1,2, of 7, contains b;; since
g image of ~; is a (K, c¢)-quasigeodesic, its endpoints cannot be far from the
endpoints of g(l;) and therefore g(v;) and g(7,) intersect each other.

Now assume n is sufficiently large, so that «, is carried by 7 and assume
bi(ay,) and be(ay,) denote the number of times that «,, passes through b; and

b, respectively. Note that by what we just said, we can see that

Z(ﬁna ﬁn) 2 bl(an) ) bZ(an)

for n > 0. (Recall that g, = g(«,) was a closed curve and the sequence (£,)
converges to a lamination supported on y in the space of currents.)

Because the sequence () converges in PML to A and A passes through
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b1 and bg,

bl (ozn) bz(an)
o) 9 7ot

converge to positive numbers (the measure deposited on b; and b, by ) and
are bigger than some ¢ > 0 for n > 0. On the other hand, like in the proof
of the previous claim, because g has bounded Lipschitz constants, there exists

¢ > 0 such that

l() (ﬁn) S Cll() ((l/n) .

Hence
1 by(ay) - bo(an) _
> > 0.
(c)? lo(an) - loan) —

i(Bn, Bn)

But this implies that every limit of the sequence (3,) has self-intersection

>

and cannot be a lamination, which is a contradiction with the fact that the
sequence (f3,) converges to a lamination supported on .

The second statement is obvious, because two leaves of ) are asymptotic
iff they have bounded Hausdorff distance from each other on one side and
again since g is Lipschitz, their g-images will have bounded Hausdorff distance
on one side as well and have to be asymptotic asymptotic geodesics, which

immediately proves the claim. O

Lemma 5.6. Fven more, g is continuous as a map from leaves ofX to the set

of geodesics of H? with Hausdorff topology.

Sketch of proof. The idea of the proof is similar to the proof of the first state-
ment of lemma 5.5. Notice that X is closed in the Hausdorff topology. Also
note that every leaf of A gives a biinfinite route of 7 and if [ is a leaf of X, the

train track routes of other leaves that are close to [ (in Hausdorff topology)
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will share a long segment with the route associated to [. This shows that in the
image also images of these leaves are close to image of [ on a long subsegment.
Then using the fact that images of all these leaves are (K, c)-quasigeodesic
implies that their endpoints cannot be far from each other and their geodesic

representatives are close in the image with Hausdorff topology. O

Lemma 5.7. If I, and ly are leaves ofX and g(l) = g(ls), then there exists
some h € Ker(j, : m(0H) — w1 (H)) such that h(ly) = ls.

Sketch of the proof. If distinct leaves, l; and [y, of A project to the same leaf
I' of X\ in OH, then there exists an element h € w1 (0H) such that h(ly) = ls.
In this case, we claim that h € Ker(g,) and since j o g is homotopic to j, we
have to have h € Ker(j.). Suppose g.h is nontrivial. Since g is induced from

lifting g we have

g(la) = g(h(lh)) = g.h(g(lh))

and our assumption implies that g.h preserves g(l;). Since g.h is non-trivial,
it has to be a hyperbolic isometry of H? with axis g(l;). This implies that
g(l") fellow travels the closed curve that represents g.h. Since fy o g and fy
are homotopic in Ny, this implies that fo(I') fellow travels a closed curve that
represents g.h in Ny, but fy(I') is a geodesic and this shows that it is a closed
geodesic. We knew that A has no isolated leaves and because of this I’ is
noncompact. Otal [Ota88] proved that if a pleated surface f, realizes a Masur

domain lamination A, then

Pfy: A\ — PN

is a homeomorphism to its image. (Recall that PN is the projective tangent
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bundle of N.) This contradicts the possibility that f, takes a noncompact leaf
of X to a closed geodesic.

On the other hand, suppose /; and [, project to distinct leaves of \: [}
and l5. Since g(l1) = g(lo), the images ¢(l}) and g(l}) are asymptotic in
OH (they have bounded Hausdorff distance) and we have a homotopy with
bounded tracks between them. If we concatenate this homotopy with F'| 1 x[0,1]
and F'|y; 0,17, We get a homotopy with bounded tracks in Ny between fo(l})
and fo(ly). Since fo(l}) and fo(l,) are geodesics, this is impossible unless
fo(l}) = fo(ly). This again contradicts Otal’s theorem which we mentioned
above and we are done.

O

We know that every complementary component of A is an ideal polygon.

Lemma 5.8. If P is a complementary component ofx then g is injective on

sides of P.

Proof. Suppose [i,ls,...,l; are sides of P. We want to show that g(l;) #
g(l;) for i # j. If this is not the case then lemma 5.7 shows that there
exists h € ker j, such that h(l;) = [;. But then if we consider h(P), it is a
complementary component of X too and it cannot be P, since h is not elliptic.
The complementary components P and h(P) share a side: [;. This shows that

l; is an isolated leaf of X which is impossible, since A has no isolated leaf. [

The above lemma and lemma 5.5 show that g takes complementary do-
mains to complementary domains.
Now we define the dual tree for a measured lamination on a surface. (Cf.

Skora [Sko90, Sko96] and Otal [Ota96].) The definition is more general for
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unmeasured laminations and also allows closed leaves but for the sake of brav-
ery, we don’t discuss those. Suppose v is a measured lamination on 0H. We
identify OH with H?/T", where I" is a Fuchsian group isomorphic to m;(0H).
Consider the preimage 7 in HZ.

Now we consider a partition 7, of H? into closed sets: each set is either
the closure of a component of H? \ 7, or a leaf of ¥ that is not in the closure
of the two components of H? \ 7. We will equip the set 7, with a distance
that will turn it into an R-tree. Recall that an R-tree is a metric space (7, d)
such that between two arbitrary points x and y there always exists a unique
arc isometric to the interval [0, d(z, y)].

Consider two points of 7, that are closures of components A and A’ of the
complement of 7. Choose two points 2 and z’ in the interiors of components
A and A’. The geodesic segment [z, z'] between x and z’ in H? is transverse
to v and intersects each leaf in at most one point. Thus the intersection of
each closes subset of 7, with [z, z'] is a segment. The transverse measure to v
assigns to the geodesic [z, 2] a positive measure supported on [z,z'] N 7. By
integration, this measure induces a distance on the set of closed subsets of 7,
that intersect [z, z'].

It is easy to check that the distance is independent of the points z, ' and
moreover, given two closed sets B and B’ in 7, there exist sets A and A’ that
are the closures of components of the complement of 7 such that B and B’
separate A and A’ in H?. Hence, what we just described defines a number
d(B, B') for any two arbitrary closed subsets of 7, and this is independent of
the choices of A and A’. Finally, it is not hard to see that this distance turns

7, to an R-tree.
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Now consider a measured geodesic laminations supported on A, which we
still call A and consider the dual tree 7. Also consider 7 to be the dual tree for
the g-image of ). We have, in fact, shown that ¢ induces a 71 (0H )-equivariant

morphism G : T, — 7.
Claim 5.9. The map G : Ty — T is locally injective.

Proof. We will need the following lemma for the proof:

Lemma 5.10. Suppose | is a leaf ofx then g(l1) # g(la) for distinct leaves

ly,1s ofX which are very close to .

Proof. Suppose a,, # b, are pairs of leaves of X whose distance to [ tends to zero
as n — oo and g(a,) = g(b,). Lemma 5.7 shows that there exists h,, € ker j,
such that h,(a,) = b,. Because of discreteness of action of 7 (0H), we can
see that length of h,, goes to infinity as n — oo and from this one can see that
the axis of h,, converges to [ in the Hausdorff topology.

Hence a, and b, project to the same leaf ¢, of A but we have h,(a,) = b,.
Suppose k : R — 0H parametrizes ¢, with arc length. We claim that for n
large, there exists a subarc k([s, t]) such that «'(s) and &'(t) are €’-close in the
tangent bundle of OH and there is an arc ¢ of length at most €' between x(s)
and k(t) such that ([s,t]) U d represents the conjugacy class of either h, or
h%. This perhaps can be seen more easily in the universal cover. Take a point
x € a, which is €'-close to b, (in the tangent bundle). By our assumption
translate of x by h,, is a point y € b,. Now make a jump from z to the closest
point on b, and follow b, to reach y. The path just described projects to a

representative of the conjugacy class of h, in 0H. The only problem with
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this representative could be that the tangents at the beginning and the end
may not have the same direction but that can be resolved by doing the same
process with A2 and we have proved our claim.

Now note that since fy realizes A, image of -, will be €’-close to a geodesic.
But v, represented an element of Ker j, and cannot have an almost geodesic
representative and we have a contradiction.

O

Now every = € T, either corresponds to a complementary component of Py
or to a leaf of X, which is a limit of leaves of A from both sides. We have to
prove local injectivity in small neighborhood of z in both cases.

Suppose x corresponds to a component of H? \X which is an ideal polygon
P with sides [, 1, ...,l;. Using lemma 5.8, we know that g(l;) # g(l;) when
1 # j. Using continuity of g from lemma 5.6, we know that leaves which
are very close to [;, will be mapped to leaves which are very close to g(l;).
Therefore, images of leaves that are close to /; cannot be identified with images
of those that are close to [/; for 7 # j. Finally, using lemma 5.10, we know that
g is injective in a very small Hausdorff neighborhood of each leaf /; and this
proves the claim in this case.

On the other hand if x corresponds to a leaf [ of X that is a limit from both
sides, lemma 5.10 immediately implies that g is injective in a small Hausdorff

neighborhood of | and we have finished proof of the claim. O
The following lemma shows that G : 7, — 7 is in fact injective:

Lemma 5.11. A morphism ¢ : T — T between R-trees T1 and Ty is injective

if and only if it is locally injective.
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Proof. Obviously injectivity implies local injectivity. On the other hand, as-
sume ¢ is locally injective but it is not injective. Suppose ¢(z) = ¢(z') for
distinct points z, 2’ € 7;. Consider the unique geodesic [ : [0,1] — 77 in Ty
that connects x and z': 1(0) = z and (1) = 2. The path ¢ol:[0,1] — T3 is
a closed path in 7; and it is enough to show that ¢ o/ is not locally injective
(because [ is injective). If ¢ ol is locally injective, then there exists a non-
degenerate interval [a,b] C [0,1] such that ¢ ol(a) = ¢ o l(b) but ¢ ol does
not identify any other two points of [a, b]. But then we obtain two paths with
disjoint interiors between ¢ol(a) and ¢ol (“T“’) which contradicts the fact that

Ty is an R-tree. O

We use the injectivity of G to show that g, : m(0H) — m(0H) is an
injective map. Otherwise, assume h € ker g, is nontrivial. If [ is a leaf of X,
then h(l) # [l; otherwise [ would project to a closed curve, which contradicts
our assumption about A. Since h is in ker g,, we can see that lift of g to the
universal covers takes [ and h(l) to the same geodesic and we have g(l) =
g(h(l)). Let z,2" € T, be the points that correspond to the leaves I and h(l).
We know that x = 2’ if and only if [ and h(l) are sides of a complementary
component of X but then we have a contradiction with lemma 5.8. Hence z #1a
and we have G(z) = G(z') which contradicts injectivity of G. Therefore g, is
injective.

It is a standard fact that every proper subgroup of a surface group is free,
therefore g.(m (OH)) cannot be a proper subgroup of 71 (0H) and therefore g,
is surjective too and in g is a m;-isomorphism. But again, it is a standard fact

about surfaces that every homotopy equivalence from 0H to itself is homotopic
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to a homeomorphism. Hence g is homotopic to a homeomorphism and we are

done by remark 5.1.
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Chapter 6

Hyperbolic structures with bounded

combinatorics

In this chapter, we introduce a set of hyperbolic structures on H, whose end-
invariants have R-bounded combinatorics respect to H. We prove that this
family behaves well in the strong topology. Throughout the rest of this work

we will restrict ourselves to this family.

Remark 6.1. In our definition of R-bounded combinatorics with respect to a
handlebody in 2.6, we have assumed that « and its projection to A(H) have
R-bounded combinatorics. (This a little bit different from what we did in our
definition, especially for laminations, but it is essentially the same.) In par-
ticular, when « is a marking, we have assumed that there exists a handlebody
pants decomposition P, called projection of a to A(H), such that o and P
have R-bounded combinatorics and realize the distance between « and A(H).
We should point out that we could relax our definition by allowing P to have
distance bounded by some constant ¢ from the point of A(H) that realizes the

distance between o and A(H). In that case, every thing that we prove here
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would still be true with constants that will depend on ¢ as well as on R.

In fact, it is interesting that theorem 6.3 is the only place where we use
the fact that oo and P realize the distance between o and A(H). There we use
this condition to show that a lamination with R-bounded combinatorics with

respect to H is in the Masur domain.

Lemma 6.1. Let H be a handlebody and A(H) C C(0OH) the associated
handlebody subcomplex. There exists dy only depending on x(0H) that if
a C Co(OH) is a multi-curve with distance bigger than dy from A(H) then
« 1s in the Masur domain. In fact, we can consider dy = d + 2 where d is the

quasi-convezity constant of A(H) in theorem 2.6.

Proof. If « is not in the Masur domain, then it has zero intersection with
i, an element of closure of A in PML. Suppose Y is the smallest essential
subsurface that contains support of . The lamination p cannot be filling,
since it has zero intersection with a simple closed curve and therefore, Y is
a proper subsurface of 0H. Of course, dY has zero intersection with a too
and dc(a,0Y) < 1. We claim that 0Y has distance at most d + 1 from A
and this together with what we said before shows that d¢(a, A) < d+ 2 which
contradicts our hypothesis. To prove the claim, consider a sequence (5;) C A
that converges to 4 C Y in PML.

Doing surgery, we can replace 7y (f;) with a non-peripheral simple closed
curve [/ supported on Y such that dy(my(5;), 5!) and i(5;, 5;) are bounded
with universal constants. This implies that every limit of the sequence (f;) in

PML has zero intersection with p and has to be supported on p. Using the
fact that p fills Y, an observation of Luo (cf. Masur-Minsky [MMO00]) shows
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that dy (5}, ;) — oo as i — oo and therefore dy (my (5;), 7y (8o)) — oo.

Then theorem 2.5 (Bounded geodesic image), implies that for i sufficiently
large, any geodesic connecting [3; and [y intersects the one-neighborhood of
dY. On the other hand because of quasi-convexity of A, theorem 2.6, this

geodesic is in the d-neighborhood of A and this proves the claim. O

Suppose H is a fixed handlebody and Let R > 0 be given. Let A(R) be
the set of markings on 0H and elements of OC(0H) which have R-bounded
combinatorics with respect to H and base(«) has distance bigger than dy from
A(H), where dj is the constant obtained in lemma 6.1, when « is a marking
in A(R). We also consider the subset Ay(R) C A(R) to be the subset of A(R)
whose element’s projection to A(H) is contained in mg(H), where my(H) is
the set defined in proposition 2.8. Notice that every element of A(R) can be
translated to Ay(R) by an action of Mody(H). We say an element o € Ay(R)

is of the first type if it is a marking; otherwise we say « is of the second type.

Proposition 6.2. (Ay(R) is compact in C(OH)UOAC(0H).) Let (o) C Ag(R)
be a sequence of elements of Ao(R). There exists a subsequence (o, )i such
that either all its elements are the same or the sequence (base(o,))r converges

to a lamination p € Ag(R).

Proof. Let (a,,) C Ao(R) be given. First suppose all elements of «,, are of the
second type. Suppose i, is an element of ML supported on «, with total
measure 1 (we are fixing a hyperbolic metric on 0H). By definition, since ay,
has R-bounded combinatorics with respect to H, there exists a sequence of
markings in Ag(R) that converges to «,, in C UJC. Choose an element of this

sequence (3, such that i(y,, p,) < 1/n where 7, € ML has total measure 1
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and is supported on ,. Now (8,) C A(R) consists of markings and it is easy
to see that the first possibility in the conclusion of the proposition does not
happen for the sequence (3,). Suppose after passing to a subsequence, which
we still denote by (8,), the sequence (8,) converges to p € 0C. Klarreich’s
description of C shows that every limit of (,) (in ML) is supported on pu.
This proves that every limit of u, (in ML) is supported on p and therefore
(av,) converges to p in OC. Hence it is enough to prove the proposition for a
sequence of the first type.

Now suppose (a,) C Ap(R) is a sequence of markings and suppose P, =
base(ay,) is the associated pants decomposition for every n. After passing
to a subsequence, we can assume that all elements of (a;,) have R-bounded
combinatorics with respect to an element 5y € my(H). (We are using lemma
2.9 to extend the projection to A(H) to a marking.)

Consider the sequence (P,) as a sequence in PML. If there is a subse-
quence of (P,) whose elements are all equal to a single pants decomposition
P,, then we claim that there is a subsequence of (a;,) whose elements are all
the same. This is because for every «,,, once we know the pants decomposition
P, = P, we only have the freedom to choose the transversals. But for each
v € Py, we have only a finite number of choices for the transversal to -y, since
dy (o, Bo) < R and the claim follows.

Now suppose we have extracted a subsequence such that (P,) converges
to a lamination p in PML. Using Klarreich’s description of 0C(0H) it will
be enough to show that pu is filling. Let Y C 0H be the smallest essential

subsurface that contains support of .
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Case 1. Y has a non-annular component Y’ C 0H. Let i’ be the component
of u that is contained in Y’ and notice that ' fills Y. We argue similar
to the proof of 6.1. For every mn, by doing a small number of surgeries on
7y (P,), construct a non-peripheral simple closed curve a,, on Y’ with bounded
intersection with P, and bounded dy+(P,,a,). It follows that every limit of
the sequence (a,) (in PML) has zero intersection with y' and is supported
on Y’ therefore it has to have the same support as p'. Since ' fills Y, we
have dc(yr)(an,a0) = o0 as n — oo and therefore dy:(on, ) — oo which

contradicts the fact that dy+(ay,, ap) < 2R.

Case 2. All components of Y are annuli. Either infinitely many elements
P, are contained in Y or there exists a subsequence of (P,) whose elements
all intersect a component Y’ C Y. If the former happens, Y is the union
of annular neighborhoods of components of a pants decomposition () and by
what we explained earlier there is subsequence of («,,) whose elements are all
equal. If the latter happens, since the sequence (P,) converges (in PML) to
1 which contains core of Y’, the only possibility is that P, spiral about core
of Y more and more as n — oco. But this implies that dy+(P,, Py) — oo as

n — oo and again we have a contradiction.

The fact that every such limit is in Ay(R) is by definition of R-bounded

combinatorics respect to H for elements of 0C(0H). O

Let Aj(R) be the subset of PML(OH) whose elements are supported on
base(a) if o € Ag(R) is of the first type or on a € Ay(R) when « is of

the second type. We call the elements of Aj(R) of the first and second type
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accordingly. Notice that all elements of the second type fill 0H.

Proposition 6.3. For every R, the set Ay(R) is a compact subset of the Masur

domain.

Proof. Using proposition 6.2 and Klarreich’s description of convergence in C U
dC, we know that every convergent sequence in Aj(R) either converges to an
element supported on base(a) where a € Ay(R) is a marking or converges to a
an element supported on a € Ay(R) where « is of the second type. Therefore
AL (R) is compact and we only need to show that it is a subset of the Masur
domain.

First note that if 4 € Aj(R) is of the first type then support of p has C-
distance at least dy from A(H) and by lemma 6.1, it is in the Masur domain.
Hence we simply need to prove that an element of the second type u € Aj(R)
is in the Masur domain.

If i is not in the Masur domain, then it has zero intersection with an
element A in the closure of A in PML. Since p is filling, it has to have
the same support as A, A is also filling and they represent the same point in
O0C(0H) which we denote by p.

By definition, there exists a sequence (a;) C Ag(R) of markings where
(base(ay,)) converges to p in C U OC. For each «; choose a component a; of
base(q;) and notice that the sequence (a;) also converges to p in 9C. Also let
(b;) C A be a sequence that converges to p in C U 0C. Since the sequences
(a;) and (b;) converge to the same point in the Gromov boundary of C(S),
the geodesic segments [a;,b;] C C connecting a; and b; in C(OH) get further

and further from z, where z¢ is a fixed point in A(H). Recall Masur and
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Minsky’s theorem [MM99], where they prove that C(0H) is d-hyperbolic in
sense of Gromov. Consider the geodesic triangle with vertices {a;, b;, Zo }; this
triangle is d-thin. Since the segment [a;, b;] is far from ¢, the other two sides
(%o, a;] and [z, b;] have to be d-close on subsegment of length D; of their initial
part. The length D; is comparable to the distance between xy and the segment
[a;, b;] and in particular D; — oo as i — 0o. Because of quasi-convexity of A,

theorem 2.6, the segment [z, b;] is in the d-neighborhood of A. Therefore

de(ai, A) < de(ai, [bs, zo]) +d

< dc(asz9) — Di+d+d

is much shorter than d¢(xg,a;) for i > 0. Recall from proposition 2.8 that
my(H) consisted of a finite set of handlebody markings. Therefore for ¢ > 0,
dc(a;, A) is shorter than the distance between a; and every element of mg(H).
But this contradicts our choice of o; € Ag(R) whose distance from A is realized

between «; and an element of mgy(H). O

Let 7(Ag(R)) C T(0H) be the set of points 7 € T(OH) where the total
length of an element of the first kind o € Ag(R) is at most By, the Bers
constant. Notice that by our assumption about ¢, and By in 2.15, every
element in 7(Ag(R)) is €g-thick and for every a € Ag(R) of the first kind there
exists at least one point, namely 7(«) where the total length of « is at most B.
Notice that because a binds 0H, the set of such points has uniformly bounded

diameter in ¥. As a corollary of the propositions 6.2 and 6.3 we have:

Corollary 6.4. The set 7(Ay(R)) is a closed subset of T(OH) and every limit
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of this set in Thurston’s compactification of OH is an element of second type

in Ay(R) and is in a filling Masur domain lamination.

Definition 6.2. Let By(R) be the set of marked hyperbolic structures on H,

which are either

e of the first type: they are convex cocompact with the conformal structure

at infinity in 7(A(R)) or

e of the second type: they are geometrically infinite with ending lamination

an element of second type in Aq(R).

We say elements of By(R) are hyperbolic structures with R-bounded combina-

torics on H.

Notice that, we could start with A(R) and construct the associated marked
structures; but those would be the same as the structures in By(R) up to chang-

ing the marking and therefore they would provide the same set of structures.

Theorem 6.5. The set By(R) with an appropriate choice of base points is

compact in the set of marked hyperbolic structures on H with strong topology.

Proof. Suppose (N;) C By(R) is given. For now, we assume that each N;
is an element of the first type and therefore there exists 7; € 7(A(R)) and
a; € Ag(R) such that 7; is the conformal structure at infinity for N; and
L, (a;) < By.

By proposition 6.2, up to passing to a subsequence either the sequence
(o) stabilizes or converges to A € Ag(R) of the second type. If the former

happens, there exists § € Ag(R) of the first type such that I, (8) < By for
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every 4. Since (3 binds OH, up to passing to a subsequence, the sequence (7;)
converges to a point 7 € . We obviously have [, (8) < By and 7 € 7(Ay(R)).
In this case, it follows from Ahlfors-Bers theory that the sequence of structures
(N;) converges strongly to a convex cocompact structure N with conformal
structure at infinity associated to 7 (see section 2.13). Since the convex core
of N is compact, it is easy to see that the sequence converges to N as a
sequence of marked structures and since N € By(R) is of first type we are
done.

Hence we can assume that the sequence () converges to A € Aq(R) of the
second type. We also know that A is filling and in the Masur domain. We can
also assume that (up to passing to a subsequence) the sequence (7;) converges
to a point in Thurston’s compactification supported on A\, which we still call
A. From here, we can argue similar to the proof of corollary 1.4 and imply
that the sequence (XV;) converges algebraically to N a hyperbolic structure on
H with ending lamination A (defined up to actions of Mody). Note that in
particular NV has no parabolics and the end is simply degenerate.

Next, we want to prove that the convergence N; — N is strong. Suppose
pi,p : m(H) — PSLy(C) are the representations associated to IN; and N.
Because of the algebraic convergence, we know that we can conjugate the
representations p; so that they converge to p; we assume from now on that
this is the case. It is standard (cf. Canary-Epstein-Green [CEG87]) that if
p; and p are projections of the base point of H? to N; = H?/p;(m (H)) and
N = H3/p(m(H)), then there exists a subsequence of the pointed manifolds
(Ni;, pi;) that converges geometrically to a pointed manifold (Ng,pg), Ng =
H? /T, which is covered by N.
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Thurston and Canary’s Covering Theorem [Can96] implies that the cover
N — Ng

is finitely sheeted. We claim that this covering is trivial, or equivalently that
La = p(m(H)).

The proof is based on an idea of Thurston. Suppose 8 € I'¢ then % €
p(m(H)) for some k > 1 and is equal to p(7y) for some v € 7 (H). Since § € '

there exists a sequence of elements a; € 71 (H) such that 8 = lim; p;; (o). So

lim pi; (o) = 8" = p(7) = lim p;; (7).

Because of discreteness and faithfulness of the representations, af = « for
all 7 > 0. But in a free group we have at most one k-th root for every
element and therefore o; = a for some fixed o € m(H) and j > 0. Hence
B = lim; p;;(a) € p(mi(H)) which proves that the covering the covering is
trivial and I'g = p(m (H)).-

This proves that every subsequence of (N;, p;) has a subsequence that con-
verges to (IV, p) geometrically. Therefore the entire sequence (IV;, p;) converges
to (N, p) geometrically and the convergence N; — N is strong.

Now it only remains to choose a marking j : 0H — N for N such that A is
the ending lamination for the marked structure (N, j) and prove that N; - N
as a sequence of marked structures.

Let j : 0H — N be a marking such that A\ is the ending lamination

for the marked structure (NN, 7). (This is always possible by precomposing

111



an arbitrary marking with an element of Mody(H).) Also let C' be a useful
compact core of N and choose a sequence (Q),,) of pants decompositions that
converges to a lamination supported on A in PML. Since A is the ending
lamination, for n sufficiently large, @, has a geodesic representative in N \ C
and these representatives exit the end of N as n — oc. (Recall that by a
geodesic representative in N \ C, we mean one that is homotopic to j(Q;)
within NV '\ C.) Hence by using lemma 4.2, we know that for n > 0, there
exists a pleated surface f, : 0H — N that realizes ), and is homotopic to
j within N \ C. This sequence of pleated surfaces has to exit the end of
N because of lemma 2.13 (Bounded diameter lemma). (Notice that in both
these, we are using the fact that the function dx(-,p) is proper.) From here
on assume, 7 is sufficiently large such that dx*(f,(0H),C) > D + 1 where D
is the constant obtained in corollary 4.7.

Fix n large and let ; : (N,p) — (N;,p;) be the approximating maps for
the geometric convergence N; — N. It is not hard to see that C; = k;(C) is a
useful compact core in NN; for 4 > 0 (cf. Canary-Minsky [CM96, Prop. 3.3]).
Let j; : 0H — N; \ C; be a representative of the marking of N;. We know
that k; approaches an isometry on every compact subset of N. Using this we
can see that for 7 sufficiently large depending on n, there exists h;, € pleaty,

that realizes ), in NN;, is €y-close to k; o f,, and
dx°(hin(0H),C;) > D. (6.1)

It will be enough to show that ;0 j or equivalently ;o f, or h;, is homotopic

to j; in N; \ k;(C) for i sufficiently large.
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Suppose g; : 0H — N; parametrizes 0CH (NV;), the boundary of the convex
core of N;, and g; is homotopic to j; in N; \ C;. Let P; = base(q;) be the
pants decomposition associated to «;. By our construction, we know that o;
and therefore P; has length bounded by By in 7;. We also know that 7; is
eo-thick. Hence, we can use Bridgeman-Canary’s theorem 2.12 [BC03] and
conclude that P; has length at most JB, on o,4,, where J depends only on ¢.

We obviously know that d,%f“(@CH(N,-),C’Z-) — 00 as i — 00. Suppose
A = JBy and € = ¢; if ¢ is sufficiently large such that d%,:o (OCH(N;),C;) > D',
where D' is the constant obtained in lemma 4.4 (Homotopy bound) and there
exists an end-homotopic ¢’ € pleaty, that realizes P;, then there exists a
(K, €y)-good homotopy with respect to P; between g; and ¢’ that stays away
from C;.

Consider the geodesic that connects @, and P; in C(0H). As in lemma

2.7, we can extend this to an elementary-move sequence
Qu=P,— P —---—= P, =P,

Using corollary 4.7, since h;,, is end-homotopic, realizes @, and satisfies (6.1),

we know that either

(1) there exists g’ € pleat . that realizes P; and is homotopic to h;, within

N;\ C; or

(2) there exists a pleated surface g” € pleat, homotopic to h;, within

N; \ C; realizing P}, for some 0 < k < m; and with

dx:(¢"(0H),C;) < D.
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If case (1) happens, by what we said earlier, ¢’ is homotopic to g; within
N; \ C; and therefore h;,, is homotopic to g; within N \ C; and finally h;,, is
homotopic to j; within N \ C;. This is what we wanted and if this happens
for all sufficiently large i, we are done.

So, we seek a contradiction if this is not the case for every n. Suppose
there exists i(n) > n such that case (2) happens. Then we get a pleated
surface g € pleat Ny, that realizes an element 7, on the C(0H)-geodesic
path between @), and Py, is homotopic to A, and equivalently to ki) 0 J
within N; \ C; and

&3 (91(0H), Cin) < D.

If K is a compact subset of N and ¢ is sufficiently large,
d%f(x,C) -1< d]ZV:(K,Z'(.I),Ci) < d%e(x,C’) + 1.

Using this together with lemma 2.13 (Bounded diameter lemma), we can see

that g,,(0H) is contained in a bounded neighborhood of p;,) in Ny(,) indepen-

n

-1

dently of n. Therefore, x )© g is € close to a pleated surface f, that realizes
v, in N and intersects a compact subset of N.

When n — oo by definition i(n) — co. Therefore the sequences (Q),,) and
P;(n) both converge to elements supported on A in PML. Since A is in dC(0H)
and 7y, is on the geodesic connecting @, and Pj,), it follows from the definition
of the Gromov boundary of C(0H) that the sequence (7,) converges to A as
well. But since f] realizes 7, and intersects a compact subset of N, it follows

from Kleineidam-Souto’s [KS03] result, proposition 5.2 that A is realized in N

and we have a contradiction with the fact that A is the ending lamination of
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N.

This finishes the proof of theorem 6.5 for the case where (NN;) is a sequence
of convex cocompact structures (elements of the first type) or perhaps has such
a subsequence. Now suppose each N; is an element of the second type with
ending lamination );. After passing to a subsequence we can also assume that
i converges to an element of the second type A € Ay(R). Also assume each
A; 1s equipped with a transversal measure with total length 1. What we did
above shows that we can approach each /V; using convex cocompact structures
in By(R) in the strong topology of marked structures. From there a standard
argument by taking a diagonal subsequence proves that (/N;) has to converge
strongly to an element of the second type in By(R) as a sequence of marked

structures.

O

Remark 6.3. Notice that in the above statement, we have chosen appropriate
base point py for every N € By(N) and from now on, whenever we speak of

N we consider it as a pointed manifold (N, p,).

Since elements of By(R) are marked structures on H, the conformal struc-
ture at infinity or the ending lamination are defined uniquely on ¥(0H) or

OC(OH). Hence we have a map

£ : By(R) — Ao(R), (6.2)

and we call £(N) the end invariant of N.
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Chapter 7

Quasiconvexity

Let H be a handlebody as before and By(R) the set of marked hyperbolic
structures on H introduced in the last chapter. In our discussions, we usually
consider an element N € By(R) to be the interior of H equipped with a
complete hyperbolic metric and we assume the marking j : 0H — N is simply
an embedding isotopic to the inclusion O0H < H. Therefore, we use the same
marking j for all structures in By(R); yet, because j is defined up to isotopy,
we feel free to isotope j whenever needed. In particular, when we make a
choice of a compact core, we assume that j(OH) and the isotopy between j
and 0H — H stay away from the compact core.

We also assume that we have fixed a choice of ' (a diskbusting curve) in
H that satisfies proposition 4.1. Then for every N € By(R), we take 'y to be
the geodesic representative of j(I') in V. (We are using the fact that elements
of By(R) have no parabolics.) From now on, when we speak of the diskbusting
geodesic for N € By(R), we refer to I'y. The next proposition follows easily

from compactness of By(R) in the strong topology.

Proposition 7.1. (Uniform compact core) There exists a constant dy > 1
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such that for every N € By(R).

(1) the diskbusting geodesic ' has total length at most dy and is contained

in the dy-neighborhood of the base point py and

(2) there exists a compact core C C N homeomorphic to H that contains a
1-neighborhood of I'y and is contained in the (dy — 1)-neighborhood of
[y.

For now on, we fix a choice of dy that satisfies the above proposition and
is bigger than the constant Dy in lemma 3.3 and for N € By(R) we always
assume that a useful compact core is one that satisfies the second part of
the above proposition and in particular has uniformly bounded diameter. We
also define the set pleat, to be the set of pleated surfaces f : 0H — N
homotopic to j within N \ C for some useful compact core C' C N and with
dy(f(0H),T'y) > dy. Notice that these pleated surfaces satisfy the conclusion

of lemma 3.3 by our assumption about dy:

f((0H)Z) c N=° (7.1)

for every f € pleat, and where § = §(¢, x(0H)).

If o is a multi-curve on 0H and N € By(R), by a (geodesic) representative
for o in N \ 'y, we mean a closed (geodesic) curve freely homotopic within
N\ C to j(a) for some useful compact core C.

The purpose of this chapter is prove a result in parallel to Minsky’s [Min01,

Thm. 3.1] that shows for every N € By(R) and B bigger than or equal to the
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Bers’ constant By, the set

C(B,N):= | short(f,B)
fepleaty
is L-quasiconvex for some constant L that depends only on R and x(0H).
Recall that short(f, B) is the set of simple closed curves whose o-length is
at most B.

When N is geometrically infinite, it follows from the definition and de-
scription of the ending lamination of N in Canary’s work [Can93b] that there
exists a subsequence of C(B, N) which converges to £(N) € dC(0H).

By pleat (1), we denote the set of pleated surfaces in pleat, whose pleat-
ing locus contains p. If f € pleat(u) is given, we say f realizes yuin N\ T'y.
We define M;D to be the subset of pleat, whose elements have distance

less than D from I'y.

Lemma 7.2. There exists a monotonic function p : [0,00) — [0,00) such that

dy(z,py) < p(dz<(z,pn)) for every N € By(R) and € < ¢.

Proof. It will be enough to show that for every a > 0 there exists b > 0 such
that if djzve(a:,pN) < a then dy(z,pn) < b for every N € By(N), x € N and
€ < €g- Also note that it is enough to prove it for € = .

Suppose, this is not the case and we have a sequence of counter examples
(N;, z;) such that N; € By(R) and djzvf(xi,pNi) < a but dy,(z;,py,) — 00
We can assume that the sequence (IV;) converges strongly to N € By(R) and

suppose

KRi - (NapN) - (Nz,le)
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are the approximating maps. One can show that we can assume for every
eg-Margulis tube of N, k; takes it to an e)-Margulis tube in N; for 7 > 0. In
N, the function d3*(-, py) is proper. This is because each component of N<¢ is
compact and they are uniformly separated. Therefore, there exists a compact
set K C N such that for every z ¢ K, dx*(z,pn) > a + 1.

Take z € OK and a path P; between x;(xz) and py, which minimizes
dx“(ki(x),pn;). When i is sufficiently large &; is very close to an isometry
and therefore the injectivity radii of € K and k;(x) are extremely close.

Then except for a subset of very small length which is contained in a small
neighborhood of boundary of e-thin components every point y € N=¢Nk; L(P)

maps to N7¢ and therefore length of P N N7 is > a + 1/2. This shows that
d]%f(x,pm) >a+1/2

for every x ¢ k;(K) and we have a contradiction. O

Note that p(z) > z for every x € [0,00). This result helps us to get an

actual diameter bound for elements of pleat, close to I'y.

Lemma 7.3. (Uniform bounded diameter lemma) For every D > 0, there
exists L(D) > 0 such that diamy(f(0H)) < L(D) for every f € pleatva and
N € B()(R)

Proof. The result is immediate by knowing lemma 2.13 (Bounded diameter
lemma), lemma 7.2 and noticing that length of compressible curves in oy is at

least dy because of lemma 3.2.
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We can also translate our results in lemmas 4.2 and 4.3 by replacing the
distance in the thick part of manifolds to the actual distance. Note that we
also use the fact that we have a bounded diameter useful compact core for

every element of By(R).

Lemma 7.4. Given d > 0 there exists a constant D1 > 0 depending only on
d, R and x(0H) such that if N € By(R) and if a is a simple closed curve on

OH with a geodesic representative o in N \ T'y that

dy(a™,T'x) > Dy,

then pleat (1) is nonempty and

for every f € pleaty(u), where p is any finite leaved lamination that contains

.

Theorem 7.5. Given d > 0 there exists Dy > d and A > 0 depending only
on d, R and x(0H) such that the following holds. If N € By(R) and o has
a geodesic representative o in N \ T'y with dy(a*,Tx) > Do, then for every

ﬁ € C()(S) with dc(a, ,3) S 1:
(a) pleaty(B) # 0,
(b) pleaty(a) N pleaty(3) # 0

(c) every f € pleaty(8) has dy(f(0H),I'n) > d
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(d) f and g € pleaty(f5), the set
short(f, B) U short(g, B)

has diameter bounded by A in C(OH).

Next, we need to have some control over the pleated maps that are nearby

the diskbusting geodesic.

Lemma 7.6. For every D there exists K such that for every two pleated
surfaces

S pleathD and g € pleat;[D

the induced metrics oy and o, on OH are K-bi-Lipschitz up to isotopy for
every M, N € By(R).

Note that f and g are pleated surfaces in different elements of By(R). Yet
we have a K-bi-Lipschitz map between the induced metrics once we know that

f and g are near the base points.

Proof. Suppose we have a sequence of counter examples (N;, M;, f;, gi)i>1 that
satisfy the hypothesis. We can assume that the sequences (V;) and (M;)
converge in the geometric topology to N and M € By(R) respectively. Because
of lemma 7.3, the pleated surfaces f;(0H) and ¢;(0H) are contained in a
bounded neighborhood of the base points and therefore they also converge to
pleated surfaces f and g in N and M.

Suppose k; : N — N; are the approximating maps for the convergent se-

quence (NV;). We claim that the sequence (f;) is convergent as a sequence of
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marked pleated surfaces. (For a description of different types of convergence
for pleated surfaces, see Canary-Epstein-Green [CEGS87].) In our situation
it means that in addition to the fact that f;(0H) converge to f(0H) geo-
metrically, k; o f is very close to f; o ¢; as a map for ¢ > 0, where ¢; is a
self-homeomorphism of H whose isotopy class does not depend on 4.

Let C' be a useful compact core for N. Then it easily follows that f is
m-injective into N \ C. Otherwise the image of a compressing disk would give
a compressing disk for f;(0H) in N; \ I'y,. Hence there exists a homotopy
between f o1 and j within N \ C for some 1 a self-homeomorphism of 0H.
By applying x; on these, we get a homotopy between k; o f o4 and k; 0 j
within N; \ T'y,. We know that k; o j is isotopic to j and therefore they are
homotopic outside a useful compact core and in the complement of I'y, (the
convergence N; — N was in the strong topology for marked structures). On
the other hand, ;o0 f(0H) is extremely close to f;(0H) and they have distance
at least 1 from I'yy for ¢ > 0. Therefore, there is a homotopy between f; o ¢;
and k; o f for a self-homeomorphism ¢; of 0H (within NV; \ I'y,). These show

that

J~Kioj, Kiojr~kK;ofor, Kiofor~ fiop;or,

where ~ denotes homotopy and all the above homotopies take place in N;\I'y;.
But j and f; were homotopic and m-injective therefore ¢; o ¢ is isotopic to
identity and we have proved the claim. We assume that we have replaced
f with f o1 and then the sequence (f;) converges as a sequence of marked
pleated surfaces to f. Once this is the case, one can easily see that the metrics

induced by f and f; are very close up to isotopy for ¢ > 0. This is because
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k; o f and f; o ¢; are very close as maps, where ¢; is isotopic to identity and
also that k; is very close to an isometry for 7 > 0.

The same argument shows that after possibly precomposing g with a home-
omorphism of H, g; — g as a sequence of marked pleated surfaces. Then, we
know that the metrics induced by g¢; and ¢ are 1-bi-Lipschitz up to isotopy for
1 > 0. But the metrics induced by f and g are bi-Lipschitz and this shows
that the metrics induced by f; and g; (up to isotopy) are bi-Lipschitz with a

bounded bi-Lipschitz constant. O

Corollary 7.7. Suppose By(R) is as before. For every D and B > 0 the set
Ap g := {a|a € short(f, B) for some N € By(R) and f € pleathD}

s finite.

Proof. This is immediate after lemma 7.6. Choose a fixed pleated surface
g € pleat;,D for some M € By(R). Now if f and « are as above, since the

metrics induced by f and g are K-bi-Lipschitz, we have

But for fixed g, there is only a finite set of closed curves whose length do not

exceed KB and we are done. O

In the next lemma, we show that there are pleated surfaces in pleat,

within a uniformly bounded distance from I'y. As a matter of fact, if

dn(0OCH(N),T'n)
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is small, this is false. But in such a case, we can use compactness of By(R)
in strong topology and prove that CH (V) has uniformly bounded diameter.
Then most of the things that we need become trivial. In particular, using the
above corollary, we can see that C(B, N) is finite depending on the diameter
of CH(N) and theorem 7.11 (Quasiconvexity) is obvious. Hence, in all our

discussions, we assume dy (OCH(N),'y) is uniformly large, when appropriate.

Lemma 7.8. If D is sufficiently large independently of N, then pleathD IS
nonempty for every N € By(R). Fven more, suppose d > 0 is given then if D
s sufficiently large, there exists f € pleaty< D whose distance from Uy is at

least d.

Proof. Again the idea of the proof is taking a geometric limit. Suppose (V;) C
By(R) is a sequence such that for every i, every f € pleat, has distance at
least i from I'y, or dy(f(0H),'n) < d. After extracting a subsequence, which
we still call (N;), we can assume (NN;) converges strongly to N € By(R). In N,
take a pleated surface f € pleat, that has distance at least d + 1 from I'y.
If we use the approximating maps to push f(0H) to N;, the image has to be
close to a pleated surface for ¢ > 0 with distance more than d from I'y,. The

obtained pleated surface has to be in pleat, and we have a contradiction. O

Fix a constant D; that satisfies lemma 7.4 for d = dy and let D, be the
constant obtained in theorem 7.5 for d = D; and let n > 0 be a lower bound
for the injectivity radius in the D;-neighborhood of I'y for every N. Finally
fix D3 to be large enough to satisfy the conclusion of the above lemma and be
bigger than

max{D,, cosh_l(g) + B+ D:}.
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Now we define a projection from C(0H) to C(B, N) as follows:

Iy p(a):= U short(f, B),

fepleat y (a)

if o has a geodesic representative o in N \ I'y with dy(o*,T'y) > D; and
HN,B(a) = AD3,B N C(B, N),

otherwise.

The first part of the above definition always gives nonempty projections,
since pleat () is nonempty by lemma 4.2 and B is bigger than the Bers’
constant. Also because of lemma 7.8 and our assumption about D3, the second
part gives nonempty projections as well.

Similar to Minsky [Min01], we can prove that II is a coarse Lipschitz pro-

jection:

Proposition 7.9. (Coarse Projection) There exists ¢ > 0 depending only on

X(0H), R and B such that
(i) (Coarse idempotence) If o € C(B, N) then o € lly g(c).

(ii) (Coarse Lipschitz) For o and 8 € Co(0H) with dc(a, §) <1,

diamc(HN,B(a) U HN,B(ﬁ)) S C.

Proof. Proof of part (i) is easy. Notice that there is always a useful compact

core within distance dy of I'y. If « has a geodesic representative o in N \ 'y
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with dy(T'n,a*) > Dy, by lemma 7.4 there exists f € pleat, that realizes «

and then

a € short(f, B) C Ily g(a).

On the other hand suppose « does not have a geodesic representative in N\T'y
with distance > D; from I',,. By definition of C(B, N) there exists f € pleaty
such that « € short(f, B). Then either f(«) is compressible and by lemma
3.2, f(OH) has distance at most B < D3 from I'y or f(«) is incompressible
and «*, the geodesic representative of «, has distance < D; from ['y. Then

by lemma 2.11,

dN(f(aH) FN) < dN OZ),OJ +ZN( *) +dN(Ol*,FN)

lo,(
osh™ 1( it )+B+D1

In(a

1B
G

<cosh™ (=) + B+ D,

< Ds.

In either case, dy(f(0H),'n) < D3 and therefore

o € ShOI‘t(f, B) C AD3,B = HN,B(a)-

For part (ii), first suppose that either o or 3, say «, has a geodesic rep-
resentative with distance > D, of I'y. By theorem 7.5 and our assumption
that d = D, we know that 8 has a geodesic representative with distance more

than D; from I'y. Therefore we have used the first definition for projection of
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both o and 3. Statements (b) and (d) of theorem 7.5 imply that

short(f, B) Ushort(g, B)

has diameter bounded by 2A4 in C(0H) for every f € pleaty(«a) and g €

pleat , (3). Hence

diamc(HN,B(oz) U HN,B(/B)) S 2A.

On the other hand suppose neither o nor 5 have geodesic representatives
with distance > Dy of I'y. We claim that IIy(«) and IIy () are both included
in Ap, p and therefore their union has diameter bounded by diameter of Ap, p.

If a does not have a geodesic representative with distance > D; of Iy then
the claim for o follows by definition of Iy g(a). If o does have a geodesic

representative o* with dy(a*,I'y) > Dy, then

D, < dn(a*,Tn) < Ds.

In particular, every f € pleat, («) has distance < D, from I'y. Then

short(f, B) C Ap, 5 C Ap, 5

by corollary 7.7 and therefore

ly,p(a) C Ap,, s,
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and we have proved our claim for ce. The same argument proves the claim for

{ and finishes proof of part (ii) by setting
Cc = max{diamc (ADS,B)a 2A}

O

Lemma 7.10. (Minsky [Min01, Lem. 3.3]) Let X be a §-hyperbolic geodesic
metric space and Y C X a subset admitting a map 11 : X — Y which is

coarse-Lipschitz and coarse-idempotent. That is, there exists C' > 0 such that

o Ifd(x,z") <1 then d(Il(z),II(z")) < C', and

o IfyeY then d(y,ll(y)) < C'. ThenY is K-quasi-convez, and further-
more if g s a geodesic in X whose endpoints are within distance a of Y
then

d(z,II(z)) < b

for some b =b(a,d,C"), and every x € g.

Similar to Minsky’s [Min01], this proves:

Theorem 7.11. (Quasi-convexity Theorem) There ezists L depending only
on R and x(0H) such that for every B bigger than the Bers’ constant By and
N € By(R), the set

C(B,N) := U short(f, B),

fepleat

is L-quasi-conver. Moreover, if 5 is a geodesic in C(OH) with endpoints in

C(B,N) then d¢(z, Iy (z, B)) < L for each x € 3.
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Chapter 8

Bounded geometry

Here in this chapter, we prove:

Theorem 1.5 (Bounded geometry) There exists n depending only on R and
X(OH) such that the injectivity radius of every hyperbolic structure with R-

bounded combinatorics on H, N € By(R), is bounded below by 7.

The proof is the same as Minsky’s proof of the main theorem in [Min01]. We
will discuss the differences in our setting. We can use lemma 7.2 and translate
lemmas 4.4 (Homotopy bound) and 4.6 (Halfway surface) and corollary 4.7

(Interpolation) into our setting and in particular we have:

Corollary 8.1. (Interpolation) Given € > 0 there ezists D > 0 and K > 0
depending on €, R and x(0H) such that for a hyperbolic structure N € By(R)
and a useful compact core C' the following holds. Let Py — P, — --- — P,

be an elementary-move sequence of pants decompositions on OH and let fo €
pleat y (Fy) then there exists 0 < k < n such that there exists F' : 0H x [0, k] —

N\ C with
L FOZfO;
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o I =Flouxpy € pleat y(P,),
o F; 15 = Flomx(i-1/2) € pleaty(P;_1) N pleaty(P;) and
o I is a (K, €)-good homotopy restricted to OH X [i — 1,1 — %] and OH x
[i — 3, i] with respect to P,y and P,
for everyi=1,..., k. Moreover, dy(Fy(0H),C) < D if k # n.

Using the above corollary, for every point in N, we can find a continuous
family of surfaces that cover that point. We use such an interpolation to
rule out possibility of Margulis tubes with large diameter, which gives a lower

bound for the injectivity radius of N.

8.1 The resolution sequence

Let Py - P, — --- — P, be an elementary-move sequence and § € Co(0H),
we denote

Jg:={i€[0,n]:p € P}

Note that if Js is an interval [k,[], then the elementary move P,_; — P
exchanges some « for § and P, — P, exchanges § for some o/, and we call
them predecessor and successor of 3, respectively.

We also use the notation

t
Jio) i= U Js,,
i=s

where fy, ..., By is a sequence of vertices in C(O0H). The following theorem is

a consequence of work of Masur-Minsky [MMO0].
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Theorem 8.2. (Controlled Resolution Sequences) [Min01, Thm. 5.1] Let P
and @ be pants decompositions in OH. There exists a geodesic in C1(0H) with
vertex sequence By, . . ., Bm, and an elementary move sequence Py — - -+ — P,

with the following properties:
1. Bo€ Ph=P and B, € P, = Q.
2. Each P; contains some ;.
3. Js, if nonempty, is always an interval, and if [s,t] C [0, m] then
sl < b(t — s) supdy (P, Q)°,
where the suprimum is over only those non-annular subsurfaces Y whose

boundary curves are components of some Py with k € Jis .

4. If B is a curve with non-empty Jg, then its predecessor and successor

curves « and o satisfy

|ds(, o) — ds (P, Q)| < 6.

The constants a,b,d depend only on x(0H). The expression |J| for an interval

J denotes its diameter.

Let v be a closed curve on 0H such that [y (7) is very small. We will try
to bound the diameter of the Margulis tube T, (¢) depending only on R and
X(0OH) and if we are successful, we have proved theorem 1.5. We also fix a

useful compact core C' C N.
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8.2 Initial pants

We know that N € By(R) is associated to some o € Ay(R), where either « is
the ending lamination of N or « is a marking that has length bounded by By
on the conformal structure at infinity of N. We also had 5 € my(H) such that
« and S have (R + 1)-bounded combinatorics. Recall that my(H) was a finite
set of handlebody markings on 0H.

Let P_ = base(8) be the pants decomposition of 5. Choose an element
M € By(R) and f € M;[D. (For now we assume D is bigger than the
constant in lemma 7.8 and therefore there exists one such f.) Lemma 7.6
shows that the o is bi-Lipschitz to o (there is a bi-Lipschitz map homotopic
to identity from oy to o,) for every N € By(R) and g € M;D, and the

bi-Lipschitz constant does not depend on ¢. In particular this proves that

Fact 8.3. Given D there exists Bi > 0 such that I, (P-) < By for every
N € By(R) and f € pleathD.

Suppose N is convex cocompact (equivalently « is a marking). If +y is not
a component, of base(«) then choose P, = base(a). If v is a component of
base(a), replace it with its transversal and let P, be the new pants decompo-
sition. In either case, P, has length bounded by By on the conformal structure
at infinity and 7y is not a component of P,. As we explained in the last chapter,
if dy(OCH(N),T'wx) is bounded by a uniform constant then we can use strong
compactness of By(R) and imply that CH(N) has uniformly bounded diameter
and it has uniform bounded geometry. Hence, we assume dy(OCH(N),T'y) is
uniformly large when required.

Recall that in the convex cocompact case the conformal structure at infinity
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is eo-thick and therefore we can use Bridgeman-Canary’s theorem 2.12 [BC03]
and see that

o, (Py) < JBq

for some J depending only on €y, where g € pleat, parametrizes OCH(N).
By assuming dy(0CH(N),'y) is large, we can make sure that P, has a
geodesic representative in N \ I'y with large distance from I'y and by lemma

7.4 pleaty(P;) # (. Choose some f, € pleaty (P;); we have

f-l-ag € gOOdN(P-I-a JBO)

Then because of lemma 4.4 (Homotopy bound), there exists a uniform constant
K and a (K, ¢)-good homotopy between f, and g which stays away from
a useful compact core of N. Since v is not a component of P,, this good
homotopy can only penetrate a distance K; into T, (e) and hence does not
meet T, (e1), with €, < ¢y depending only on K.

If N is geometrically infinite, let ()1, Q2, . .. be a sequence of pants decom-
positions which converge to a measured lamination supported on «. If 7 is suf-
ficiently large pleat , (Q;) will be nonempty and every element of pleat  (Q;)
will be far into the end of N. Choose P, = Q; and f, € pleaty P, such that

f+(0H) encloses a compact subset of N that contains T, (e).
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8.3 The interpolation

We fix eo = (€1, x(OH)) to be the constant obtained in lemma 3.3 and in
particular

f((0H)=*) Cc N=2© (8.1)

whenever f € pleat, because of our assumption in definition of pleat, that
dn(f(0H),Ty) > D, for every f € pleat,y.

Now join P, and P_ with a resolution sequence Py = Py — --- — P, = P_
as in theorem 8.2. Then we can use corollary 8.1 for €, and see that there exist
constants K and D depending only on €y, R and x(0H) and there exists a

continuous family

F:0H — [0,k] - N\C
of surfaces such that
° Fy=f4,
o F; = Flomxy € pleaty(P),
o I 1o = Flonxgi-1/2) € pleat (P;_;) N pleaty (P;) and

o Flomxji-1,i-1/2) and Flgmy[i—1/2,:) are (K, €z)-good homotopies with re-

spect to P;, and P;

forevery i = 1,..., k. Moreover, we know that £ < n and F;(0H) has distance
at most D from C because the last pants decomposition P_ consists of a set

of meridians and cannot be realized in V.
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By fact 8.3, we know that
le (P—) < Bl

for a constant B; that is independent of choice of N € By(R). Also note that
F.(0H) homologically encloses a compact set of bounded diameter indepen-

dent of our choice of N or the resolution sequence.

Lemma 8.4. Given D there exists K; such that if N € By(R) and f €
pleathD are given then f(OH) homologically encloses a set with diameter

bounded by K.

Proof. Suppose (N;, f;) is a sequence of counterexamples. Without loss of
generality, we can assume that N; — N strongly as a sequence of marked
hyperbolic structures. We can see that the pleated surfaces f;(0H) converge
to a pleated surface f € pleat,y. The map f is homotopic to 57 and therefore
homologically encloses a set with bounded diameter in N. Pushing this to
the approximates we get an upper-bound for the diameter of sets that are

homologically enclosed by f;(0H) and we have a contradiction. O

Therefore image of F' covers T, (¢y) with degree 1 except for a set of uni-
formly bounded diameter and it is enough to show that T.,(eo) NF(0H %[0, k])
has bounded diameter.

Fix B = max{Bi, JB,} and let €3 be such that a K-neighborhood of any

es-Margulis tube is still contained in an eo-Margulis tube.

Claim 8.5. There is a subinterval I, C [0, k] of diameter at most 2L, so that

F(0H x [i,i+1]) can meet T,(e3), where L is the quasi-convezity constant of
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theorem 7.11 and depends only on R and x(0H).

Proof. Suppose {51, ..., Bm} is the vertex set of the chosen resolution between
P, and P_. We use the notation of theorem 8.2.
Suppose ; is a component of P;. If F; = F(0H x {j}) meets T, (e2) then

because of (8.1), I, (7) < €1 where 0; = op; and in particular

AS ShOI't(Fj, B) C HN(ﬁzaB)

It follows from theorem 7.11 (Quasiconvexity) that

de(Bi,v) < L

where L depends only on R and x(0H). Then because {0y, .., 5} are the
vertices of a geodesic, the possible values of 7 lie in an interval of diameter at
most 2L, which we call I, and we have 7 € L,.

Now notice that because of our choice of €3 and since Flpgxpit1) is a
(K, €2)-good homotopy, if any track of a block F(0H x [j, j +1]) meets T, (e3)

then one of the boundaries must meet T, (ez) and hence j or j+1isin Jr. O

Let us restrict our elementary move sequence to

Py —---— Py

where [s,t] = J;, and notice that this subsequence must still encase T (e3),
since we have thrown away the blocks which avoid T,(e3). Let M =t — s =

E/AE
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Using part (3) of Theorem 8.2, tells us that
M < b(2L)supdy(Py, P_)*,
Y

where the suprimum is over subsurfaces Y whose boundaries appear among
the P; in our subsequence. Such P, must lie in a L + 1 neighborhood of v, in
the de metric.

It follows from our assumption about R-bounded combinatorics of o and

B respect to each other that
dy(Py,P.) < R+2u (8.2)

where u depends only on x(0H) and Y C OH is any subsurface. (This is
obvious for convex cocompact case and for the geometrically infinite case, we
can use Klarreich’s theorem in the same way as in Minsky [Min01, Lem. 7.3].)
This gives a uniform bound on M.

Suppose 7 is not a component of any P;. Then each block F |3HX[1-’,-+1] has
track lengths of at most 2K within T, (e3). There are only M + 2 blocks in

our restricted sequence and they cover all of T (e3), so
diamT, (e3) < 2K (M + 2).

This bounds [y () from below, and we are done.
When « does appear among the {P;}, the argument is exactly the same
as Minsky’s [MinO1] and we only briefly describe the arguments. In this case

J,, is some nonempty interval of .J; and suppose 3 and 3’ are the predecessor
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and successor curves to v in the sequence. Both of them intersect v and by
part (4) of theorem 8.2, we know that d, (3, ') is uniformly approximated by
dy (P4, P_), which by (8.2) is uniformly bounded depending on R.

Suppose J, = [k,l]. In 0H x [k — 1/2,1+ 1/2], the product region above
collar(y) is a solid torus, which we call U. (We are assuming that we have
identified collar(y) for the metrics induced by all integers and half-integers
in [k,l].) The map F can take the complement of this solid torus at most
2K (M + 2) into T,(e3). Hence there is a uniform e, > 0 so that F'(U) must
cover T, (es) and it will be enough to bound diameter of F(U).

The boundary of U partitions into two horizontal annuli on 0H x {k—1/2}
and OH x {l + 1/2} and a vertical annulus J(collar(y)) x [k — 1/2,1 + 1/2].
If we consider QU with the induced metric from F', we can show that all these
annuli have uniformly bounded geometry. This is because Fy_j/2, Fi41/2 €
good(vy, A) (for a uniform A obtained from lemma 4.6) and ~ has length at
least €, on these surfaces and final that hight of the vertical annulus is bounded
by K(M + 1).

Now we want to control length of a meridian of U. Suppose o(k — 1/2)
and o(l 4+ 1/2) are the metrics induced by Fy_1/2 and F;1/o and as we said
we assume collar(7) is identified in both of them. Realize § as a geodesic in
o(k —1/2) and let b be an arc of N collar(y) (there may be two). Similarly
assume (' is a geodesic in o(l + 1/2) and let &' be an arc ' N collar(y).
Similar to Minsky[Lem. 4.3]Min01, we have an upper-bound for the length of
bin o(k —1/2) and for the length of ' in o(/ + 1/2). The curve

m=0(bx[k—1/2,1+1/2)),
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is a meridian of U, and we need to show that its length is uniformly bounded.
The idea here is to observe that length of the arc b in o({+1/2) is estimated
by the number of times it twists around the annulus, which is estimated by
dy(B,B"). This last estimate follows from lemma 6.1 of Minsky [Min01].
It follows that F'(m) has uniformly bounded length and therefore spans a
disk of bounded diameter. Then by a coning argument we can homotope F' on
all of U to a new map of bounded diameter. This bounds the radius of T, (e4)

from above and we are done.
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Chapter 9

The sweep-out

Here by using the bounded geometry result and similar to our constructions in
the last chapter, we want to give an interpolation that covers almost all of the
convex core of N € By(R) and is more efficient. We call such an interpolation

a sweep-out (see definition 9.1). We prove the following proposition:

Proposition 9.1. There exists K > 0 depending only on R and x(0H) such
that every N € By(R) with any useful compact core C C N admits a K-sweep-

out.

Note that, the bounded geometry theorem tells us that length of all incom-
pressible curves is at least 217. By definition, the pleated surfaces in pleat,
have distance at least 1 from 'y and therefore by lemma 3.2, the length of
image of compressible curves by elements of pleat, is at least 1. We always
assume 7 is smaller than 1 and therefore the metric induced by any element
of pleat, is 7-thick.

Lemma 9.2. There exists a constant kg > 0 such that if N € By(R) and
f,g € pleaty are given with dy(f(0H),g(0H)) > ko, then the Teichmiiller

distance between the induced metrics 1s at least 1.
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Proof. If the distance between f(0H) and g(0H) is more than 2B, + 2d,
then we know that at least one of them, say f(0H), has distance more than
By + dy from I'y. Now let o be the shortest simple closed curve on ;. Bers’
observation shows that the oj-length of o is at most By. Therefore f(«)
has length at most By and by lemma 3.2, since its distance from a useful
compact core of N is more than By, a cannot be a meridian and has a geodesic
representative a* in V.

Suppose dg(oy,0,) < 1; then similar to Minsky [Min93], we can see that

where ¢ depends only on x(0H) and 7. Therefore I, (o)) < ceBy. Suppose o
is the geodesic representative of a in N then by lemma 2.11 and using the fact

that length of a* is at least 1, we have
B
d(f (@), ") < cosh™'(T2)

and
ceBy

U

dn(g(c),a*) < cosh™(

).

Since length of o* is at most By, this gives an upper bound for the distance

between f(OH) and g(0H) and we are done. O
From now, we fix the constant ky > 1 which satisfies the above lemma.

Lemma 9.3. Suppose By(R) is as before. For every a > 0 there exists b > 0

such that if N € By(R) with a useful compact core C' and f € pleaty are
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given and 1 : I — N\ C, I is a compact interval in R, is an arc of length at
most a and 1(0I) C f(OH) then | is homotopic rel endpoints and within N \ C

to an arc of length at most b in f(OH).

Proof. The idea of proof is by taking geometric limits. Assume (N;, f;,[;) is a
sequence of counter examples. Take a base point z; € N; to be on f;(0H) and
assume the sequence of pointed manifolds (NV;, z;) converges in the geometric
topology to (Nw, Zoo). The sequence of pleated surfaces (f;) also converge to
a pleated image of 0H in N, (because f;(0H) is n-thick for every 7).

If dy,(z;,T'n,) stays bounded then the limit Ny is in By(R). Similar to
lemma 7.6, one can see that the pleated surfaces (f;) converge to an element
f of MNOO as marked pleated surfaces. We can replace each [; with another
arc I} homotopic to [; relative endpoints and with length bounded depending
on a and distance more than dy from I'y,. Then the arcs I} converge to an arc
I, with bounded length which has distance more than dy from I'y_ and has
endpoints on f(0H).

Let Cy be a useful compact core for N,,. Since f is a homotopy equivalence
between 0H and Ny \ Cw, there exists an arc in f(0H) which is homotopic
to I, (rel endpoints) within Ny, \ Cw. If we map this arc and the homotopy
between these two arcs to the approximates, it will be e-close to an arc on
fi(0OH) which is homotopic (rel endpoints) to l; within N \ C. The length of
these arcs are bounded independently of 7 and we have a contradiction.

On the other hand, assume dy;,(z;,['y,) = 0o asi — oo and g : 0H — Ny

is the limit pleated surface. Also let

KR - (szxZ) - (Nooaxoo)
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be the approximating maps. For every 7, consider the representation p; :
m(0H) — PSLy(C) induced by (k; o g). and also consider p : m(0H) —
PSLy(C) induced by g.. It obviously follows that (p;) — p in algebraic topol-
ogy. Because of bounded geometry, we know that there are no parabolics in
N; and N, and therefore the convergence of p; — p is geometric too. Notice
that here p; is not faithful but it is not hard to see that for every o € m (H),
« is not in the kernel of p; for ¢ sufficiently large. This is because of the fact
that the distance of z; to C tends to infinity as ¢ — oo. Once we have this
we can use standard arguments about geometric and algebraic topology (cf.
[NS]). This in particular shows that g, : 71 (0H) — m1 (N ) is surjective. Now
similar to the last case, by passing to a subsequence we can assume that (/;)
converges to an arc [ in N, with endpoints on g(0H) and length bounded
a + 1. Since g, is surjective, we can homotope [/ (rel endpoints) to an arc in

g(0H) and the rest of the argument will be the same as the previous case. [

Lemma 9.4. Given D > 0, there exists K > 0 such that for every f and

g € pleaty, N € By(R) and a useful compact core C, if

dn(f(0H),g(0H)) < D

then there is a (K, 0)-good homotopy between f and g within N \ C: a home-
omorphism ¢ : OH — OH and a homotopy with tracks length bounded by K
between f and g o ¢ within N \ C. Also, the identity map on OH is K-bi-

Lipschitz from the metric induced by f to the metric induced by g o ¢.

Proof. Using Bers’ observation, we know that there exists a pants decompo-

sition P whose og-length is bounded by By. Since diameters of f(0H) and
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g(0H) are uniformly bounded, we can represent every component of P with
a closed curve with a base point on g(0H) and length bounded depending on
D, By and diameter of f(0H). Now we can use lemma 9.3 and see that this
closed curve is homotopic to a closed curve on g(0H) whose length is bounded
depending on those constants. Hence there exists B; depending on D such
that the total length of P in o4 is at most B;. This in particular implies
that f, g € good y(P; By). If f(OH) has a large distance (and therefore large
N=¢_distance) from C depending on B; and 7 then it follows from lemma
4.4 (Homotopy bound) that there exists a (K, n)-good homotopy with respect
to P between f and g. Since N has n-bounded geometry this is actually a
(K, 0)-good homotopy and we are done.

Hence we can assume that the distance between f(0H) and C is uniformly
bounded depending on D. Suppose we have a sequence of counterexamples
(N, fi, ;) which satisfy the hypothesis but fail the conclusion for bigger and
bigger constants K. Since f;(0H) stays within a bounded distance from 'y,
independently of 7, we can assume the sequence (IV;,py,) converges strongly
to (N,pn) € Bo(R) as marked hyperbolic structures. Suppose C' is a useful

compact core in N and take C; = k;(C), where

K)Z'CN—>NZ'

are the approximating maps. Since f;(0H) and therefore g;(0H) has bounded
distance from I'y, by using lemma 7.3 (Uniform bounded diameter lemma),
we know that they stay in the D;-neighborhood of I'y, for some constant D,

independent of 7. Since N; — N as a sequence of marked structures, we can
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see that the pleated surfaces (f;) and (g;) converge as marked pleated surfaces
to f,g € pleaty. (This is similar to the proof of lemma 7.6.) In other terms,
for every i there exists ¢;,1; : 0OH — OH isotopic to identity such that x; o f
and k; o g are e-close to f; o ¢; and g; o ¢; (as maps). The track length of
the homotopy between f and g and the bi-Lipschitz constant of id : oy — 0
give upper-bounds for the the track length of the homotopy between f; o ¢;
and g; o ¢; and the bi-Lipschitz constant of id : 0,04, —+ 04,0, and we have a
contradiction after precomposing with ¢; ' o ;.

O

Definition 9.1. Given a useful compact core C C N, amap G: 0H xI —- N
for N € By(R) is a K-sweep-out, if G maps into CH(N) \ C and has the

following properties:

(a) I = [0,n] for some integer n > 0 when N is convex cocompact and

I =10,00) if N is geometrically infinite,

(b) for each integer ¢ € I

G; = G‘aHx{i} € pleat,,
(c) the block G|amx[i—1,;) has tracks G({z} x [ — 1,1]) with length bounded

by K for every z € OH and integer 0 < i € I,

(d) G covers every point in the convex core of N with degree 1 except a set

of diameter bounded by K,

(e) Gy has distance at most K from py and when N is convex cocompact
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and I = [0, n|, G, gives a parametrization of the boundary of the convex

core,
(f) dn(Gi—1(0H),G;(0H)) > ky for every positive integer i € I,
(g) G;(0H) separates G;_1(0H) from the end of N and

(h) the identity map on 0H is K-bi-Lipschitz from the metric induced by
(Gi_1 to the metric induced by G; and the Teichmiiller distance between

these metrics is bounded by K for every positive integer 7 € 1.

Proof of proposition 9.1. Suppose N € By(R) and a useful compact core C' C
N are given. The theorem is in fact an application of our proof in the last
chapter and lemmas 9.2 and 9.4.

Our proof in the last chapter and in fact corollary 8.1 (Interpolation) im-
ply that within distance D of every point in the convex core of N there ex-
ists a pleated surface in pleat,, where D depends only on R and x(0H).
Also note that diameter of every element of pleat, is uniformly bounded
by —27x(0H)/n. Using this, we can construct a sequence (G;)ics of ele-
ments of pleat,, where J = {0,1,...} when N is geometrically infinite and

J=4{0,1,...,n} is finite when N is convex cocompact, such that

ko < dn(Gi1(0H),Gi(OH)) < D', 0<ieJ

for a constant D’ depending on D, ky and diameter bound of pleated surfaces.
Furthermore, we can assume that Gy has distance at most D’ from C and
when N is convex cocompact, G,, parametrizes the boundary of CH(N). Note

that the sequence (G;) apparently satisfies (g) as well.
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Now use lemma 9.4 to inductively construct G |3Hx[i_1,i] for every positive
i € J as a (K1,0)-good homotopy in N \ C for a uniform constant K;. Note
that during this construction, we may change G; at each integer level by pre-
composing with a self-homeomorphism of OH isotopic to identity. This gives

a map

G:0HxI—>N\C

and I = [0, 00) when N is geometrically finite and I = [0, n] when N is convex
cocompact. Using lemma 8.4, we can see that Go(0H) homologically encloses
a set with diameter uniformly bounded by K, and G covers every point outside
of this set with degree 1. Finally note that if there is a K;-bi-Lipschitz map ho-
motopic to identity between two 7-thick points of the Teichmiiller space, then
the Teichmiiller distance between these points is bounded by K3 depending
only on K7, n and the topology of the surface. Setting K = max{K, K», K3},

we can see that G is a K-sweep-out. O
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Chapter 10

The Model Manifold

In this chapter, we want to use the sweep-out constructed in the last chapter
to construct a bi-Lipschitz model for the geometry of every N € By(R), which
is determined by £(NN) and the bi-Lipschitz constant depends only on R and
X(0H).

The models are similar to Minsky’s models in [Min94]. But we use the
description of the model in a way similar to Mosher [Mo03]. We should point
out that independently Bowditch [Bo] has given a similar description of these
models in terms of marked hyperbolic surface bundles on Teichmiiller geodesics
as well. Mosher’s work is set up to give a model for surface groups with degen-
erate hyperbolic structure and bounded geometry. But the same construction
gives a uniform model for the convex cocompact case as well. Here, we use this
to get a uniform model for both convex cocompact and geometrically infinite
structures in By(R). Recall the definition of the marked hyperbolic surface
bundle on a Teichmiiller geodesic and the definition of the SOLV-metric from

2.9 and 2.10.

Theorem 10.1. (The model manifold) Suppose the handlebody H of genus
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> 1 1s given. Given R, there exist constants L and c, for which the following
holds. Let N € By(R) be a hyperbolic structure on H. For a choice of a useful
compact core C C N, there exists a cobounded geodesic ray or segment g in

T(0H), such that:

(1) There is a map @ : SEOLV — N,, properly homotopic to a homeomor-
phism and in the homotopy class determined by j, which lifts to a (L, c)-

quasi-tsometry of universal covers ’HEOLV — Ne, where No = CH(N)\C.

(2) The initial point of g is a fizred point Ty € T and the “terminal” point is
T(E(N)). (The “terminal” point is a finite endpoint that corresponds to
the conformal structure at infinity, in case N 1is convexr cocompact and
an ideal endpoint in Thurston’s compactification of Teichmiiller space,
that corresponds to the ending lamination of N, when N is geometrically

infinite.)

Suppose C' is a fixed useful compact core in N and G : 0H x I — N\ C' is
the K-sweep-out constructed in proposition 9.1 and let 0; = o, be the metric
induced by the pleated surface G; for every integer ¢ € I. We know that the
Teichmiiller distance between o; and o;,1 is at most K. Hence, there is a
Z-piecewise affine, K-Lipschitz path v: I — ¥ with y(n) = o,,. Since inj(o,)
is at most 7, it follows that the path v is K-cobounded, where K depends only
on 7 and K.

Now consider the canonical hyperbolic surface bundle &, — I and its
universal cover, the canonical hyperbolic plane bundle H, — I. Note that
S, = o, for every integer n € I, where S, denotes the fiber above v(n). We

can identify 0H x I with S, and from now on we consider the sweep-out as a
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map

G:S,— N.

Note that the restriction of G' to S, is length preserving for every integer n €
and because of the property (c) of the sweep-out, the restriction of G to any
x X [n,n+1]is a K-Lipschitz map. Also note that property (f) of the sweep-out
and lemma 9.2 show that the distance between o, and o, ; is at least 1 and
therefore the Hausdorff distance between S, and S, is between 1 and K.
We know that image of the sweep-out is contained inside CH(N) \ C. Let
N, = CH(N) \ C, which is homeomorphic to 0H x [0,00) or OH x [0,1]

depending on whether N is geometrically infinite or convex cocompact.

Proposition 10.2. The map G : S, — N, lifts to a quasi-isometry of univer-

sal covers G : H, — Ne, with constants depending only on R and x(0H).

Proof. First we show that G is coarse surjective. By property (e) of the sweep-
out, we actually know that G is surjective to N, except possibly for a neigh-
borhood of bounded diameter about C. But we know that G is a pleated
surface contained in a bounded neighborhood of I'y. Therefore by lemma 9.4,
there is a homotopy with bounded tracks between 0C and Go(0H). This ho-
motopy covers every point in the complement of G(S,) in N,. Therefore, by
lifting it to the universal cover, one can conclude that every point has bounded
distance from image of G.

Using fact 2.1, it is enough to show that G is uniformly proper with con-
stants and properness gauge independent of N. We know that é|9{n is lift of a
pleated surface and is distance non-increasing. On the other hand, length of a

connection line z X [n,n+1] is at least 1 in #,, and its image G(z x [n,n+1))
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has length at most K and therefore G is Lipschitz along the connection lines
as well and these two easily prove that it is Lipschitz everywhere.
The following follows from lemma 9.3 and the fact that lift of a pleated

map is distance non-increasing.

Lemma 10.3. (Pleated surfaces are proper) Given R there exists a properness
gauge p : [0,00) — [0,00), such that if N € By(R) and f € pleat, are given

then the lift to the universal covers f: OH — ]Tfe 1s p-uniformly proper.

This shows that the map G is uniformly proper along H,, for every integer
n, where H,, is fiber of H, above y(n) and is the universal cover of S,. Once
we know this, we can use property (f) of the sweep-out, to see that if z € H,

and y € H, are given then

dy, (G(z), G(y)) = kol s —t], (10.1)

where |z| is the greatest integer < z. This fact together with the above
lemma prove that G is uniformly proper with constants and properness gauge
independent of N and we are done. (cf. Mosher’s argument in [Mo003, Claim

4.7).) O

Lemma 10.4. (H, is hyperbolic) The space M., or equivalently ]Ve, 8 a

hyperbolic metric space in sense of Gromov with constants depending only on

R and x(0H).

Proof. In the proof of the above lemma, we use an idea which was briefly
described in Mosher [Mo03, Sec. 4.4] and was partly based on Farb-Mosher
[FMO02]. The proof is similar to Farb-Mosher’s proof of [FM02, Lem. 5.2] with
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some modifications in our situation and a part which was missing in their
proof.

Given k > 1, an integer n > 1 and A > 0, we say that a sequence of non-
negative integers (r;);cs indexed by a subinterval J C Z satisfies the (x,n, A)-
flaring property if, whenever the three integers ¢+ — n, 7,7 + n are all in J, we
have:

ri>A = max{r_n,Titn} > KT

The number A is called the flaring threshold and notice that by making n
larger, we can make k as large as we want.

Let H. be given for a Z-piecewise affine, K-Lipschitz, K-cobounded path
v : 1 — % A A-quasihorizontal path in H,, A > 1, is a A-Lipschitz path
a:I' - M, I' C I, such that «(t) € H, for every t € I'. We say H,
satisfies the horizontal flaring property if there exists k > 1, an integer n > 1,
and a function A(X) : [1,00) = (0,00), such that if o, 5 : I' = H, are two
A-quasihorizontal paths with the same domain I’ then setting J = I' N Z the

sequence

di(a(i), 5(1), i€ J

satisfies the (k,n, A()\)) flaring property, where d; is the distance function on
H;, 1€ 1.

Farb-Mosher [FM02, Lem. 5.4] used Bestvina-Feighn Combination Theo-
rem [BF92] to prove that if H,, for a JC-cobounded, K-Lipschitz Z-piecewise
affine path +, satisfies (k,n, A()))-horizontal flaring then A, is d-hyperbolic
in sense of Gromov, where § depends on K, K and the flaring data x,n, A(A).

Therefore it will be enough to show that ., satisfies (k,n, A(A)) horizontal
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flaring.

Let’s go back and consider the path v : I — ¥ which was determined by
taking o(7) = o0; the induced metric from G; of the sweep-out. We want to
prove that H, is hyperbolic.

Let 3; = G;(S;) for every integer i € I and let Y, be its lift in N,. Recall
that it follows from properties of the sweep-out that the Hausdorff distance
between 3; and ¥;,; (or between f]z and iiﬂ) is at least ky and at most K.
Also recall that G; : S; — Y; and its lift é, H, — f]z are length preserving
and we denote the distance in o; by d; and the distance in Ne by d. We
should point out that 3; may not be embedded in N,. Because of this for
points x,y € ¥; we do not use the distance induced from N,, instead we use
the distance on the path-metric o; induced by G; : 0H — N,. Note that
lemma 10.3, shows properness of this distance when it is mapped by a pleated
surface. Also by a d;-geodesic in iz (or perhaps in ¥;), we mean a geodesic
for the metric d;, or equivalently an image of a geodesic in 0; ~ S;.

Notice that é—image of a A'-quasihorizontal path in #, is a A-Lipschitz
path a : I' = N,, I' C I, such that a(i) € 3; for every integer i € I' and
depends on A and K. By abuse, we call a é—image of a A-quasihorizontal a
A-quasihorizontal in Ne.

It follows that it is enough to show the existance of flaring data x,n, A(\)
such that for every two A-quasihorizontal paths o, 8 : I' — Ne, I'cI,in Ne
the sequence

di(ali), () i€I'NZ

satisfies (k,n, A()\)) flaring.

153



Fix a number \y > K; first we obtain constants kg, ng, Ag such that the
above sequence satisfies (kg, ng, Ag)-flaring for Ag-quasihorizontal paths a, S.
Then we use this and prove the existence of uniform flaring data r, n, A(\).

Suppose a, 5 : I' — Ne, I' C I, are \g-quasihorizontal. Let J = I'NZ =
{i_,...,iy} and assume iy — i_ is even and ig = % € J. Also define
D; = di(af(i), B(1))-

Recall that the connection map in H, gives a map h;; : H; — H; which is
L"J1-bi-Lipschitz for every pair of integers 7,7 € I and L depends only on K
and K the Lipschitz constant of . This gives a similar bi-Lipschitz condition
for the distances d; and d;. We cannot represent this by a bi-Lipschitz map
between iz and ij since they are not embedded; but this shows that if z,y €

‘H; are given

dj(G(hi(2)), G(hi(y)) < L' 7di(G(x), G(y)).
For each i € J, let p; : [0,D;] — &; be a d;-geodesic with endpoints a/(7)
and (7). Similar to [FM02, Claim 5.3], we have:

Claim 10.5. there is a family of quasthorizontal paths v described as follows:
e For each i € J and each t € [0, D;] the family contains a unique quasi-
horizontal path vy : [i_,i.] — N, that passes through the point p;(t). If

we fir 1 € J, we thus obtain a parametrization of the family vy by points

t € [0, D).

e The ordering of the family vy induced by the order on t € [0, D] is

independent of i. The first path v;y in the family is identified with o, and
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the last path v;p, is identified with 3.
e Each vy is Ny-quasihorizontal, where X, depends only on Ay and L.

It is easy to see that a Aj-quasihorizontal path in N, is a (Mg, @) quasi-
geodesic for constants A{ and a depending on A, L and ky. We already know
that it is Lipschitz. On the other hand using property (f) of the sweep-out, we
know that d(a(i), a(j)) > kol|i — j| for integers 4, j in the domain of a. In fact,
the same argument shows that its images in /V and its universal cover N =3
are also (\j, a)-quasigeodesic. In HP, there exists a constant J; depending only
on Ay and a such that for any rectangle of the form v o *w* o’ where o, 0’ are
geodesics and v, w are (\j, a)-quasigeodesics, any point on v is within distance
dpofcUwU0.

By lemma 10.3 (Pleated surfaces are proper), there exists a constant o
such that:

foralli e J, z,y € ii, if d(z,y) < Xj(d1 + 1) + 07 then d;(z,y) < do.

Now consider the flaring parameters k', n', A" defined below:

!

,{,—é
2
7’LI= L51+352J+1

AI:52

First, we show that if all the indices in J are bigger than 6, then the se-
quence {D;};c; has k', n', A" flaring property. For simplicity and without loss
of generality, we assume s is an integer. Suppose i+ = iy +n', we must prove

that
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o if D;) > A’ then max{D;_, D;.} > k'Dj,.

Case 1. max{D; ,D;,} < 60,. We claim that we can take geodesics o4
in the interior of Ne with the same endpoints as p;+ and length < 6J,. The
reason why o, will be in the interior of ]\78 is that all the indices are bigger
than 609, therefore the endpoints of p;» have distance at least 6Jy from f]o
and aNe. Therefore the geodesic representative of these arcs (rel endpoints)
is inside Ne.

Notice that a geodesic in the interior of ]ve projects to a geodesic in N.
This shows that the rectangle axo_ x %0, projects to a homotopically trivial
rectangle in N, and its lift to N = HP is a rectangle o/ x o’ ' % o' where o',
are geodesics and o and [’ are (A, a)-quasigeodesics. Hence every point of o/
has distance at most d; from o’ U 3’ Uo’, . This rectangle lifts isometrically to
Ne and therefore, every point of o has distance at most §; from o U S U 0.
Consider now the point «(ig) and suppose it has distance at most §; from
z€o_UBUoy.

If z€ 04 or o_, say oy then it follows that

d(a(’io), iﬂ_) S 51 + 6762 < n'

which implies that d(Z;,,S:4) < n' but we know that the distance between

these two is at least n' - kg > n' and we have a contradiction. Therefore

z = B(s) € B.
By (10.1), we know that

d(B(5); Xio) = kolls —io|] > [s —do| =1
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and therefore

ls—ig| =1 <8 = [s—iog) <d+1 = d(B(s),B(in)) < Ag(61 +1).

Hence

d(afip), B(in)) < d(alio), B(s)) + d(B(s), B(io)) < 01+ AG(61 + 1),

and this implies that D;, = d;,(a(io), B(ig)) < A’

Case 2. max{D;_,D; } > 3J, Suppose v is the family of quasihorizontals
constructed in claim 10.5 and assume we consider the parametrization at ¢ = ;.
It is not hard to see that there is a discrete subfamily o = vy, vy, ..., v, = 3,
with tp < t; < --- < t;, such that the following is satisfied: for each | =
1,...,k, letting

A = dix(vy_, (%), vy, (1))

then we have

maX{Al_, AH—} € [352, 652]

Since

max{A;_, A;;} < 604,

the argument in Case 1 shows that

Ao = diy (vy,_, (G0), vy, (0)) < b2
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foralll=1,...,k. Hence

k
Diy =Y Ay < kb,
=1

k k
D; +D;, = Z A+ A > ZmaX{Alﬂ A}

=1 =1

>k - 30s.

Then
3 3
maX{Di,, DZ+} 2 51{:52 Z §Di0.

This proves that the sequence (D;) has «/,n', A’ flaring when we restrict it

to indices bigger than 6ds.

Lemma 10.6. There exists a constant b > 0 depending on K, \g and the
properness gauge p in lemma 10.3 such that the sequence (D;) satisfies a (K, b)-

coarse Lipschitz growth condition: D; < KD;+b giveni,j € J with |i—j| = 1.

Proof. First recall that the map h;; : Y — ij is K!"=7l-bi-Lipschitz. Given
i,j € J with |i —j| =1, let a = h;;j(«(¢)) and b = h,;;(8(¢)). The points a
and «(j) are connected by a path of length at most KAy + K, consisting of a
segment of « from «(j) to a(i) and a path of length at most K from «(i) to a,

and similarly the distance between b and 5(j) is at most KAy + K. Suppose
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b =2p(K )Xy + K) where p is the properness gauge in lemma 10.3. Then

d;(a,a(5)) < b/2
d;(b, B(j)) < b/2
4;(a(4), 84) < dy(a(i), ) + d;(a.b) + d; (b, B(7))

< b+ Kdi(a(i), B(i))

This finishes the proof of the lemma. O

From the above, we can easily see that there exists &’ depending only on

K, b and d, such that if7,j € J and 7 — j < 65 then

D; > K™D, —V (10.2)

where m = |60, + 1.

We knew that the sequence (D;) has (x',n', A’)-flaring property when re-
stricted to the indices > 6d,. By choosing n” to be a multiple of n', we can as-
sume that the sequence (D;);>n, also has (k”,n", A’") flaring, where £" > 4K™.

Now consider

K,():3
n
Nng=mn —+m

Ag = max{A",V'}

and we claim that the entire sequence (D;);cs has (kg, ng, Ag)-flaring. Suppose

1+ ng and 7 are in J. If i — ng > m then it is obvious. Suppose D; > Ay > A’;
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we already know that

max{D;_p1, Diynr} > K"D;,

since indices 71 £ n" and i are bigger than 6d,. Suppose D;.,» > k" D;, then by

(10.2)

Diing > K "Djypr =V
> K ™k"D; -V
>4D; =V
> 3D; + (D; — b')

> 3D;.

The same argument works in the other case and we have proved that the
sequence (D; = d;(«a(i), 5(7)))ics has (ko,no, Ag)-flaring property for every
pair of A\g-quasihorizontals o, 3: I' — N,, I' C I.

Using the above, we want to prove that for arbitrary A > 0 and A-

quasihorizontals o, 8 : I' — Ne, I' C I, the sequence

di(a(i),B(i)) i€ J=TNZ
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has (k,n, A(\)) property, where

A(N) = max{Ay, 2p(K + K - \)}

and p is the properness gauge in lemma 10.3 (Pleated surfaces are proper).

Suppose iy and ig £+ ng are in J and we define i+ = iy £ ny,
Dy = d;,(a(ig), B(ip)) and Dy = dix(a(it), B(it)).
We want to prove that
max{D,,D_} > 3Dy if Dy > A(N).

If A < A then the statement easily follows since A(A\) > Ay; therefore we can
assume \ > g > K.
Let

o = é‘{z}x[i—,z’ﬂ : [’i—,i—i—] — Ne

such that o/ (io) = a(io). In the same way define 8 : [i—, i+] — N,. We know

that o/ and f' are K-quasihorizontals and since K < Ay
max{d;_(c/(1=), B'(i—)), di+ (/' (i+), B'(i+))} = 3di (e (io), 5'(10)) = 3Dy

whenever Dy > Aj. Similar to proof of lemma 10.6 there is a path of length
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at most K + K - A connecting «(it) and '(i+) obtained by moving along «
from a(it) to a(ip) and then by moving along o/ from o/(iy) to o/(it). By

lemma 10.3 (Pleated surfaces are proper), we have

diz(a(it), (i) < p(K+ K -)\) < %

The same argument shows that

duB(i2), (1)) < 2

7

and we have

Dy = dix(a(i), f(i%))
> dis (o (i£), B (1)) — diz (a(i£), o (i) — dix(B(it), B'(i£))

> dix (o (i%), B'(i£)) — A(N)
Hence

max{D, D_} > max{d;_(a/(i=), 5'(i—)), di1 (o' (i+), F'(i+)) } — A(N)
> 3Dy — A())
=2Dg + (Do — A(}))

> 2D,

whenever Dy > A(A) and this finishes our proof.
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Once we know that #, is hyperbolic, it follows from work of Mosher [Mo03,
Thm 1.1, Prop. 2.3] that -y fellow travels a cobounded geodesic segment or ray

¢' in ¥ with (0) = ¢’(0) and we obtain 71 (0H )-equivariant quasi-isometries

SOLV G
Hy " = Hy = N,

with constants independent of V.

Going back to the steps of our construction, we notice that the initial point
7(0) was the metric induced by a pleated surface in pleaty,r, with uniformly
bounded distance from the useful compact core C' independently of N. An
immediate, application of lemma 7.6 will be that such initial points are all
contained in a compact subset of T(OH) and therefore they have bounded
distance from the base point 77 € T(0H).

On the other hand, when N is convex cocompact, the terminal point of
was the metric induced by the boundary of the convex core, in the homotopy
class represented by j. Then since 7, the conformal structure at infinity, is
€o-thick, we can use Bridgeman-Canary’s result [BCO03], theorem 2.12, and
conclude that this terminal point has bounded distance from 7 independently
of N.

Finally, when N is geometrically infinite, we know that the sequence (7(7))
represents the metrics induced by a sequence of elements of pleat, which
exit the end of N. Then it follows from Canary’s [Can93b| description of
the ending laminations for these structures that every limit of the sequence
(7(7)) in Thurston’s compactification of the Teichmiiller space, is an element of

PML supported on £(N), the ending lamination of N. It follows from work
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of Masur [Mas92] that it is a unique point on the boundary of Teichmiiller
space.

Suppose g is the geodesic ray or segment in the statement of theorem 10.1.
Then what we said above shows that the endpoints of ¢ and ¢’ have either
uniformly bounded distance, if they are in the interior of ¥, or are the same
if they are on the boundary. It follows that ¢ and ¢’ have uniformly bounded
Hausdorff distance. (Cf. Minsky [Min96].)

Once, we know that ¢ and ¢’ have uniformly bounded Hausdorff distance,
we can see that there exists a fiber preserving map S, —+ Sy that lifts to a
quasi-isometry of universal covers with uniform constants. (Cf. [FM02, Prop.

4.2].) This finishes the proof of theorem 10.1 (The model manifold).
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Chapter 11

Gluing

In this chapter, we prove the main theorem:

Main Theorem 1 Given € > 0 and R > 0 there exists ne > 0 depending only
on €, R and x(S) that if M = H" Ug H~ has R-bounded combinatorics and
handlebody distance > ne¢ then M admits a Riemannian metric v such that
the sectional curvature of v is pinched between —1 — € and —1 + €. Moreover
v has a lower bound for the injectivity radius independently of the handlebody

distance and e.

Suppose a Heegaard splitting H* Ug H~ with R-bounded combinatorics is
given. Recall from 2.6 there exist P* C A(H?*) pants decompositions which
realize the curve complex distance between A(H*1) and A(H~) and have R-
bounded combinatorics. In fact by using lemma 2.9, we can extend P* to a
marking o such that o™ and o~ still have R-bounded combinatorics. It also
follows from our assumptions in 2.15 that there exist points 7+ € T(S) where
o have total length at most Bj.

Now use a homeomorphism ¢* : (H*,S) — (H,0H) to identify H' with

H and S with 0H. With an abuse of notation, we denote the induced maps on

165



the corresponding complex of curves, marking spaces and Teichmiiller spaces
by ¢ as well. Recall from lemma 2.8 that we can translate the handlebody
marking ¢ (o) to an element of the finite set my(H) using an action of
Mody(H). Then ¢*(a~) will have R-bounded combinatorics with respect to
H. In fact, by assuming that the handlebody distance is large, ¢ (a~) belongs
to Ag(R). (Recall from chapter 6 that Ay(R) was the set of markings and
ending laminations that have R-bounded combinatorics with respect to H
and are far enough to be in the Masur domain of H.)

The marking ¢* (o) has length at most By in ¢*(77) € T(0H) and there-
fore N, the marked convex cocompact structure on H associated to ¢*(77),
is in By(R). (Note that we are assuming that the marking of N is determined
by the inclusion 0H — H.) Let g be a Teichmiiller geodesic segment that
connects 7y to ¢T(71) in T(OH). Then theorem 10.1 (The model manifold),
proves that there is a map in the homotopy class determined by the inclusion
OH — H,

®: 85" — N,

that lifts to an (L, c)-quasi-isometry H;0% — N,, where C C N is a useful
compact core and N, = CH(N) \ C and also that g is K-cobounded, where
IC depends only on R and x(0H). In other terms, ® and SgSOLV give a model
description of the convex core of NV, outside of a small compact core.

Now use ¢1 and pull back all these structures to HT. We get a hyperbolic

structure N* on H*, a geodesic segment g* C T(S) and a map

+ . ¢SOLV +
TS = N,
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which lifts to an (L, ¢)-quasi-isometry and is in the homotopy class determined
by S < H*. The set N} is CH(N*)\ (¢*)~!(C) and is the complement of a
small compact core of Nt which we still call useful.

Obviously the terminal end point of g* is 77; we claim that the initial point
is uniformly close to 7. We know that the initial point is (¢*)~!(7). Now
it is enough to notice that the upper-bound for the total length of elements of
my(H) in 7 gives an upper bound for the total length of o™ in (¢*) ™! (7).
But lemma 2.14 shows that the set of such points has uniformly bounded
diameter in T(S) as required. This immediately implies that (¢*)!(7z) and
71 are uniformly close.

From this, it follows that if we let A to be a geodesic segment in T(S)
whose initial and terminal endpoints are 7+ and 7—, then ¢t and h have
bounded Hausdorff distance and they both are cobounded uniformly (cf. Min-
sky [Min96]). Thus we have a map S, — S,+ that lifts to a quasi-isometry
with appropriate constants. Hence, we can replace ¢+ with A and the map ®*
with

Ut SEOW N

which satisfies all the properties of ®* except possibly with bigger quasi-
isometry constants (Lq, ¢;).

We can do the same construction for H~ by starting from a homeomor-
phism ¢~ : (H~,S) — (H,0H). Notice that in this case ¢~ itself is orientation
preserving but it is orientation reversing when restricted to S. (This is because
of our assumption that orientation of S matches the one induced from H* and

is the opposite of the one induced from H~.) This gives a convex cocompact
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structure N~ on H~ and N, = CH(N~)\ C~, where C~ is a small compact
core. We also have a map

U5 — NS
in the homotopy class determined by S < H~ that lifts to an (L1, ¢;)-quasi-
isometry. Notice that in this case the map ¥~ is orientation preserving if we
assume Sy, is oriented by taking the orientation of S times the orientation of
h directed from 7% to 77. (The identification of S with H~ is orientation
reversing, but on the other hand we have changed the direction of the geodesic
t00.)

Also recall that the Teichmiiller distance between 77 and 7~ (or equiva-
lently length of h) tends to infinity as the curve complex distance between a*
and a~, or equivalently the handlebody distance for the Heegaard splitting,
goes to infinity. This is essentially the same analysis as what we did in lemma

9.2. We know that o has length at most By on 7% and 77 is ¢-thick. Suppose

dg(t7,77) < D. Then

for every simple closed curve § on S, where ¢ depends only on ¢ and x(S5).
Hence [,+(a™) < D' = ceP By. But the set of simple closed curves with length
bounded by D' on 77 has C(S) diameter bounded depending only on D’ and
X(S). This gives an upper-bound for the C-distance of o™ and o .
Therefore, by assuming that the handlebody distance is large, we can make
sure that the Teichmiiller distance between 7(at) and 7(a”) is large and

equivalently the diameter of the convex cores of N* and N~ is large.
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Proposition 11.1. Givene' > 0,D > 0 and R > 0 there exists d > 0 such that
the following holds. Suppose H Us H™ is a Heegaard splitting with handlebody
distance at least d, o are handlebody markings for H* which have R-bounded
combinatorics and realize the handlebody distance. Also suppose T € T(S)
is given such that total length of ot on 7* is bounded by By and N* is the
convez cocompact structure associated to 7 on H*.

Then there exists a doubly degenerate surface group p : m (S) — PSLy(C) and
maps

T*:N, - Nf

which are € -close to an isometry on the ball of radius D about py in the C*°-
topology and T* is in the homotopy class determined by S — H?, where
N, =13 /p(m1(S)) has inj(N,) > n, po € N, is the image of 0 € H*, NF is the
complement of a useful compact core in the convex core of N* as usual and
n is the constant in theorem 1.5 (Bounded geometry) and depends only on R
and x(S).

Proof. We can prove this by means of taking a geometric limit. Suppose we
have a sequence of counter examples: a sequence of R-bounded Heegaard
splittings whose handlebody distance goes to infinity and do not satisfy the
conclusion of the proposition for any surface group p.

Similar to our constructions above, the sequence of splittings gives a se-
quence of Teichmiiller geodesic segments h, : [—n,n] — T(S) whose length
goes to infinity. We also have the corresponding hyperbolic structures N on

the handlebodies H* and uniform approximations of neighborhoods of their

169



ends by

W S o NP\ G,

which lift to (L1, ¢;)-quasi-isometries of the universal covers and C are useful
compact cores of N*. In fact, by proposition 2.10 of Farb-Mosher [FM02], we

can replace these maps with

@, : Sp, = N\ Gy,

which lift to (Ls, ¢z)-quasi-isometries of the universal covers, where Ly and co
are uniform constants and Sy, is equipped with the metric constructed in 2.9
using a fixed MCG-equivariant connection on §.

Notice that actions of mapping class group of S on the Teichmiiller space
and the geodesic h,, corresponds to precompositions of the embedding S —
H*UgH~ with self-homeomorphisms of S. Therefore, these give the same Hee-
gaard splittings and we consider them equivalent. The geodesic segments (h;,)
are all uniformly cobounded and therefore up to actions of MCG(S), we can
assume that they converge in the Hausdorff topology to a cobounded biinfinite
geodesic Ao @ (—00,00) — T(S) in a way that the points h,(0) converge to
hs(0) and the convergence preserves the orientation of the geodesics h,,. Take
a point we, € Sp,(0) and let w, € Sy, (o) be the point obtained by moving along

the connection lines between Sy (o) and S, (). Then let z¥ = U (w,,) be the

+

+) converges in the

base point of N . The sequence of pointed manifolds (N, z
geometric topology to a hyperbolic manifold (N, z%) with inj(NZ) > 7. In

fact, we will see in a moment that this limit is a doubly degenerate hyperbolic
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structure on S x R. Let

ki (Niey255) = (NG, 27)

be the approximating maps. One can see that

(Shna wn) — (Shoo ) woo)

in Gromov-Hausdorff topology. This is because we fixed a connection on S
and the Riemannian metric on S, or Sy, is obtained by taking the hyper-
bolic metric in the vertical directions and in the horizontal direction, we used
connection lines which are parametrized by length using the parametrization
of h,, or hy. It is not hard to see that these metrics on S, on compact subsets
converge in C'* to the metric on S, .

Now suppose

Pn - (Shoo7 woo) - (Shnvwn)

are the approximating maps. It follows that the maps

(Hi)_l © q)i O Pn: (Shooawoo) - (Noj;axi:o)

n

lift to (Ls, c3)-quasi-isometries of the universal covers for constants Ls and c3
independent of n. In particular images of every compact subset of S, are
contained in a bounded diameter subset of the image. Then by Arzela-Ascoli
theorem on every such compact set, after passing to a subsequence, these

maps converge. Then we can consider S, as a union of a countable family of
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compact subsets and repeat the same process for each of the compact subsets.
Finally using a standard argument and taking a diagonal sequence, we can

assume that a subsequence of these maps converge to

(I)oio : (Shooawoo) - (Nojéaxfo)

It should be clear that these maps also lift to (Ls, c3)-quasi-isometries of the
universal covers. Also note that this immediately implies that N is homeo-
morphic to S xR. We can also see that it has to be doubly degenerate, because
it can be considered as the geometric limit of convex cores (CH(NZ), z) and

therefore both its ends are geometrically infinite.

Finally, we can see that the map

O o (®L) ™ NI — NI

between these surface groups, lifts to a quasi-isometry of universal covers.
Since these two are doubly degenerate, it follows from Sullivan’s rigidity that
it has to be homotopic to an isometry (cf. Minsky [Min94]). Hence N and
N both represent a single doubly degenerate surface group p : m(S) —
PSL,(CC).

Now we can consider the approximating maps to be defined on N, =
H /p(m1(S5)):

ki:N,— NI \Cxr.

These maps are €' close to an isometry on a ball of radius D for n > 0 and

satisfy the conclusion of the theorem. This contradicts the fact that we started
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with a sequence of counterexamples and finishes the proof. O
It is not hard to prove the next lemma, using a geometric limit argument.

Lemma 11.2. (The gluing region) There ezxists a constant D depending only
on n and x(S) such that the ball of radius D about any point in the convex
core of a doubly degenerate hyperbolic structure N, on S x R with inj(N,) > n
contains a subset V.C N, homeomorphic to Sx[0,1] with V' — N, a homotopy
equivalence and the distance at least 1 between the boundary components of V.
In addition, there exists a smooth bump function 6 : V' — [0, 1] where 0|s_y =0
and lo,v = 1, where 0_V and 0,V are the boundary components of V, and

all the first and second derivatives of 8 are bounded depending only on n and

x(S)-

<
pd

Figure 11.1: The gluing region.

Suppose the handlebody distance for M = HtUg H ™ is larger than d in the

statement of proposition 11.1 when D is the constant obtained in the above
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lemma and € > 0 small which will be determined soon. Suppose N, is the

associated doubly degenerate hyperbolic structure on S x R and

T*:N,— Nf

are the maps described in proposition 11.1. Choose a subset V' C N, contained

in the D-neighborhood of the ball about py and a bump function

6:V —10,1]

that satisfy lemma 11.2.

The idea is to use restriction of 7% to V to glue Nt and N~ and construct a
nearly hyperbolic metric on M. We know that 7% : V — N gives a homotopy
equivalence in the homotopy class determined by S < N*. Without loss of
generality, we can assume that 77 (9,V) separates T7(0,;V) from the end of
N*. Note that in this case, T~ (0,V') separates T~ (0;V) from the end in N~.

The complement of T*(V) in N* has two components; one is a bounded
diameter set homeomorphic to the interior H* and the other one which we
call Y* is homeomorphic to S x R and gives a neighborhood of the end of N=.
Observe that

(NT\YT) Upso-y-t (NT\YT)

is homeomorphic to M = H* Ug H~. We denote the image of the collar V' by
V' and the two components of M \ V by X* and X~ which are respectively
contained in N* \ YT and N~ \ Y. The hyperbolic metric of N* induces a

hyperbolic metric v* on M \ X¥. These metrics do not coincide but they are
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2¢'-close in the C™ topology.

Now we can define the metric v on M to be

for any x € M. This metric is smooth and of course hyperbolic on M \ V.

+

Moreover on V, the metrics v* are €'-close to the metric induced by N, which

we call v,. In particular we have

vE =, + &

where £* is a 2-tensors which is C?-close to zero. This implies that on V, we
have

v=u,+ 0+ (1-0)¢.

Since the first and second derivatives of # are bounded from above indepen-
dently of the Heegaard splitting, by assuming that ¢ is small, we can make
sure that v and v, are as C*-close as we want. The sectional curvatures of v
depend only on the first and second derivatives of the metric and therefore all
sectional curvatures of v stay in the interval [—1 — ¢, —1 + ¢] if the handlebody
distance is large and € is small.

In addition to this, it is obvious that the injectivity radius of v at every
point is at least /2 and we have proved our main theorem.

In fact, our construction immediately shows the following:

Theorem 11.3. There are constants K, L1, ¢; and n depending only on x(S)

and R such that the following holds.
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Let M = H* Uy H- be an R-bounded Heegaard splitting and o™ is a han-
dlebody marking for H* such that a© and o~ realize the handlebody distance

+

of the splitting and have R-bounded combinatorics. Also assume 7= are points

of T(S) where a* has total length at most By. Then there exists a Riemannian
metric v on M and an n-cobounded geodesic segment g connecting 7+ and 7~

such that there is a map
U:S, - M\ (CtUuC™)

which lifts to an (L1, ¢1)-quasi-isometry of the universal covers, where C* C

H* is a compact core of H* with v-diameter bounded by K.

M

Figure 11.2: The glued manifold with the modeling map.

Notice that theorem 1.2 is simply a corollary of the above theorem.
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Chapter 12

Tian’s theorem and hyperbolicity

In [Ti90], Tian claims the following theorem:

Theorem 12.1. Let (M, v) be a negatively curved Riemannian three manifold
and n a Margulis number for negatively curved three manifolds. Denote by M,
the n-thin piece of M. Then, there is a universal constant € such that if M

satisfies

1. M, is a disjoint union of convez neighborhoods {Cy} of closed geodesics
Yo with length < 2n such that the normal injectivity radius of v, in Cy,

18 greater than 1.

2. let P, be a smooth function such that P, is equal to n near the boundary
of Co and P,(y) is equal to the injectivity radius at y whenever this is
less than n/2 (such P, always exists). We require that for some choice
of Pa,

/C %|Ric(1/) +2v)2dV, <€  for each o

(67

3. all sectional curvatures of M lie between —1 — € and —1 + €.
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4. [5; [Ric(v) + 2v|2dV, < (¢')?

then M admits an Einstein metric which is close to v up to third deriva-

tives.

Here Ric(v)+2v is the trace-free Ricci curvature of M. in fact Tian’s result
is stronger than this and allows dimensions other than 3 and norms other than
L? norm. However this is more than enough for our application. Note that in
dimension three, Einstein manifolds have constant sectional curvature.

Therefore, Tian’s theorem implies the following:

Corollary 12.2. Suppose (M,v) is a Riemannian three manifold with n-
bounded geometry. Also assume (M,v) is hyperbolic outside a set of volume
bounded by some d and everywhere else the sectional curvatures are between
—1—¢€ and —1+ € for € sufficiently small. Then M admits a hyperbolic metric

V' which is close to v up to third derivatives.

Proof. To apply Tian’s theorem, we need to verify that (M, v) satisfies the
assumptions. We know that (M,v) has n-bounded geometry, therefore the
n-thin part of the manifold is empty and the first and second assumptions are
vacuous. The third assumption is satisfied by the hypothesis too when e < €.
For the last one, note that relative to an orthonormal frame, the entries in the
3x3 matrix for Ric(v)+2v are all between —4e and 4e if all sectional curvatures
are pinched between —1 — € and —1 + €. This follows from the fact that the
Ricci tensor may be recovered by polarization from its associated quadratic
form Q(u) = Ric(u,u) and that Ric(u,u) is simply < w,u > multiplied by

the sum of the sectional curvatures of any 2 orthogonal planes containing w.
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Therefore, the function in the integral is zero outside a set of volume bound
by d' and is small when € is small inside that set. So by making sure that € is
small enough, we also have the last assumption and the Tian’s theorem proves

the claim. ]

In particular, putting our main theorem and the last corollary together we

have:

Theorem 12.3. If M = HY Ug H™ is a Heegaard splitting with R-bounded
combinatorics and sufficiently large handlebody distance then M admits a hy-
perbolic metric V'. Also similar to theorem 11.3, there is geodesic segment g

in %(S) determined by combinatorics of the splitting and a map

v Sg — (M\(Cl UCQ),I/I)

that lifts to an (L}, ¢})-quasi-isometry of the universal covers, where C* C H*
is a compact core with v'-diameter bounded by K' and constants L, ¢} and K’

depend only on R and x(S).
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