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Introduction

In this work we show that, in general, non-positive curvature does not

imply pilecewise linear rigidity. We do this in two cases.

First Case: Differentiable Manifolds.

A fundamental problem in the geometry and topology of manifolds is the
following,.

0.1. When do two homotopically equivalent manifolds are diffeomorphic,
P L homeomorphic or homeomorphic?

When both manifolds in (0.1.) are closed, hyperbolic and of dimension
greater than 2, Mostow’s Rigidity theorem says that they are isometric, in
particular diffeomorphic. When both manifolds have strictly negative curva-
ture, results of Eells and Sampson [8], Hartman [13] and Al’ber [1] show that
if f: M, » M, is a homotopy equi{ralence then it is homotopic to a unique
harmonic map. Lawson and Yau conjectured that this harmonic map is al-
ways a diffeomorphism (see problem 12 of a list of problems presented by Yau
in [21] which asks to prove (0.1.), differentiably, for strictly negative curved
manifolds). Farrel and Jones [9] gave counterexamples to this conjecture by
proving the following. If M is a real hyperbolic manifold and ¥ 1s an exotic
sphere, then given ¢ > 0, M has a finite covering M such that the connected
sum M#X is not diffeomorphic to M and admits a riemannian metric with all
sectional curvatures in the interval (—1 — ¢, —1 + €). Because there are exotic

spheres only in dimensions 7 and up this does not give counterexamples to




Lawson-Yau conjecture injdimension less than 7. The constructions here give
counterexamples in dimension 6. Explicitely, we have the following theorem,
that is a consequence of theorem (1.3.1.) and construction (1.3.2.):

0.2. Theorem. There are closed real hyperbolic manifolds M of dimen-
sion 6, such that the following holds. Given ¢ > 0, M has a finite cover M
that supports an ezotic (smoothable) PL structure that admits a riemannian
metric with sectional curvatures in the interval (—1 —€,~1 + ¢€).

These manifolds are the ones that appear at the end of [17], for the real
hyperbolic case.

Also, in [10] Farrell and Jones proved that (0.1.) holds topologically when
one manifold is non-positively curved and has dimension greater than 4. And,
again by [9], (0.1.) does not hold, diffeomorphically, for dimensions greater
than 6. Then it is natural to ask if (0.1.) holds PL homeomorphically for
non-positively curved manifolds. (Note that [9] does not answer this because
connected sum with spheres does not change PI, structures.) In section 4 we
show that, in general, this is not the case (for dimensions greater than 5). In
fact, we obtain the following

0.3. Corollary. For n > 6, there are closed non-positively curved mani-
folds of dimension n that support exotic (smoothable) PL structures admitting
riemannian metrics with non-positive sectional curvatures.

These manifolds are simply the product of the manifolds in (0.2.) with
the m-torus.

Here is a short outline of Chapter I. First, in section 1, we show how to

change (concordance classes of) triangulations (modulo some closed subset) by




cutting along a hypersurface and glueing back with a twist. Then, in section
3, we take this hypersurface to be totally geodesic and search for one with a
large tubular neighborhood width, so that we (;an use the same method as [9]
(see section 2) to provide this exotic triangulation with a riemannian metric

with sectional curvatures in (-1 —¢,—1 4 ¢).

Second Case: Piecewise Linear Stratified Spaces.

Two triangulations on a space that agree on each stratum are not nec-
essarily PL equivalent, because we can glue these strata in different ways.
Indeed, Anderson and Hsiang [2]| gave obstructions for this problem, which de-
pend on the lower K groups of the links of the strata. Also, Farrell and Jones
[10] proved that the lower K groups of a non-positively curved manifold are
zero. These two facts motivate the following problem about the uniqueness of
triangulations on non-positively curved simplicial complexes. Explicitly, given
two triangulations on a compact space that agree in each stratum that are
piecewise flat, non-positively curved (in the sense of Gromov [12]) and com-
plete (as geodesic spaces; that is, every geodesic can always be extended to
the real line), we ask if they are PL equivalent. Here we give an example of
a compact space with two non-equivalent piecewise flat non-positively curved
complete triangulations that agree on each stratum. Also we give an exam-
ple showing another space with two non-equivalent triangulations, one being
piecewise flat non-positively curved and the other not admitting a piecewise
flat non-positively curved subdivision. This last example is related to problem

14 of the list of problems presented by Yau in [22]. There he asks when a
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compact simplicial complex admit a non-positively carved metric. Then our
second example says that we can not decide if a simplicial complex admits

a non-positively curved metric just by looking at topological information, we

need information of the triangulation itself.




Chapter 1

Examples of Non-Positively Curved
Manifolds with Non-Positively Curved
Exotic Triangulations.

1. Triangulation Lemmas. Recall that if M is a PL manifold and
C C M, a closed subset (assume m = dimM > 6 or dimM > 5 and M C
C} then there is a one to one correspondance between H3(M,C;Z;) (this is
Cech cohomology) and the set of concordance classes of PL structures on M
_ that agree with the given-one on a neighborhood of C. We can choose this
correspondance to be such that it sends the given PL structure to 0. Next we
sketch how this correspondance is given (see [14]).

Deﬁote by 7o the given PL sfructuré on M. Also denote by Brop and
Bp;, the stable classifying spaces for TOP and PL microbundle structures
.and TOP/PL — By, — Brop the fibration we obtain from the forgetful map
Bp;, — Brop. Let T be other PL structure on M -that- agree with ;ro on a
neighborhood of €. Then there is an n such that r x R® is concordant to a
PL structure 8, that makes M x R* a PL ﬁﬁcrobundle (trivial over a neigh-
borhood of C) over My,. This gives a correspondance between concordance
classes of PL structures on M that agree with 75 on a neighborhood of C' and
TOP/ PL(e(M) rel C), the set of stable concordance classes (rel C) of PL

| mlcrobundle structures of the trwwl bundle e(M) over M, (see [14] p.176).

Buf TOP/PL(e(M) relC) is also in corespondance w1th Lift(f relC, F,), the

|




set of vertical homotopy classes of liftings of f to Bpy, where f : M — Brop
classify (M) and Fy : {neighborhood of C} —+ Bl is a given lifting of
I |neighborhood of ¢ (it classify To |nesghborhood of ¢)- But e(M) is a trivial bundle
so that we can choose f to be a constant map (and Fj also constant because
our PI, microbundle structures are trivial over a neighborhoood of C ), hence
TOP/PL(e(M) rel C) is in correspondance with [M,C; TOP/PL}, the set of
homotopy classes of maps from M to TOP/PL that send a neighborhood of
C to a previously fixed point. But TOP/PL is a Kilenberg-Maclane space of
type (3,Z3), so that [M,C;T'OP/PL) is in correspondance with H*(M,C;Z,).
Note that this correspondance depends on which PL structure we are sending

to zero in H*(M,C;Z;) and is also completely determined by this choice.

Given a concordance class of triangulations [7] denote by ¢ = ¢, €
H3(M,C;Z,) the corresponding cohormology class and also given a cohomol
ogy class ¢ write [r,] = [r]. for the corresponding concordance class of trian-

gulations.

We have the following

1.1. Lemma. Let p: M — M be a covering, C C M closed and
m = dimM > 6 (or dimM > 5 and OM C C). Suppose M has a PL stucture
70 and denote by Ty the pullback p*1y of 1o and make these two triangulations
correspond to zero in H3(M,p~'(C);Z5) and H3(M,C; 1) respectively. Then
[Tlpre = [p*7e] for all ¢ € H3(M,C;2,). Equivalently, cpo, = p*c, for every

PL structure 7 on M.

Note that if 4 and 7, are concordant PI structures on M, then p*r and




p*1y are also concordant.

Proof. Let 7 be a PL structure on M (rel C). If 0 is a P L structure that
makes M x R™ (for some n) a PL microbundle over M,, concordant (rel C)
to 7 x R”, then $*8 is a PL structure that makes M x R” a PL microbundle
over My concordant (rel p~1C) to p*r x R", where § = (p, Idgn). Then if
h: M — TOP/PL C B}y classify 0, hp classify $5*0. So, pulling back P
structures gives a map [M,C;TOP/PL] — [M,pY(C); TOP/PL)] given by
h +—> hp. This completes the prove of the lemma.

Now, given a Pl manifold M, we show how to change PL structures by

cut;ting along a closed hypersurface N of M, and glueing back with a twist.

Denote by M, the CAT(= PL or DIFF) manifold obtained by cutting
along N (a CAT closed hypersurface), and identifying by x the two copies of
N we get, ;Nhere N is a CAT closed hypersurface and y : N — N is a CAT
isomorphism. In what follows we assume that the relative set is nice enough
(for example, deformation retract of a subcomplex) so that we replece Cech

cohomology by singular cohomology.

1.2. Lemma. Let M be a PL oriantable n-manifold, n > 6, N a closed
PL hypersurface with a tubular neighbourhood g : W =2pr, N x [—-1,1} of N
in M, where g(N) = N x {0}, and J C N open with J compact. Then for
every ¢ € H3(M, M\ J;Z,), there is a PL wsomorphism x : N — N, such that
M, (that is, its PL structure) corresponds to ¢ (by the correspondance that

sends the given PL structure to 0) and x is the identity outside a compact

neighborhood of J.




Note that J is not open in M but ¢7*(J x (—6,6)) is, where § < 1, and
(M, M\ g7'(J x (—46,6)) is a deformation retract of (M, M \ J).

Proof. Denote by 7 the given PL structure on M and make it correspond
to 0 € H(M,M \ J;Z;). Now, 7, (a PL structure that corresponds $o ¢)
is a PL structure on W that agrees with 7y outside ¢7*(J x (=$§,6)). In
particular they agree on g~'((N\J)x[~1, 1]}, so that W, is a PL product there
(bacause W, is). By the s-cobordism theorem (and the fact that the torsion

of a homeomorphism is zero), we have that there is a PI homeomorphism

h:(W,1,) = N x [-1,1], such that

hg ™ [N {-1yum v =11 Tdwx oy x-1)

where J C V CV C N,V compact and V open. Let y = (P7'9) |nxq1y- Then
we see that M, corresponds to 7. (here to obtain M, we are cutting along
g7 (N x {1}) C W), for we can define a PI homeomorphism H : M., — M,
by |

g 'h(z) zEW
H{z) =

T reEM\W

Note that x |yyv= Tdmy.
This completes the proof of lemma (1.2.).

1.3. Remark. Note that if 7 is smoothable, then, using now the differ-

entiable




s-cobordism theorem, we can choose x to be smooth.

2. Geometric Lemma. Let M be a differentiable manifold and consider
metrics A on M x I, where I = {1,2] is a closed interval, satisfying (recall that
the tangent space 'a,t a point (z,t) € M x I'is isomorphic to T;M @ R('g':) le)

2.1. (a)Forany v € T,M, A(v, &) = 0.

DA, 2) =1
Equivalently, A = 5; + dt?, where S; is a metric on M depending on £.

2.2. Lemma Let M be compact and A = 5S¢ + dt? a metric on M x [
satisfying (2.1.). Then given ¢ > 0 there is an L such that for o > L all the
sectional curvatures of Ay lie in (=1 —¢ —1+ ¢), where A, is the melric on
M x I given by Ay(x,t) = cosh?(at)S, + o dt’.

The proof is the same as the proof of lemma (3.5.) of [9], just replace the

function sinh by cosh and the m — 1 sphere by any compact manifold.

3. Construction of the examples. First we proof the following

3.1. Theorem. Consider the following data. For each k =1,2,3,... we
have closed hyperbolic manifolds Mo(k), My(k), Ma(K), Ms(k) such that

(a) dimMo(k) = 6, dimM, (k) = 5, dimMa(k) =3, dimMs(k) = 3.

(b) Ma(k) C Mi(k) C Mo(k) and Ma(k) C Mo(k). All the inclusions are
totally geodesic.

(c) My(k) and Ma(k) intersect in one point transversally.

(d) For each k there is a finite covering map p(k) : Mo(k) — Mo(1) such

that




p(kY(M;(k)) = M;(1), fori=10,1,2,3.

(e) Myi(k) has a tubular neighborhoood in My(k) of width r(k) and r(k) —
oo as k — co.

Then, given € > 0, there is a K such that all Mo(k), k > K, have ezotic
(smoothable} triangulations admitting riemannian metrics with all sectional
curvatures in the interval (—1 — ¢, —1 + ¢).

Proof. Denote by o(k) the triangulation on My(k) induced by the hy-
perbolic structure and make it correspond to zero in H3(My(k),7;). Also,
denote by g(k) the restriction of the hyperbolic metric on My(k) to the totally
geodesic submanifold M; (k). Then the tubular neighborhood of width r(k) of
My (k) in My(k) is isometric to My(k) x [—r(k),r(k)] with metric, at a point
(z,1), given by (cosh*t)g(k)+di* (note that hyperbolic n-space H" is isometric
to H*™! x R with metric (cosh®t)g + dt%, where g is the hyperbolic metric on
HP=1).

Take now a tubular neighborhood W(k) of Ms(k) in M;(k). We can
suppose that p(k) |we): W(k) — W(1) is a covering. Let the open set U{k)
be such that U(k) is a compact neighborhood of My(k) x {2} in W (k) x (0, 3).

Consider the cohomology class ¢(k) € H*(W(k) x (0,3), W (k) x (0,3) \
U(k); Z5) = H3 (W (k) x(0,3), W(k) x (0,3)\ My(k) x {2}; Z,) dual to My(k) x
{2} € W{k) x (0,3).

Denote by 7(k) the triangulation, modulo the complement of U(k), on
W (k) x (0,3) corresponding to ¢(k).

Let f(k): W(k) — W (k) be the PL isomorphism corresponding to c(k)

given by lemma (1.2.), so that the triangulation of (W (k) x (0,3))sq), ob-

10




tained by identifying (z,2) € W(k) x (0,2] with (f(k)(z),2) € W(k) x [2,3),
corresponds to ¢(k) (it is concordant to 7(k)).

3.1.1. We have the following claims.

(1) (k) bwigy X Tdo)"c(1) = (k) and 7(k) = (p(k) lweey X o7 (1)

(2) We can choose f(k) such that it covers f(1).

(3) We can suppose 7(k) to be smoothable and f(k) a diffeomorphism.

(4) We can take f(k) to be the identity outside a neighborhood V(%) of
My(k), with V(&) ¢ W(k) compact.

Proof of the claims. (3) is true because in dimension six there is no
obstruction for a PL structure to be smooth so that we can suppose f(k)
smooth (see remark (1.3.)). (4) follows from the fact that (k) and o(k)
coincide outside U(k) (see proof of lemma (1.2.)). (1) is because (p |w)
y~H(M2(1)) = My(k) (the pullback of the dual of a cycle is the dual of the

inverse image (to see this just consider a suficiently fine triangulation and its

dual cell decomposition and pullback everything)). The second part of (1)

follows from lemma (1.1.). For (2) note that the triangulation of (W(k) x

(0,3))50) 1s 7(k) = (p(k) lwwy xIdz)*7(1) and if f(k) covers f(1) then

(W(k) % (0,3)) ) covers (W(1) x (0,3))¢qy by a PL covering. Hence we can
take as f(k) a lifting of f(1) (indeed, we could have defined f(k) in this way).
This completes the proof of the claims.

Consider the metric A(1) on W(1) X [1,2] defined by

A(1) = [8()£(1)*(9(1)) + (1 = 6(2))g(1)] + dt”

where § is a smooth real function such that 0 < §(t) <1, 6(1) =0, §(2) =1

11




and is constant near 1,2.

For € > 0 let L be the constant given by lemma (2.2.), so that all sectional
curvatures of A(1), lie in (—1 —¢,—1+¢), for @ > L. Note that, because f(1)
is the identity outside V(1), we have that A(1) = ¢(1)+dt? outside V(1) x[1,2]
and then also A1), = (cosh*(at))g(1)+ o?dt? outside V(1) x [1,2]. Note that
we cannot apply lemma (2.2.) directly because W(1) x [1,2] is not compact
but we can apply the lemma to M;(1) x [1,2] because we can extend A(1) to
it. Define now a metric B(1) on (W(k) x (0,3))sa) (that is W(k) x (0,3) with

triangulation (1)) by

AQ1) tel,2
B(1) = ¢

g(1)+dt* te(0,1]U[2,3)

Note that this metric is well defined since both definitions coincide on a neigh-
bohood of t =1, 2.

Thus (W(1) x (0,3));q) admits riemannian metrics (the metrics B(1),
for & > L) with all sectional curvatures in (=1 — & ~1+¢€). Remark that
B(1)a = (cosh®(at))g(1) + o*di?* outside a compact subset of W(1) x (0,3)
containing M;(1) x {2}.

Also, by defining B(k) = p(k)*B(1), we have that (W(k) x (0,3)) ;) (i.e.
W{(k) x (0,3) with triangulation 7(k)) admits riemannian metrics (the metrics
B(k)q for a > L) with all sectional curvatures in (=1 — ¢, —1 + €). Note that
we also have B(k), = (cosh*(at))g(k) + a?dt? outside a compact subset of

W (k) x (0,3) containing My(k) x {2}. We try now to fit these models (i.e.

12




(W (k) x (0,3)) (s with the metrics B(k),) on the Mo(k), for large enough k.

Let K be such that (k) > 3L for £ > K (use hypothesis (e) here).
We prove that Mo(k) has exotic triangulations with riemannian metrics with
sectional curvatures in the interval (—1 --¢,-1 + ¢).

Because of (e) of the statement of the theorem, M;(k) C My(k) has
a tubular neighborhood of width r(k) isometric to M; x [—r(k),r(k)] with
metric (cosh?(t))g(k) + di?. In what follows we make no distinction between
the tubular neighborhood and My (k) x [—r(k),r(k)].

Consider

h(k): W(k) x (0,3) - W(k) x (0,3L) C W{(k) x (—r(k),r(k))

C My(k) x (—r(k),r(k)) C My(k)

given by (z,t) — (z, Lt). |

Note that A(k) is an isometry, where we are considering W(k) x (0,3)
with metric cosh?(Lt)g(k) + L*dt* and W (k) x (0,3L) with metric induced by
the hyperbolic metric on My(k).

Because the triangulation (A(k)™1)*r(k) coincide with o(k) outside a
compact in W(k) x (0,3L) we can extend it to all My(k) by defining it
to be o(k) outside W(k) x (0,3L). Call this triangulation on My(k), 7(k).
This (smoothable) triangulation corresponds to the cohomology class &(k) €
H3(Mo(k), Mo(k)\M2{k) x {2L}; Z5) dual to My(k)x {2L} C W(k)x(0,3L) C
M, (k) x (—r(k),r(k)) C My(k) (the correspondance between PL structures
and the third cohomology group is natural for restrictions to open sets, see
[14] p.195). Define also a metric B(k), compatible with 7(k), on My(k)

to be (h(k)™)*B(k), on W(k) x (0,3L} and the hyperbolic metric outside

13




W (k) x(0,3L). Note that all sectional curvarures of B(k) liein (—1—¢, —1+¢)

(all sectional curvatures are ~1 outside a compact subset of W (k) x (0,3L)).
So, given € > 0, there is a K such that for & > K, 7(k) is a triangulation

on My(k) that admits the riamannian metric B(k) with all sectional curvatures

in the interval

(—1-—¢,~14¢) and 7(k) corresponds (by the correspondance that sends o(k)

to zero) to (k) € H3(Mo(k), Mo(k)\ M3(k) x {2L};Z,) dual to My(k)yx{2L}.
But ¢(k) is not zero in H3(Mo(k): Z,). That is, if

is : H(Mo(k), Mo(k) \ My(k) x {2L}; 75) — H*(Mo(k); Z,)

is the inclusion, then i3(&(k)) is not zero becauge My(k) x {2L} is homologous
to My(k) and it intersects Ma(k) transversally in one point (by hypotesis (c)).
This means that o(k) and 7(k) are non-concordant.

 Finally we have to prove that 'F( k) is indeed not equivalent to o(k).

So suppose
f o (Mo(k), 7(k)) — (Mo(k),o(k)) is a PL homeomorphism. We have two
cases:

3.1.2. First Case. Suppose f is homotopic to the identity. Let H,,
0<t<1, Hy= f, Hy = Id be a homotopy between J and the identity. Then
the map H : Mo(k) % [0,1] — Mo(k) x [0,1], defined by H(z,t) = (H/(x),t)
is homotopic to Idakyxp,) and because it is already a homeomorphism on
HMo(k) x [0,1]) we may apply (1.6.1.) of [10] to get a homotopy (which is
constant, on O(Mo(k) x [0,1])) of H to a homeomorphism # : Mo(k) x [0,1] —

My(k) x [0,1].

14



Because H; = Id and H, = f, by pulling back the triagulation o(k) x I
of Mo(k) x [0,1] using H, we obtain a concordance between 7(k} and o(k). A

contradiction because o(k) and 7(k) are non-concordant.

3.1.3. Second Case. By Mostow Rigidity theorem, every homeo-
morphism from a_compact hyperbolic manifold to itself is homotopic to a
diffeomorphism, so that we have that f ~ g, where ¢ : (Mo(k),0(k)) —
(Mo(k), a(k)) is a diffdeomorphism. Then the second case follows by applying
the first case to fg=' ~ Idpsqy (note that o(k) is equivalent to (g7*)*a(k)).

This completes the proof of theorem (3.1.).

Remark. Theorem (3.1.) does not work for dimension 5 because the
triangulation ierﬁma (1.2.) holds only for dimensions 6 and above. This is be-
cause the s-cobordism theorem is not true for dimension 5, so that we do not
know if exotic triangulations on M* x [0,1], modulo the boundary, are prod-
ucts, where M* is a 4-manifold. Also, in theorem (3.1.) we needed dimension

less than seven to assure that the iriangulations we obtained are smoothable.

3.2. We construct now, for every n > 4, manifolds M;(k),: = 0,1,2,3
and k = 1,2,3,... with dimMy(k) = n, dimM, (k) = n— 1, dimM,(k) = n -3,
dimM;(k) = 3 satisfying (b),(c),(d) and (e) of the theorem. When n = 6 they

will jalso sa.tisfj (a)-

' Fix a positive prime number m and write E = Q(y/m). Denote by Og

the ?set of integers of E. Fix ! € O and define, for £ = 1,2, 3, ... the quadratic

15




form Q(k) on R™*1 by

QUE)(@1, -y Bag1) = PE Va4 af +ad + . + 2l — Vmal,,

Define now groups

Go={g€GLn+1,R): gH=H} where H="{zeR""" : z,44 >0}
Gi={9€Go:ges=ei}
G2={g€Goi ge; = €4, i=1,2,3}

Gy ={g€Go: ge; =e;, 1 =4,5,...,n}

and

Ho(k) = {g € Go: Q(k)(gz) = Q(k)(z) Yz € R}
Hi(k) = Ho(k)n G i=1,2,3

(k) = Hi(k)o, i=0,1,2,3.

B

where the subindex Op means that the entries of the matrices are in O and
e; is the vector in R"! whose j—-th coordinate is 5{ . Note that for all k,
Hi(k) = H;(1) and T(k) = T5(1) for ¢ = 1,2 and write just Hy, H; and

I'y, Ty, respectively.

16
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Define also
Xo={z = (z1,.yTny1) € R Q(D)(2) = —v/m, Togr > 0}
X1 = Xo N {(z1, .00y Tnp1) € R*T 2 2y =0}
Xo={(z1, . ZTny1) E Xo: &1 =223 =23 = 0}

X3 = {(LE]_, ...,.Tn.].l) i~ XD VX =By = =Xy 0}

and we consider X, with the metric, at a point ¢ € Xg, that is the restriction
 of Q(1) to the hyperplane tangent to Xq at z. This riemannian metric is of
constant curvature —:715. Note that X, € X3 € Xo, X3 C Xo and all the
inclusions are totally geodesic. Note also that X3 N X3 = €,41.

Consider the n 4+ 1 by n + 1 diagonal matrices

D(k) = diag{?¥1,1,1,..,,1}

and note that D(k)H;(E)D(k)™" = Hi(1) i=0,1,2,3.

Note that H;(1) acts on X; and D(k)Ti(k)D(k)™" C H(1) fori=0,1,2,3
so define

Yi(k) = X;/D(E)Li(k)D(k)™" i=10,1,2,3

Note that Y;(k) = Y;(1) for all k and ¢ = 1,2 so write just Y and Y;.

3.2.1. Now for an ideal Z of O consider the congruence subgroups
for: =0,1,2,3. Also write

Yi(k)s = Xi/ DURT(k)zD(k)™ i =0,1,2,3.
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3.2.2. We have the following facts

1. For any non-trivial ideal T of Og, T';(k)z is a subgroup of finite index
of T;(k) because Og/T is finite.

2. T;(k) is discrete (see the proof of step 1 of lemma (3.2.3) or [16] p.239).

3. Y;(k) is compact (see [19] or [16] p.238).

4. For all but finite ideals T, GL(n+1,Og)z is torsion free (see [4] p.113),
so that all I';(k)z are also torsion free. Then all Y;(k)7 are compact manifolds

. Furthermore, for all but finite ideals Z, we have that if
w(k): Xg — XU/D(_k',)I‘O(Ic);nD(k)""1 = Yo(k)z

is the projection, then

(%) 7(k)X; = X;/D(E)U;(k)zD(k) " =Yi(k)z i=0,1,2,3

so that the (Yi(k))z are (totally geodesic) submanifolds of Yo(k)r (see
proposition (2.2.) of [17]).

Remark. To be able to apply (2.2.) of [17] we need some remarks. Let
o; 1t =1,2,3 be the following involutions.
O1(T1, Xy ey Tpp1) = (%1, T2, o0y 1),
o3(@1, T2, Ty Taerry Tngr) = (—21, —T2, —T3, Tgeer, Tpy1) aNd
03(T1, T2, T3, Tay T8y ooy Tny Tg1) = (21,2, T3, —Fa, =Ty oovy — Ty, Tuy1). Note
that X; is the fixed point set of o;. We alsohave that o;Tg(k)zo; = To(k)r 7 =
1.2,3 and the following two facts hold

1. To(k)z acts freely, because is discrete and torsion free.

2. Ti(k)r ={geTolk)r: gXi=Xi} = {g € To(k)r: ougo; = g} i=

1,2,3. To see the first equality note that a group of ortogonal matrices with




coefficients in O is finite. We can apply now (2.2.) of [17] to obtain (*).

3.2.8.Lemma. The widths r(k) of tubular neighborhoods of (Yi)r in
Yo(k)z can be chosen such that r(k) — oo as k — co.
Proof. We have three steps.

Step 1. We prove that
(Xo)op = XoNOF™" = {(z1, .., Tnp1) : it t2i—/mal,, = —v/m, z; € Og}

is closed and discrete.

The proof of this is similar to the proof of the fact that [g(k) is discrete
(see [3] p.190). So, to prove step 1 note first that Oy is not discrete in R, but
the map ¢ : Op — R x R defined by z — (z,z), where 7 is the conjugate
(ie. a++/mb=a— +/mb) is a bijection of Og in R? whose image is closed
and discrete.

Then ¢ : (Xp)o, — R™! x R*! is a bijection and also has closed and

discrete image. But projy(¢({(Xo)o,)) is compact (because z? + ... + a2 —

vmazi,, = —y/m imples 7} 4+ ... + 72 + Vmz, . = v/m) so that (Xo)o, =
proji(6((Xo)o,)) is closed and discrete.

Step 2. We prove that for all s € R+ there is a K such that | et [|> s
for £ > K and v € D(k)To(k)D(k)~*\T'1, where the bars denote the euclidean
norm in R™*1,

So, take v as before, then vy = D(k)BD(k)™! for some B8 € T'o(k). Thus
Yen1r = D(E)BD(k) enyr = D(k)Benya = (¥ ay, ag, a3, ..., any1) with a; €

Op and a; # 0 (because 7 is not in I'; and also because (*) implies that




I't = {g € To(k) : 9X1 = X1} = {g € I'o(k) : X1 N X; # ¢}) and note that
(Fa) + ..+ a2 — mal,, = —/m 5o that ye,qy = (Faq, an, ..., tngt) €
(Xo)oz- Now (Xo)o, is closed and discrete by step 1, consequently (Xo)og N
B(0, 5) is finite, where B(0, s) is the ball in R**! with center in the origin and
radius s. Then the set progi((Xo)o, N B(0,s)) is finite, where

proji(z, ., Tpy1) = @q1. By taking K large enough we have that |, for k > K

I*=1 does not divide any of the non-zero elements of proji((Xo)o, N B(0,5))

50 that ve,q1 = (F~'a1,az,...,any1) does not belong to B(0, s) which means

that || yenqr ||> s for k > K.

Step 3. We complete the proof. Because of step 2, we have that

d (en+1 , {'}’8n+1 : v € D(E)To(k)D(k) "\ Ty } ) — 00

as k — o0, where d is the euclidean distance. Then is easy to see that the same
happens with the riemannian metric of X, (both induce the same topology), so
that the lengths of closed geodesics, not in Y5, at the point 0 = 7(k){(en41) go to
infinity as & goes to infinity, which completes, using the triangular inequality,
the proof of the lemma.

We have found manifolds satisfying condition (e) of the theorem. We now
pass to finite coverings to find manifolds satisfying (b), (¢) and (d). We use

now the following result from [17} p.122.
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3.2.4. There are infinitely many ideals T of Og such the following two
conditions hold
1. X;/Ti(1)z is orientable, i =0,1,2,3.
2.Ify € To()r and vz € X,, for some x € Xs, then v = gags,
where |
g €Ti(l)g, 1 =2,3.
Then we can suppose that the ideal T we chose before lemma (3.2.3.)
satisfy (3.2.4.).
Remark. Statement 2. of (3.2.4.) holds if and only if ¥3(1)z N Ya(1)7 is

one point.

Let now [ € T and consider T';(k)), ¢ = 0,1,2,3, where (%) is the
principal ideal generated by I*. Note that ({¥) C T so that Ti(k)gsy C Tilk)z.
Denote by

%i(k) = D(E)T3(k) gy D(k)™ i=10,1,2,3
and note that £;(k) is a subgroup of I';(1)z for ¢ = 0,1,2,3. Moreover, because
Ti(1)ery € Bi(k) C ¥:(1) € I'i(1)z, we have that %;(k) has finite index in
T;(1)z and %;(1). Write -

Mi(k) = X:/Si(k) =10,1,2,3.

We prove that these manifolds satisfy (b), (c), (d) and (e) of the theorem.
Note that all M;(k) are compact orientable manifolds because they are
finite covers of the X;/Ti(1) = Yi(1)z (for orientability use 1. of (3.2.4.)).

This also imply (b) and the fact that the dimensions are right. Next we prove
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(d). Remark that T;(k) = Zo(k) N Gi = Bo(k) NTu(k)r ¢ = 1,2,3. This fact
together with (x) implies that if #(k) : Xo — Mo(k) is the projection then
7(k)(X;) = Mi(k) i=1,2,3. If p(k) denotes the projection p(k) : Mo(k) —
My(1) , then (d) follows because #(1) = p(k)m(k).

Note that (Mo(k), Mi(k)) covers (Yo(k)z, (Y1)r) then lemma (3.2.3.) im-
plies that (e) holds.

Finally we prove (c). Let v € Eo(k) be such that yz € X, for some
& € X3. Then by (3.2.4.) v = g293, ¢i € Ti(l)7r1 = 2,3.

Because 7y € Bo(k) = D(k)To(k)qry)D(k)™" there is a' 8 € L'o(k)gx) such
that v = D(k)BD(k)™'. Then

B = [D(k) g2 D(R)D(k) " gsD(k)].

‘But

D(k) g D(K) = 95

so that

B = [ D(k) " gsD(k)]
which implies that D(k)~'gs D{k) has entries in Og (because 8 and g, do). But
then, because 8 = Id mod (I*), we have also that g, = Id mod (1*) (note that
Be; = guei, + = 4,...,n and Be; = e; mod (I¥) and also that g, has determi-
nant one (because of 1 of (3.2.4.))). Then also D(k)™"gsD(k) = Id mod (I*).
This means that g, € Iy(k)gry and D(k) g3 D(k) € I's(k)@). Consequently
¢ € D(RYTu(R) gy D(k)™" = i) C To(k) i = 2,3. I 7(k) denote the projec

7(k)(yx) = 7(k)(gagaz) = T(k)(gsz). But

Il

tion Xo — My(k) then 7(k)(z)
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g3z € X3 (because € X3) and gzz € X, (because ga(gsz) = vz € X3), s0

that g3z = Xo N X3 = €,41, which means that 7(k)(z) = 7(k)(ens1) = o.

4. Non-positive curvature case in higher dimensions. Denote by
T™ the m-torus S* x ... x S! with the canonical differentiable structure and
induced PL structure mp». We prove here that if we take one of the exam-
ples of section 3, and product it with 7™, we still have exotic non-positively
curved triangulations. To see this note that if (M, 7o) and (M,n) are two
non-positively curved triangulations on M, then (M x T™,79 X rr=) and
(M x T™ 1 X Tpm) are also non-positively curved. Moreover, if (M,7) and
(M, ;) are non-concordant, then (M x T™, 7y X 7m) and (M x T™, 1y X Trm)
are also non-concordant, for the Kunneth formula tells us that Z,-cohomology
classes do not vanish when we take.products. So, it remains to prove that

these triangulations are not equivalent. To see this is enough to prove the

following (see (3.1.2.) and (3.1.3.)).

4.1. Proposition. Let f: M x T™ — M x T™ be a homeomorphism,
where M is a compact orientable hyperbolic manifold. Then f ~ g, where g is
a diffeomorphism.

Proof. Because m;(M) has trivial center (see [15}), we have that if ¢

m(M x T™) — m(M x T™) is an isomorphism, then there are isomorphisms

$1 : (M) — 7 (M), ¢y : m(T™) — m(T™) and a homomorphism ¥ :

m (M) — m(T™) &2 Z™ such that

b= D+ 0D

23




4.1.1. Lemma. Let M be a compact oriented differentiable manifold and
At m{M) = Z™ a homomorphism. Then there is a diffeomorphism h : M x
T — M xT™ such that for by : 1M xT™) = (M x T™) 2 my(M)® 1™,

we have

h* = Id,"-l(Mme) ‘l‘ 0 @ A

Proof. Because H (M, Z) is the abelianization of 7; (M) we have that A

factors through it:
WI(M) ubeliagj;:ation IT[] (M, Z) _j\.} Fm

i.e. the composite of these two maps is A. Let p;, ¢ = 1,.., s be a base for the
free abelian group H'(M,Z) = Hom(H;(M,Z),Z). Then there are elements

t; = (M1, oy Nim) € 2™ such that X = 5 aip;.

M is compact and oriented, so by Poincare duality, there are N; €
H,_1(M,Z) dual to p;. We can represent N; by an embeded n — 1 closed
submanifold (we denote it also by N;). These N; have tubular nieghbourhoods
U; 2 [0,1] x N; and we make no distinction between U; and their images.

Define ¢; : U; x T™ — U; x T™ by
Gi(t,z, 01, ..,8,) = (£, 2,0, + 27n,6(F), ..., O + 270,50 (2))

where § is smooth such that §' > 0, §(0) =0, 6(1) = 1 and it is constant near
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0,1. Define also h; : M x T™ — M x T™ by

P

gi(z) zeU;xT™
hi(z) =

T e (MxT™)\(U; xT™)

\

These are well defined diffeomorphisms (because the two definitions agree on
a neighborhood of 8U;). Finally put A = hy...h,. This completes the proof of
the lemma because A, = Idg (mrxrm) + 0D A

We complete now the proof of proposition (4.1.). Let f: M xT™ — M x
T™ be a homeomorphism. Let ¢, ¢2 _and ¥ be such that fi, = ¢; D ds +0D .
Let A be as in lemma. (4.1.2.) where we take A = ¢¢7". Then (A7 f}. = ¢:1® 2.
By Mostow’s rigidity theorem there is diffeomorphism r; inducing ¢;. Also
there is diffeomorphism 7o inducing ¢;. Then (A7 f), = (r1 X 72)x and by

(1.6.) of [10] A" f ~ 7y X rg or f ~ h(r1 X r3), which is a diffeomorphism.

’




Chapter II

Examples of Non-Positively Curved
Simplicial Complexes with Non-Positively
Curved Exotic Triangulations

1. Preliminaries.

In this chapter all simplicial complexes are finite dimensional and locally

finite.

1.1 Let X be a metric space with metric dy. A geodesic segment is an
1sometry from an interval into X. A metric space is called geodesic if every
two points can be joined by a geodesic segment. A geodesic is a local isometry
from R to X. A geodesic space is said to be complete if every geodesic segment

can be extended to a geodesic.

1.2 Let X be a convex linear cell complex, For every cell ¢; choose a
riemannian metric d; on it (i.e. there is an isometry from (¢;,d;) into some
riemannian manifold) in such a way that the metrics coincide on each inter-
section of cells. This gives a way to define the length of a path in X and this
determines a metric d on X by defining d(z,y) = in f{lengths of paths joining
z toy }. X together with such a metric is called a piecewise riemannian con-
vex linear cell complex or a piecewise riemannian simplicial complez in case

X is a simplicial complex. We have that every piecewise riemannian simplicial

complex is always a geodesic space (see [12]).
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A piecewise riemannian simplicial complex is piecewise flat, hyperbolic or
spherical, if every simplex is isometric to a simplex in R (euclidean space),
H” (hyperbolic space) or ™ (a sphere with constant sectional curvature equal

to one), respectively, for some n.

1.3 Let X be a geodesic space. A triangle [zg, @1, %5] in X (i.e. the
three points g, 2, z; together with geodesic segments [z;,%;]) satisfies the
CAT(8) inequality (see [12]) if the following holds. For every y € [y, o]
we form its comparison triangle: a triangle, on the simply connected surface
Mg of constant curvature 6, with vertices zg, 2, x4 such that dag, (2}, a}) =

d(z;, ;) and y' € [2], 2] with d(y,2;) = dag, (v, 20) ¢ = 1,2. Then d(zq,y) <

dats (20, 9")-

1.4 A geodesic space has curvature < §, if every point has a neighbor-
hood in which every triangle satisfies the C AT'(6) inequality. A geodesic space
is non-positively curved if it has curvature < 0. A geodesic space is negatively
curved if 1t has curvature < §, for § < 0. We éay that a space has a triangu-
lation with some property if it is homeomorphic to a simplicial complex with
that property. For example a space has a non-positively curved piecewise flat
triangulation K if it is homeomorphic to a non-positively curved piecewise flat

simplicial complex K.

1.5 Pasting Spaces. First, we say that a subspace A of a geodesic space
X is locally convex if for all a € A and any two points z,y € A close enough

to a, every (distance minimizing) geodesic segment joining z to y is contained
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in A.

Let X, and X; be two geodesic spaces with curvature < § and A; C
X;, t = 1,2 locally convex. Suppose there is an isometry f between A; and
Ag. Then we can form the space X from X)Xz by identifying A; with A4,
using f. We have that X is also a geodesic space with curvature < § (see [12]).

It is easy to see that if [3; C X, » = 1,2, are locally convex such that
A;UB;, 1 = 1,2 are also locally convex, then the image of B;UB; in X is
also locally convex.

Let K be a piecewise flat simplicial complex and § be any set of simplices
of K. Define T(K,8) to be the piecewise flat simplicial complex obtained by
identifying each simplex A™ in & with a n;-simplex of a flat torus 7™+!, By
the pasting rule above, if K is non-positively curved then T(K,S) also is, for

any §S.

1.6 Products. Let X; and X; be two piecewise flat cell complexes
with metrics d;, 4 = 1,2. This determines a {euclidean) metric on each cell of
X1 % X, (the metric d = 1/d? + d3), and this gives a piecewise flat metric d

on X; X X, in the same way as in (1.2). We have the following 1.6.1. Claim.

d = +/d? + dZ globally.

Proof. Denote by proj; : X1 x X; — X; the projection. Denote also by
(), £1(p), £2(ip) the length of a path ¢ in X, x X3, X1, Xy, respectively. Also
if ¢ is a path in X; x X; denote by «* the path proj;{¢) in X;. Note that if ¢
is a geodesic segment in X; x X then ¢ is a geodesic segment in X; (because

geodesic segments minimize distance).
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Now, write a geodesic segment lp m. Xl..* X2 as @ = P1¥F P2k ok gy,
where ; is a straight segment on a cell a; % b of X1 x Xz (a; is a cell of X,
and b; is a cell of X;) and * denotes the join of patﬂ_ . ﬁecause d= m
on each cell a; X & we have {(p;) = \/ [£1(})] )] |

Now we proof that the slopes of the ¢; are consta,nt_._-.j:_;That is, define
m; = ﬁﬁ(zl'; We show that m; = m;1q. To see this note ﬁr‘st'tha,t because

w; * iy1 18 a geodesic segment then (pt * goe +1 18 a geodesic segment in X It

is not difficult to see that we can always embbed isometrically a1 U a¢+1 and

b; U biyy in some R™ and R™2, respectively, such that the image of ¢ « gog- +1-_ m_-j. _
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R" is a straight segment. Then (a; X ;) U (a;41 X bjy1) embbeds in Rm+n2 by e

an embbeding that sends ¢; * ;41 to a straight segment whose projection in

R™ is the image of ¢} * ¢ +1 (that is a straight segment too). It follows that

m; = my;y1. This means that m; = my = ... = m; and call this number m.

Note that also we have m = %%E:— ‘—(—lff(zz)

Now we finish the proof

o) = X Api) Z\/[€1 ()] + ()2 = (vm? + 1) T4 (9})
= (vm?+ 1)l (yp \/[fl (")]? + [La(?)]?

This proofs the claim.
Let X; and X,, with metrics d; and dy, be two non-positively curved
piecewise flat simplicial complexes, then we have that X; x X, is also a non-

positively curved piecewise flat simplicial complex. To see this take a triangle

in X; X X, and apply the CAT'(0) inequality to the projections of the triangle
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and then use claim (1.6.1).

1.7 Cones. Let K be a simplicial complex. Define the cone CK over
K to be the join p * K for some point p that we call the vertez of the cone.
We have that cones always admit a subdivision that is non-positively curved.
This follows from (1.5) and the following fact.

Every simplex A™ = p x A™™! can be given a canonical non-positively

curved triangulation 7, such that the following two conditions are satisfied.

(@n) Tn |a,= 71, for every Ay = p* A1 where A1 is a simplex

of JA™1L,

(bn) Every subcomplex of p * A" is locally convex.

To obtain this define 7, .by induction. For n = 0 we have no choice.
Suppose 7,_y is defined. Then, because of (1.5), by glueing simplices A,,_,
with metric 7,,_; we obtain a non-positively curved triangulation of p, % JA™1
satisfying (a,) and (b,). Then, because (p* A1) x [0,1] &p7, A", we can

obtain 7, just by crossing with [0, 1].

1.8 Completeness. Let K be a simplicial complex. Recall that the star
star(s, K) of a simplex s in K is the subcomplex of K formed by all simplices
that contain s, together with their faces. Also the link link(s, K) is formed
by all simplices in star(s, K') that do not contain s. We have s * link(s, K) =
star(s, K). If K is piecewise flat then, by considering solid angles, link(s, K)

has a naturally defined piecewise spherical metric (see [12],[7]).




A piecewise spherical polyhedron L, with metric d, is said to be large if
any two points ¢ and y with d(z,y) < 7 can be joined by a unique geodesic.
This implies that if L is large and = € K, then B(n) is contractible, where

B,(x) is the open ball of radius 7 and center z. We have the following (see

[12])

1.8.1. Lemma. Let K be piecewise flat simplicial complex. Then the
following are equivalent.
(1) K is non-positively curved.
(2) link(s, K) is large, for every simplex s in k.
(3) link(s, K) satisfies the CAT(1) inequality for all triangles of

perimeter less than 2%, and for every simplez s in k.

Let K be a piecewise flat simplicial complex and @ € K. Define for
v € link(z, K) the infinitesimal shadow shad(z,v) to be the complement of
B, () in link(z, K), where B,(r) is the open ball of radius = and center v (we
consider here link(z, K') with the spherical metric).

Let ¢ : [a,b] — K be a geodesic segment in K. Then ¢ defines a point
v, € link(p(b), K) (given by the direction of ¢ at ((b), see [7]). We have the

following lemma that is a consequence of (2d.1) of [D].

1.8.2. Lemma. ¢ can be continued at ¢(b) if and only if
shad(p(), ) #

We say that a simplicial complex K has a free face A™ if A" is a simplex

of K that is the face of exactly one n + 1 simplex A"t of K.




1.8.3. Lemma. Let K be a piecewise flat simplicial complez. Consider

the following statements.

(1) K is complete.

(2) link(z, K') is not simplicialy collapsible, for oll z € K, where K'

18 @ subdivision of K.
(3) link(z, K) docs not have a free face, for all = € K.
(4) K does not have a free face.
Then (1) = (2) & (3) & (4). Furthermore, if K is non-positively curved

then the four statements are equivalent.

Proof. See the appendix.

1.9 Let X be a simply connected space with a piecewise flat non-positivel
curved triangulation K. We say that A C X is star shaped if there is a point
o (called the center) such that for all @ € A, the (unique, see [12]) geodesic
segment joining a to zo is contained in A. In the following lemma the symbol

A denotes simple homotopy, in the sense of [6].

1.9.1 Lemma. Let K be a piecewise flat non-positively curved triangula-

tion of X. Let also xy € K and A C X be star shaped with center Zg, such that

star(zo, K) C int(A). Then A\ star(zo, K) A link(zo, K) (rel link(zo, K)).
Proof. We use the groups Wh(link(xzq, K)) of spaces with e-controlled
deformation retracts onto link(zo, K) defined in [5]. Note that contraction

along geodesics emanating from z, defines a deformation retract » of

A\ star(zo, K) in link(zo, K) (see [12]). We have that = is 0-controlled (see
[5], p-13), so that r € Wh,(link(zo, K)), for all e. We use the following result
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of [5] (see corolary 1 on page 73)

For every ¢ there is a 6 < ¢ such that the map
Whe(link(zo, K)) — Wh.(link(zo, K)) is zero.

(The map here is the inclusion map: every é-controlled deformation re-

tract is also e-controlled, for § < e.)

Then r = 0 € Wh(link(zo, K)). This implies

AN\ star(zo, K) N\ link(zo, K) (rel link(zq, K)).

This completes the proof of the lemma., .

2. First example. Here we give an example of a compact space with two
non-equivalent non-positvely curved piecewise flat complete triangulations.
Let H be a PL h-cobordism (of dimension > 6) between M, and M, such
that My is not P L homeomorphic to My (see [11]).
Define
Y;=CM;xS8" i=1,2

where $! is the 1-sphere. Call p; the vertex of C'M;. Note that, by construction,

Y} and Y; come equipped with PL structures.

2.1 Lemma. There is a homeomorphism f:Y; — Y,, such that

f IYE\({:M}Xsl) and f I{pl}x§1 are PL
Proof. First, denote by (CM;)U,(M; x [0,1]) the space obtained by
identifying m € My C C M, with a(m) = (m,0) € My x {0} C M, x [0,1].

Now, we have
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22 Yy =CM; x§" 2pp, [(CM,) U (M, x [0,1])] x §?
= (C Mz X §") Uax (M2 x [0,1] x S
where ¢ : §* — $! is the identity.
Because the euler characteristic of $ is zero we have that H x §! is trivial
(see [6]), that is H x S 2p; (M x S?) x [0, 1] (and we assume that the PL
homeomorphism satisfies (m, 0) - (m, 0,0), for (m,8) € My x S' C H x §%).

Then, from (2.2) we obtain

Yy Zpp (CMz x S') |J (H x 8") = (CM, | JH) x S

a'Xe

where o is the obvious map.

But CM, U, H is homeomorphic to CM, by a homeomorphism that is
PL outside the vertex (see [18]). So Y; is homeomorphic to CM; x§' =Y,
This completes the proof of the lemma. |

Note that because of (1.6) and (1.7), both ¥; and ¥, admit non-positively
curved piecewise flat triangulations K;, i = 1,2, compatible with the PL
structures. Remark that because of the lemma there is a P1, homeomorphism
between M, x $' and M, x §'. Let L; be a subdivision of K; such that this
PL homeomorphism is simplicial with respect to the Li lprxst, 1 =1,2. Let
L; be the set of all simplices of I; [am;xs1 of highest dimension.

Finally define (see (1.5))
X;=T(Y, L) i=1,2

Then both X; admit piecewise flat non-positively curved triangulations. We
have that these spaces are complete (see ( 1.8.3)). Also X; and X; are home-

omorphic by a homeomorphism that is PL outside {p:} x §' and also when




restricted to {p;} x S'. Note that these spaces are not PL equivalent because
the link pair in (X;, {p;} x §!) of a point in {p;} x S' is PIL equivalent to
(M;, {two points}) (see p.50 of [20]).

Remark. Note that the only facts about $* we used were that the euler
characteristic is zero and that is non-positively curved. Then we can replace §?
by any compact manifold satisfying these two conditions, for example, M x St

when M is compact and non-positively curved.

2.3. Alternative Construction. Instead of using the construction
in (1.5) we can use other method that will give us a complete simplicial
complex with “less singularities”. For this we use relative hyperbolization [12].
Recall that the relative hyperbolization h(K, L) of a pair (K, L) of simplicial
complexes is obtained by replacing the simplices of the baricentric subdivision
of K that are not in L by a canonical hyperbolized simmplex. The resull has
the property that if L is non-positively curved (with respect to a piecewise flat
metric defined on K) then h(K, L) is also non-positively curved (the metric in

K determines a metric in k(K L)).

Now let W, compact, be such that 8W = M; (see (1.8)). If My is not a
boundary we can take W = CM,;. Define

Yi=(CM; xS JW xsY) i=1,2
Bi

where f4; is the identity and B, is a homeomorphism that is a simplicial map
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with respect to some subdivision of K; |az,yst, see (2.1)). Finally define
2
Xizh(K,OM;XSI) i:1,2.

Then, again, both X; are homeomorphic by a homeomorphism that is PI,
outside {p;} xS$*. also both admit piecewise flat complete non-positively curved
triangulations. These spaces are not PI, equivalent because of the same reason
as before. Note that if W is a manifold then thé X; are manifolds outside the
one dimensional strata {p;} x S'." In general we can get a one dimensional

strata that is PL equivalent to two §'.

3. Second Example. Here we give an example of a compact space
with two non-equivalent triangulations, one being piecewise flat complete non-
positively curved, and the other not admitting a piecewise flat non-positively
curved subdivision (i.e. the space with this second triangulation is not PL
equivalent to a space with a non-positively curved piecewise flat triangulation).

Let H be a PL h-cobordism (of dimension > 6) between M; and M,.
Choose a non-positively curved triangulation Ky for C'M; (see (1.7)) and a
triangulation Ky of H such that Ifl lar,= K2 |p. Let K; be the set of all
simplices of K; |3, xst of highest dimension.

Define

X, = T(CMy,Ky)

Xg = T(CMg Ua H, ]Cg)
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where « is as in (2.2). Note that both X, and X,, by contruction, come
equipped with PL structures.

Then X, can be given a non-positively curved complete piecewise flat tri
angulation (see (1.5),(1.7) and (1.8.3)). Also, because of [18], X; is home-
omorphic to X; by a homeomorphism that is PL outside the vertex. The
following lemma implies that if H is not a product then X, does not admit a

non-positively curved piecewise flat subdivision.

3.1 Lemma. If X; admils a non-positively curved subdivision then H is

trivial (i.e. is a product).

Proof. If X, admits a non-positively curved subdivision then the same
happens to its universal cover X,. Denote by # : X» — X, the covering
projection and choose a point ¢ such that 7(q) = p, where p is the vertex of
CM,; C X;. Let N be the lifting of CM;|J, H, with vertex ¢. Let S C X, be
star shaped with center ¢ such that N C ' (take for example a large hall with
center ¢). We will still denote by My, M, and H the liftings, contained in N,
of My, My and H respectively. |

Note that X, \ N has £ components, one for each simplex A; of highest
dimension in K; |p,. Write Xo \ N = Z; U...U Z (disjoint union) and define
S;=SNZ.

3.2 Assertion. S; NA;  (rel A;).

Proof. Because of (1.9.1), S\ star(g, X2) Alink(q, X2), which means
that

|
)
]
i
1
\
\




1, (S\ star(q, Xg), link

for all n.

On the other hand we have (see [20], p?l

3.3 (S\ star(g, Xa), link(q, X)) EPL(
Also (~ denotes homotopy equivalence of pairs)
(S\ CMa, My) ~ (S\N, My) ~ (S\ N

where the first equivalence is because H is an h—cbb:df'di’s the second

because simplices are contractible. Then WH(S \ N/ A,,, le A for all n.

But (5;/A;, A;/A;) is a retract of (S\N/A.HMG/A ) a,nd :
(Si/ i, Aif Ag) ~ (Si, A)

so that also (S5}, A;) = 0, for all n. Then, because A, is sn:n.pljg__ onnééted
(8.5) of [6] implies the asertion. o
Note that from the assertion follows that N A S (rel N), -
so HAS\ CM, (rel H), which implies H A S\ CM, (rel MQ) _
Then E

HASNCM, AM, (rel M,)

where the last relation follows from (1.9.1) and (3.3).
All this implies H A M, (rel M,). This means that H is trivial (see [6]) a,nd
completes the prool of the lemma.

In fact the space X, has some kind of rigidity, as the next corollary shows.




3.2. Corollary. Let X be a non-positively curved piecewise flat simplicial
complez. Suppose X is homeomorphic to X; by a homeomorphism f : X; —» X
that is PI, on each strata. Assume that the triangulation of X restricted to
each attached torus f(I™) and to f(CM; \ {vertez}) is PL. Then X Zp;, X,.

Proof. We prove that X is a space contructed in the same way as X, be-
fore. Comsider f |zn41, where ™% is one of the torus we glued to C'M; along
the simplex A™. We have that f |gm+1an; and f |am are PL. Recall that
T™+! has a canonical flat PL structure and compare it with the PL structure
pulled back, by f, from f(7™*'). These two PL structures coincide outside
A™. Then because A™ is contractible and obstructions to PL structures on
a manifold lie on the third comology group of the manifold, we have that in
fact these PL structures coincide. This means that we can suppose f |qmes

‘to be PL.

Let M = link(q,X) where ¢ is the vertex of X. We have that M is a
manifold and H = X\ U f(T™*1)\ int(star(g, X)) is an h-cobordism between
M and M,. Lemma (3.1) implies that H is trivial, so that H =p; CM. Also
i My — M is PL, so that f la, 18 PL and M; =py M. This completes
the proof of the corollary.

Remark. For a similar example with riemannian manifolds, consider the
torus T", n > 5. [15] implies that the only differentiable structure that

admits a non-positively curved riemannian metric is the canonical one.
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4. Third Example. Here we give an example of a compact simpli-
cial complex with two negatively curved piecewise riemannian complete non-
equivalent triangulations.

Let € > 0. Let N; C M, i = 1,2 be closed riemannian manifolds such
that

(1) N; is totally geodesic in M;.

(2) M; is hyperbolic.

(3) All sectional curvatures of M, lie in (=1 —¢—1+¢).

(4) There is a homeomorphism f: My — M, such that
[ lmw, and £ [y,: Ny = N, are diffeomorphisms.

(5) M, and M, have non—eq_uivalent PL structures (induced by the
differentiable structure;s).

For examples of such manifolds (in dimension 6) see chapter I.. Let X; be
the space obtained by identifying two copies of M; along Nj, or let X; be M,
considered as a stratified space with strata N; and M;\ N;. In any case, both,
Xy and X, are negatively curved and complete. Also they are homeomorphic
but not PL homeomorphic. Remark that the Anderson-Hsiang obstructions
for the PL structures to be equivalent come from Kirby-Siebenman manifold

obstructions.
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Appendix

Here we give the proof of |

1.8.3. Lemma. Let K be a piecewise flat simplicial complez. Consider

the following statements.

(1) K is complete.
(2) link(z, K') is not simplicialy collapsible, for all z € K, where K’

is a subdivision of K.

(3) link(z, K} does not have a free face, for all z € K.
(4) K does not have a free face.
Then (1) = (2) < (3) < (4). Furthermore, if K is non-positively curved
then the four statements are equivalent.
Proof. (3) ¢ (4). This is because z * link(z, K) = star(z,K) C K.
(2) = (4). Take a point in the interior of the free face. (3) = (2). If a complex
is collapsible it has a free face (we need some plece to begin the collapse), and
if K’ has a free face, so does K. (1) = (4). If K has a free face A" take a
straight segment transversal to it. That geodesic can not be continued.
Assume now K to be non-positively curved. We prove (3) = (1). Suppose
K is not complete. By (1.8.2) there is a point € K, such that shad(z,v) =
| ¢, for some v € link(z, K), which means that B,(r) = link(z, K). We have

the following

a.1. Claim. link({z, K) has a free face.




Proof. Write L = link(x,K). Denote by d the metric of L. Given
a € K denote by 0, : [a,d(v,a)] — L the (unique) geodesic segment joining
a to v, parametrized by arc length. Consider © : [ x [0,1] — L given by

O(a,t) = 6,(td(v,a)). © is a deformation retract. In fact we have

Step 1. O is lipschitz.

Proof. In the ¢ direction O is lipschitz because it is an isometry of [0,1] in
to K. We prove 0, is lipschitz. Let p = 7 —maz{d(z, v) : x € L}. Because L
is finite we have p > 0. Let w, 2 be the north and south pole, respectively, of
the two-sphere $? and consider the geodesic retraction, @, to the north pole
w defined on $? \ B,(p). Because this function is smooth on a compact, it is
lipschitz and call & its constant.

By (1.8.1) we have that L = link(z, K) satisfies the C AT(1) inequality,
for all triangles of perimeter less than 2r. Let a ¢ L and € > 0 be small enough
so that all triangles with vertices a,v,b € L, where b € B,(¢), have perimeter
less than 27 (recall that d(v,a) < 7). We have that these triangles satisfy the
CAT(1) inequality and let o', ¥, w be the vertices of the comparison triangle
in §? (we make v correspond to the north pole w). Let a’,¢c,w be the ver-
tices of the comparison triangle of the trianglelwith vertices a, ©,(b),v. Then
d(©4(a), 0,(b)) < ds2(0}(a’), c) (note that ©(a’) corresponds to O4(a)). Note
also that, by comparing the triangle with vertices a,b,v with its comparison
triangle, ds(a',c) = d(a,0,(b)) < ds2(a’, ©4(¥)) (here 0,(b) corresponds to

04(¥)). Then < ad'we < < aw®'(¥). Tt follows that
t 13

d(O4(a), 0,(b)) < ds2(O4(H), ¢) < ds=(0)(a"), 04(V)) < kds:(a’,¥) = kd(a,b)
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This means that all ©; are lipschitz with common constant k. This completes

the proof of step 1.

Step 2. There is a siplex A™ of L, where n is the dimension of L,
containing an end point in its interior or in the interior of one of its n — 1
faces.

An end point is the end point of a geodesic segment, begining at v, that
can not be continued.

Proof. Consider ©(L,_, x [0,1]), where L,,_; is the (n — 2)-skeleton 0.’1:
L. Because © is lipschitz @(L,_s x [0,1]) has dimension at most n — 1 so that
L\©(L,_2x[0,1]) # ¢. This proves step 2 because every 8, can be continued

until it has an end point (recall that L = link(z, K) is finite).

Step 3. Ifa € L is an end point, then link(a, L) is contractible.

Proof. Let a € L be an end point. Consider star(a,L) = a*link(a, L) =
[0,1] x link(a,L)/({0} x link(a,L)). Denote by r the radial retraction r :
star(a, L) — {3} x link(a, L) C star(a, L), given by r(t,a) = (3,a). Define,
for t < 1, ¥, = r0, : star(a,L) — {%} X link(a, L). Note that W, iz well
defined because a is not in @(L, 1), for t < 1 (recall that a is an end point).

Let ¢ < 1 be close enough to 1, such that ©({3} x link(a, L)) C star(a, L).
We have

{% } x link(a, L) <> star(a, L) % {%} x link(a, I)

where i is the inclusion. But W, | (L }xlink(a,ry 18 homotopic to the identity in
{3} x link{a, L) and at the same time factors through a contractible space (i.e.

star(a, L)). This happens only if link{a, L) is contractible.




Step 4. We complete the proof. Suppose I does not have a free face.

Because of step 2, there is an end point a € L such that it belongs either to
the interior of a A™ or to the interior of one of its n — 1 faces (recall n is the
dimension of L). In any case we have that link(a, L) is not contractible, which
contradicts step 3. This completes the proof of the claim and the proof of the

lemima.
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