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Abstract of Dissertation
Rationality of Limiting n-Invariants of Collapsed

3-Manifolds
by

Xiaochun Rong

Doctor of Philosophy
in
Mathematics
State University of New York at Stony Brook

1990

We study the topological aspects of a sufficiently collapsed 3-manifold
with bounded covering geometry. Based on the recent work of Cheeger and
Gromov on collapsing Riemannian manifolds and F-structure theory, we

find the existence of injective F-structures on such manifolds.

As an application, we prove a Cheeger and Gromov conjecture on ratio-
nality of limiting n-invariants associated to a volume collapse with bounded
covering geometry in the 3-dimensional case. Another application is that we
are able to give an explicite residue formula for computing the limiting #-

invariants in terms of the information derived from an injective F-structure.

We also discuss the uniqueness of injective F-structures and obtain a finite-




ness result on hmiting n-invariants.
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Introduction

In this thesis, we study the rationality of limiting - invariants for col-
lapsed Riemannian manifolds. These were defined and previously studied
in [CG2]. We prove a conjecture of Cheeger and Gromov (see below) in the

3-dimensional case.

Let (M,g) be an n-dimensional complete Riemannian manifold with
bounded sectional curvature, |K| < 1. Let a(g) denote one of the following
geometric quantities associated to g: the upper bound on the injectivity
radii; the volume of M; or the diameter of M. If « is sufficiently small
relative to the sectional curvature, we will say that a(g) is sufficiently col-
lapsed. If M admits a family of metrics {gs} so that the family {a{gs)}
converges to zero as § — 0, one says that 3 admits an a-collapse.

Understanding the interplay between the collapsing geometry and the
topology of M has been very fruitful in recent years. This can be viewed as
studying the questions complimentary to those of controlling the topology
by putting bounds on certain geometric quantities (for instance, Cheeger’s
finiteness theorem [Ch]). The basic questions are:

1) What kind of structures and invariants can be attached to a suffi-
ciently a-collapsed manifold?

2) Does a sufficiently a-collapsed manifold imply an a-collapse?

Starting with [Grl], there has been considerable progress in this field;

for instance, Gromov’s almost flat manifolds ([Grl]) for sufliciently small di-




ameters, the F-structure theory for uniformly small injectivity radii ([CG3],

[CG4]) and the bundle structure theorems for manifolds which collapse to
a manifold of lower dimension ([Ful], [Fu2]) and more recently, the Nil-

structure theorem ([CFG]).

Important progress has been made, concerning the implication of a vol-

ume collapse, in the work of Cheeger and Gromov in [CG1], [CG2] and
[CGS]. There, they gave generalizations of Gauss-Bonnet theory to open

manifolds of bounded sectional curvature and finite volume (note that such
manifolds have their volume collapsed at infinity).

A volume collapse {gs} with bounded curvature is said to have bouﬁded
covering geometry (BCG) if the pull-back metrics of the family {g;} on the
universal covering of M have a uniform lower bound on their injectivity
radii.

Let N be a compact oriented (4%--1)-manifold. Consider the n-invariant
of N in the sense of Atiyah, Patodi and Singer ([APS]). Cheeger and Gro-
mov [CG2| proved that the limit of n-invariants with respect to a volume
collapse with BCG exists and is a topological invariant (i.e., it does not
depend on the specific collapsing sequence of metrics). We call this limit
- the limiting n-inveriant and denote it by 52)(N). Cheeger and Gromov

. made the following conjecture.

Conjecture I: The limiting #-invariant 1) (N) is a rational number.

The difficulty in proving Conjecture I stems from the fact that the met-

in a given volume collapse with BCG may not be obviously related




to one another. In addition, it is very difficult to compute the n-invariant
explicitly except in circumstances which are special in one way or another.

In this thesis, we prove Conjecture I for 3-manifolds.

Theorem, A. Let N be a compact oriented 8-manifold. Suppose N ad-
mits a volume collapse with BCG, then the limiting n-invariant nz(N) 1s

a rational number.

Our approach to Theorem A is to show that sufficiently collapsed 3-
manifolds with BCG admit a certain topological strueture, the injective
F-structure. Roughly an F-structure can be thought of as a family of local
torus actions satisfying a certain consistency condition. It was introduced
in [CG3]. An F-structure partitions the underlying manifold into orbits.
An injective F-structure is a F-structure satisfying the condition that the
tundamental group of each orbit injects into the fundamental group of the

total spdce. We will prove

Theorem B. There exists a constant € > 0 such that if a compact
g-manifold N admits ¢ Riemannian metric g satisfying:

(i) 1, (V)] <1

(i) Injrad(N,g) < ¢

(iii) §20(N,g) > 1 (BCG)

then either N admaits an injective F-structure or N (possibly some doubling
cover of it) is diffeomorphic to a lens space. In particular, a compact §-

manifold N admits o volume collapse with BCG if and only if N admits an




injective F-stucture.

An F-structure is said to be polarized, if the local orbits have the same
dimension as the local group which acts. We observe that when special-
ized to the case of an injective F-structure the volume collapse constructed
using a polarized F-structure as in [CG3] has BCG. This together with
Theorem B implies that an injective F-structure on a 3-manifold fully re-
flects the volume collapse with BCG. A consequence of this is that one
can compute 72)(/N) with respect to a volume collapse compatible with
an injective F-structure (in general, the limiting n-invariant associated to
a volume collapse compatible with a polarized F-structure F is called the
limiting n-invariant associated to F and is denoted by n(N,F). (N, F) is
independent of invariant volume collapse with or without BCG). By filling
in a compact 4-manifold M and extending the injective F-structure to M
by using the so-called equivariant plumbing technique, the residue theory
for the secondary characteristic classes as developed in [Ya] implies the
rationality of n(N,F) and thus the rationality of 5 (N).

In proving Theorem B our starting point is the result obtained in [CG4].
‘There Cheeger and Gromov associate an F-structure F, (topological struc-
ture) to a sufficiently injectivity radius collapsed metric g. F, is constructed
on the scale of small injectivity radius of the manifold, priori, it reflects
neither small volume nor BCG. Using some theorems from 3-dimensional
topology and some property of F, which depends on BCG, we find the

existence of an injective F-structure satisfying the BCG condition. Note

‘that the existence of an injective F-structure may not be deduced from the




geometrical construction in [CG4] (also see example 7).

We also disuss the uniqueness of injective F-structures on a 3-manifold.
Two injective F-structures on a 3-manifold are said to be weakly isomor-
phic, if they are different only on a saturated area which is homeomorphic
to T? x I (see Definition 9). Based on the classification theorem for graph

- manifolds obtained in [Wal] and [Wa2], we obtain the following.

Theorem C. Let N be a closed orintable 3-manifold which s not home-
omorphic to either S x S or a nilmanifold. Suppose N admits an injective

T-structure F. Then F 13 unique up to week isomorphism.

From our approach to Theorem A, not only does one get the rationality
of the limiting n-invariant, but one can compute explicitly the value 5 (V)
and see its topological meaning in the 3-dimensional case.

In the second part of this thesis, we give the explicit residue formula for
NIV ) in terms of topological data derived from the injective F-structure
(see Theorem 11). Theorem C implies that except for a few cases such
a residue formula is intrinsic in a certain sense. For instance, we express
M2)(IV) for N an injective Seifert manifold in terms of Seifert invariants (we

refer to [Or] for Seifert manifolds).

Theorem D. Let N = {b;(0,9); (a1, 1), ..., (ar, Br)} be the Seifert in-

variant of an injective Seifert manifold N. Then
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where %z = [b1, .., bis] is the continued fraction (b; > 2), a;; =

bijttij-1— j2; dipg =1, aqu = by and

~1 ifb+r>0
+1 if btr<0.

e(b,r) =

A consequence of Theorem D is that the invariants 5y (N) can take any
rational number in 3-dimension. However, using Gromov’s pre-compactness
theprem, the result in [Fu2] and Theorem D, we prove a finiteness result

for limiting n-invarants as follows:

Theorem E. For a real number D > 0, let M3(D) be the collection
of closed orientable 3-manifolds which admit volume collapses with BCG
for which the diameters stay bounded by D. Then {no(N) modZ| N €
M3(D)}is a finite sel.

Note that M3(D) contains infinitely many diffeomorphic types for any
D > 0. For instance, 3-dimensional nilmanifolds.

The result in the last part of this thesis is about a bounded version of
the main result in [CGH]. We will use this result to study rationality of
geometric signatures for open manifolds (see below). First, let us recall the

following,.

Theorem 12([CG5]) Let M™ be a complete manifold with bounded sec-
tional curvature, |K| < 1. Given X C M™,0 < r < 1, there is a sub-




manifold U™ with smooth boundary OU™ such that for some constant c(n)

depending on n,
X cUrCT(X)
Vol(0U) < e(n)Vol(T.(X))r1
(HIau|| < o(n)r™!

Moreover U™ can be choosen to be invariant under I{(r, X), where I(r, X)

denotes the group of isometries of T,(X) which fiz X.

We show the following fact:

Theorem F. Under the same assumptions as in Theorem 12. Let
D = diam(X) = sup{dist(z,y)] =,y € X}. Then therc exists a constant,
c(n,r,D), depending on n, r and D, such that

diam{0U) < ¢(n,r, D).

An immediate consequence of Theorem I is what can be viewed a
bounded version of Cheeger and Gromov’s good chopping theorem (see
Theorem 14).

In fact, our results in this thesis can be further exploited to prove a

Cheeger and Gromov conjecture on rationality of geometric signatures. We

ow explain this.

By the work of Cheeger and Gromov, the Gauss-Bonnet-Chern theorem

as been extended to complete manifolds of bounded sectional curvature

finite volume ([CG1] and [CG2]). They considered the geometric Euler




numbers and the geometric signatures of such manifolds. These are de-

fined as the integrals of the Euler form and the signature form on these
manifolds. (Note that examples show that the geometric signatures of a
4k- manifold can be an arbitrary real number in general.) They proved
that, under the assumption that the metrics have bounded covering ge-
ometry over a neighborhood of infinity (denoted by geo. (M) > 1), the
geometric Euler number is a homotopy invariant and the geometric signa-
ture is a proper homotopy invariant. More precisely, they are equal to the
Ly-FBuler number and Ly-signature, denoted by x(2)(M) and o)(M) re-
spectively. Using the so-called good chopping technique ([CG5]), Cheeger
and Gromov proved that the geometric Buler numbers are always integers

(without assuming BCG). Furthermore they made the following conjecture.

Conjecture IT : o( M) is o rational number.

It turns out that using Theorem A, Theorem E, Theorem 14 and the
results in [CFG], we can prove Conjecture II for 4-manifolds under an ad-
ditional assumption that the manifolds have finite diameters at infinity.
A complete manifold 3 is said to has finite diameter at infinity, if there
is point p € M so that sup,,o{>., diam((T1(8B.(p)))a)} < oo, where the
sume runs over all components of the 1-tubular neighborhood of the matric
sphere 0B,(p). We will only give the outline of the proof in §3.2. The
detailed argument will appear elsewhere.,

The thesis is organized as follows.

In §1.1, we briefly review the results in [CG3], [CG4], [Ful] and [Fu2]




which we shall use in the sequel. We also introduce injective F-structures
and show that a volume collapse compatible with a polarized F-structure
F has BCG if and only if F is injective (Theorem 5).

In §1.2, we give a quick proof of Theorem A by assuming Theorem B
(proved in §1.3) and a result from §1.6. Some readers may wish to read
§1.3 and §1.6 before reading §1.4 and §1.5.

In §1.3 we first identify the collapsed 3-manifolds as graph manifolds in
general, and the collapsed 3-manifolds with bounded diameters as Seifert
manifolds and solvable manifolds up to a double covering (Propositions
4 and 5). Then we give the characterization of injective F-structures on
3-manifolds (Theorem 8). Furthermore, we give a sufficient and necessary
condition which guarentees that a polarized F-structure which can be mod-
ified to be injective (Theorem 9). Based on this we prove Theorem B.

In §1.4, we prove Theorem C.

In §1.5, we describe the idea of an alternative proof of that a limiting
p-invariant is a topological invariant in dimension 3. This uses mainly
Theorem A, B and C (note that this is totally different from the one given
in [CG2)).

Given a pair (N,F), we fill in N with a compact 4-manifold M and
extend the polarized F-structure of N to M by using the invariant plumbing
technique (‘Theorem 10). This is accomplished in 81.6.

Section §2.1 is devoted to explicit residue formulas for nz2)(N). We carry
out the general residue theory of [Ya] in our special circurnstance. Theorem
D is proved and the general residue formula is given (Theorem 11).

Theorem E is proved in §2.2.




In §3.1 we prove Theorem F.

Finally in §3.2 we describe the outline of our approach to Conjecture II

1n 4-dimensional case.




Chapter 1

Rationality of Limiting

n-invariants of 3-manifolds

1.1 Collapsing and F-structures

In this section we will review the fundamental results on collapsed Rieman-
nian manifolds and F-structures obtained in [CG3], [CG4], [Ful] and [Fu2].

Then we will discuss some basic properties of injective F-structures.

Let M be a manifold. A sequence of complete Riemannian metrics {g;}

on M is said to determine an injectivity radius (or volume) collapse, if {¢:}

11
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satisfies the conditions

() 1, (M) <1,

(i1} Yimy o, sup{InjRad(z, g} z € M} =0 (or lim,,. Vol(M,g) =
0).

FAN

A volumecollapse {¢;} is said to have bounded diameter, if diam(M, g;)
D for some constant D > 0.

A volume collapse {g;} is said to have BCG, if the pull back metrics of
{¢:} on the universal covering of M have a lower bound (say at least 1) on
the injectivity radius.

The topological aspect of collapsing phenomena on a manifold M is

to a large extent captured by the so-called F-structures which were first

introduced in [CG3).

Definition 1 Let M be C® manifold. An F-structure F on M stands for
{(T;, Ui, T, ¢5,:)} (called an atlas for F) such that,

(i) {U:} is a locally finite open cover of M,

(i) m; ¢ U —>Uisa finite Galois covering with Galois (deck transfor-
mation) group=G;.

(iii) T% is a k;-dimensional torus and ¢; : T% — Dif f(U;) is an effec-
tive and smooth acilion,

(v i : G; — Aut(T*) is @ homomorphism satisfying

9i(di(ri)(@)) = (il g:)(7:))gi))

for cach g; € Giyyi € T% and z € U,

(v) if U;NU; # 0, then there is a common covering Vi; of =7 (U; NU;)
and 77 (U;NU;) so that the lifting actions of T and T% on Vi; commute.
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Remark 1 In view of () i Definition 1, the orbits of the local action ¢;

on U; are well defined. By (v) in Definition 1, the orbits of F at the point
z € M are defined as the union of all the orbits of ¢; through z. The rank
of F at € M is defined as the dimension of the orbit through z. F has

positive rank, if all orbits of F have positive dimensions.

Definition 2 A4 T-structure on M is an F-structure such that we can

choose U; = U; for all 2 as in Definition 1.

Definition 3 An F-structure F is called pure, if for all 1,5, k; = k;. F is
called polarized, if the local action ¢; has finite isotropy group at all points
of 0.

Definition 4 A polarization of F is & collection of connected subgroups
H; C T% such that the dimension of each H;-orbit is equal to dimH,. If H;
is o compact subgroup of T% for all i, we call the polarization a polarized

substructure of F.

Definition 5 A T-structure F = {{U;,T%, ¢;)} is isomorphic to the T-
structure F = {(U, T, $.)}, if there is a diffeomorphism ¢ of N such
that (U;, T, ¢;) is 1somorphic to (U, T%, ¢,) under the restriction of ¢ for
all 2.

The relations between positive rank F-structures and the injectivity

radius collapse on a manifold M is given in the following theorems.

Theorem 1 ([{CG3]) Let (M, g) be a complete n-manifold with |K| < 1.

There exists o constant ¢(n) depending only on n, so that if the injectivily
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radui are smaller than e(n) everywhere on M, then M admits « positive rank

F-siructure F, which is elmost compatible with the metric g. Conversely,

suppose M admaits a positive rank F-structure. Then one is able to construct

an invariant ijective radius collapse.

If a manifold M admits a polarized F-structure, then one can obtain a

volume collapse.

Theorem 2 ([CG4]) (1) Let M be o manifold and F be a polarized F-
structure of M. Then M admits an invariant volume collapse.

(2) Suppose M admits a polarized F-structure F outside a compact sub-
set C' of M, then M admits a complete metric g with bounded sectional

curvature, finite volume and compatible with F.

Remark 2 The converse of Theorem 2 may not be true in general. In faet,

an affirmative answer would solve an open question on vanishing minimal

volume (see [Gr2]).

The next two theorems are not needed in proving Theorem A but only

in proving Proposition 5 in §1.3 and Theorem E in §2.2. Some readers may

omit them on the first reading.

Theorem 3 ([Fufj) Let M; be a sequence of closed n-manifolds satisfying

the following conditions:
() K (M) <1
(ii) diam(M;) < D.
Assume there exists a metric space Y such that lim;_ Ly dg(M;, V) = 0.

Then we have the following:
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There exists @ smooth manifold N with a CY-metric gn, on which there

i & smooth and isometric action of the orthogonal group O(n) such that

(1) Y is isometric to N/O(n),

(2) For each p € N, the isotropy group is an extension of a torus T* by
a finite group..

Theorem 4 ([F2]) Under the same assumption as in Proposition 3, for
sufficiently large i, there emists maps fi : My — Y and f; : FM;, — N
satisfying: ;

(1) Ji is a fibration with fiber infranilmanifold ~ N;/A.

(2) The structure group is contained in

CentN;
CentN; NA

o AutA

(3) fi is an almost Riemannian submersion. In other words, for each

V € TM; perpendicular to the fiber of fi, we have

e o) < lfirél,/), < col)

where o(i) satisfies lim;_, ., o(i) = 0.

(4) The following diagram commautes:

ki
FM; — N
i | ™l
fi
M; — Y =N/O(n)
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Note that (2) of Theorem 4 implies that, for sufficiently large i, N;
admits a pure positive rank F-structure which is given by the projection of
structure group in (2). Note that in general such pure F-structure is not
polarized.

For examples of F-structures we refer to [CG3], [CG4] and [Fu3].

To study a volume collapse with BCG, we introduce the injectivity of

an F-structure as follows.

Definition 6 Let F = {(U;,U;, T, ¢;,4:)} be a positive rank F-structure
of N. For any z € N and (Us,, Uy, T, $iy, thi0) D Oy (dim(O,) = ky ),
consider the following diagram:
Bis
(TFo,e)  —s (U, %)
$o=modi, \ |
(U, 2) C (N, ).

F s called injective if the induced map (), : m(T¥o,e) — m(N,z) is

ingective.

Remark 3 The injective F-structure is to some degree a generalization of

an injective torus action studied in [CR1], [CR2], and [LR].

Injective F-structures are polarized. The basic topological feature of an

injective F-structure is the local splitting result for its universal covering

space.
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Lemma 1 Let F be an injective F-structure of M, let m + M — M be
the universal covering. For any x € M there exists an invariant tubular
neighborhood U of Oy such that = (U) is homeomorphic to D" % x R¥(k =
dim(0,)).

Remark 4 . To be consistent with usage, Lemma 1 can be viewed as the

local version of the so-called splitting result for the injective torus actions

in [CR1] and [CR2].

Proof of Lemma 1. First we assume that F is a T-structure. For any
z € M, let (U, T%, ¢) be a stratum of F with U D ©,. Let T' be the finite
isotropy subgroup of O, and let S & D" * be the slice of @, at z. Then O,

determines the invariant tubular neighborhood U which is diffeomorphic to
U = Dn_k Xpr Tk.

The universal covering of U is D" % x R¥ and the covering group R* of
T* acts on #~'(U) by the addition of the R*-factor with the following

commutative diagram

~

¢
REX (D™ x R¥y — D% xRk
Ty X | T
¢

Tk x (Dn"k X Tk) — Dnk X T,
We claim that #7(U) is simply connected (thus it is diffeomorphic to
D™* x R¥), This follows from m,(U) ~ 71(0;) and the injectivity of the

local T*-action.
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Now consider F to be a general F-structure. Take a stratum (5’, U, T*, é,1)
which contains O, (dimO, = k). Pickup & € U with (%) = z. Clearly, we
can first find a tubular neighborhood of O; as before and project it down

by 7 to obtain the desired result. Q.E.D.

"The basic geometrical consequence of the existence of an injective F-

structure is the existence of a compatible volume collapse with BCG.

Theorem 5 (1) Suppose M admits an injective F-structure. Then M ad-
mits an inverient voelume collapse with BCG.
. (2) Suppose M (open) admits an injective F-structure outside some com-
pact subset, then M admits an invariant metric g satisfying
() K, (D) < 1,
(it) Vol(M,q) < +oo,
(iit) géo (M, g) > 1.

Proof. Given an injective F-structure F, the construction for a volume
collapse {g;}(0 < § < 1) compatible with F is given in [CG3]. What we
shall do 1s observe the BCG, that is actually a consequence of the local
splitting property of F. Let w : M — M be the universal covering, let
gs = (m)*(gs) be the pull-back metric. Fix a point # € M and z = »(&).
Let O, be the orbit through z and T be the orthogonal complement of
the subspace 7,0, in T, M with respect to the initial metric g;. We can
find p, > 0 such that S, = ezp, By (= D" )k = &im(0,)) is a slice
of @, where B;t is the ball of radius p, in Tt. Let U be the invariant

neighborhood determined by S,. Applying Lemma 1, »~3(U) ~ S x RF.
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Let §; denote the restriction of §s to S,. Following the proof of Theorem 2
in [CG4], one sees that the metrics {gs} converge to a € product metric
do = Gy + &y, where do = fg. (f is a € function on the Se, g. 18 the
Euclidean metric and §, is the limit of {§#}). If F is pure, then §, = g& =
gt (0 <6 <.1). It follows that InjRad(%,§s) > ps as 6 — 0. In the case
of F not being pure, one still has InjRad(&, ds) > p, since here the §j- is
obtained basically by spanning gi-. |

Now it is clear that if the initial invariant metric ¢, satisfies the con-
dition that the p; has a uniform lower bound for all z € M, then {gs)
has BCG. The result in [CG3] implies one can always construct such an

invariant metric g;. We refer to [CG3] for further details. Q.E.D.
Examples of injective F-structures.

Example 1 The catagery of the manifolds which admits a pure injective
F-structure concides with the categray of the so-called injective Seifert fiber
space with fiber either a flat manifold or a almost flat manifold. Seifert fiber
space were first introduced in [CR1] and [CR2]. Seifert fiber space include
the following;:

1) classical Seifert space with infinite fundamental groups,

2) flat manifolds and almost flat manifolds(=infranilmanifolds). An n-
dimensional flat manifold M admits a natural injective T"-structure. By
Bieberbach’s theorem, there exists a finite covering of M which is a flat
torus T”. It is clear that the multiplication of T™ determines the pure

T™-structure which is also injective.
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Similarly, an almost flat manifolds M admits an injective F-structure

given by the center of a nilpotent group acting on a finite covering of it

(see[Grl]).

The following example is very important.

Example 2 All the 3-manifolds (or a double covering) which admits an
injective F-structure can be obtained as follows:

Take finite Seifert fiber spaces with torii boudary components, Ny, ..., N,.
Suppose none of N; is homeomorphic to a solid torus and the Seifert fiber
structure of each N; is trivial near dN,. Form a closed by identifying the
boundary components of N;’s in pairs (we assume the total number of
boundary components are even). Then these §*- Seifert fibering on N; gen-

erate a polarized T-structure which is actually injective {see Theorem 8).

Example 3 Let M™ be a closed oriented manifold and let f : K(w,1)
be the classifying map, where n &~ =;(M"). We call M" essential, if the
fundamental class, [M™| € H,(M, R) satisfies f,([M"]) # 0. Suppose F i3
a pure positive rank F-structure on an essential manifold M™. Then F is

injective. ( The proof of this is given in the Appendix of [CG3]).

Example 4 Let M be a complete Riemannian manifold satisfying:
(i) —b* < K < —a?, for some constant a,b > 0,
(i) Vol(M) < oo.

Then M has finite topological type, i.e., there exists a compact manifold
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with boundary M, such that M is diffeomorphic to the interior of M.
Moreover each component of Mp is an infranilmanifold. Thus M admits

an injective F-structure outside a compact subset of M. We refer to [BGS] )

for more details.

1.2 Proof of Rationality of Limiting n-invariants

Modulo §1.3 and §1.6

In this section, by employing the results in §1.3 and §1.6, we will give

a simple proof of Theorem A. We also explain our idea to approach to

Theorem A. First, let us recall the following result in [CG2].

Theorem 6 ([CG2]) Let N be a compact orientable (4k — 1) manifold.

Suppose N admits « volume collapse {gs} with BCG. Then the limiting _
n-tnvariant 1z (N), defined by ii

n(g)(N) = 13‘7715_,0?](]\7, 95)

exists (and thus no)(N) is a topological invariant).

Our starting point in proving Theorem A is Theorem 1, Theorem 5,

Theorem 6 and the result in [Ya].

In [Ya], D. Yang took a different approach from [CG2) to realize the

global and topological aspects of the secondary geometric invariants (in

particular, y-invariant). Yang ’s approach depends on the result on col-

lapsing geometry in [CG3]. Essentially, he generalized the residue formula
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for characteristic numbers of closed manifolds in [Bo] and [BC], which ex-
presses the characteristic numbers in terms of the data from the zero point
set of a global Killing vector field, to compact manifolds whose boundary
admits a polarized F-structure. Specializing to the 7-invariant, with a little

work, his result can be stated as follows.

Theorem 7 ([Ya]) Let N be an orientable compact (4k — 1)-manifold and
let F be a polarized F-structure of N If {gs} i3 a volume collapse compatible

with F, then the limiting n-invariant,
2N, F) = lim (N, g5) (1.1)

exists and is independent of this specific invariant volume collapse chosen.
Thus n(N,F) is a topological invariant depending only on N and F, which
i called the limiting n-invariant associated to F. Further, suppose N 1is
the boundary of some compact manifold M and F extends over M, F. Let
4 =UZ; be the singularity of polarization. Then

n(N,F) = %i_r}ré (N, gs) = o(M) + Z Res(a, Z;) (1.2)

where o(M) is the signature of M and Res(a, Z;) is the residuc of the
cochain «, which is determined by the data from F, at the component Z;

of Z. In particuler, if all orbits of F are closed submanifolds of M, then

(N, F) is a rational number.

Note that n(N,F) is computable for an invariant volume collapse as

long as N is a boundary and F is extendable. Tn addition, it follows from
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the concrete construction for « (see [Yal) that 5(N, F) is a rational number
if all orbits of F are closed submanifolds.

Now consider N as in Theorem 6. To get the rationality of #g)(IV)
one needs to somehow find a method for computing 7 (V) explicitly. We
need to find a “good” volume collapse with BCG by means of 5g)(N)
computable. Motivated by Theorem 6, Theorem 5 and Theorem 7, we
would like to show the following:

From a sufficiently volum-collapsed metric g with BCG, one finds an

injective T-structure F. Using F, one constructs an invariant volume col-

lapse with BCG. Consequently, nio(N) = (N, F). By filling N with a
compact 4k-manifold M and extending F to M one gets the rationality of
n@(N)-

Two questions arise here:

1) does a volume collapse with BCG imply the existence of injective
F-structures F 7

2) can one always fill in a (4k — 1)-manifold N with a compact 4k-
manfold M and extend F over M 7

In our special circumstances (3-dimensional case) the affirmative answer
to 2) is not hard to achieve. However, 1) turns out to be considerably more
difficult to establish.

The difficulties in 1) have two different sources. One is whether or not
a sufficiently volume collapse metric leads to the existence of a polarized
PF-structure (see Introduction). In fact, according to Theorem 2, the af-

firmative answer would solve an open question on existence of the critical

vanishing minimal volume (see [Gr2]). However, it is not hard to see that
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a sufficiently coHapsed 3-manifold always admits a polarized F-structure
(Corollary 1). Another difficulty is illustrated by the following observation:

3) The construction of F, from a sufficiently injective radii collapsed
metric g depends only on the local geometry of g ([CG4]). Although F,
fully reflects the injectivity radii collapse, F, does not take into account
either the small volume or BCG. Consequently, one can not expect F,y to
be injective (sce Example 7 and the comment 3) in §1.5).

4) Except for few cases, N admits a unique mjective F-structure (if
it admits any at all). Note that N may admit infinitely many different
polarized F-structures. Thus the existence of an injective F-structure is a
global and topological constraint on N (see §1.4).

Intuitively, what we need to do is first find some local property for F,
which reflects the BCG. Then use this to get the existence of an injective
F-structure (the global topological information).

Following the construction for F, in [CG4], one sees that locally, F, is
injective. By taking into account BCG, we find that the S'-orbits of J, are
not homotopically contractible globally. It turns ouf, in the 3-dimensional
situation, that such a local property is enough to guarantee the existence
of an injective F-structure (here we assume 7 (V) is infinite). Our basic
method is to modify F, to be injective and our basic tools are some theorems
from 3-dimensional topology.

Now by assuming Theorem B and Theorem 10, we give a simple proof

of Theorem A as follows.
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Proof of Theorem A. Let N be a closed oriented 3-manifold which
admits a volume collapse {g5} with BCG (6 — 0).

First, according to Theorem B, we can find an injective T-structure F
on N. Using F we construct an invariant volume collapse {gs} with BCG

on N (Theorem 5). From Theorem 6 and Theorem 7, we obtain
Ne)(N) = lmn(N, g5) = lim (N, §s) = n(N, F).

From Theorem 10, we fill in N with a compact 4-manifold M ~ and extend
F to My so that all orbits of the extension are closed submanifolds. Finally

we get the rationality of ;) V') by applying Theorem 7 to (N, F}). Q.E.D.

1.3 Collapsed 3-Manifolds and Injective T-

structures

Based on the general results in §1.1, we study systematically the collapsing

phenomena and F-structures on 3-manifolds. Our main goal is to establish

Theorem B.

a. Polarized T-structures on 3-manifolds

The basic fact of an F-structure on a 3-manifold is the following:

Proposition 1 Any positive rank F-structure F on g 3-manifold contains

a polarized substructure.

A consequence of Theorem 1 and Proposition 1 is the following.
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Corollary 1 Let (N,g) be a complete 3-manifold with | K| < 1. There
exists a constant € > 0, so that if the injectivily radii is smaller than e

everywhere on N, then N admils a polarized F-structure Fy which is almost

compatible with the metric g.

Remark 5 Corollary 1 fails in higher dimensions. See Ezample 1.9 in
[CG3].

Proof of Proposition 1. Let F = {(ﬁa,Ua,Tka,qba)}. If there is a
stratum (U7, U, T, ¢o) With k= 3, then U, = N and N is a T°-manifold
up to finite covering. Since the T3-action ¢, has no fixed points, it follows
that there is an S'-subgroup of T3 acting on N (or a finite cover of N) with

only finite isotropy groups; that is, F contains a polarized S'-substructure.

Now we assume all ky, < 2. Let Z be a component of the singular set

of F and let (U, Uy, T%, 1,361), .y (T, Uy, T2, 61,462) b all the strata of F

which contain Z. By taking a common cover U of Uy, ..., U, and lifting the

T?-action on U; over U, we may assume JF is locally a T-structure (i.e.,

we assume Z C U; C U). Since dimN = 3 and dimZ > 1, it is easy to

see that Z consists of a single S1-orbit; ie., Z ~ S! is isolated. Endowed

with an invariant metric, one can find an invariant tubular neighborhood

T,(Z) with radius p satisfying the conditions: (i) T,(Z) contains no other

components of the singular set of F, (i) T,(Z) ~ D? x §! (slice theo-
rem), and (ii1) T,(Z) C (Y_, U;. Let S be a subgroup of 72 without fixed
points under ¢;. By replacing the strata (U, Uy, T2, é,), ..., (U, U,, T?, ¢, )
in F by (1,(2), 8", dulsr, 1), (U, UL, T2, b, ) oo (07, U, T2, o) with

U, =U, — T,/2(Z), one gets a substructure of F which is polarized near Z.




27

Q.E.D.

A T-structure is easier to handle than an F-structure. We will see
that an F-structure on an orientable 3-manifold has the same orbit struc-
ture as some T-structure (Proposition 3). In this sense one can reduce an
F-structure to a T-structure in dimension 3. In fact, let us observe the

following.

Proposition 2 Let 7 : M -~ M be q fintte covering and let F be an F-
structures of M. Then F lifts to an F-structure F . Moreover, F has the
the following propoties if und only if F does:

(i) F is polarized;

(1) F is pu're;-

(#11) F is injective,

Proof. Take any atlas {(U;, U;, T*, 4;, i)} for F. For each i, consider

the local pull-back covering bundle:

(0
i |

T Y(T;)

Since 7 is a finite covering, the pull-back w*(l}) is a finite covering over

U. Thus the T5-action é; on U lifts to a (unique) T*-action ¢, (as the
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covering group of T%) on 7%(U) with the commutative diagram:

é;
T4 x 7(U;) = = (0)
1x=* | ™ |
i
™ x(U) — U

Now we need to check that the collection {'Ir*(l},-),':r_l(Ui), T*, $;} sat-
isfies Definition 1. This is straightforward from the above commutative

diagrams and the definition of {(T;, Uy, T%, ¢:, )} Q.E.D.

A consequence of Proposition 2 is that, as far as the properies (i), (ii)
and (iii) are concerned in practice, one can always assume the manifolds
are orientable (see Proposition 3).

Given a polarized F-structure F on an orientable 3-manifold, let N’ and
N" be the union of 1-dimensional orbits and 2-dimensional orbits respec-
tively. Let N/ = UN; and N" = UX; where N; and X; are connected
components. Since N is orientable a 2-dimensional orbit of F is a torus
and each X; is homeomorphic to 7% x I with T? x ¢ corresponding to the
Z-orbit (I is a closed interval). Thus we may view N as decomposed into
pieces Ny, ..., N, which satisfy the conditions:

(i) Each N; is a Seifert fiber space with tori boundary components such

hat the Seifert fiber structure is trivial near the boundary,

(ii) By identifying the corresponding boundary components of N;’s in

Dairs, these S'-Seifert fibrations produce T?-orbits near the identified bound-
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aries,.

We call the above natural decomposition of the pair (N, F) and denote
it by D(N,F} = {Ny,...,N.}.

To find a T-structure whose natural decomposition coincides with the
natural decomposition of F, it is enough to realize that, locally, a Seifert
fiber structure coincides with the orbits of a local S'-action. This is true
because an S'-fibered solid torus (and also a solid Klein bottle) admits an
S'-action leaving the fibration invariant (see [Sc]). As a summary of the

above discussion, we give the following proposition.

Proposition 3 The orbit structure of a polarized F-structure om an ori-

entable 3-manifold N coincides with the orbit structure of some T-structure

on N,

Note that K? x § (K2 a Klein bottle) supports an F-structure of rank
three but does not admit a T-structure of rank three. Thus the orientability

is a nessessary condition in Proposition 3.

"To characterize the 3-manifolds which admit polarized T-structures, we

recall graph manifolds as follows.

Definition 7 Let N be a compact 3-manifold. Suppose N decomposes into
picces N, ..., N, satisfying the following conditions

(i) each N; is a manifold with torus boundary components,

() each N; supports an S"-bundle which is trivial near ON;.

Then Ng = {Ny,...,N,} is said to be a graph structure of N and N is called
@ graph manifold with the graph structure Ng.
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The topological élassiﬁcation for graph manifolds was obtained in [Wal]
and [Wa2]. We shall use it to discuss the uniqueness of injective F-structures
on 3-manifolds in §1.4.

Note that the natural decomposition D(N,F) = {Ny,...,N,} of a pair
(N, F) may not be a graph structure since the Seifert fibration on N; may
not be an S'-bundle structure (e.g. suppose N; has exceptional orbits).
But if one cuts out a tubular neighborhood around each exceptional orbit
of N; (i.e., further decomposes N;), then one can actually obtain a graph
structure from D(N, F).

On the other hand, for a given graph structure Ng = {Ny,...,N,}, by
assigning an S'-structure on each N; € Ng (which is not necessarily the
original S*-hundle structure) one then constructs a polarized T-structure
which is called a polarized T-structure associated to the graph structure
Ng (note that this associated polarized T-structure may not have rank two
near ON;’s).

As a summary of the above discussion one can characterize the 3-

manifolds which admit polarized F-structures as follows.

Proposition 4 Let N be an orientable 3-manifold and let F be a polarized
T-structure. Then N is a graph manifold and F is associated to the graph

structure of N.

The next proposition is about the sufficiently collapsed 3-manifolds with

bounded diameter; it is needed only to prove Theorem E.

Proposition 5 For cach real number D> 0, there exists a constant, e(D) >
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0, depending only on D, such that if 3-manifold N satisfies the conditions:
[sectional curvature| < 1, diameter < D,and Volume < es( D),

then N admits a pure polarized F-structure. Moreover, N is diffeomorphic

to either o Seifert manifold or a solve manifold up to a double covering.
To prove Proposition 5, we need a lemma as follows.

Lemma 2 Let G be a compact Lie group acting on a manifold. If the
principal orbits have codimension 2, then the orbit space s @ manifold (with

boundary).

Proof. See 4.1 Lemma in [By]. Q.ED.

Proof of Proposition 5. We first assume that N admits a pure po-
larized T*-structure F. If k = 1, this amounts to saying that N admits
an S'-foliation; i.e., N is a Seifert fibre space ([Sc]). If & = 2, then the
orbit space N/F =~ S! since F is pure polarized. Thus the projection
7 : N — N/F is actually a bundle map with fiber either T2 or K? (Klein
bottle), equivalently, N (or its double covering if N is not orientable) is
solvable.

Now we show that N does admit a pure polarization. We prove by con-
tradiction. Supposing the opposite, we then obtain a sequence of closed 3-

manifolds {N;} satisfying the conditions: 1) [K(N;)] <1, 2) diam(N;) < D,

3) Vol(N;) <1, and 4) N; does not admit any pure polarized F-structure.

By Gromov’s pre-compactness theorem one can chose a subsequence of {N;}
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which converges to a metric space Y under the Hausdoff distance. Note
that 3) implies dim(Y) < 3. We may assume that lim;_, ;e da(N,Y)=0.
Applying Theorem 3, ¥ = N/O(3) with dim(Y) < 2. From Lemma 2, Y
is a manifold (with boundary). If dim(Y) = 2, Theorem 4 shows that N;
admits an S'-fibration and hence a Seifert manifold ([Sc]) (otherwise Y is
not a manifold) for ¢ sufficiently large. This contradicts our assumption
4) above. If dim(Y) =1, then ¥ ~ §" or [0, 1]. In the first case N; is a
fiber bundle with fiber a 2-infranilmanifold (Theorem 4); that is, either 7
or K*. So N; admits a pure polarized T%-structure and this contradicts 4)
again. If ¥ = [0,1], the N; are actually 7%-manifolds without fixed points.
It is easy to see that one can pick up an S'-subgroup of 7% which also has
no fixed points; i.e., N; admits an S! polarization. Again this contradicts

4). By now our proof is complete. Q.E.D.

b. Characterization of injective F-structures on 3-manifolds

We first observe the simple case where a 3-manifold N admits a pure
injective F-structure. In such a case, N, or possibly its double covering, is
either a Seifert manifold (for rank one) or a solve manifold (for rank two).
Note that a solve manifold is the total space of a T%-bundle over S! and

the T%-bundle structure is a pure injective T?-structure. Moreover we have

Proposition 6 Let N be a Seifert manifold and F the pure St-structure

which cotncides with the Seifert fiber structure. Then F is injective if and

Proof. Sce [On].
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The next lemma is crucial for establishing the characterization of 3-
manifolds which admit injective F-structures (Theorem 9).

Let ¥ be a boundary component of a 3-manifold N. 3 is called in-
compressible if. & is not 52 or P? and the natural map () — m(N) is

injective.

Lemma 3 The boundary of a Seifert fibre space N; 18 incompressible unless

Ny 1s homeomorphic to ¢ solid torus or a solid Klein bottle.

Proof. See Corollary 3.3 in [Sc). Q.E.D.

The criterion for a polarized T-structure to be injective is given below.

Theorem 8 Let F be a polarized T-structure on 3-manifold N. Then F
is injective if and only if the natural decomposition D(N,F) of F contains

no piece N; which 1s homcomorphic to a solid torus.

Proof. One direction in the proof is obvious. Suppose F is injective.
Let D(N,F) = {Ny,...,N,} be the natural decomposition of F. From
Lemma 3, the injectivity of F implies that no N; is a solid torus.

To prove the opposite direction we need some results from the combi-

natorial group theory.

Let G be a group, and let 4 and B be subgroups of G with ¢ : A — B

an isomorphism. The HNN extension of G relative to A, B and ¢ is the
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group

G" =< G, 4t7 ot = d(a),a € A > . (1.3) :

The group G is called the base of G*, t is called the stable letter, and A4 and

B are called the associated subgroups. The relation between G and G* is

the following:

Lemma 4 The group G is embedded in G* by the natural inclusion map.

Proof. See Theorem 2.1 in [LV]. Q.E.D.

HNN extensions arise in the following topological context. Let X be a
space, and U and V' be subspaces. Suppose my(U) — m1(X) and m(V) —

m1(X ) are both injective. Let h: I/ — V be a homeomorphism. Construct a

new space 4 by identifying U and V via h. Then 71(Z) is an HNN-extension

of m(X) associated to m1(U) and (V). Note that here ¢ represents a path
in X from u to h(u) (u € U).

Corollary 2 Let i : X — Z be the natural inclusion. Then the induced

map i, 2 M (X) — m(Z) is injective.

A different situation from above is when V is a subspace of another
space Y. We still suppose 71(V)} — my(Y) is injective. Let Z be the
space formed by identifying U and V via h. According to Van Kampen’s

theorem, the fundamental group m(Z) is:

m(Z) =< m(X) s m(Y):  mU)=m(V),h > (1.4)
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Correspondingly, let B be a subgroup of another group H. The group G*

is called the free product of ¢ and I with amalgamation ¢, if
G"=<G+«H, A=DB,¢>. (1.5)
Lemma 5 G and H are embedded in G* by the natural inclusions.

Proof. See Theorem 2.6 in [LV]. Q.E.D.

Corollary 3 Let 41 : X — Z and iy : YV — Z be the natural inclusions,
Then the induced maps iy, ; (X)) = 71(2) and 1y 1Y) = ®1(Z) are

injective.

Now we continue our proof of Theorem 8.

Assume each N; in the natural decomposition {1, ..., N, } of (N, F) is
not homeomorphic to a solid torus. We shall show that F is injective.

First we claim that the S'-fiberation of N, is injective. This can be seen
trom Lemma 3. Note that assuming the $'-fiber is not injective implies that
the ON; must be compressible. Consequently, N; is a solid torus (Lemma
3).

When glueing {N;} together, these ST-8bers generate T%-orbits around
ONy’s. We need to show that these T% orbits are also injective. We start at
Ny and glue one component of N, with its partner. There are two possi-
bilities. One is that the partner is another component of N itself. In this

case, since dN; is incompressible, we use the IINN extension (Corollary 2)

to conclude that the produced 12-orbits are injective. For the other case

we use (Corollary 3) to get the same concluson. Note that the boundary of
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the glueing result still remains incompressible in both cases. By repeating

the process finitely many times we then complete the proof. Q.E.D.

c. Existence of injective F-structures on 3-manifolds

We begin to prove our main result, Theorem B.

First, we take the constant € = ¢(3), where ¢(3) is given in Theorem
1. By Theorem 1 one finds a positive rank F-structure Fq which is almost
compatible with ¢g. From Propositions 1, 2 and 3, we can assume N is
orientable and F, is a polarized T-structure. As we have already explained
in §1.2, ¥, may not be injective in general (also see Example 9 and 3) in
§1.5). What we shall do is to modify F, so as to obtain an F-structure
which is injective.

Let D(N,F,) = {Ny,...,N,} be the natural decomposition of (N, F,).
If each NV; is not homeomorphic to a solid torus then F, 1s already injective
(Theorem 8). Thus the appearance of solid torii in D(N,F) violates the
injectivity of F,. We shall get rid of these defect by changing the S*-

structure on V; which is homeomorphic to a solid torus.

Lemma 6 Let Ny be a Seifert fiber space with r disjoint torus boundary
components such that the fiber structure is trivial near the boundary. Form
a maentfold N with boundary by attaching solid tori D, xS, ..., DsxS to Ny
along their boundaries (v' < r). If the S'-fiber of N; is not homotopically
contractible in each D; x S and N is not a solid torus, then N admits an

injective S1-structure.

Proof. Since the S -fiber of N; is not homotopically contractible in
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each D; x S, it follows that the Sl-fibration of N extends over N. So
N is a Seifert fibre space with boundary (r' < r). We need to show that
the S'-fiber has infinite order in (). Since N is not a solid torus, ON
is incompressible (Lemma 3). Thus m(8N) — my(N) is injective. This

implies that the S'-fiber of N is injective. Q.E.D.
Before proceeding further, we give an interesting example.

Example 5 ([So], [CG1]). This example shows that when consided as
an graph manifold, a solid torus nay have a rather complicated standard
decomposition. First, let ¥ denote the surface formed by removing three
disjoint disks from S?. Take two copies of D? x S! and attach them to
¥ x S along their boundaries. We require that the attachment satisfies
the conditions that the S'-factor of 5 x S? is not identified with 9D?, and
ON is compressible. Note that N is a Seifert fiber space with boundary.
Applying Lemma 3 one recognizes N as a solid torus.
| Now taking r copies, 5y x $1,..,%, x §* of £ x S, and r + 1 solid
ori, Dy x §',..., D, x 5, we play the following game. The first step is to

attach Dy x St and D; x §! to ¥y x 81 as above and to denote the result

‘a solid torus) by N;. The second step 1s to attach Ny and D, x S! to

¥y x 8. Continuing in this manner, it is obvious that one actually obtains

natural decomposition of (D x S, F ) for some polarized T-structure

Motivated by Example 5, we introduce the following,.

i
|
i
f
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Delinition 8 Let D(N,F) be the natural decomposition. A mazimal solid

torus chain of D(N, F) is a subset 7oy in D(N, F) such that the total space

0f Tnae 18 homeomorphic to a solid tori and T,,., is a mazimal subset with

this property.

Note that "D(N , F) may contain no solid torus chain at all.

From the proof of Theorem 8 one observes that each maximal solid torus
contains at least one D,-O-x S1 for some 7. To form a maximal solid torus
chain, one starts with D;, x S' and looks at its glueing partner. If the

partner is also a solid torus, then the maximal solid torus chain consists

of a single D;, x §* (and N is homeomorphic to a lens space). Otherwise
one attaches D;  x S! to the partner and denotes the result by N;. Next
one attaches all the solid torus, which are the partners of Ny, to Ny and

denotes the result by N,. If N, is not a solid tori then we claim that

the maximal solid torus chain is D;, x $!. This can be seen easily from
Theorem 8. Otherwise we then repeat the above program by starting at
the solid torus N,. After a finite number of steps one obtains the maximal
solid torus chain containing Dy, x S'. Clearly, if two distinct maximal solid
torus chains in D(N, F) have nonempty intersection, then N is formed by
glueing two solid tori along their boundaries. 1t is well-known that such a

space is homeomorphic to a lens space (which includes $® and S? x § .

We have actually proved the following lemma.

Lemma 7 Let 7,

f/ . . . . .
maz Ond T .. be two distinct mazimal solid torus chains

of DIN, F). If Tnaw NT pnaw £ 0, then N is homeomorphic to a lens space.
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Theorem 9 Let b(N,f) be the natural decomposition in which all distinct
mazimal solid tori chains are disjoint. Suppose all S*-orbits of F are not

homotopically contractible in N. Then N admils an injective T-structure,

Proof. Let {7,,.:} be the collection of all maximal solid torus chains
of D(N,F). We obtain a new decomposition Dy(N) for N by simply re-
placing {Tnazk} in D(N, F) by their total spaces {Dy x S*}. Attaching all
Dy x S' in Dy(N) to their partners, we get two possible results. One is
that the result is NV itself. In this case all {D) x S} attach to a single NV;,.
It follows from the condition that the S'-fibration extends to an injective
S'-structure of N (Lemma 6). Another possible result is that we obtain the
decompositon Dy(N) of N satifying the condition of Theorem 8. This can
be seen as follows. First, each piece in D,(N) is not a solid torus (otherwise
it would contradict the maximal solid tori chains we defined). Secondly, our
assumption that all S'-orbits of F are not homotopically contractible im-
plies that each piece in Fp(N) admits an injective Seifert fiber structure

(Lemma 6). We then complete the proof by applying Theorem 8. Q.E.D.

Now we can finish the proof of Theorem B.

From Theorem 3 we only need to check that the S'-orbit of F, is not
homotopically contractible. Note that so far we have not used anything re-
lated to BCG. But now this property enters. Suppose there is an S'-orbit
O, of F, which is homotopically trivial. From the concrete construction for
Fy given in [CG4], one sees that (), is not homotopically trivial in a metric

ball of certain size at z. Say, B,(z) D O, for some constant 0 < r < 1. Let
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7 : N = N be the universal covering N of N and ¢ = m*g the pull-back
metric. Pick up a point & in 77'(z) and denote by O; the lifting of O,
at & Then O; C B,(%) since O, is trivial in N. Note that the injectivity
radius of M at # is at loast 1 (BCG). It follows that Oz is homotopically
trivial in B,(&). So is the projection O, of O; in B,(z). We then get an

obvious contradiction. Q.E.D.

We conclude this section by giving several examples. The first one will

show that Theorem B is sharp.

Example 6. Let 5* be the standard 3-sphere. Take a sequence of prime
integers p; with p; — +co. For each p;, define a free Zp;-action on S? as
follows: first, parametrize S C C* x C* and let ¢, be the generator of Zps,s
then the action is given by i, (p,e2 1 pyelrite) = (pre » ,pge ). Tt is
well-known that the quotient %/, is the lens space L(p;,1). Since Z,

acts as isometries, the standard metric of S® projects to a metric on L(p;, 1)

of sectional curvature = 1. Note that Vol(L(p;,1)) = Vol(S?)/p; — 0 as

P — o0,
The next example shows that in general, one cannot expect to obtain

injective F-structures by means of geometrical constructions as given in

both [CG4] and [Fu3].

Example 7. Take the standard $? and 5! and make S? x §'. Consider




the S? subgroup H of SO(3):

cost —sint 0
H=A{]| sint cost 0| ]| 0<t<2n).
0 0 1

T? = H x S' acts on S% x $1 by H on the first factor and multiplication
on the second factor. Let R} be a R'-subgroup of T?, determined by an
irrational angle 8, We obtain a volume collapse {g¢s} (with bounded diame-
ter) by simply shrinking the standard product metric on S% x ST along the
orbits of Rj. Note that the universal covering space of S? x S is §? x Rl
It follows that the pull back metrics have a uniform lower bound on in-
Jectivity radii. Since R} is dense in T2, the limiting space of this collapse
is a closed interval. This implies that for any sufficiently collapsed metric
g5, the F-structure 7, constructed from gs by using either the local short
geodesics technique ([CG4)) or the frame-bundle technique ([F2]), has to

contain 2-dimensional orbits. In particular, F,, is not injective.

1.4 Uniqueness of Injective F-structures on

3-manifolds

Using the classification results for Seifert manifolds and for graph mani-
folds obtained in [Se] and in [Wal] and [Wa2] respectively, we discuss the

uniqueness of injective T-structures and prove Theorem C.




42

The question on the uniqueness of injective F-structures on a closed
orientable 3-manifold N is suggested by the following observation:
Suppose N admits two injective F-structures F; and Fa. From our

previous work one gets
(N, F1} = nzy(N) = (N, F2). (1.6)

The explicit residue formula for limiting n-invariant associated to a polar-
1zed T-structure shows that NN, F) 1s computed using the topological data
derived from (N, F).

'To be precise, let D(N, F) = {Ny,..., N,} be the natural decomposition.
An S'-orbit of F is said to be an exceptional orbit if it is an exceptional
orbit for some N; (as a Seifert fiber space). The rational portion of 3n(N,F)
is determined by the exceptional orbits of F and the integer portion of
3n{N, F) is contributed by the twisting around the boundaries of the N;’s
(see §1.7 for further details).

Thus (1.6) suggests that in some sense F1 may not be very “different”

from F;. It turns out that except for few cases, if a closed orientable 3-

manifold admits an injecfive F-structure F then it is unique up to weak

isomorphism (see Definition 9). Before giving the precise definition for weak

isomorphism, let us first describe all the exceptional cases.

Example 8 Let N be a 3-nilmanifold. The action of the center of N
on N gives a (unique) pure Sl-structure F1 which is injective. Note that
N may also be viewed as a torus bundle over St and thus N supports a

pure T?-structure JF, which is also injective. Since F; and JF, have different




ranks J; is not isomorphic to 7.

Example 9 Let N be a solve manifold. N is the total space of a T2-

bundle over S, 7 : T? — N - S, Take a finite open cover, Uy, ..., U.(r >
2) of the base § and denote U; = n~'(U;). By choosing pairwise different
St-actions ¢; on 5}-, we then obtain a mixed injective T-structure F =
{(T:, S, $:) Yoy 1t is obvious that in such a way one can construct infinitely

many non-isomorphic classes of injective T-structures on N.

Note that all the injective T-structures in above examples do not have

exceptional orbits. The next example is not of the case.

Example 10 Any S'-action without a ixed point on $2x S is injective.
Thus S? x S? supports infinitely many non-isomorphic pure injective S1-
structures. Note that the Scifert invariants corresponding to the S'-action
is {b,(0,0), (e, 3), (e, B)).

Two exceptional orbits of a T-structure F on an oriented manifold N

are sald to be conjugate if their corresponding Seifert invariants (o1, 51)

and (ay, F2) satisfying ay = a, and B = ay — B2. Our explicit residue

formula in §1.6 will show that a pair of conjugate exceptional orbits in F

contributes only integers to 3n(N, F).

Definition 9 Let N be a 3-manifold and let Fy and F,; be two mjective

T-structures, Let F(N,F;) = {N;1, ..., Ni,,} be the natural decompositions

of Fi (1 =1,2). N;is called a trival piece if N; is homeomorphic to T? x I.

Fi 1s said to be weakly isomorphic to Fy if there is an automorphism ¢ of N
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such that for each non-trivial piece Ny ;, there is an Ny rs) such that v,

Nij — Noxgy 18 an embedding which prevents the Seifert fiber structure.

Remark 6 Note that 2) actually says that if 7y is weakly isomorphic to Fa,

then they are different only on the trivial pieces. Thus weakly isomorphic
injective T-structures have the same exceptional orbits. The expilict residue
formula for n(N, F) in §1.7 will show that n(N,F) depends only on the weak

1somorphism class of F.

Note that the injective T-stuctures in Example 9 are in the same weak
isomorphism class since their natural decompositions contain only trivial
pieces. We shall see later that Examples 8 and 10 are the only cases where
a 3-manifold N supports more than one non weak isomorphism classes of
injective T-structures. First, let us check this for the simplest case where

the injective T-structure is pure.

Proposition 7 Let Fy and F, be two pure injective T*-structure on ¢ man-
fold N (k =1,2). Suppose N is not diffeomorphic to S* x S*. Then F, is

womorphic to Fy up to isomorphism.

Proof. First we check the rank one case; that is, the case when N is
an injective Seifert manifold. It is well-known that a large Seifert manifold
supports a unique Seifert fibration up o isomorphism (see Theorem 6 of
§5, [Or]). Since N is not homeomorphic to $% x S! and 71 (N) is not finite,
one easily checks that N is actually a large Seifert manifold. Consequently,

N admits a unique injective Sl-structure.
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In the case of rank two, NV is a solve mantfold. By the classification

result for solve manifolds ([RV]) one concludes with the uniqueness of in-

jective T2 structures. Q.E.D.
Now we are ready to prove Theorem C.

Proof of Theorem C. Suppose N is homeomorphic neither to §2 x
S' nor a nilmanifold, Let Fi be two injective T-structures on N and let
D(N,Fi) = {Ni1, ..., iy, } be the natural decomposition of F;, (i = 1,2).
If ry = 1, then either N = N1, or N is homeomorphic to 72 x [ ,or NV is

not homeomorphic to 7% x I. The first two cases are actually reduced to

Proposition 7, The last possibility will be treated in the case of r; > 2.
Now assume either r; = 1 and N,

7 2 2 (*)

1s not homeomorphic to T2 x I, or

First we put an additional assumption that hoth D(N, F,) and D(N,F3)
contain no trivial piece. Under (*) and the above additional assumption,
1t is easy to check that by cutting out a tubular neighborhood around each

exceptional orbit of N, one can actually obtain a so-called simple graph

structure in the sense of [Wal] and [Wa2] (also see §8 of [O1]). Consequently,
there is an automorphism ¢ of N which is isotopic to the identity map such
that ¢(Ny;) = Ny ; and ry = 7 (see Theorem 5 of §8, [O1]).

Note that from Proposition 7 each N;; admits a unique Seifert fiber
structure up to isomorphism. Thus F; is actually isomorphic to 7.

Now we allow D(N,F;) to contain trivial pieces. What we shall do is

glue the trival pieces in D(N, F;) to produce a simple decomposition as in
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the previous case.

We first glue the trivial pieces in each D(N, F;) which are supposed to
glue to each other. Clearly the resulis are disjoint trivial pieces. Then we
attach each of these disjoint trival pieces to a non-trivial piece in D(N, F;)
(there are two choices here). We denote the result by {Ni1, e Nis ) (6 =
1,2). Since none of Ni,j are trival, from our previous discussion we conclude
that there is an automorphism ¢ of N such that H(Ny;) = Ny and 7 = 7,

‘This implies that F, is weakly isomorphic to F,. Q.E.D.

1.5 Further Discussion

Besides the uniqueness of injective ‘T-structures, there is another question
arising from our proof of Theorem A. To state it clearly, let us recall the
following:

Let {gs} be a volume collapse with BCG on compact orientable 3-

mantfold. Then M2y (V) = lims_q (N, gs). For a fixed sufficiently collapsed
metric g5, one constructs a polarized F-structure Fs which is almost com-

patible with g5 (Corollary 1). Then,

N2 (N) ~ p(N, gs) ~ n(N, Fs). (1.7)

Note that the first approximation in (1.7) follows from the estimate below

which was established in [CG2]:

1) (N) = 5(N,g5)| < C - Vol(N, g5)

The second approximation follows from the fact that g5 is sufficiently col-

lapsed and almost compatible with Fs. Here “almost compatible” means
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that there exists an invariant metric closed to g; (sce [CGA]).

On the other hand, by performing the modification process on F as
in the proof of Theorem 9 , one obtains an injective F-structure . From

N, F) = n{IN) and (1.7) we deduce that
(N, Fs) m n(N, F). (1.8)

Note that (1.8) may suggest that F is weakly isomorphic to F when g;
is sufficiently collapsed. (Here, we assume N is neither homeomorphic to
5% x S nor a nilmanifold and thus the weal isomorphism class of F is

independent of § (Theorem C).) The following example supports this.

Example 11 Let N be an injective Seifert manifold. To simplify our
discussion below we asume N has a single exceptional orbit O. As a model,
we may form N as follows:

Let ¥ be a torus with a disc removed and let Ny =X x S Glueing in
a twisted manner a solid torus D x S to Ny along their boundaries, one
obtains a closed injective Seifert manifold N with a simgle exceptional orbit
which is the central orbit of IJ x S1.

Now we start with an invariant metric ¢; and simply shrink gy along the
Seifert fiber while keeping ¢, fixed on the orthogonal direction to the orbits.
Thus we obtain an invariant volume collapse {95} with BCG (Theorem 5).

Then we fix a sufficiently collapsed metic g5 and construct F5 as in
[CG4]. Note that by the invariance of gs the exceptional orbit @ is the
shortest closed geodesic in a neighborhood U of @. From the concrete

construction of 75 as in [CG4] one sees that F is actually isomorphic to F
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on U and on Nl.. On N — (U UN,) which is homeomorphic to 72 x I, Fs
is actually a mixed T-structure just as in Example 9. Thus we see that in
this situation F is actually weakly isomorphic to F.

We would like to malke the following comments.

1) Note that the above discussion for Example 11 is valid for any 3-
manifold N as long as the volume collapse with BCG ig compatible with an
injective T-structure on N, Although a general volume collapse {gs} with
BCG may not be constructed as in Example 11, it can be thought of as a
perturbation of an invariant volume collapse with respect to an injective
T-structure. Thus the associated polarized T-structures Fs is “almost 7
weakly isomorphic to £ in the sense that F; is weakly isomorphic to F ag

& — 0. Consequently,
%in(l) n(N, Fs) = n(N, F) (1.9)

2) Based on the observation in 1} and our previous work in §1.3, §1.4
and §1.6, we can give a topological proof of Theorem 6 for 3-manifolds that

is totally different from [CG2).

We first assume N is not homeomorphic to either $% x S of a nil-
manifold. We start with a volume collapse {gs} with BCG on a closed
oriented 3-manifold N. For each sufliciently small 8, we obtain a polar-
ized T-structure F (Corollary 1). Since each metric gs has BCG, we can
modify each F5 to an injective T-structure F as in the proof of Theorem B

(note that by our assumption on N, F is unique up to weak 1somorphism
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(Theorem C)). From (1.7) and (1.9) we obtain

%iné (N, gs) = }gin%?](N, Fs) =n(N,F.) (1.10)

This implies that the limiting n-invariant with respect to a volume collapse
with BCG is a topological invarians.

As for when N is either 52 x S! or a nilmanifold, although N admits
non-weak isomorphic classes of injective T-structures, a simple computa-
tions show that n(N,F) is independent of F as along as F is injective. Now

the proof is complete.

3) Note that in Example 11, one actually gets a maximal solid torus
chain of (N, Fs) on N —(U UN1). In fact, this maximal solid torus chain is
a trival one, i.e., except for the initial IJ , all other pieces in this chain are
homeomorphic to T2 x I. It is conceivable that more complicated maximal
solid torus chains may be formed in the polarized T-structure constructed
from geometry as in ([CG4]). Also, since Fs contains a maximal solid torus
chain for all sufficiently small 6 , one sees again that an injective T-structure

cannot be produced from the geometrical construction given in [CG4].

1.6 Filling 3-manifolds via Equivariant Plumb-
ings

In part ¢ of this section we will prove the following fact
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Theorem 10 Let N ba a closed orientable 3-manifold and let F be a po-
larized T-structure of N. Then there s a 4-manifold My and a T-structure
F satisfying:

1) OMy =~ N,

2) A, = F,

8) all orbits of F are closed submanifolds of My.

Note that any closed orientable 3-manifold can be viewed as a bound-
ary since the cobodism ring of such manifolds is trivial. To insure that we

can extend F to My, we will construct My by the so-called equivariant

plumbing technique.

a. Equivariant Plumbings

Let us recall the equivariant plumbing technique from [Or]. The prin-
cipal S'-bundles over a closed orientable 2-manifold Y are classified by
H*Y,Z) = Z. Denote the associated D2-bundles indexed by b € Z as
§ = (My,n,Y),m: My - Y. The compact 4-manifold M, has the homo-
topy type of Y. Let the zero section v - M, — Y represent the positive
generator o € Hy(My, Z). Then the self intersection number a - a — b is
the Buler number.

Given two such bundles ¢; = (M, 7, ¥:)(i = 1,2), we plumb them
together as follows. Choose 2-disks B; C ¥; and the bundles over them
771(B;). Since they are trivial bundles there are natural identifications
ti 2 D*x D% = £, Let s: D2 x D — D? x D s(z,y) = (y,2) be the
reflection and define f: 7='(B,) — 7Y By) by f =pyos0pu~L, Pasting &
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and &; together along 7~1(B;) and 771 (By) by the map f is called plumbing.
It yields a topological 4-manifold with corners that may be smoothed. The
resulting smooth structure is independent of the choices involved.

A graph T' is a finite, 1-dimensional, connected simplicial complex. Let
Ao, ..., A, denote its vertices. A star is a contractible graph where at most
one vertex, say Ag, is connected with more than two other vertices. If there
1s such a vertex, call it the center. A weighted graph is a graph where a non-
negative integer ¢; (the genus) and an integer b (the weight) is associated
with each vertex A;.

Given a weighted graph I" we define a compact 4-manifold Mr as follows:
For each vertex (A4, ¢;,b;} take a D% bundle & = (Y, m;, M;) where M; is
a closed, orientable 2-manifold of genus gi- If an edge connects A; and A;
in I' then perform plumbing on & and ;. If A; is connected with more
than one other vertex, choose pairwise disjoint disks on M; to perform the
plumbing. Finally smooth the resulting manifold to obtain M.

We shall now define an S'-action on the building blocks. For ¢ > 0 let
S act trivially on the base and as a rotation on each fiber. For ¢ = 0 we
define S'-actions on & = (M, , S%) in general. A plumbing is equivariant

if the trivializing maps y; and identifying map § are equivariant.

b. Seifert manifolds as the results of plumbings

In his classical paper, Seifert [Se] classified the class of closed 3-manifolds
(Seifert manifolds) satisfying the conditions:

(51) the manifold decomposes into a collection of simpfe closed curves

called fibers so that each point lies on a unique fiber,
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(S2) each fiber has a tubular neighborhood U consisting of fibers so that
U is a fibred solid torus. A fibred solid torus is finitely covered by a trivial
fibred solid torus.

His main result states that a Seifert manifold N is determined up to a

fiber-preserving homeomorphism by the following Seifert invariants:

N = {b; (e,g);(ozl,ﬂl),...,(ocr,ﬁr)} (1.11)

where ¢ is the genus of the base space Y of N, the symbols ¢ = 0,01, 1
and n, represent the situation when both N and ¥ are orientable, N is
orientable and Y is not, N is not, orientable and Y is, neither N nor Y are
orientable respectively. (e, ;) is the Seifert invariant of the exceptional
orbit which is determined as follows. An § Lorbit O is called exceptional,
if its isotrpy group is nontrivial, say Z,. In a tubular neighborhood D x §1!
of O as in (S2), the $'-fibration is equivalent to the orbits of the local

Sl-action (after normalization):
0(r,61,65) = (r,8; + 46,6, + péb)
Then the oriented Seifert invariant of O is determined by
a=p, fBg=1lmoda 0<f<a

If N is orientable then the fiber preserving homeomorphisms preserves ori-

entation. Note that a change of orientation of gives the Seifert invariants

— M ={-b—r;(e,¢); (v, — Bi)yn(ay, ar — B,.)} (1.12)
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Lemma 8 Consider the star S below with each b, ; > 2 and 9i; = 0 ezcept

for the center:
(=b1i (b )

(Hbz’l)__(_bz,z)___. e
['—b - Q‘]

(_131-,1 )—-—(%br,Q)-—- —-—(_br,sr) (1.13)

The result, Ny = OMs, of the equivariant boundary plumbing has Seifert

muariants

NS: {b§ (0,5');(leﬁl),---,(amﬁs)} (1'14)

@
o —f3

are the continued fractions. Conversely, every Seifert manifold as in (1.14)

[b',l,-"abj,sj']g _F: 1,...,7‘.

is the result of an equivariant plumbing according to a star S as in (1.13).

Proof. See Lemma 3 and Corollary 5, §2 of [On1]. Q.E.D.

Remark 7 Lemma & is valid for the Seifert manifolds whose base spaces
are non-orientable. Lef & = (M_y_y, 7, Y} be the D%.-bundle corresponding
to the center [~b—r,g] in (1.18) and let £ = (M_yp, #,7) have the same
meaning as & = (M_y_,, x, Y cxcept that V 4s non-orientable, It 1s not hard
to see that if in the plumbing process of Lemma 1.13, we replace M_,_, by
]\F/Lb_,,. and leave all others unchanged, then the plumbing result is the Seifert
manifold whose Seifert invariant is N = {b; ('ﬂ‘,g,g);(0{1,181),...,(@7,,’67)}

i.e., the base space of N is non-orientable).
s )
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Remark 8 Let N = {5;(0,9); (a1, 1), (2, 5.)). Them —N — {~b—
ri{o, ¢); (ay, a1 — B1), ..oy (ctr, — B.)}. If we denote by My and M.y the
fillings for N and —N respectively as in Lemma 8, then My # M_n since
lo(Mp)| # lo(M_n)| (see Theorem D). This implies that My depends not
only on the topology of N but also on the orientation of N,

¢. Proof of Theorem 10
Let (N,F) be as in Theorem 10. From now on, we will assume the

natural decomposition of (N, F ) has the following form
D(A‘T! f) = {Nh ey Ark; ¢11 ey ¢I}

where

1) Each N, is an orientable Seifert fber space (with boundary) such
that the Seifert fiber structure is trivial near ON. and F is generated by
these Seifert fibration of N,’s (1<e<k).

and

2) the total number of boundary components of {N, }E_ | is 2. For each
normalized pair ((ON,)s,(ON4),) ((ON.); = S x §}) which are glued via
¢ ¢, we may assume the glueing map ¢; (1 < f < 1) is given by the matrix

5 = up vy tSe X 57 SLx SY det(gy) = —1 (1.15)

Pr 4y

where the second factors are fibers. We will form Mpy in four steps.
Step 1. By 1) one can close up each component of N, by attaching a

solid torus D, x S}t to (ON,) s 1n the obvious way. We denote by N, the
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closed Seifert manifold produced from N,. According to the claésiﬁdé,tiaﬁ'_'_:-_.

result in [Se] we may assume N, is given by

Ne = {bei (€6,9); (0,1, Ben)s ooy (s Bores)}
where €, = o if the base of N, is orientable. Otherwise €, = n,.
Step 2. I'*“ill in each N, with a 4-manifold M A, as in Lemma 8 or Remark
7 depending on ¢, = o, or n,.
Step 3. Form My by making plumbings among the My ’s according
to the ¢; (1 < f < I). For each ¢s we glue My with My, by making
equivariant plumbings from D, x D (D, x 8D £ =DexS5)to Dax Dy(Dy x

0Dy = Do x 5}) successively according to the linear graph

(—Cf,l)—-—(—cf,z) """ —-—(—Cf,sf)

which is determined by the continious fraction relay = lesa,..., cf,s}].
Note that the boundary of the total space of the sequence of plumbings
from D, x D to D x Dy 15 the lens space Lips,qp).

Clearly, OMpy has a decomposition (N1, .o, Ny, 64, ..., $9) where
g [ -0 o1}y foa1){-1 0
Pr 4y sy 1 140 10 cra 1
To see My =~ N, it is enough to show the following:
Lemma 9 ¢; 4s isotopic to e (1< fF <.
Proof. Since
Uy vy iy y

v
det = det R -1
Pr 4y
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le.
Usqy — proy = —1 (1.16)

u}qf —ppvp = —1, (1.17)
by subtracting (1.17) from (1.16), one gets

(?.tf - 'Ld})qu = (’Uf — ’U})'pf. (1.18)
Since py and ¢y are coprime integers and psl(us—u})qs, then prl(ug—ul).

Put uy —uf = pymy. It follows that v s — v = myqs. Therefore we define
an isotopy ¢, by

W+ tmepr v, - tm
Gﬁf,t: f Py f Fdr OStS]--
Dy qr

Q.ED.

Step 4. Extending F over My. F irst, we observe the following:

(1) My = (Ule Myg,) U(Uj’:l Mripsap),

(i) My, MMy, =0, (c # &)

(i) My, N M =0 or D, x Dy.

Let F, be the restriction of F to N, and let F J', be the restriction of F to
L(pys,qr) (note that F} is actually the T-structure given in ¢ of §2.1 with
spesifying a; = ag = 0).

We then make the extension of F over M ~ by simply extending F, over
My, and F; over M L{r;,q;)- Note that the above extension are not unique
in any sense. Clearly, all orbits of the extended T-structure F are closed
submanifolds of My (note that F may not have positive rank).

Now our proof of Theorem 10 is complete.

Q.ED.




Chapter 2

Computation of Limiting

n-invariants in Dimension 3

2.1 Residue Formula of Limiting n-invariants
in 3-dimension

This section is devoted to explicit topological residue formulas for () (V)
where N is an oriented closed 3-manifold which admits a volume collapse
with BCG. We shall express n@{V) in terms of the data from an injective
T-structure F of N i more precisely, the data associated to the natural

decomposition of the pair (N, F). Since in most cases such decompositions

&7
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are unique up to weak isomorphism (Theorem C), the corresponding residue
formulas are intrinsic (e.g Theorem D),

We should point out that the methods used in this section are valid for

computing (N, F) where F is a polarized T-structure (possibly without
BCG).

As we have already explained in §1.2, we shall carry out the formula

(1.2) of Theorem 7. We organize our computation in the following order:

a. residue formula for NV = {b;{0,9); (o, )},

b. residue formula for Seifert manifolds, :;
c. residue formula for n(L(p, q), F), -

d. residue formula for graph manifolds.

a. Residue formula for N = {b;(0,9); (a, 8)}

Before giving the residue formula, for general injective Seifert manifolds,

let us first consider the simpler case of Seifert manifolds which have only a

single exceptional orbit.

Proposition 8 Given an oriented injective Seifert manifold N = {0; (0, 9), («, B)},
then

138 .
M) (N) = —s + () + = 3 b Zet (2.1)
3 Ja

where E'f—,@ = [b,..0, b)), a; = bioi g — oy y with @ =1 and oy = by, and

€b)=—-10r1ifb>—1 ord < =1 respectively.
Remark 9 Note that My 15 not homeomorphic to M_n (see Remark 8).

Thus npgy(—N) = —1@)(N) cannot be seen from (2.1).




59

Proof. By applying Lemma 8, we obtain A N-
on N extends to My. Note th

The injective S'-action
at My is formed by plumbing the bundles
§=(M_p1,%,Y), & = (M-, 7:,5?) successively. Decomposing each base
S = By x Dy, Uy, Biz X D; 5, where

-1 0
by 1

pi =
we can express My as

My=M_ ;1 By x Dy U By x Dy,

&
s
Bz,1XD2,1 U 32,2XD2,2
b2
s
Bs,lx-D.s-,l U Bs,2XDs,2
D
and
sy ey -1 0 01 01 -1 0
o Jo} b, 1 T 0 10 b 1

Let X be the velocity vector field of the S '-action of My and let X; be the

restriction of X on BiixD;(1<i< s). Choosing multipolar coordinates

on B;y x D, we write

9 )
Xy = ay— — oy —, =1,a; = b.
TP TN 0= ha =0

We claim that o; > @i-1 > 0. We prove this by induction. Assume ay >

ap_yfork =1,...¢—1. Since b; > 2 and % <1, then a; = bjoy; g~y =
13
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a;(b; — “'T:L) > a;. From a; > 0 it follows that the fixed point set of X

consists of Z, U{04,; x 01,1,021 % 0q 1, ..., 00 X 04,1, 04 5 % 0.2}, where Z, = V -

and each 0;; x 0 is the center of B;;ix D

ij- According to formula (1.2) -
of Theorem 7,

W{ZJ(N) = O'(MN) + RGS(.X, Zg) + 370 RBS(X, 0;1 x 0,',2) (2 2)
+R€S(X, 03,2 x 03,2).

We shall compute each term in (2.2) in the following lemmas.

Lemma 10 o(My) = —s + e(D).

Proof. From §2 of [Or]

one sees that o(M, ) s equal to the signature
of the following matrix:

(%5—1 1
1 —b 1
A= 1

1

_

and only if —b—1 < 0. So we only need to show
that if —6—1 > ¢ then sig(A) = —s 4+ 1. Fir

and 4 is negative definite if

st assume —bp -1 > 0; that

is, =b— 1> 1. Given two n X n matrics A; and A,. X there is a wnvertible

matrx ¢ such that A; = CA,C7, then we say that A; is congruent to 4,




and denote this by “Ay ~ Ay

—b—1
0

\

Since b; > 2 and —b — 1 2 1, then —b, +
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. It is easy to see that

0

—~bi +
1

1

b1

matrix
( by + Tb}'—T 1
1 —by
A = 1

is negative definite; ile, sig(4d) = —s+1.

NOW we consider b = -1, 1.
[
0
A~

Note that —b, 4 %
conclude sig(A) = —s 4 1.

e, -b—1=

0

= 0

0 —by+ 4
1

1

o

L a )

fbll__“'l“ < 0. Consequently, the

1 —b

8

0. In this case

T
1 b,

< 0 since b; > 2. By the same reason as above we

Q.E.D.
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The next lemma is concerned with the local residue in the following
situations:

1) a pure rank one structure at an isolated singular point,

2) a pair of pure structures at the isolated singular S-orbit.
Take DZ x D2 C. R? x R? (D7 is a 2-disc with radius 2) and let (1, 61,72, 8,)

be the multipolar coordinate of RY. Put

X:agg—l-!-béao—g (ab;éo)

X = aizyr + bigs: (¢ =1,2).
Suppose a;by # 0 and by £ 0. Pu [, — DixD} and Uy = D?*x D?*—UJ,, The
local models of 1) and 2) aze (U1, X) and {(Uy, X1),(Us, X,)} respectively.

Their sigularities are 0 x 0 and (0 x 8D?) (9D} x 0) respectively.

Lemma 11 Suppose (U, X) and (U1, X1),(Uy, X2)} are given as above.

Under the standard orientation of R,

Res(X,0%0) = 2 4 3

RﬁS({Xl,XQ},O X an) = —%:" -+ %j-, (2.3)

Res({X1,X3},0D% x 0) = 2 — 22,

Proof. See [Ya]. Q.E.D

Now we can finish the proof of Proposition 8. From Lemma 11 we get

Res(X, 001 x 0) = @ity 0w (2.4)
=b; + aTa'Jr‘l“ — o

Substituting Lemma 10, (2.4) and Res(X, Zy) = B2 into (2.2), a simplif-
cation of (2.2) gives (2.1). Q.E.D
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b. Residue formula for Seifert mantfolds

First, let us restate Theorem D as follows.

Theorem D. Let N = {b; (0, g); (a1, 81)s ey (000, B,)} be anm injective
Seifert manifold, then

n(g)(N):—isivl—e(b,?‘)—l—%(b—f—r)—f— szgJ+ Z 2zl (2.5)

1=1 j=1

oy - J— J—
where :;'_—_‘E: = [bi.h . bg’si], G = b.i'jc\fg’j_l T2, Gy = 1, Qi1 = bi,l and

=1 ifb+r>0
+1 ef b+r <Q.

e(b,r) =

Note that an injective Seifert manifold admits & volume collapse with
BCG (Theorem 5). Thus (2.5) makes sense. Also by Theorem 6, for any
volumme collapse {gs} with BCG, the limit lims.o (N, 9s) is given by (2.5).

Corollary 4 Given N = {b, (0, g), (al}ﬁl); . (ar;ﬁr)} and Nr _ {bl, (O,g),
(ali 181)) ey (a’i‘y ﬂ?)}. Then,

3@ (V) = 3ne)(NV') mod Z. (2.6)

Remark 10 Corollary 4 is vakid for N = {b; (?vg,g) (a1, 81), s (ary B,)).

By the same arqgument as in the proof of Theorem D one can get

" 1.2 Qg g —
N)(N) = o(My) + (b +r) kg Zzb t3 Z_t'yfi (2.7)
2_1 J=1 1=1 i

b

'whef'e = [bz’,lg Trey bi,s;]; ay

e bf T 0501 — Qg i = 1, gy = by
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Remark 11 Due to the same Teason as was given in Remark 8, the anti-
wmvariance of ) (V) under the change of orientalion is not obvious from
(2.5). However, we can show nay(N) = =72)(—N) as follows by using the
anti-invariance in Proposition §.

Given N = {b; (o, g);(al,ﬁl),...,(a,.,ﬁr)}, then —N = {b, (0,9); (ay, ay—
Bi)y oy (g, ctp — Be)}. Assume b r > Q. Putting Ny = {b; (0,9); (a1, B1)}
and N; = {0; (0,9); (i, Bi)} we can write (compare Proposition 8 with The-
orem D)

T

N (NV) =3 ney(Ni) + (r — 1)

=0

and
,

N (=) = Y ey (=Ni) = (r — 1),

=0

Therefore (=N = 1 (N) since ng)(—N;) = —02)(NV;) for all ;.

Proof of Theorem D. From Lemma 8 we have a 4-manifold My such
that My ~ N. Note that the S'-action on N which gives the Seifert fiber
structure extends uniquely over My, Applying formula (1.2) of Theorem
7, and using essentially same argument as in the proof of Proposition 8, we
deduce the following;:

1 T 81' 1 r a 5
N@)(N) = o(My)+ 3 Do b+ g(bJr r)+ Do e

i\si—1
i=1 j=1 =1 Sa;

Again from [Or] one sces that a(My) is equal to the signature of the fol-
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lowing symetric matrix ¢

( —b—r 1 1 1
b1 ]
1 by,
S

L 1 -__bl’le

by 1

-

1 by,
—bey
1

where each unfilled entry equals zero. Since bi; = 2 for all 4, j this matrix

is easily seen to he negative definite if and only if —b — p < (. What we

shall do is to show that if —b— = 0 then o(Mpy) = — 0, s, +1. We first

prove an algebraic lemma,

Lemma 12 Suppose we are gruen

-l 1 1

A} — oy B —wgFy, e —agl,
1 1 1
—aoly Ay —aoEL .. —agk;,

. .

1 1 1
_aﬂEz"l —O.’{)E?,z A.,_ — O[()EM,
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where
(b, 1
1 ~bio 1

: 1

1 ~bi|3£ J
A

and E:; = (ai;) is the m; x my matriz with ay = 1 and all other entries

equal to zero, Sy pose oo >0 and by; > 2. Then A is ne ative definite.
q 7 3 g

Proof. We proceed by induction on r. The case of r = 1 is just Lemma
10. Assume Lemma 12 holds for r — 1. In what follows we shall perform a
congruence transformation on A to make A{ diagnal and I}, and E} vanish

simultaneously (1 < 4 <r). In the first step we see the following

A ~a, B, —a 7
Ao 4l — —a B} Ay — (aq - a)Ey o —(ap — ap ) Bl
—Cl'qE?.zl —“((.Yo - (l'l)Egz ceee Ar - (O!() - lel)Eg,r
where
( ~(by1 + ap)
—(by — &) 1
1 _1)1’3
Al = ,

1 b, )

my Xy




I |

—_—t 4 — o —
bratao? 91 = gas and oy

A3 —a B, ~a B3
Ao Al g2 —a, B3, A, — (ag ~— ay — a) Bl .. (g — oy — ay)ELl
— B —(ag— aq — )l e A — (0o — ay — ay) B}
where
—(b11 + ao)
~(br2 — @)
42— —(biz—a,) 1 ’
1
1
L=, )
m1 Xmy
s = ET!—&T’ Gy == ﬁi; and g = E":_Ea—z After the sy-steps we find
A 0 0
Ao 4 0 Ay~ (ag -7, @) By e —(ap — ity a)EYL
0 —(vo = S a)BY L Ar — (oo~ 33y o) BL
with
~(51,1 + ap)
~(b12 — ;)
Ail = _(51,3 - 552) ’
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a2

Tatas: 0 the second step we get

__(bi,n - &31_‘1) )

my Xy




where
2
o
g = 8 .
oy = bl,1+i\'0’ OfH_]

=% - - —1y.
=g i = i (t=1,.,8 —1)

L 4 S
a1 = by1tog? Gity by iyq—~d;°
s REs

To apply the inductive assumption on A*' we only need to verify

ag — > a; > 0. - (2.8)

i=1
We first estimate «; by starting at an;

9 oQ 2
aq b1,14co a

vy = = = .
? ! i'J1,2(3'31,1 +ag) — 1

bl,2 —ay 3’1,2 T

1
bia(byy + ap) — 1

and we have vy = arc{ap). We claim that a, < O’—;i—(f%l fork=2,...,5. We

eag) =

prove this by induction. Assume o, < 9-12—?(_2‘231 Then

( 1 )2

— bk —Eg
b1 kya1—dy bkp1—

2
Gk

XNiy1 i
by p—tp_y

k=] . 1 — 1543
bik—@k—1  bing1lbsp—ar_g)—1 b1 ey (by p—ap_1)—1
o elan) . 1 < arc{ap)
P2 by (b pmagog)—1 = gR-1

since b;; > 2 and &; < 1/2 and hence bigr1(brg — @p—1) — 1 > 2. Then we

estimate (2.7) as follows:

oy — ki > ap— eyl 4 clao) Yoity 755

> oy — c1(1 4 2¢(evy))

= e 0 —_—2
= Mo b1,1+ag (1 + 51,1(51,2+00)—1)

: b1, (M1 24 mo)+1
, _ oo L 2,1801,2 0 >
00(1 bi 1+ 51,1(51,24"&0)-1) - 0




if

ag , biafboten)+1

L3 1+ap b[ 1([')1 2-{-0‘0) 1 — 1 .
< o (511512 + by 00 - < (bl 4 +a0)(5“512 + b1y +1)

R ‘)Cl‘ < 1)11a0—|—1)11blg b 1,1-

The last inequality in (2.8) is obvious since b; ; 4 = 2. Since ag— 35L

our proof is complete by our inductive assumption.

Now we return to the proof of Theorem D,

First assume b 4 r < 0,1e, b4 r <

~b—r 0
0 A+ - B
(/) ~ 0 b+?E
0 b+TE1

Since b+r < —1, by

Now consider b+r = 0. By

—1. It is easy to see that

0
Bl
——El

.

b+‘r

b+1

e A +EE1 )

applying Lemma 12 we obtain sig(P) =~ 0y s

performing the same diagonalization procedure

to ¢ as done in the proof of Lemma 12 we find

A 0
¢ - 0 Ag — G’[)E-%Z

s _“(IDEQr

1

A,- — (I()El

T
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where

=

Ap = —(b13 — g)

_(bi,-ﬂ - &81—1) J

1y Xmq
_ _ 51 PO — N E S 1 . _ Gp—3
0 =Dy~ 3 ay dy = ay = Gy = g7 G = breman s @ = e~ and
2
— % . LI :
ay = gl (k =3, ey $1). By using the essentially the same method ag
used in the proof of Lemma, 12, one gets o, < 5;]:5 Thus
—_ 5 — 3 1
@ =biy— Y= b1 — ap(1 4+ 2litssres
1 1 2
>b1,1—b—1:(1+m) > bm-m =1 (11 > 2)

Consequently sig(¢) = - 2izy $i + 1 (Lemma 12). The proof of Theorem
D is now complete, Q.E.D,

c. Residue formula for " L(p,q),F)

To prepare for deriving the topological residue formula for limiting 7-
invariants in general, we need to compute the limiting m-invariant associated
with a non-pure polarized T-structure on a lens space.,

Taking two copies of a solid torus D x S and Parameterizing them in
multipolar coordinates (ri 001, 852) (5 = 1, 2), one forms a lens space L{p, q)

by glueing D, x St with Dy x 53 along their boundaries by the matrix

U v =1 0 01 01 —-1 0
P q b, 1 1 0 10 b 1




(i=1,2)

+ d
Q7
90,
ighborhood T7; of D; x S!. Assume a1y # 0. Then
determines a non-pure polarized T-structure

where £ = [by,...,5,]. Let

X :Gf"é?‘l

be defined in a ne

F(X1, Xo) = {(Uh, X1), (U, X))
of L(p, q).

e shall compute the precise value for the limiting »-invariant associ-

for more details),

W
ated to F(Xy, X,) in the fashion of [Ya] (we refer to [Yal
a 4-manifold My by using equivariant plumb-

First we fill in I(p, ¢) with
ing. Suppose we are given a linear graph Llby, ..., b,):

(=b1)

The following lemma is elementary.
of the cquivariant lnear plumbing My according

Lemma 13 The boundary
above, is the lens space L(p, q) where

p - 1
P W wl LTSS N S )
Q.E.D.

to the graph Dby, ..., b,
(2.10)




To see M, L(p,-q) clearly, we express it as follows,

Mipq) = Bii x Dy, U Biyx Dy,

31
s
‘ By1 % D, U Bz,z X D2,2
b2
s
B,1 x D,y U B, s x D,y
b
and
-1 0
P; =
b, 1

We malke the following observation:
1) o(Mppg) = —s — 1. (Lemma 10).
2) An S'-action on By x 0Dy 1(B,; x 9D.5) C L{p,

unique S'-action over M. Limag)-

g) extends to a

3) Consider the natural inclusion map (7,7) : B; ;X D= RExR* = R*

(1<4,7<7). Clearly, either (4, 5 ) does preserve orientation for all (4,7) or

does not for all (4, 7). The orientation convention of My, .y is taken so that

(#,1) is a orientation preserving under the standard orientation on R

From 2) one may view X, (X;) as defined on a neighborhood of By x

ODI‘I (Br,g X aD?-'g). We may ChOOSG ﬁ = {(U{), rg), (Ul,Xl),(Uz,Xg)}
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where U, is the interior of M Lip,g) and Xy is generated by

0 e
08, = 08,

o1 Bl,l X Dl,l'

Let Xow denote the restriction of Ap to B x D; 1 and put

' a 7,
X = i — e
96, ~ “*'3a,,
We then have 0 < «; = bicti1 — @i_g; ap = 1 and ap =1{i=2.,5s) (see
page 54).

The stratified set of M L(p.q) Subordinate to {Uy, U, Us} and compatible

with F, is {A{[U,]‘;J],J?\Jg,ﬂ{[(ojl), Mo} where

]‘/fl = 31,1(1/2) X Al,l; Al,l = Dl,l — D1,1(1/2)
Af[g = BT,Q(I/Z) X AT’,Z; A,‘12 = Dr,? - D,.’z(]./z)
ﬂfo = ]\{T(p, q) - .ﬂ/fl Uﬂf[g

Mgy = MoN My = By, (1/2) x aD(1/2)

]\{[(0’2} = .n?lro mﬂ;lrg = BT,? x (")Dr,g(l/.?)

and the singularity Z of F is 2 UZ(0,1) U Z(0,2), where

Zgy = {01,1 X 01,1, 04,1 X 02,1, ey Op1 X 0,9, 0,2 X 0,0} C M,
Zio,1y = 01,2 x OD15(1/2) C Moy

Z(0,2) = 0p2 X 8D, 5(1/2) C Mo 2,
B1,1(1/2) is the ball of radius 1/2, and 0;1 % 0;1 is the center of B;1 x D; ;.

Under the same orientation convention as in 3), from Lemma 11 one
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gets
Res(X, 000 % 0,) = o T = bt i
Res((X5%, X1}, 000 X D1 5(1/2)) = —2 4 0 (2.11)

Res({X, X3}, 0,5 x 8D, 4(1/2)) = —ga | Zem1
Substitutiﬁg 1) and (2.10) into formula. (1.2) of Theorem 7, one deduces:
'I](L(p, Q'): ‘7:) - G(ﬂ’IL[p,q)) + % Ele RGS(X(?), Oi,l X Oi,l)
+Res({X57, X1},005 x 0D, ,(1/2))
+Res({X§7, X,},0,, x 9D, ,(1 /2))

:—S—IJF%ZE’:I(bi-i—i‘——%%)*&L Lo . @ Qs

g 3dq 3oeq 3. 3ag
= g _ 15 NS SR
= —5 1+3Ez:1b1 3&1+a2'
(2.12)

We summarize the above discusion in the following lemma.

Lemma 14 Given L(p, ¢) and F(Xy, Xy) as above, then under the orien-

tation co nvention,

13 1 a a
77(L(p!€t')a}~()(1:X2)):_3“1+"Zbi“_" Tl"l”i‘g . (213)
3 = 3 a;  a
d. Residue formula for graph manifolds
Let N be an oriented closed 3-manifold and let F he an injective T-
structure of N. Taking the natural decomposition D(N, F) = {N1, ..., Ni, ¢y, ey 1}

of (N, F) as in part ¢ of 81.6, we fill in NV with the 4-manifold My and ex-
tend F to F over M ~n- We recall the following:
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1) There are Submanifolds M &, and My, rar) Of My where M &, is the
filling of the Seifert manifold N, — {be; (€, 9¢); (e y, Be 15y (Xepe, Ber )} as

in Lemma 8 and Mi(p,q,) is the filling of the lens space L{pys,qs) as in
Lemma 13. Note that My My, a5) & D, x Dy.

2} Denote by F, and F% the restriction of F to N, and L(ps, q;) re-

spectively. Then the restriction Foof FtoM A,» 18 as in Theorem D and

the restriction JF 1 of Fon M Lpsas)» 18 a8 in Lemma 13 with specifying

e = g0 = 0. From formula (1.2) of Theorem 7 we can write

Ney(My) = o(Mpy)+ = ZRes(ﬂ/fN .7-" )+ ZRes(ML(pf qf),ff)] (2.14)
3 =

From the proof of Theorem D and Lemma 13, we have

Res(My,, 7o) = §(3421 Sy bogy -+ be 1, 4 370, oz fetacl)

; L (2.15)
RGS(AZ[L(W’QI),}}) = 3 XLy escy,j

where e = 1, or —1 depending on whether or not the mduced orientation
on L(py, ¢} agrees with the orientation couvention of L{py, ¢;) (see 3),

¢ of §2.1). Substituting (2.15) into (

part

2.14) and simplifying (2.14) we then
obtain the following theorem.

Theorem 11 Let N be an oriented compact 3-manifold and let F be an in-

jective T-structure. For the natural decomposition D(N, F) = {Ny, ..., N, ¢,,.
of (N,F) as above, we have
N (N) = (N, F)

:G'(ﬂ_’[N)+ [ 3—1(E1h1 —1 eij+(b +Te) (216)
"’Ew}a“s_])]‘F Zf 12 =1€5C/j-

1oy ¢'3}
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Remark 12 If F has no exceptional orbits that i3, each N; has no excep-
tional orbit as ¢ Seifert fiber space for all i then 3@y (NV) is an integer.
EBquivalently, the rational portion of 3nuy(N) is determined by the excep-
tional orbits of F.

Corollary 5 Under the same assumption as in Theorem 11, 3f N 45 a solye

manifold then 3@y (N) =0 mod Z.

Proof. To apply Theorem 4, we only need to find an injective T-
structure of N without exceptional orbits. Note that an oriented 3-dimensional

solve manifold Ny is a T%-bundle over §* with monodromy matrix:

a b
¢ = ) det($) = —1.
c d
N is formed by identifying the boundary of |0, 1] X T? via ¢. Writing
T? as S! x S3, we choose an injective T-structure Fo of Ny as follows.
Let 0/08,(i = 1,2} be the velocity vector of rotation on S} and let U be
an invariant neighborhood of {0} x T? in Ny. Since Fy is determined by

{({e,1 — ) x T?,0/06,),(U, 0/061,8/86,)}, then Fo has no exceptional

orbits. Note that the natural decomposition of (Ny, Fo) is given by:
DN, o) = {[0,1] x S x 51, 41. (2.17)
Q.E.D.

2.2 A finiteness Result for Limiting n-Invariants

For a real mumber D 0, let M3(D) be the collection of closed orientable 3-

manifolds which admit a volume collapse with BCQ. According to Theorem




. :

E, {n2y(N) mod mZ| N € M3(D)} is a finite set. Before giving the proof

of Theorem E, we make some remarks,

Remark 13 1) The set M3(D) contains infinstely many topological types ‘

for any D > 0. For instance, a 3-nilmanifold admits o diameter collupse

(hence a volume collapse) with BCG and there are infinitely many non-

differmorphisc clusses of 3- nilmanifolds. |

2) The size of {n2)(N) mod Z| N ¢ M?(D)} depends on the number
D. For ezample, if D < exp(—exp(exp9)), then {10y (V) mod mZ| N ¢
M3 D)} = {0,3,2} (Corollary

5) since the elments in M?’(e:cp(—emp(e:cpg)))
are nilmanifolds ([Gri)),

Proof of Thoerem E. First, from Proposition 5 and Theorem B we

identify the elements in M N) as either Injective Seifert manifolds or
solve manifolds. Since 3@(N) moedZ =0 (Corollary 5),

consider the elements in M 3(D)

we only need to
which are injective Seifert manifolds.
We proceed by contradiction. Assuming the opposite, we then have a se-

quence of injective Seifert manifolds {N:} in M3(D) such that {n@)(NV:) mod Z}

is an infinite set. By Gromov’s pre-

compactness theorem ([GLP]), we may |

assume {N;} converges to a lower-dimensional metric space Y,

since each
Ni admits a sufficiently volume collapsed metric wit

D.

h diameter bounded by

We split the following proof according to dim(Y).

Case 1. dim(Y) = 0. This amounts to saying that diam(N;) -» 0. Tt

follows from a well-known result in [Gr1] that all but finitely many of {N;}

are identified as infranilmanifols. Thus {n2)(N:) modz} = {0,1 /3,2/3}
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for ¢ sufficiently large (Corollary 4). This contradicts our assumption on
{N:}.

Case TI. dim(Y) =1. ¥V is homeomorphic to either an interval [0, 1]
or S'. Note that if ¥ S, then N; are solve manifolds and Thoerem
E have been proved in this case (Corollary 5). If V w [0,1], then N; are
trivial T%-bundles with isolated St-orbits over ¢ and 1 (Theorem 6). So
the N; are actually 7T%-manifolds for large i. Since 71(V;) are not finite
we then identify N; as either 5% x §1 o T3 ([Nel). Thus we get the same
contradiction as in cage I,

Case II. dim(Y) = 2. In this case, the limit space ¥ can be viewed
as the base space of the the injective Seifert manifold N; for all large ;
(Proposition 5). Note that v is a orbifold since Y a5 N/ O(3) as in Theorem
3. Denote by yy, ..., Yk all the singular points of V. Thus each N; has exactly

k exceptional orbits and the same base space. Write

Ni = {b;; (ei,9); (i, Bir), ..., (i, Bir)} (2.18)

where ¢ is the genus of ¥. From Corollary 4 one sees that the invariant ¥
contributes only integers to 3n(2)(V:). Therefore, to show {12y (Vi) modz}
is finite it is enough to show that the Seifert invariants (2.18) is finite up
to the invariant b; for all 5.

For convenience, we define the e-norm, “|| {[.”, for a Seifert manifold

N = {b; (61 9); (C"l:ﬁl)v ey (061;,)6’;;)}-

We define
IN]|. = maz{oy, ..., ), (2.19)
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We claim that {IIN:]l.} is & finite set (thus, (2.18) is finite up to the

invariants b;). We prove this by contradiction.

Assuming the opposite, we then have a sequence {{ij, B0 (e, B;

) €
N;) such that a; ; — oo(j — o0)

. We can also assume that the exceptional

orbits in ]\Q‘corresponding to the (a5, 5

) are the preimages of some fixed |
Yis S8y, Y1. |

Choose a small metric balls Bs(11) (with 6 fixed) at y; such that 77 (Bs(y1)) |

in V; is a solid torus for all 5 sufficiently large. Note that for sufliciently large

% Bs(y1) can be viewed as the base space of the S1-action on 77 (Bs(yy))

determined by the exceptional orbit invariants

(@i, Bi1) with the isotropy |
group Z,. .. Since diam(77 (Bs(1,)))

the orbit spaces T (Bs(y1)) /Za; must be of dimension 1. This contradicts

|
dim(Bs(y1)) = dim(Y) = 2,

By now the proof of Theor

< D and a;y - oo, the limiting of

em E has been completed. Q.E.D.




Chapter 3

Bounded Good Choppings

3.1 Bounded Good Choppings

In this section, we wil prove Theorem F. As

F, we obt

an application of Theorem
ain a bounded version of Cheeger-Gromov’s existence of good

choppings theorem ([CG3)). Pirst, let us recall the main result in [CGH] as
follows.

Theorem 12 ([CG5]). Let M™ be 4 complete manifold with bounded sec-

tional curvature, K] < 1. Given X M™0 < r < 1, there is 4 sub-

manifold U™ with smooth boundary OU™ such that for some constant e(n)




depending on n,

XCUCT.(X) (3.1)
Vol{dU) < e(n)Vol(T,(X))r~1 (3.2)
: 11 Ioy|] < e(n)r! (3.3)

Moreover U™ can be choosen to be invariant under I(r, X), where I(r, X)

denote the group of isometrics of T,(X) which fizr X.

Remark 14 If M™ admit o positive rank F-structure F and X is invariant,

then U™ can be chosen mvariant under F.

Theorem F. Under the same assumptions as in Theorem 12. Let
D = diam(X) = sup{dist(z,y)| =,y € X}. Then there exists a constant,

c(n,r, D), depending on n, v and D, such that

diam(0U) < e(n,r, D).

An important application of Theorem F is a bounded version of the

following Cheeger-Gromov’s good chopping theorem.

Theorem 13 ({CG5]) Let M™ be complete, |K| <1, Vol(M™) < co. Then
M™ admits an exhaustion M™ = =1 M7, by manifolds with smooth bound-
ary, such that
lim; o Vol(oM}) = 0,
] < )
In order to state a bounded version of Theorem 12, we define the fol-

lowing,.
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Definition 10 Let M be ¢ complete manifold. M is said have finite diame-

ter at anfinity, if there is a point p € M so that SUPrsof S, diam((Tl(BBT(p)))a)} <

00, where B, (p) is the metric ball of radius r with center at p and (11(0B,(p)))y
i8 a component of the 1-tubular neighborhood of 8B,(p).

Let S be a connected submanifold of M. For z,y € S, let Y,y be a path
in S from z to y. We define

dists(m, y) = iﬂ‘f’)’.’c,y {L('Tw.y)}'

Theorem 14 Under the same assumption as in Theorem 13. Suppose M
has finite diameter at mnfinity. Then the good chopping choppings as in The-
orem 12 can be choosen so that the set {diam (OM;)} is bounded. Where

diam,(OM;) = ¥, diamy((M;)o) and the sum runs over all components of
aM;.

Proof. That M has finite diameter at infinity means that there is a con-
stant 1 > 0 and a point p € M so that sup, {3, diam((T1(0B,(p)))a)} <
D. Since Ty(8B,(p)) has at most [D] (the integer part of D) components,
applying Theorem F to B, (p), we complete the proof, Q.E.D.

We need several lemmas to prove Theorem F. The first lemma, is about

the local isolate property of U™,

Lemma 15 Under the same assumpiron as Theorem 12. Then there is

a constant p(n,r) > 0 depending only on n and r so that for z € OU™,
By (2)NOU™ is conmected.
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Proof. The proof is based on the concrete construction for U™ given in
[CGS]. Let us first recall the following from [CG5]:
Let g be the Riemannian metric of M. Then there exists a Riemannian

metric ¢ such that
Cyg<g< OF
677 "7 75

Denote by “{| [|” the norm determined by §. Clearly, it is enough to prove

N

the lemma only for the metric §.

Roughly, dU™ is a level set of the smooth function F : M — R! which
satisfies the conditions:

(i) there are constants 0 < 6(n) < 1 and e(n) > 0 depending only on n

such that

|lgrad F(z)|} <2 z e M,

(3.4)
llgrad F(z)|| > €(n) z € F7Y[0,8(n)r]),

() 9U™ = B (), y €[5 6(n)r, 2 - 6(n)r].
(1) and (iii) implies

(iii) QU™ has a tubular neighborhood oy — 5 - 8(n)r,y + 1 8(n)r]).
where the

Then we observe the following:

For z € 9U™, let 2’ be in the gradF-flow line through z such that
@' € F({(0,y — $8(n)r]Uly + 16(n)r, 8(n)r]). Let v : [0,{] — M be the

integral curve of ﬂ%’ Y(0) = & and y(I) = 2’. We claim

&"87‘23 <1 (3.5)




Our claim is proved in the following:

M <P(2) - F(a')] = |F(4(0)) — F(y(1)]
= LIFGEDIdE = f1 < gradF(y(t)), 4(t) > |dt
< BollgradP(y()|de <21 (by(3.4)).

‘

This implies that starting at 80", one can flow along the integral curves of
gradF at least ﬂ%E units without hitting 8U" again.

Now we begin the proof. We shall first put an additional assumption
that the injectivity radii is at least 1 everywhere on M. Then we will
explain how we can reduce this case by lifting to the tangent space.

First we observe that Lemma 15 is trivial where M™ is Buclidean space
and F~'(z) are hyperplanes for ¢ € F ~1([0,8(n)r]). Since in that sit-
uation the (grad F)-flow are straight lines perpendicular to #~'(z) and
l'=dist(z,2"). By (3.4) we can choose pln,r) = %E.

Roughly, the conditions that geo(M) > 1 (our additional assumption)
and |[TIgyn]] < ¢(n)r—? ((3.3)) imply that by multiplying the metric by a
large number one is able to reduce the general case to the above trivial
situation.

Now we proceed by contradiction. Assuming the opposite, we then
find a sequence of the quadrupla (M, Us, ¢:,, By si{%;)) which satisfies the

_conditions:

1) (M;, U;, ¢;) satisfies the conditions of Lemma 15,

2) Byi(x;YNOU™ has at least two components (2 € AU;)

Rescaling the metric ¢; by 7, we actually have the sequence (M;, U;,%- g;, ;)

satisfying:
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) |K(M)] — 0, InjRad(M;) — oo and L Lzp. || — 0.
2’) By(2;) N OU; has at least two components (2 € oU%;)

Note that for sufficiently large 1, (3.5) becomes
2 << l;. (3.6)

Consider the pointed Hausdorff limit (My, zo) of (M;, z;) and (OUs, o) of
(OU, x;) respectively. From 1) we see that My is Euclidean space and U,
is a hyperplane in M,. Then (3.6) implies that Bi(20)NOUs = . This
contradicts 2°).

Now we consider M in general, ie., we do not have geo(M) > 1. For
any x € U™, consider the tangent space at x, T,(M) which equipt with
the pull-back metric § under the exponential map, ezxp, : To(M) — M.
Let Bz(0) be the metric ball at 0 T.(M) of redius 3+ Then (B,(0),§")
has bounded geometyy, le, Vz ¢ Bz(0), InjRad(T,(M),z) > 1. By lifting
Bz(z)NoU™ to B1(0), applying previous result we then obtain the desired
constant p(n,r). Q.E.D

Lemma 16 Under the same condition as in Theorem 12. Then there is g
constant o(n,r) > 0 depending only on n and r, such that each component

of B.(z)NOU™ has the diameter, diam,, less than 1.

Proof. The proof of Lemma 16 is essentially the same as the proof of
Lemma 15. So we omit the details. We first observe that Lemma 16 is true
for M a Buclidean space and 3™ a hyperplane. By rescalling the metric of
M™ by a sufficiently large number we may assume M™ and U" are almost

as in above situation. Therefore Lemma 16 is true in general (Otherwise
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we would get a contradiction). Q.ED

Lemma 17 Let M" be o complete manifolds with Riccpm > 1. For D > 0
and v > 0, there is naturel number N(n,r, D) depending on n,r and D, so
that of U is a[submanifold with boundary such that if diam(U) < D, then
OU can be covered by N{n,r, D) balls of radius r with centers in aou™,

Proof. See the Covering Lemma in ICG1. Q.ED

Proof of Theorem F. First we take e(n,r) = min{p(n,r),o(n,r)}
where p(n,r) and o(n,r) are as in Lemma 15 and 16 respectively. Thus we
have

1) B(z;) N QU™ is connected (Lemma 15),

2) diamy(B(z;) NOU™) < 1 (Lemma 16).

Since diam(Ti(X)) < D, we can find at most N(n,r, D) metric balls of
radius e(n,;r), B(21), ..., Bz nnsp) (2 € dU™) which covers QU™ (Lemma
17). Bombining with 1) and 2), we deduce

N(n,rD}

diam,(oU") < 3 diam,(B(z;)(0U™) = N(n,r, D).
i=1

Now the proof is complete. Q.E.D.

3.2 Some Progress on Conjecture II

Based on the results in this thesis we have made some progress in proving

Conjecture II for 4-manifolds (see Introduction). In fact, using Theorem
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A, Theorem E and Theor

em 14 we can prove the following result:

Let (M, q) be an oriented complete 4-manifold, |K,| < 1, Vol(M, g) <

oo and geo (M) > 1. Suppose M has finite diameter gt infinity. Then the

geometric sigriature, defined by

o) = [ Pr(0)

18 @ rational number.

Note that there are 4-manifolds of infinite topological type which sat-

isfy the above conditions. Also if one can eliminite the assumption that

M has finite diameter at infinity, then one would prove Conjecture IT for

4-manifolds. Here we only give the outline of the proof. More detailed

argument will appear elsewhere,

Sketch of Proof. Let us start with the general situation. Let 3 be

a 4k-complete manifold, [K] < 1, Vol(a

4™) < oo. Consider the geometric
signature o (M, g) of (M, g), defined by

o(M,g) = [ Py(5)

Suppose M has BCG in a neighborhood of infinity, geo(M,g) > 1. As
we have already explained in Introduction, the above integal, also denoted
by oy (M), is a proper homotopy invariant.

Taking a good choppings {M;} of M and then applying the Atiyah-
Patodi-Singer index formula ([APS]) to {M;}, one relates the o{M) to
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the asymptotic behavior of the sequence n(83;, ¢;) (g; the induced metric

on IM;).

U(?)U”) = Jur Pr(§2)
= 1m0 3y, PL(2)
= limy_oo (o (M;) — 9(dM;, g;) — IL(OM;, ;)
= lmy (o (M;) — 9(OM;, ;)

(3.7)

where II,(OM;, ¢;) are certain locally computable expression involving the
second fundamental form of dM;. Note that it follows from Theorem 12
that lim;_,., I1,(0M;, g;)) = 0. Since we are interested in the rationality

of o(g)(M) (Conjecture II), we take for convience mod Z on both sides of

(3.7,

o(M) mod Z = lim (n(0M;, ¢;) mod 7). (3.8)

"To prove Conjecture IT one needs to study the asymptotic behavior of the

sequence {n(0M;,g;) mod Z}. Here the difficulties are: (a) there are not
obvious relations among dM; in general; (b) computation for n(OM;, g;).
Now consider the case when k = 1. In order to reduce the difficulty (a)
and (b), we suppose the 4-manifold M has finite diameter at infinity, 1.e.,
there is a constant D > 0 and p € M such that sup,»o{3,, diam{(T1{(0B,(p)))a)} < )

D. We claim that there exists a good choppings {M;} satisfying the follow-

g conditions:

1) there exists a positive integer K(D) depending only on D, such
that each OM; has at most components. We number its components as
(OM)1, ..., (OM) i where we allow that some components are empty set.

2) the sequence of the jth-component { (OM;);} converges to a metric
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space X; under the Hausdorff distance, lim;_q, disty((8M;);, X;) = 0. Note
that X; is a topologicasl manifold of dimension less or equals to 2.
1) can be seen from the proof of Theorem F, and 2) can be proved by using

Gromov’s precompactness theorem and a simple induction argument. Since

| K(D)
n(OM;, g:) mod Z = > n((0M;);,9:5) mod Z,

=1
it 1s enough to prove rationality of (3.8) for the case when K(D) = 1.

We split the rest proof according to dim(X) (note that X = X;).

Case I. dim(X)=0or 2 or X ~= S,

We can show that, in this case, 71(9M;) is infinite. We also observe that
(0M;, g;) has BCG. Here we use the condition that ||Isys[| is bounded and
the Guass Lemma. The consequence of these two facts is that each JM;
admits an injective I™structure for ¢ sufficiently large {Theorem B), i.e.,

N(2)(0M;) makes sense. Thus, as we has already seen in §1.5,

B (90, g:) = Hm nesy (M), (3.9)
From (3.8) and (3.9}, we have

o (M) = lim Ny (O0M;) mod Z (3.10)

Irom diarm(0M;, g;) < D we conclude that {n«y(8M;) mod Z} is a finite
set (Theorem E). From (3.10) and Theorem A, we obtain the rationality of
o(2)(M).

Case II. X ~ I where [ is an interval.

We then identify that each OM; is a lens space for 4 sufficiently large

(see the proof of Proposition 5).
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First, by applying Theorem 1 one construct, depending on ¢, a positive
rank T-structure F, outside some compact subset of M. We can assume
that our previous good chopping is compactible with Fy and the metric g
is invariant ({CFG]). Since 9M; converges to an interval, we observe the
following: |

3) F, is pure T?-structure in a neighborhood of dM;. Let O; be a
singular S'-orbit on dM,;. Then the singular set Z of F, has non-empty
intersection with 9A; as ¢ sufficinetly large.

4) the diameters of the above T%-orbits around ©; converges to zero as
¢ — 0O.

By studying the structure of the singularity Z and using the result in [CFG],
we can show that in this case the T2 orbits of Fy which are near to Z have
a difinite size diameters (note that here we need the condition BCG). This

contracts 4).
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