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Chapter 1

Introduction

A Riemannian manifold (N, h) is called Einstein if it has constant Ricei cur-
vature i.e, if Ricci(h) = Ah where A is a constant. In dimensions 2 and 3 this
condition implies that A has congtant sectional curvature. In dimension 4 the
Finstein condition is much weaker but still has topological implications. It is
not known if any manifold of dimension at least 5 admits an Finstein metric.
In this work we restrict ourselves to dimension 4.

For the metric study of these manifolds it appears hopeless to attempt a
classification without further restrictions: note that in two dimensions this is
the vast subject of Teichmiiller theory. Hence it is natural to assume the pres-
ence of a sufficiently ”non-trivial” isometry group G to begin with, The case
dim G > 3 is well-understood [1] If we just assume dim > 1, for compact
N it is known that either N is a flat 4-manifold or A > 0. After normalizing
we can assume A = 3 (this is the value of A for S* with the standard metric).

The known simply connected examples are S*, S? x 5%, CP(2)#kCP(2)

where k = 0,1, 3,4. Here the first two have the standard metrics and the last

has the Fubini-Study metric for & = 0, the Page metric for ¥ = 1 and the




Tian-Yau metrics for k = 3,4.
We are interested in classifying, up to isoretry, a sub-class of the compact

Einstein 4-manifolds with isometric S* actions. A description of this sub-class

is as follows: Let M be the orbit space of the action. It can be shown that M is |

actually a 3-manifold with boundary. We can put a Riernannian metric on M
so that the projection from N to M is a Riemannian submersion. We consider
the case when the horizontal distribution of this submersion is integrable. h
is then called a warped product in Riemannian geometry or static in General
Relativity. In this case one can prove that the fixed point set F' of the action
can be identified, via the projection map, with the boundary of M.

There are only two known examples of simply connected static Einstein

4-manifolds: (5%, std) and (9% x $2, std). We study the question of whether
these are the only possibilities.
It turns out that the geometry of F' is important for determini‘ng the isometry
type of (N, k). Our main result is that if the Gaussian curvature of F' satisfies
certain conditions then the answer to our question above is in the affirmative.
The proof uses the Bochner-Weitzenbdck formula and the theory of minimal
surfaces in 3-manifolds.

In section 2 we deal with the case of connected F' which corresponds to

(5%, std) and in section 3 the other case i.e (5% x 8%, std) is dealt with.




Chapter 2

Motivation

Let (N, h) be a compact Einstein 4-manifold with Ricci(h) = Ah. As men-
tioned in Section 1 if the dimension of the isometry group & is at least 3 the
possibilities for (IV, h) are known except for one case. More precisely, we have

the following thecrem of Berard-Bergery and A. Derdzinski:

Theorem 2.0.1 (Berard-Bergery, A. Derdzinski [1]) Let (N,h) be a compact
Einstein {-manifold. Assume that either

a) the dimension of G is at least 4 or

b) G=T?®, the 8-torus or

¢) G= S0(3) and the principal orbits are S* or RP?

Then either (N,h)} is locally symmetric or the Page metric or it’s Zy quotient,

The Page metric is an Finstein metric on the non-trivial S* bundle over 5%,
The only case not covered by this theorem is when dim(G)= 3 and G = SU(2)
or SO(3) with a 3-dimensional principal orbit. This case currently remains
open .

Now consider the case dim(G)=1 or 2. This class has not been classified

yet. In our study of S* actions we make the following assumption of ”staticity”




. Pirstly assume that the action is semi-free i.e. the stabilizer of any point is
either the whole group or just the identity element. Let F' be the fixed point
set, M the orbit space of the free actionof Gon N—-Fandw: N —~F — M
the projection map. Give M the metric which makes 7 a Riemannian submer-
sion. Assume that the horizontal distribution of 7 is integrable. Then h is a
warped product over a 3 dimensional base with fiber either a circle,

Remark: Note that a (N, &) can admit an S* action for which it is static
and another S! action for which it is not. For example, S! acts on (5S4, std)
by (o, (21, 72, 1)) — (ez1, @z, t) and also by (w, (21, 20, ) + (a2, 22, t) where
a € St c C and (z1,2,t) C R®=C x C x R The former action is not static
because it has isolated fixed points which cannot happen for static actions by
L.emma 3.0.7 below while the latter action can be checked to be static: in fact,

it is equivalent to example 1) in Section 3.1.

We have defined warped products with circle fibers above. Similarly one

* can study the case of warped prodcuts for T% (the 2-torus) isometric actions.

In this case the fibers are 2-torii. This case can be easily analyzed as follows.

We follow [1] for this section. Suppose

(N,h) = (B xT,g+ f*g0)

with

Ricci(h) = Ah.




Then it follows from O’Neill’s formulae for Riemannian submersions [1] that

1 laf |

D*f = —g(26f =5 - (2.1)

The above type of equation admits non-constant solutions only if the metric

g admits a non-zero Killing field. More precisely

Lemma 2.0.2 On a 2-manifold (B,g) the equation sz = ¢g admits a non-
constant solution f if and only if, locally at points where df # 0 there exist
coordinates (t,8) such that f is a function of ¢ alone, g = dt? + f'(¢)2d6? and
b=

Proof: Suppose df # 0 at p. Let r» = ||df|| and let X be a tangent vector to
f~H(p). Then

D*f(X,Vf)=XVf(f) - VxVI(f)
= Xrl- < V_XVf, Vf>
= Xr?— %sz

1
= -é-sz.

On the other hand,

DAf(X,Vf) = ¢ < X,Vf >=X(f) =0




for all X,Y which implies that
VxVf=¢X
Also note that this implies
VN =0.

This is because

VIV %vww)

i

(_—1 <VFVr>Vf+ %gbe)
(—DZ(N, N)
nh

Vi +5697)

Now
X,N|, X
[Edls

N = > X+ < [X,N]),N > N.

But

<[X,N],N>=<VxN,N>—-<VyX,N>

:%X<N,N>_(N<N,X>—<VNN,X>)

(2.3)

(2.4)




To get the last equation above we have used (2.5).

Now
<[X,N, X >=<VxN, X >—-<VyX, X >
X 1 1
= —@ <N, X>4><VxVf X >—=Nr’
T r 2
= ¢r — D*(N, N)r
= (.
(2.6)
Hence
[X,N] = 0.

By Frobenius’ Theorem we can find coordinates ¢ and ¢ such that % = N and
8 _
75 = X.

It's clear that g = dt* + f(t)2d¢? and since

2 (0 9N _
D (a:a)—f@)

we have

¢=f"

The equation

Ricci () = Ah




now becomes

U 4+ P4+ AP =0

in a neighbourhood of any point where df # 0.

The above ODE can be solved to generate complete noncompact solutions.
In fact all the complete Einstein metrics arising as warped products over 2-
dimensional bases have been classified [1].

However there are no compact solutions because the same reasoning as in
Lemmas 3.0.8 and 3.0.11 (note that a warped product with torus fiber over a
two-dimensional basis can be regarded as a warped product with circle fiber
over a three-dimensional basis) shows that f = 0 somewhere and ||df|| = 1
wherever f = 0. This clearly violates the above equation.

Hence, in the static situation, the only remaining case is that of one-
dimensional fibers. In the context of static manifolds there is one class which
has been studied extensively in General Relativity, namely complete non-
compact static Ricci-flat Lorentzian 4-manifolds. The most significant example
of such a metric is the Schwarzschild metric on N = [2m,00) X §? x R (where

m is any positive number) given by
-1
2
b= (1 — Zﬁ) dr? + r2ggs — (1 - m?) dt?
T

We get a Riemannian metric with the same properties by just changing the
sign of the last term. The associated metric g on M is given by g = (1 —
2m)~1dr? + rlgg, This metric is asymptotically flat, with mass m ie. it

approaches the Buclidean metric on R?, in the following precise way. There

exists a compact set K such that M — K is diffeomorphic to R3? — ball and in




these coordinates

f“u0+g?)%+oﬁﬂ)

fwlm?+OU4)

as r — o0. In the above g, is the flat metric on &3,
It turns out that, under these conditions, the Schwarzschild metric is rigid, In

fact we have the following theorem.

Theorem 2.0.3 ({3 W. Israel, D. Robinson, G. Bunting and A. Massoud-
ul-Alam) Let (N,h) be a complete static Ricci-flat Lorentzian or Riemannian
4-manifold such that the 8-manifold (M,g) is asymptotically flat with mass m.

Then (N,h) is isometric to the Schwarzschild metric with mass m.

‘This theorem is one of the important “Black Hole Uniqueness” theorems.
These theorems essentially characterize certain static or stationary solutions
of Einstein’s field equations. All of them have dealt with the non-compact
case, due to physical considerations.

Our main theorem can be regarded as an attempt at proving a black hole
uniqueness theorem in the compact case. It relates the geometry of the fixed
point set F" to that of IV, and characterizes the known examples in these terms.
Similar to one of the proofs of the Black Hole uniqueness theorem we use a
divergence identity in the proof.

First we have the following simple topologiéal characterization of closed

static simply-connected manifolds.

Theorem 2.0.4 Let (N,h) be a closed simply-connected static f-manifold.

Then




1. F is a non-empty disjoint union of 2-spheres and projective planes.
2. N is homeomorphic to #n(S? x S%) or S*.
Our main theorem is

Theorem 2.0.5 Let (N,h) be a closed non-flat static Einstein 4-manifold.
Then

1. F is totally geodesic and has Gaussian curvature K > 1,
If K =1 at every point of F' then (N, h) is isometric to (S*, std).
If K £ 3 at every point of F' and F' has more than one component, then
(N, k) is isometric to (S% x S%,std) or (S% x RP(2), std).

2. The function f = u® + ||du|® on M attains it’s mazimum value 1 on
OM. If f attains an interior global mazimum then (N, h) is isometric to

(54, std).

10
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Chapter 3

Preliminary Observations

‘Throughout the paper (N,h) will be a closed oriented non-flat Einstein 4-
manifold with Ricci (h) = Ah and an isometric semi-free static S* action.The
first observation is that the scalar curvature s = 4\ has to be positive. This

is because of the following classical result of Bochner [1]:

Theorem 3.0.6 Let (M, g) be a compact Riemannian n-manifold with Ricei {(9) <
0. Then any Killing field on M is parallel.

In particular if a Killing field vanishes at a point, it has to be identically
zero.As will be shown below any Killing field on N has to vanish somewhere.

Let F'={z € M : gz =z Vgec S} be the fixed point set.
Lemma 3.0.7 The action cannot have an isolated fized point.

Proof: Let p in N be an isolated fixed point and B be an open geodesic
ball with center p which is homeomorphic to an Euclidean ball. B is invariant
under the isometric St action. By staticity B~ {p} is homeomorphic to St x U
where U is an open set in the interior of M. This is impossible since B — {p}

is simply connected. 0

11




Lemma 3.0.8 I is a non-empty disjoint union of closed totally geodesic sur-

faces.

Proof: If I is empty then the Luler characteristic x(M) = 0. Bui the

four-dimensional Gauss-Bonnet theorem for an Einstein manifold states that

[ IR =)
M

where R is the Riemann curvature tensor. This implies that B = 0 ie. M is
flat.

Now we apply the following basic fact from Kobayashi [10].

The connected components of the fized point set of an isometric and semi-
free S' action on a Riemannian n-manifold are totally geodesic submanifolds

of even co-dimensions.

In our case F' has to consist of points and surfaces. Combining this with
the previous lemma we are done. | O
Remark: Note that we have used the fact that F' is non-empty to conclude
that Ricci > 0. If we know that Ricci > 0 we can prove that F' is non-empty
as follows: If F is empty x(M) = 0, as before. But x(M) = 2~ f; + 3 where
the §; are the Betti numbers. In particular §; # 0. This contradicts the fact

that the fundamental group is finite.

Lemma 3.0.9 F consists of 2-spheres and projective planes.

12




Proof: Note that since Ricci(h) > 3, Myers's theorem implies that the
universal cover IV is a finite cover of N. IV is again static with the pulled-
back metric. If F is the corresponding fixed point then I is a finite cover of
I" and it’s enough to prove the result for F. Hence we can assume N simply
connected to begin with. First we prove that this implies that M is also simply
connected. This is clear since any curve in M can be first homotoped to a curve
in interior(M) and then lifted to a curve in N (since N —~ F = M x S, M can
be regarded a submanifold of V) and finally the homotopy in N contracting
the lifted curve to a point can be pushed to a homotopy in M.

Now we prove that H(M,Z/2) = 0 = H,(8M,Z/2) = 0. This follows
from the long exact sequence for the pair (M, 9M):

By Poincare Duality
Hy(M,0M) = Hy{(M) =0

and we are done, O

Remarks :

1) Note that N need not be simply connected - for example S x RP(2) with
the standard metric is Einstein with an isometric S! action given by rotation

on the 52 factor.

2) The above lemma fails completely, at least in the purely topological context,

in case NV is not simply connected. Let M be the 3-manifold with boundary

13




obtained by removing a ball from a closed 3-manifold and let N be obtained

by attaching M x S* with S? x D? along their boundaries. Note that N hag
a S action ( on the % x D? 81 acts by rotating 12? about it’s center ) and

(M) = m(N)

Corollary 3.0.10 If N is simply connected then it is homeomorphic te a con-

nected sum of copies of 5 x §?

Proof: Since N is simply connected so is M by the proof of the previous
lemma and hence M has the homotopy type of S with certain number of

balls removed. N is, up to homotopy type, S% — balls x S* with a S2 x D2

attached to every boundary component. But the latter is homotopy equiva-
lent to a connected sum of copies of 5 x 52, This can be seen by noting that
this manifold is simply connected and has the intersection form oﬁ the second
cohomology equivalent to that of #n(S? x $?) where F has n+1 components
and then using the following fundamental theorem of J.H.C.Whitehead [14]:

If two closed simply-connected 4-manifolds have equivalent intersection forms,

then they are homotopy equivalent.

By the results of M.H.Freedman [6], homotopy type determines the homeo-

mdrphism type for this class of manifolds since both manifolds involved are

spin. 0

Let M be the orbit space of the action i.e. M = % Then by lemma 3.3
M is a compact 3-manifold with boundary. The boundary of M is exactly the
fixed point set F' and staticity implies that N — F = interior(M) x S'. The

metric on N projects, under the projection map N — A , 10 & smooth metric

14
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g on M Again by staticity

h =g+ udé”.

The equation Ricci (h) = 3h is equivalent to the following two equations on

M (1]

D2
Ricei (g) ~ _u—” =3g (3.1)
Au = —~3u (3.2)

where D?u is the Hessian of v : M — R. Here u, as a function on /N, can be
interpreted as follows: u(z) is the length of the orbit of z. In particular w =0
on F. (3.1) then implies D?uy = 0 on F. In particular ||Vu| is constant on

each component of F.

Lemma 3.0.11 ||Vu]| = ||du|| = 1 at every point of F

Proof: First note that v is a real analytic function on M since it satisfies

an elliptic P.D.E. Now (3.1) implies that if Vu(p) = 0 then all the higher

derivatives are zero at p which is impossible by analyticity. Therefore Vu(p) #
0. Let X = TI"%NIT and let L be the integral curve of X beginning at p. Since the
induced metric (in the 4-manifold N) on the two plane Lx S* L.e. do?+u(o)?ds?
is smooth where L = ¢(t),0 < t < ¢ with ¢(0) = p and ¢'(t) = X (t) we have
X(u)(p) =1 and X (u)(p) = 0. Since X (u) = ||Vu|| we are done. 0

In the above result it is essential that (M, ¢) along with equations (3.1) and

(3.2) comes from a 4-manifold with a smooth metric. i.e. there are 3-manifolds

15




M with metric g satisfying equations (3.1) and (3.2) where the result above
fails. The following example is from [11] where it was constructed as & counter-
ex@mple to the Fischer-Marsden conjecture. This stated that the map from
the space of metrics on a compact manifold M to the space of functious given
by taking the scalar curvature of a metric is a submersion at any metric g
if (M, g) is not isometric to (87, std) or Ricei{g) = 0. This example, in a
slightly modified form, was also studied in Relativity as a static solution of
the vacuum Einstein equations with negative cosmological constant 2].

Let M =1 x S%*a) and g = di? + h(t)*gsas) where I = [0, ] (the value T
will be explained below), 5*(a) is the 2-sphere of scalar curvature g and 4 satis-

fies the O.D.E which ensures that g has constant scalar curvature equal to 61i.e.
31 + 2hh" + (W2 = g ‘ ()

It can be checked that if u = A’ then (3.1) and (3.2) are satisfied, It can
also be proved that there is an interval A such that if o € A then there is a
periodic solution, with period T, with #/(0) = 0, A" (0) = 1. It follows that
h'>0on (0,3), #'(§)=0,h>0o0n 0, 7]

Note that F' = 0M =0 x 5*(a) UL x $(a) and l|dul® = B2,
Now we claim that Lemma 3.0.12 fails for this example,
CLAIM: There is no solution A such that A’ = 0 and (W =1on F
Proof: Suppose A is such a solution. Consider the function e = 342+ ldul|® =
3(H)* + (h")*. We have
¢ = 2h" (3K 4 n'"),

16




Differentiating equation () we get
3K 4 BV = __2hfhn
h

Therefore

¢ = :;z—zh’(h”)z <0

Sincee = latt=0andt =1

we get ¢ = 0 everywhere, Hence h' = 0
or A" = 0 everywhere which is impossible since % is a non-constant periodic
function.

We will refer to this example as the Lafontaine metric.

17




Chapter 4

Proof of the Main Theorem

4.1 The Bochner-Weitzenbock formula

We first look at the two known examples of static actions:

1) (N,h) = (8% std). In this case (M,g) = (I x 82, di2 + sin(t)gs2) where
I is the closed interval [0,%] and gse is the standard metric oﬁ 82, Also
(N, h) = (M x §', g+ cos?(£)d0?). So u = cos(t) and du = sin(t)dt. Note that
u? + [ldul|® =1 in this case.

2) (N, h) = (5%(a) x S*(a), gsr(a) + gs2(ay) Where g = % Now (M,g) =
(I x 8%, dt? + ggz) where I is the closed interval [0, an]. (N, hy=(MxG&8'g+

asin(2)d6?). So u = asin(t). In this case 3u? + ||dul® = 1.

Using the formula (all the quantities considered here are on the 3-manifold

M with metric g)

%A{ldu][g = |D%|’+ < VAu, Vu > +Ricei (Vu, V) (4.1)

18




and in consideration of the examples above we will prove

Lemma 4.1.1 The function f = u*+||dull* cannot attain it's global mazimum
in interior(M) unless it is constant and (M, g) is isometric to a hemisphere

in (5%, std).
Before proving the lemma we show how it implies the main theorem.

Corollary 4.1.2 If K(p) is the Gaussian curvature of F' at p then K(p) >
1VpeF,

Proof: Since f attains it’s global maximum on M = F (note that lemma
3.7 implies that f =1 on F) and since u attains it's global minimum on F, it
follows that < Vf,Vu > (z) <Oforallz € M sufficiently close to p.

Let X = ”g—ﬁ“, as before.

We have

< V[, Vu > =< 2uVu + 2||duf| V|| dul|, Vu >
< Vljdull, Vu >
ufldu||
< V|dul|, X >
- )

= 2ufldull’(1 +

= 2ul|dul||*(1 +

XX (uw)

= 2ulduf?(1 +

)

(4.2)

Therefore E%T—‘l S=LNow< X, X>=1 = X <X, X>=0 =
<VxX, X >=0

If X(x) # 0 then = (u(z)) is a smooth surface near z and from the above

19




equality we get: VX is tangent to v~ !(u(z)) and so VxX(u) = 0. Hence

XX (u) _ D?u(X, X)

U U
From {3.1) it follows that
—D?y(X
ZDuX, X) =3 — Ricci (X, X) = K(z)

where K'(z) is the (extrinsic) sectional curvature of the surface uwt(u(z)) at
z. Note that we have used the fact g has scalar curvature 6 everywhere (which
follows by taking trace on both sides of (3.1) and then using (3.2)) in the last
equation.

Therefore K(z) = _—Xfﬁ—(—(“—) 2 1. In the limit, as z — p, we get K(p) > 1.
Since F' = u™*(0) is totally geodesic, K (p) is also thie intrinsic ‘(Gaussian)
curvature of £, O

Now we prove Lemma 4.1.1,

Proof: Using (3.1) and (3.2) in (4.1),

'%Awmﬁzmﬁmﬁ—wvmﬁ+mmuvmvw

= | Dt + 22T Vu)
U

(VuVu(u) — Vo, Vu(u))
u
(< Vu, V]jdul|* > -1V < Vu, Vu >)
U

= D% + - < Vu, Vijdulf >

= || D% +

= | D%I" +

20




which implies that

2 U U

Now

%Aug = ulu + ||duf®

= —3u? + ]|dqu

(using Aw = —3u)

This implies that

1 ( Vug) —3u?
—div | — | =
2 ) U

Adding equations (4.4) and (4.6) we get

2 U

But

1

1Dl 2 = (Au)? = 32

3

L o ( vrlduuz) _ D%

L div (Yi) - %(HD%HQ — 3u2)

(4.4)

(4.5)

Hence div (%f) = 0. Now, if ¢ : R = R is any smooth, non-negative,

21




increasing function, we have

i (%ﬁw) = g() div (2 D+ £ 5

U [

Suppose the maximum of f is m > 1. Choose a smooth, non-negative, in-
creasing ¢ so that ¢(f) = 0if £ < 1 and ¢(t) =1 if ¢ > 4m  Integrating the
equation above, using Stokes’ theorem and noting that the boundary integrals
vanish because of the way we chose ¢, we see that Vf = 0 and 1D (w)]|? = 3u?
on an open set. By analyticity Vf =0 on M.

Hence f =1 and {|D(w)||” = 3u? on M.

To see the second part, note that [|Ricci (g) — 2¢i|* = 0 from the above
equation and (3.1). Next, we claim that M is counected, This follows from
the following result of Frankel [5]: ‘

Let (M, g) be a complete Riemannian manifold with positive Ricci curva-
ture. Then any two compact minimal hypersurfaces in M have to intersect.

Hence 8M = S? or RP(2). Since the second Stiefel-Whitney class of RP (2)
is non-zero, it cannot bound a 3-manifold. So 8M = S2. Note that M will
have to simply connected. If not, consider the double of M. This inherits a C?
metric, since 8 is totally geodesic, with Ricei > 0. The fuﬁdamental group
of the double will be a free-product: in particular, it will be infinite which
will contradict the fact that Ricei > 0, by Myer’s theorem. Therefore M is a
hemisphere,

Combining the facts above we see that up to isometry (M, g) = ([0, %] x
5%, dt? + 5in’(t)gs).

From (3.1} we get D?(u) = —ug. Restricting this any geodesic of the form

22




and hence

(N, h) = ([0 g] x 8% x S, dt? + sin®(t)gg: + cosz(thsx)

which ig isometric to (S, std) O

Remarks :

1) An alternative proof of Lemma 4.1.1 is via the following “Robinson” type
identity (these identities essentially state that a divergence quantity equal to a
non-negative quantity, the latter of which is zero iff the metric is conformally

flat) in {12]. :

. 3
o() = s+ v
where S is the “Weyl-Schouten” tensor of g ie. S = dRic. It is the analogue
of the Weyl tensor in dimensions 4 and above and is zero if and only if g is
conformally flat.

In the case of interior maximum, note that the above proof used only the
fact that dz'v(%f) 2 0. Hence using the same argument will show that fis

constant and 5 =0 on M. i.e. (M, g) is conformally flat,

2)We get the following bound : ||dul]* < f < 1.
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Corollary 4.1.3 If K = 1 at every point of F' then (N,h) is isometric to
(54, std)

Proof: Using (3.1) and (3.2) in (4.7) gives

1
ul| Ric — 2g|)* = 3 div (%)

'Integrating the above equation on M and using the divergence theorem we get

/ ul|Ricci (g) — 2g(|%dV = %/ < V[, =Vu > 4
M

F U

- / (K —1)dd s

Now if K = 1 at every point of F then the right integral is zero and hence
Ricci (g) = 29 on M. So, again g is locally isometric to (S8, std).

The rest of the argument is as above. O

4.2 The Case of Disconnected F and Minimal
Surfaces

The next theorem, which covers the remaining part of Theorem 2.4 is proved
using techniques different from the above, namely the theory of minimal sur-
faces in 3-manifolds. This section relies heavily on the work of Galloway [7]

and Cai and Galloway [4]. The arguments presented below are very slight
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variants of those in [7], [4].

Theorem 4.2.1 If K <3 and F = M has more than one component then
(V, h) is isometric to (S% x 2, std) or (% x RP(2), sid).

Proof: The proof is based on the following two results:

A) Let M be a Riemannian 3-manifold-with-boundary. If A is not a handle-
body and if no component of the boundary is stable minimal then M contains
a stable minimal surface in it’s interior. In our case we can take this surface
to be a 2-sphere or projective 2-plane.

B) Let (M, g) satisfy (3.1) and (3.2). Then it cannot contain a stable minimal

2-sphere in it’s interior unless it’s a Riemannian product (S?, std) x [a, 8].

We sketch the proof (for details refer to [7] Lemma 3) of B) first.

Let N be an unit normal vector field to ¥. Define the following variation of
L foreach i € (—e, €), Z; is the surface obtained by travelling in the direction
of N along the geodesics in the metric u®g for time £. Let

H = H; = mean curvature of I,

B = B, = second fundamental form of ¥t and

N = N; = normal to 5.

We have the following evolution equation for B, in Gaussian normal coor-
dinates (in u?g) t, z', 2% All the quantities are in metric g:

Oby;

"é‘t— = u—lRi:}ja + Ubtmbmj +u;ij: 1 ﬁ ?‘13 _<-. 2 (49)

where R is the Riemann curvature tensor of (M, 9}, bi; and w,; are the com-

ponents of B and D2y respectively.
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Taking the trace of equation (3.2) we get

OH )
e uRicy (N, N) + u||B||* + Ag,u (4.10)

where Ay, is the Laplacian on X, with the metric induced from M.

If A(t) =the area of Y, then the first variation formuia gives

A(t) = —fEquA (4.11)

We now obtain an evolution equation for 2 TFirstly

H oy

— 2 — '
Ou = Az + D?*u(N, N) - (4.12)
Using (3.2)
H odu
— _ 2
Az, = —3u — D*u(N, N} + oA {4.13)

(3.1), (4.10) and (4.13) imply

o <y 22
ot u Ot

o (HY .
+5 () =18

= g increasing. Since ¥ is minimal Hy = 0. Therefore H.>0fort>0. If

U

H > 0 for some ¢ then A'(t) < 0 which contradicts the fact that 3 is stable.
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o B =0 (414

for all ¢ sufficiently close to 0.

Equations (3.1) and (4.14) imply that for all vectors X Y € T,D

v Diu(X,Y) = Ricciy (X, Y)=3<X,Y >== < R(X,N)N,Y >
(4.15)

The last equation above and the definition of Ricci curvature imply that
Riccie,e) = (K + 3) where e is any unit vector tangent to & and K is
the Gaussian curvature of 33,

By polarization we get
1
Ricei(X,Y) = §(K +3)gs(X,Y) (4.16)

Combining this with (4.15) gives

Diy = -21-(}‘( ~ 3ugy (4.17)

Galloway shows ( see [7] page 61 ) that the only solutions to the above equation
are u = constant (on X} which occur when K = 3,

Hence it follows, for example by the De Rham decomposition theorem,
that a neighbourhood of T is isometric to 82(—1\5) x (—d, &) where Sg(%) is the

2-sphere with the standard metric of radius % By analyticity of the metric
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this product structure extends globally and we are done.

In case one of the boundary components ¥ of M is a stable minimal surface,
we proceed as follows: First we note that X < 3 is equivalent to Ricei (N, N) >
0 on ¥ where N is the inward pointing unit normal vector field on 3. Thig
foliows from the fact the scalar curvature of g is 6. We claim that in fact
Ricei (N, N) = 0 on Z. Tf not consider the variation of 2 obtained by pushing
it along the gecdesics along the vector field ef N where f is a smooth function
on ¥ to be determined below. Using the same notation as above the derivative

of the mean curvature at ¢ = 0 is given by

%_i{ = Ricci (N, N) + Af + ||df|*

Now if w = Ricci (N, N) then by Hodge theory we can solve the equation
Af =c—w
where ¢ = fz wdA. Note that ¢ > 0 by our assumption. Hence

=t P

In particular %—f 2> ¢ > 0 at every point of £. So we derive the same contra-
diction as above.

Hence we have Ricci (N, N) =0 on F.

Now by slightly modifying the proof of Cai and Galloway ( [4] Theorem B and

the Claim on page 391) we can prove
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Theorem 4.2.2 Let (M, g) be o smooth Riemannian J-manifold with constant

scalar curvature 6. Suppose ¥ s an embedded stable minimal surface with area
at least %F. If N is a normal vector field on 3, then, for the variation defined
by N,

(“BH2)(”)(O,3:) =0 VrelX

where f0" i3 the n-th derivative along the geodesics along N.

The Claim of Cai and Galloway referred to above is :
Let (M, g) be a smooth Riemannian 3-manifold with nonnegative scalar curva-
ture. Suppose ¥ is an embedded stable minimal torus. If N i3 a normal vector

field on ¥, then, for the variation defined by N,
IIBIPY™(0,2)=0 Vzex

where f®) is the n-th derivative along the geodesics along N,
In our case, g is analytic and it will follow that B = 0 for all the surfaces

in the variation and we can proceed as earlier. d
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