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Abstract of the Dissertation

Adiabatic Limits, Non-multiplicativity of the Signature
and the Leray Spectral Sequence

by
Xianzhe Dai
Doctor of Philosophy
in
Mathemaltics
State University of New York at Stony Brook
1989
In this thesis, we first prove an adiabatic limit formula for the n-invariant
of a Dirac type operator, which generalizes the recent work of J.-M. Bismut
and J. Cheeger. By their work, one is essentially reduced to the study of
the large time behavior of the heat kernel. This involves careful analysis of
degenerate elliptic operators, which is fashioned after the very recent work
of R. Mazzeo and R. Melrose. The analysis enables us to apply perturbation

theory to obtain detailed informations about the spectrum of the Dirac

operator in the adiabatic limit. A new contribution arises in the adiabatic
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limit formula, in the form of a global term coming from the (asymptotically)
very small eigenvalues.

We then proceed to show that, for signature operators, these very small
eigenvalues have a purely topological signiﬁcance. In fact, we show that the
Leray spectral sequence can be recast in terms of the very small eigenvalues.
This is reminiscent of the Hodge theory. Hence the term Hodge-Leray
theory. A consequence of the Hodge-Leray theory is a refined adiabatic
limit formula for signature operators where the global term is identified
with a topological invariant, the signature of a certain bilinear form arising
from the Leray spectral sequence.

As an interesting application, we give intrinsic characterizations of the
non-multiplicativity of signature. Appendix B contains a proof of a spe-
cial case of Bismut-Cheeger’s Famnilies Index Theorem for manifolds with

boundary, which is used in the applications.
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Introduction

In this thesis, we study the limiting behavior of the 7-invariant of
Atiyah-Patodi-Singer for Dirac operators on the total space of a fibration,

2 and

when the metric along base direction is multiplied by a factor =~
z — 0. This operation of blowing up the metric is called passing to the
adiabatic limit.

The original motivation comes from a paper of E. Witten, (W], where
he considers a family of Dirac operators acting on an even dimensional
manifold. The parameter si)ace of his family is a circle and thus, the (odd
dimensional) total space of his family is the total space of fibration over the
circle. Witten gives an argument relating the holonomy of the determinant
line bundle of his family to the adiabatic limit of the n-invariant of the
Dirac oﬁerator on the total space.

Witten’s result was proved rigorously in [BF] and [02].. The emphasis
in [BF] was on the superconnection formalism of Qui]_lin, [Q], in relation to
the proof given in [B] of the local index theorem for families. In [C2], two

proofs were given, one based on Duhamel’s principle and second exploited

the connection with previous work on conical singularities; see [C1], [C2].

For the case of the signature operator, an expression equivalent to that




considered by Witten had arisen in [C1], when considering the variation
of the n-invariant, for a space with isolated conical singularities. Finally,
it was emphasized in [C2] that for a fibration of compact manifolds, the
n-invariant of the total space can be viewed as a renormalized difference of
n-invariants, with coefficients in a infinite dimensional bundle whose fiber
. i8 a space of sections along the fiber of the fibration.

Recently J.-M. Bismut and J. Cheeger, [BC1], [BC2], extend the results
of these papers to the case in which the base of the fibration is a compact
spin manifold of arbitrary dimnension. What they found is that the adiabatic
limit of the n-invariant of a Dirac operator on the total space is expressible
in terms of a canonically constructed differential form, 7j, on the base, which
can be viewed as a higher dimensional analogue of the p-invariant. What is
more, this 7 is-exactly the boundary correction term in the Families Index
Theorem for manifolds with boundary, [BC3].

In their work, they discussed in detail the case when the operators along
the fibres are always invertible. Their treatment of the general case (i.e., the

kernels of these operatbrs have constant dimension} was less complete and

explicit although it did suffice for various applications. For example, one

can recover the work of Atiyah-Donnelly-Singer, [ADS}, on the Hirzebruch
conjecture, and prove results closely related to those of W. Miieller, [Mii],
and M. Stern, [S].

We study questions related to the nbninvertible case, which is essential
when we consider signature operators because then the kernel is always
nonempty and is given by cohomology. Here some new phenomena occur.

Besides the semi-local contribution to the adiabatic limit formula involving
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the 7-form, and an expected twisted 7-invariant on the base, there is a
global contribution from the (a,symptotica.lly) very small eigenvalues (Cf.
below). It turns out that in the case of signature operator, these eigenvalues
have a purely topological significance. This is our second main result, the
Hodge-Leray theory of the very small eigenvalues, which is a refinemnet of
the very recent work R. Mazzeo and R. Melrose, [MM]. In particular, it
enables us to identify the global contribution in the adiabatic limit formula
with a topological invariant coming from the Leray spectral sequence of the
fibration.

As an interesting application we give intrinsic characterizations of the
non-multiplicativity of signature (see below), one in terms of the Leray

spectral sequence and the other the adiabatic limit.

Precisely, let us consider a fibration of closed manifolds
Y - M*-11, g (.1)
Equip M with a submersion metric gy,
9m =7"gp + gy,

where gp is the metric on B and gy annihilates the orthogonal compliment
of the tangent space to the fibres. Blowing up the metric in the horizontal

direction by a factor z-2 gives us a family of metrics Gz

9= =2z *m*gp + gy.

We assume that 1) M is spin so that we can consider the Dirac operator



D, associated with g,; 2) The bundle of vertical spaces TV M is also spin
so that we have the family of Dirac operators Dy along the fibers.

It follows that the base space B is also spin and the Dirac operator Dg
on the base is well-defined. When ker Dy is a vector bundle on B, one can
consider the twisted Dirac operator Dg ® ker Dy. Here the connection on
ker Dy is the projection of a unitary connection on the infinite dimensional
bundle of smooth spinor sections along the fibres (see Appendix A for de-
tails; Cf. also [BC2]). More generally, let ¢ be a hermitian vector bundle
with a unitary connection on it, we can then consider the above 0pera.tors.
twisted by £&. We denote these by the same notations. Let n(D;) be the
n-invaﬁant of D,. The following result is proved in this thesis.

Theorem 0.1 (Adiabatic limit formula) Assume that ker Dy is o
vector bundle on B. Assume further that dim(ker D) stabilizes after some

small z. Then limg_,on(D.) ezists in R and
. RB
alﬂigg (D) = 2fA(§;) AT+ n(Dp ® ker Dy) + li—rf% ADAZFO sgnrg, (.2)
where R® is the curvature tensor of gg.

Here in the first term the 7j-from is defined in the same way as in [BC2|
(see Appendix A). As we observed in Appendex A, it is well-defined without
any assumptions. The last term in the above formula will be explained in
a moment. But first we would like to mention that in the invertible case
where the spectrum of D, is uniformly bounded away from 0, the last two
terms drop out (see below), and the above formula reduces to Bismut-

Cheeger’s adiabatic limit formula [BC2]. One of the essential difficulties in

the noninvertible case is that there are infinitely many eigenvalues of D,



approaching 0. However, one still has a nice description of them. Thus
in Chapter 2 we will show that (Theorem 1.1) the spectrum of D, can
be divided into three parts: those uniformly bounded away from 0, those
decaying linearly in # (the small eigenvalues), and those, finitely many in
number, decaying at least quadratically (the very small ones). Roughly
speaking, the twisted 5 term in ( .2) comes from the small eigenvalues, and
the last term from the very small ones (the finite sum of the signs of them).

Whereas asking dim(ker D,) to stabilize is a bit unnatural, it warrants

the existence of the adiabatic limit of the n-invariant, which does not hap-

pen in general. On the other hand, the limit of the reduced m-invariant, 7,
always exists in R/Z ([C2], [BC2]). Hence, we have the following modulo Z
counterpart of Theorem 0.1.

Theorem 0.1' Assume that ker Dy is a vector bundle on B, Then

. R%B
limg7(D,) = [ A() A7+ 7(Dp ®kex Dy) + zh mod 2, (3)

where 2h = 1 dim(ker D,) mod Z is a spin cobordism invariant, [AS, V].

An important operator satisfying the hypothesis of Theorem 0.1 is the
so-called signature operator A, whose kernel space is identified by the well-
known Hodge theory with the cohomology. In this case, as we have in-
dicated, the global contribution turns out to be a topological invariant, a
consequence of the following interesting result, to which we refer as the

Hodge-Leray theory of the (asymptotically) very small eigenvalues.
Theorem 0.2 Let E, =the limit of space spanned by \,-eigenforms as-

sociated to eigenvalues A, such that ), is O(z") (v > 2) in the adiabatic



limit, then (E,,z~"d) forms a spectral sequence which is isomorphic to the
Leray spectral sequence of the fibration. Moreover, the * map induced by
the metric g, gives rise to the duality map,

In [MM], the Leray spectral sequence is related to the asymptotic solu-
tions of the Laplacian in the adiabatic limit. Theorem 0.2 is partly moti-
vated by this result. The analysis involved here is in fact fashioned after

Theorem 0.2 gives us a refined adiabatic limit formula in the case of
the signature operator. Let (E.,d,) (r > 2) be the E,-term of the Leray
spectral sequence of the fibration Y — M*-1 — B. The orientation gives
a natural basis £, on E, (in the sense of Chern-Hirzebruch-Serre [CHS], see
Section 4.4) which then induces a basis £, on F, for each r > 2. Consider

the pairing

<y > E? @ B¢ — R,
pRY — (‘P d,.'gb,f,.)
It can be verified that <, >, is symmetric when restricted to E**-1, There-
fore it gives rise to a symmetric matrix whose signature we will denote by
7Tr. Define 7= 375, ;. 7
Theorem 0.3 Suppose the fibration Y — M* ! — B is oriented (see
Section 4.1), then

RB
limn(4,) = szz(g) A7 +n(Ap ® ker Ay) + 27,

where Ap denotes the signature operator on B and Ay the family of signa-

ture operators along Y. .




Theorem 0.3 combined with the Families Index Theorem for manifolds
with boundary [BC3] has the following interesting application. Consider
an oriented fibration Z — N — B such that B is closed but 8Z = Y and
ON = M. Associated with it is the boundary fibration ¥ — M*-! - B,
Let Sign? denote the signature bundle of fibres on B. This is a virtual
bundle, thus can be considered as a Z,-graded bundle. It has a natural flat
structure. Therefore we can define sign(B, Sign?), the signature of B with

coeffiencts in the Z,-graded flat bundle Sign? (see [L]). Let
A% sign(B, Sign”) — sign(N).

This is clearly a topological invariant of the fibration Z -+ N — B. More-
over A depends only on the boundary fibration (extended Novikov ad-
ditivity, see [BC4]). We call A the non-multiplicativity of signature. It
measures the deviation of signature for manifolds with boundary from be-
ing multiplicative. In the case of an oriented fibration of closed manifolds
Z — N -+ B, when m(B) acts trivially on H*(Z), the Chern-Hirzebruch-
Serre Theorem, [CHS], says |

signN = signBsignZ

In general, signature for closed oriented manifolds is multiplicative in the
sense that

signN = sign(B, Sign?).

This follows from the Atiyah-Singer index theorems and the signature the-

orem for twisted coefficients; see [AS], [L}. For manifolds with boundary,
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Bismut-Cheeger noted in [BC4] that the index theory is asymptotically
multiplicative in the invertible case. Here we have

Theorem 0.4 (intrinsic characterization of the non-multiplicativity)
The topological invariant 7, which is defined Jrom the closed fibration ¥ —
M — B, intrinsically characterizes the non-multiplicativity of signature,
That is, whenever thepe exists another fibration of mam’fofd.s with boundary
Z— N™ - B such that 07 =Y, ON =M, then r = A,

Thus we characterize the non-multiplicativity of signature intrinsically
in terms of the topological data of the boundary fibration. One can also
give an iﬁi:rinsic characterization in terms of the analytical data.

Theorem 0.4' Let
Vo= limit of space of A,-harmonic forms on M in the adiabatic limit,
Vi=limit of space of Ae-eigenforms such that Az >0 (respectively < 0) and
Az is O(z?),

Then Vi ® V. @ Vo = H*(B,2(Y)), and + % dmV, — dimV._ = -
Therefore T = A whenever the fibration Y — M _, Bbounds Z - X - B,

The advantage of the adiabatic limit formulation of the intrinsic non-

multiplicativity is that it allows an extension to the general Dirac operators,

which we omit hére.

Before we present the organization of this thesis, let us point out that a
natural question arises from Theorem 0.1, that is, whether the assumption
that ker Dy gives a vector bundle on B is really necessary. In fact one can
make sense of all the terms involved in ( .3) without making this assump-

tion. Thus, as we mentioned earlier, the first term is always defined, and




so is the last term. As for the twisted 5 term, if dim B is even it drops out,
while for dim B odd, one can replace ker Dy by Ind D}, which is always
defined. However, the analysis breaks down here.

The thesis is organized as follows. In Chapter 1, with the work of
[BC2] as our starting point, we give a formal argument leading to Theorem
0.1. Then a complete proof is given modulo Theorem 1.1 (the asymptotic
behavior of spec(D,)) and Proposition 1.2 (the uniform asymptotic expan-
sion). These are subsequently established in Chapter 2 and Chapter 3, us-
ing respectively Melrose’s theory on the degenerate elliptic operators [MM]
together with perturbation theory [K], and the finite propagation speed
technique of [CGT]. In Chapter 4, we discuss the Hodge-Leray theory and
prove the refined adiabatic limit formula for signature operators. We then
proceed to give the intrinsic characterizations of non-multiplicativity of the
signature. There are two appendices. The first one, included for the con-
venience of the readers, contains algebraic and geometric preliminaries as
well as a review of the work of [BC2]. In the second appeﬁdix, we give a
proof of a special case of Bismut-Cheeger’s Families Index Theorem, which

is used in the application.
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Chapter 1

Adiabatic limit of n-invariant

By the work of Bismut-Cheeger the study of the adiabatic limit of the 5-
invariant of D, is essentially reduced to the study ofrthe large time behavior
of the heat kernel of D,,. In this chapter, we analyze this large time behavior
via Theorem 1.1, which gives detailed information about the spectrum of D,
in the adiabatic limit. Theorem 1.1 will be proven in the next chapter. We
begin, in Section 1, with the statement of a result from [BC2] and Theorem
1.1. Then we present a formal computation, indicating some ideas behind
the proof of Theorem 0.1. The justification for it is given in the following

sections.
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1.1 Formal computation and outline of its

proof

For the clarity of the presentation, we develop all the preliminaries and
backgrouds in Appendix A. We will use freely the notions and notations
there.

By virture of the local regularity result of [BF| (Cf. Appendix A), the

n-invariant of 1), has a heat kernel representation:

+o0 2
(D) = % | (D dt.

This involves the contribution from the heat kernel for all the time. For
the finite time, by exploitation of the so-called Getzler’s transformation,
Bismut-Cheeger showed that ¢r(D, e_tDi) converges pointwisely uniformly
(to certain expression; see Appendix A or [BC2] for detail). Tt can also be
shown that in the invertible case, spec(D,) béing uniformly bounded away
from 0, the large time contribution is negligible. In general, it is a direct

consequence of the results in [BC2] that

Proposition 1.1 Without the assumption that Dy is invertible; one can

still find a small positive number a such that

~ RB o0 2
lima(D.) =2 [ AGG-) adi+lim— [© e P(Dee Py dr, (1)

-0 \/7—; PR

provided either one of the limits exists.

Here the second term is the large time contribution alluded to previously.

The above discussion indicates that the information about the spectrum of
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D, in the adiabatic limit is crucial in understanding the large time behavior
of the heat kernel. In this respect, we have the following result, the proof
of which is defered to Chapter 2.

Theorem 1.1 For & > 0 the eigenvalues of D, depend analylically on
x. Thus there are (countably many) analylic functions A\, which describe
the spectrum of D, (i.e. if we let A;, j = 1,2,... be the collection of
these analytic functions, for any fired @ > 0, {A;;}32, is the (unordered)

spectrum of D, ). Moreover,

A) (asymptotic behavior) there ezists a positive constant Xy such that

etther A, is uniformly bounded away from 0 by X,
|Az] = Ao >0,
or A, has a complete asymptotic expansion as = — 0,
Mg o )\133+)\2a:2+---,

where Ay € spec{Dp @ ker Dy). In the latler case, the correspondence
Ag & Ap 15 one-to-one;
B) (uniform remainder estimate) if A, corresponds to Xy and M\ # 0,
then

Ao = Mz + 20 (=) A, (1.2)
with {C(z)| < C uniformly bounded;
C) (finiteness) for any K > 0,

#{e | de ~ Mz +--- and [A1] < K} < too.

In particular, the number of eigenvalues with Ay = 0 (those of at least

quadratic decay) is finite.
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Granted this, the generalized adiabatic limit formula can be seen for-

mally as follows. From Proposition 1.1
limn(Dm) = 2/ A(R_B) A ﬁ' + limifw t_l/th(Dme_DZt) dt.
x—0 B 2w z—0 \ﬁr_ Tz

And by making a substitution (or rescaling)

+oc 2 oo 1
lim t—l/ztr(Dme_f’D”)dt = lim t"lfztr(—Dme"t(%D”)z)dt (1.3)
x

e—0 Jop—o z2—0 JOg2—=

+oo 1
= lim( ¢/ > 1)\nr,e_'t('n?)‘”)zdt

a— Ce2—e IA,,[EAU z
NS Ly et gy
Ca2- A~ Agxh o
A1F#0
+
+ LY lAme—*(%*w)”dt)
Ca2—e Aurig@? e T

+eo 1 1
= [T Y hmTae Mt

Crp?—o P\zl,Z)to x—0
+oo 1 1
+/ 412 Z lim—)\me#t(;)‘*’)zdt
0 AxrviAyxteee =0z
A1 70
- T Lo _qiny
+ lim( Y Z 2 e H52e) dt)
2— 0" J (Jp2—a T
)\3~A2m2+".
= I+11+ 1L

Here we are ignoring technical problems arising from infinite sums.

Tn calculating I, note that for ¢ € [Cx?%,4+00) and {Az| = Ao, t(%)\m)2 >
CMx~. Therefore, lim, o %)\me*t("};)‘“’)z = 0.

For 11, we have i—)\m —+ )\, for some \; € spec(Dp ® ker Dy). Thus

. S BYRY 32
111’[]11;_,0 i—)\me t{z2e) :)\16 t)\l.
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+o0
Finally, for ITI, we use Mellin’s formula to get f 2L e g =
Cgi—=
+co
1 ~1/2 —u
3gn(mAm)sz_aA§u e “ du. Hence,

+oo "
lim tY2%p(D,etP2 )dt =

z—0 fOp—o

+ o0
0+ f t_lfzt'r[(DB ® ker JDY)e_t(Dﬁ'@m‘D")2 Yt + limD VT Z sgni,,
D Lt An~ gz 4o

and consequently,

]in%n(Dm) = /zﬁ/\ﬁ—[—n(DB ® ker Dy) —I—lin}) > sgnh,.
2 z— Aerhga? 4o

The above formal calculation suggests the following.
1) Those eigenvalues which are uniformly bounded away from 0 do not con-
tribute. .
2) Those eigenvalues which decay exactly linearly in # give rise to the
twisted n-invariant on the base.
3) The finiteness result in Theorem 1.1 justifies the calculation of the con-
tribution coming from those eigenvalues which decay at least quadratically
in .

The justification of 1) involves estimates from the finite propagation
speed technique [CGT], while that of 2) is a consequence of Theorem 1.1.
One can in fact combine 1) and 2), reformulating them as a relation be-

tween the heat kernel on the total space under the metric shrinking of the

fibers and the heat kernel on the base. This is done in the next section.

Remark Notice that after rescaling, the time interval for integration in
(1.3)is [Cx?*,0). So there arises the question of small time convergence.

This will be dealt with in Section 3.
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1.2 Large time behavior of heat kernels

Motivated by the above formal calculation, we rescale the (large) time

interval [Cz~%, 00} back to [C2®~, 00),

+o0 2 ~+o0
/ t_lfztr(Dze_tDﬂ dt = /
Ca—a

Og2—a

t‘lfztr(}-D,,e“(%D‘)z)dt.
z
This rescaling corresponds to the metric rescaling
ngz =n'gp+ wzgY,

which shrinks the metric along the fibers. The first step towards the proving
of the adiabatic limit formula is the following result, which appears to have

an interest of its own.

Proposition 1.2 Let Dy = D @ ker Dy. There exists N > 0 sufficiently
large such that

1 —H1lp.y? _ Cz
|tT'(EDwe t(zDa) )— t?"(.DDB th)] S W’ (1.4)

where tr' indicates taking trace over those eigenvalues which decay at most

linearly in x.

Taking into account the rest of the eigenvalues (i.e.," those decaying
quadratically) by using Theorem 1.1, we can rewrite the result in Proposi-

tion 1.2 in a nicer, although weaker, form,

1 2 C
|tr(—£Dme_t(%D") ) — tr(Doe~tP8)| < (7 +C)e.

Roughly speaking, this formula says that when the total space collapses to
the base (in the sense of Cheeger-Gromov, [CG]) its heat kernels converge

to the corresponding heat kernels on the base.
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The main technical difficulty in the proof of Proposition 1.2 lies in es-
tablishing the dividing ling between the large eigenvalues (those do not
contribute) and the small ones (those give rise to the twisted n term). This
is determined by the uniform remainder estimate of Theorem 1.1. It turns
out that a workable dividing line is given by Agz® for any 0 < ¢ < 1. We
take a = 1/2.

Proof. One ha,é

tr'(lp;;e—i(%De)’) =3 fl)\me—t(%xz)g ,

@ x
where the summation ¥ runs over all eigenvalues of ), which decay at
most linearly. Also

tr(Doe™tP8) = > Ae~tM

)

where the summation runs over all (nonzero) eigenvalues of Dy. Thus
1 LAz _ip2 1 Tt _
tT'(;Dme t(EDS) ) — tT(.Doe tDU) = E 'EAme. t(=)3)2 — Z Ale t’\i_

We now divide our summations into
1) Large eigenvalues.
Define

Ae™™ i Al > ho/vE e if (A > do/+/E
Fo(A) = , ho(X) = ° :

0 otherwise 0 otherwise

Then the operators fo(1D,) and hy(1D,) can be defined by the spectral
‘theorem (see the appendix at the end of this chapter), moreover, by the

spectral mapping theorem,

1 1
tr(fu(oD2)) = | 3 Iaetinr
z Pefel>e/vE &
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<Y e
Defal2do/vE T

1 Ly 1
~2.)? -t} _ ho(=D,).
|A=/m§a/ﬁ(”’ e ot ("" )

IA

Choose a nonnegative function ¢,(A) € C*(—o0,-00) such that ¢,(A) =0
for |A| < Ao/2+/z and @,(A) = 1 for [A] > Xo/+/z. Further ||@z]lez < C
uniformly. Set

H = H,()) = X ™y, (N).

Clearly we have

ir(he(=D2)) < ir(H.(=D.)).

Let ka, = ky, (1p,) denote the (Schwartzian) kernel of the operator H +(1D,)
(with respect to the metric z?g,). We want to estimate kg, by the finite
propagation speed technique of Cheeger-Gromov-Taylor [CGT] (see also
the appendix at the end of this chapter).

First of all, note that 2D, corresponds to the metric 2%g,. The sectional
curvature of this metric are bdunded by C m%, and the injectivity radius is
bounded from below by Cz (Cf. [C2]). Therefore, by ( 1.17), one has the
pointwise estimates .

n+1
| < =< / ) (s)) ds, (1.5)

too
where n = dim M. Thus it suffices to estimate / |H®)(s)| ds. To do this,
0
write

too otk +eo 1 &
/0 Yig! )(s)|d3=/0 Tt JA®(s)|ds.  (16)
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We will show that

. O(k
(14 s*YHE®(s)| ds < ——t(nfs)zze"t’\"““’.

By calculus and the basic properties of the Fourier transform, we have
(14 sHAB(s) = A®(s) + 2 HF)(s)
= H®(s) + (s*H(s))® — 20(s H)*D — (k — 12 H*-1(s)
= H®(s) 4 (H(s)*® — 26 (HE-D _ (k —12AF).  (1.7)

Now
|HW(s)] = |f6‘i”‘(—i)\)’“ﬂ()\)d)\|
< O/ |)\k+2e_t’\2|d,\
JAIZ Ao f2/E
©  COk) |\ ey Ck) _iajas
Zf;\o/zﬁ Toae T A= amgne . (1.8)

The last step comes from the following elementary inequality
A=t < =9 C(5)e /2, (1.9)

One ‘can apply the same argument as above to estimate (f:f ’)(k‘l), and
(A", Plug ( 1.8) and the corresponding estimates for (H")*~1) and
(H™)® in ( 1.7), and together with (1.5), ( 1.8}, one finds

C —t)2 /4
[kH;,(%Dz)| S 3ﬂt(ﬂ+5)/2e 0 .

Thus one can integrate to obtain

‘ 1 % —tA2 f4x
tT(Hm(;c‘_Dm) S WE [
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where p denotes the dimension of the base B. Consequently,

B }-Awe_t(%"”)2| < __C_____e—t"g/%. (1.10)

A>3 ] w;pt(n+5)/2

Remark This estimate shows that those eigenvalues A, such that |A;| >
Aov/Z do not contribute in the limit. The choice of 1/ is not essential here,
see the explanation immediately after Proposition 1.2, In fact, if we choose
x? instead and J sufficiently small (e.g. 28 < a), we can use the argument
from [C2] (see also [BC2]) to give a simpler proof of this fact.

2) Small eigenvalues.
If |Az] < Ao, then by Theorem 1.1, 2X, — X; for some A; € spec(Dy). Since

we are taking ', we can assume A; # 0. Now

B> i1y, e tdxy I et

Pal<tova ©
S| S A - d)e B p | (et ool
[Ae|<Aov/= |Az| <oz '
+H Y ne™M| =T+ II+IIL | (1.11)

> 7%
By the same argument as we show ( 1.10) (in a simpler situation), it is
easy to see that

C —tA2/4:n
III < #’78 0L,

To estimate I and I1, we have to use the uniform remainder estimate
in Theorem 1.1. Note that the remainder there is bounded by a uniform
constant fimes the square of Ay, which can be arbitrarily large. To cope with

this problem, we now use the fact that the summations are over |A,| < Ay/z
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and the estimates { 2.25), ( 2.26) in the proof of Theorem 1.1 to show that
A1 can not grow too fast relative to z.

Since 2A, — Ay, by taking ¢ — 0 in ( 2.25) where X, obeys ( 2.26), we
deduce

A — M| < C.

Now |Az| < Agv/T together with ( 2.26) and ( 2.25) yields

< : 1
M) < Rl + 0 < |2A 420 < 22 a0 < 20
T

e Ve
Combining the two gives

3¢
Al £ —.
<22

Hence A; grows no faster than &~1/2, It follows from this.and the uniform

remainder estimate that

1 2
(SA)? = N +20(n) > 2,

provided z < ;=3=. This together with ( 1.2) implies
[+

I < Y aCAe ) < 20F A2etM/4
A #0
Cz
< '{ﬁ‘

The last step is by virtue of ( 1.9) and the standard heat kernel estimates
(Cf., say, [CGT]).
For II, notice that by using the inequality |e=* — 1| < |A|el (which
follows by the standard expansion).
|e=HE%)l _ =] = |e=tM(e~tZM) N L 1))

< tOA?me"tAf(l‘“wllil |C(w)|)a_
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Therefore,

_ 32 Cz
I1 S C:Etz |A1|3C tA1/4 S 'tT.

These estimates combined with ( 1.10) give us the estimate ( 1.4).
| Q.E.D.

Remark The above method allows a more general statement. For
example, if f € §([0,+00)) is in the Schwartz class, then we can show by
the same argument (with slight adaptation)

t'(f(GDa) — r(F(Do))] < S

An interesting example of such f would be e~

heat kernel. Thus

, which gives rise to the

Cua

_sy(LDy? 2
It’r'(e = D3) )—t ( tD2 )| < = tN

An immediate consequence of Proposition 1.2 is

Corollary 1.1 There exists 8 > 0 sufficiently small such that

" e 4-1/2 —tD?
ia_zj% = fc T r(Dee fyit

1 - 2
= — t‘l/ztr(Dge_tDO)dt +lim sgndg, (1.12)
\/7—1' (i 20 ~dgm? g

if either one of the limits exists in R.
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Proof. If one makes a change of variables in the lefthand side of ( 1.12),
one finds

1 e
lim — t_ljztr(Dme_tDE)dt
o0 /T Joz-248

oo
~ lim — t_lfztr(-l—D,,e"t(i'D’“)z)dt
a0 /T Jous z
1

+oo 1 1 2
=lim—= [ tV%r(=D,e 43PV )dt + 1 Aer
a:]:—% \/?? Czf " (:B ¢ ) + 21_1'% Aa~§2+... *gn

In the last step above, we have used Mellin’s formula and the fact that
the number of eigenvalues which decay at least quadratically is finite (C£.
Section 1). Now take 0 < 8 < 1/2N and apply Proposition 1.2. We obtain
Corollary 1.1. |

1.3 Small time convergence

In the proceeding section large time behavior of the heat kernel is analyzed
by virtue of oﬁr detailed knowledge of the (small) eigenvalues. As a result
we have obtained ( 1.12), which furnished a Jjustification for 1) and 2) of
Section 1, but only for the time interval [z~?+# c0), where 8 is a sufficiently

small positive num.be'r:. Thus we are left with the task of showing that

the remaining piece (th‘e small time contribution after the rescaling) is
negligible. <This is done by extending an argument in [BC2}, where they
encountered a similar task. Here an important step is to establish a uniform

asymptotic expansion.
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Proposition 1.3 One has the following uniform pointwise asymptotic ez-

pansion,
N-1

tr(Dye™P) = 37 (1) (ta?)/? + O((t=?)/?), (1.13)

i=—n

where a;(1)’s are bounded for t > 1, and so is O(-).

The proof of this proposition will be given in Chapter 3. Here we
demonstrate that Proposition 1.2 and Proposition 1.3 combined imply the

small time convergence.

Proposition 1.4 For any 8 > 0 small, 2> a >0,
P

lim 71 %4p(DyetP=)dt = 0. (1.14)

w0 Jp—a

Proof. We first rescale the time interval, i.e., make a change of variables
in the lefthand side of ( 1.14). Thus
o 2+8

2 xf 1 2
lim t~ 2 p( D, e )dt = lim/ t—l/ztr(_,pme—t(%Da) )dt.
= T

x—0 Jp—o a—0

Now we apply the uniform asymptotic expansion ( 1.13) to tr(Dme“*(%D =)
with t/2” as the new time parameter. Thus

N'—1
tT(Dme—-t(;&'Dz)?) _ Z ai(t/:EZ)ti/Z + O(tNtlz)-

1=t
To eliminate the negative powers of ¢ in the above asymptotic expansion,

we put v = ;f-g > 1, and rewrite it as

N1
t'r(Dme_”Dg) = > a,;(u)ui/zmi 4 O(uN'/Z:cN'). (1.15)

t=—n
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From the proof of Theorem A.3, we know that for fixed u, the lefthand side
of ( 1.15) approaches a finite limit as ¢ — 0. Therefore

a; =10, if i <0,

and thus
1 yipy e : :
tr(;Dme"t(ED”) )= 3 ai(t/at)t et - O Pe). (1.16)
=0

This is the cancellation in ¢ parameter. To obtain cancellation in z
parameter we use the estimate ( 1.4). Take M > N +1,N' > 2M + 1 and

set ¢ = t¥ — 0. By the same reasoning as above (together with Theorem

A.1) one finds
a; (1172 M+E — 0(1).

a;(t71) = O(¢PT~Tme),

Pluging in ( 1.16) we finally arrive at

N'-1 ,
tr(lpme—t(%ﬂz)z) =3 d -V gt 4 OV 2z ),
€T

=0
where a! are bounded functions. Consequently

=P W
| f r‘/ztr(i‘me-*(%“?ﬂz)dt] < Qgl/GM-1) = 1/2-M/(2M-1) gy
m2—-cl m B _ C i PRI

pZea

N1 S -
+ Z Cm(i—l){aM—l)/@M-l) : t‘—’l/? dt
=1 a?-e

+C(ﬂ3ﬁ _ $2—a)m(N'—1)a/2—1 '

N'—1
< Cwa/(4M-—2)+ Z Cm(i—l}(aM—l)/(ZM—I)(:B,B/2 _ wl—a/2)
=1

+C(mﬁ _ mz—a)m(N'-l)a/2-1-
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Taking M > o~! and N >2al 41 gives us ( 1.14) Q.E.D,

As a consequence of Proposition 1.1, Corollary 1.1 and Proposition 1.3,

Theorem 0.1 follows.

Appendix to Chapter 1: Finite propagation
speed technique

Consider a complete Riemannian manifold M. The La.placian A is a non-
negative essentially self-adjoint operator. Thus functions f(+/A) can be
defined by the spectral theorem for unbounded self-adjoint operators, ac-

cording to the prescription
FVB) = [ f(nyam,

where dE, is the projection valued measure associated with VA, The
following theorem of Cheeger-Gromov-Taylor, [CGT), gives explicit bounds
on the kernel &y 2)-

Theorem 1.2 (Cheeger-Gromov-Taylor) Let M™ be complete and H <
Ky < K. Fig 2, Xs € M™, Let d = P, z2) the distance between z, and
zy and N be an integer such that 4N > n. Assume that [ is a function
with the property that up to N-th derivatives of its Fourier transform are

integrable, f(*) ¢ L'(0,00),0 < k < N. Let ™, T2 < man(ingyy, |[H|-1/?),
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then

2 . . oo e
eronzn) < L S5 g (2 ey (1a7)

0<i,4<N —Ti—re
Moreover one also has the estimats for the derivatives,

o0

¢(n)? 7—n, j—n A 24424
oo, eallones < 0L Y e [T g

d—#r1—rg
0<i< N+ /2] +1

0ZFS N+ [/ +1
(1.18)

where |« oo, 1, denotes the sup norm of up to ly-th derivatives on the first

variable and ly-th on the second.

Proof. We give the argument in [CGT]. First we construct a nice
parametrix for A. To do this we first assume that r; =1, |Kjp| < 1.

Let ¢ be a smooth function supported on [0,1/2] with ¢|jn1/9 = 1,|¢'| <
5, and set ¢, = ¢(r/¢). Let '

P2 log»

P = qu(T)a(n—-—nl)— (P = (,'be-*“z'-;r—-, RIZ).

Finally, let A,(P(z6,2)) = Q. Then on By(z,)
|Q(r)l < Cr® ™™

If g is a smooth function on Bi(z), then

~/Bx(mo) P(wu-gw)ﬂg(m)dm = g(zo) _j Q(m)g(m)dm (1.19)

B ()
Fix ¢ sufficiently small so that the N? compositions below are defined and

apply the standard iteration argument. Thus if we write ( 1.19) as

PA=1-¢Q,
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and set
P = (I+Q+ - +Q" )P, N = [%1+1,
Q = QY.
Then it follows easily that
PY(ANg) + PY1Q(AN T g) + - + PQ(Ag) + Qg = g- (1.20)

The kernels on the left hand are continuous and their sup norms are bounded
since the metric is boundedly related to the Euclidean metric in normal co-

ordinates, and thus
19(z0)] < C(nY(I9]|31(e0) + 1201 Bycan) + - -+ + HAY 91154 (w0)-
Now we only assume that |Ky| < K, and
r < min(jK|72,i(z0)), N = [_;i] +1.
Via scaling, we have
lg(z0)| < CE)r 7l ghBaten) + -+ 7 AN gl31an)-
Next, consider 7g. Note that in ( 1.19), if we take 4N > n +1, then
vg = VPV (A g) + VPV QAY ) + - + VP Q(AG) + V(L)

and again the kernels on the righthand side are continuous and their sup

norms are bounded. Thus

19(20) oot < CR)(r™2 gl oy Hr | Ag B, Gan) - " | AV llB, o),

A
i
i
!
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provided 4N > n + 1. In general, we have

|9(20)|coy < C(n)(r~"" 2N-n/2)| AN

9llB+tzo))s

provided 4N > n + 1.
To obtain the corresponding L?-estimates, we exploit the unit propaga-

tion speed of the wave operator V2 to get (see [CGT] for details)

1/ BYlanaaeny < lellz [ 17(6)] ds,

~ provided suppu C B,{(z;), » < R. Intuitively, this is because it takes a
definite amount of time for the effect of a source to be felt in a region at a

distance. By the same token

| A% £(VB) Al eyagen) < Nl [ 1F#2(s)] ds.
To obtain the desired estimate for k¢(xy, z3), let

g = AJks(zy, z2)(u(xy)) = /M Abk (w1, 22 )u(zs)das,

for u supported on B,,(z,). Apply the elliptic estimate and L*-estimates

above,
o N - P
|AZks(21,22)(u)] < C(n) AL ATk (w) |5, (o)
i—_O
= G(”)Z?‘m 2| Alks A (W)l ., (@)
< )uu||s,,(m,>2r2““’2 [T 1) ds

Since u is arbitary, we have, for all z4

C(n im N
|| A3 kf(mlamz)”B,z(m) < )Z 24 /2‘/; | 542 (5)|ds

—r1—73
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Now apply the elliptic estimates again, we obtain ( 1.17). The estimate for
the derivative can be obtained similarly. Q.E.D
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Chapter 2

Asymptotic behavior of

spectrum

This chapter is devoted to the proof of Theorem 1.1, which gives the
asymptotic behavior of the spectrum of D, as =z | 0. Recall that D, is
associated with the metric which is rescaled in the base direction by z~2.
From the local point of view, the rescaling is making the operator D, better

since the local geometry is simplifying. And this is the reason that for the
| finite time behavior of the heat kernel one can work effectively with the so
called Getzler’s transformation. However, from the global point of view,
the elliptic operator Dm becomes degenerate as | 0. This degeheracy of
the elliptic oﬁera.tor D, is the essential difficulty here. The length of this

chapter largely comes out of dealing with it.

In Section 2.1, we utilize the theory developed by Melrose et.al. to
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treat D,. We show that as Lz-_operators the resolvent of %Dw depends
smoothly on the parameter = down to z = 0. This result, combined with
the regular perturbation theory, gives us the asymptotic behavior of the
small eigenvalues at z = 0, in Section 2.2. The finiteness result, whichis a
consequence of ellipticity, is also discussed there. The uniform remainder
estimate is established by a deformation argument where the local geometry

of the fibration plays a definite role.

2.1 Analysis of degenerate elliptic operators

We shall study the degenerate elliptic operator D, by constructing a parametrix
which is uniform down to z = 0. The construction relies on a calculus of
pseudodifferential operators well adapted to the type of the degeneracy
exhibited by D_ . A salient f:'eature of this calculus is that the residual op-
erators of the (first) symbol filtration are not compact operators. In fact
the novelty here is to find the right tools to probe the residual operators
further.

To begin with, recall that any differential operator L on a smooth man-
ifold X, L € Diff{ X), is locally the sum of products of vector fields. Cor-
respondingly, natural subrings of Diff(X) may be defined as generated in
this sense by certain geometrically natural subalgebras of the Lie algebra
of all smooth veetor fields. From ( A.14) of Appendix A, we know that D,
is in the subring of Diff(H_l_ x M), generated by vector fields of the type
( 2.1) below, whose elements {when they degenerate) degenerate in a uni-

form fashion at the boundary of Ry x M. In this context, there is still a
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good notion of ellipticity, and a class of pseudodifferential operators exists
which contains parametrices with compact remainder for elliptic elements
in this subring,. _

The general program of study of this types of pseudodifferential opera-
tors originates from R. Melrose, [M3], and further developed in [M1], {M2],
and [MM]. In [MM)], the Laplacian in the adiabatic limit is analyzed in

detail, which provides the model for the first part of our analysis of D,.

Consider the fibration ¥ — M™ 5 BP. To incorporate the parameter
z, let us consider the product manifold X = [0,00) x M. On X, we have
the space ¥V of C* vector fields which are tangent to the fibers, M, of
the product structure and which are as well tangent to the fibers of the
fibration, m, above My = {z = 0}. In fact V is a locally free sheaf of
finite rank, therefore (C'™) sections of a vector bundle, which we denote by
VI'M. In local coordinates yi,+++,¥p, 21, *, Zn_p on M where the y's give

the coordinates on B, a basis of local generating sections of VT'M is given
by
20y, ey wOy,, By oovy oy . (2.1)

The dual, YI*M, to YTM plays an important role below. The dual basis
to ( 2.1) is then

g dyy, e, 27 dy,, dzr, -, dzn_p. (2.2)
There is a natural splitting of YT*M at Mo,

VT*M =T'Y © =~ 'T"B. (2.3)
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The family of metrics g, on M lifts to a non-degenerate inner product on

VT M and dually on YT*M.

Notice that away from z = 0 the bundle YT'M (Y1 M) is isomorphic to
the lift to X of the tangent bundle TM (the cotangent bundle T*M) but
not naturally so. Therefore the significance of this bundle is at 2 = 0.

From ( A.14) we see that our operator
D, : O=(X; F(M)) — C=(X; F(M)) (2.4)
is a V-differential operator (i.e. generated by V, see Section A.4),
D, € Diffy,(X; F(M)). (2.5j

Away from z == 0 this corresponds to nothing but a change of basis. Thus
again its importance is at £ = 0.
With the notations out of our way, we can now state the main result of

this section (Compare [MM)]).

Theorem 2.1 1) Let A, € C([0,00)). Then there is a parametric G for
Dm - )\m;

(Dp — As)G = Id + F,
where F' € 2 1C®(Z; End F(M)). Moreover, G is uniform in z in the

sense that

G: C™(X,F(M)) — o 10°(X, F(M)).

2) Assume that ker Dy gives a vector bundle on B. Let P = Piupy
be the orthogonal projection onto ker Dy, and set Dy = P(¥, fa/%, )P =
Dp®ker Dy (see ( A.14) of section A.3), the Dirac operator on B coupled
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to the vector bundle ker Dy. If A & spec(Dy), then (1D, — A)™' exists for

small @ and
(—I—Dw — N =2(D, — Az) ! LX(M; F(M)) — L*(M; F(M))
x
18 C® in z down to 2 = 0.

Remark Let H be a Hilbert space. A family of bounded linear opera-

tors on H can be thought of as a map
R — L(H),

where L(H) denotes the Banach space of bounded linear operators on H.
The usual definition of derivative extends to this case, thus the smoothness.
Consider a map

[0,1] ~— L(H).

When we say that it is C* down to 0 we mean that all its derivatives
are uniformly bounded near 0 (or equivalently it extends to C*™ map in a
neighborhood of 0).

We divide the proof of this theorem into several lemmas. The con-
struction of parametrices is approached through their Schwartz kernels.
Although these are distributions on Z = R, x M x M, they live more nat-
urally on a slightly larger manifold, obtained by “blowing up” Z along the
fibre diagonal of M x M in the boundary of Z. This process of blowing
up, on which the microlocalization takes place, is the essential point here.
Our operator, when lifted to the blown up manifold, becomes transver-

sally elliptic. Thus in the first step of the construction, we can use the
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standard elliptic theory. The resulting error term, while smooth on the
blown up, is not smooth on Z, however. We remove the singular part by
killing the Taylor coeflicients of the error term at the points being blown up.
This is a global construction on a Euclidean bundle over the fibers which
distinguishes the fiber-harmonic spinors at the boundary and involves the
inversion of certain model operator on the Euclidean space.

The existence of the resolvent follows from this construction and an
asymptotic analysis, which is defered to Section 4.4. The uniformity of
the constructed parametrix and the smooth dependence of the resolvent
are obtained by showing the tangential and normal regularity separately.
While the former is often a consequence of the construction, the latter is

considerably harder, involving detailed analysis and various estimates.

We begin with the notion of blow up. Let
Q = {(0,2,7"); m2(p) = ma(p')} C Z = [0,00) x M x M
where 7 and mp are the left and right fibrations. The blow up of Z along
the submanifold @ is (Cf. [M1], |M2|)
Zq=5NQU[Z\qQ],

where SN @ is the inward-pointing unit spherical bundle of @ in Z. As aset
it is given by replacing @ by SN Q. It comes equipped with the ‘blow-down’
map

T Lo — 4,
which is the identity away from the “ront face’ SN @Q, which we will denote
fi(Zg). The blown up space Zg has a unique C* structure such that mg
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is C=, is a diffeomorphism from Zo\fi(Z) to Z\Q and has rank dim B +
2dimY + 1 at fi(Zg).

The front face ff{ Zy) is fibred by hemispheres wél(q), g € Q. In fact the
projection of @ down to the right factor of M in Z shows that f[{ Zg) fibres

over M with fibres Y x 5%, where S% is the p-dimensional hemisphere,
Y x 8% — fi(Zg9) — M.

The hemisphere ST are parameterized non-singularly by the component w

of the polar coordinates around @,

R = (22 _onay1/2 gz y—y ' 2.6
=@+l -y v == v 2 7 (2.6)

More usefully for computations one can introduce the projective coordinates
y—y
Ty U = Y Y, 2, 2, (2.7)
valid in the interior of the front face. Since u takes values in R?, the interior
of each fibre S} of the front face has a Fuclidean structure.

The significance of Zg is mainly related to the following result.

Lemma 2.1 The closure, Ay, in Zg of the submanifold {(z, p, p); = >
0, p € M} is an embedded submanifold which meets the boundary of Zg
only in the interior of ff{Zy) and does so transversally, and D, lifts to a
differential operator with smooth coefficients on Zg which is iransversally
elliptic with respect to Ay. Moreover, this lift is tangent to the fibres Y x R?
of the interior of ff{Zq ) with its restriction to a fibre Dy ® 1 +1Q Dgs.

Proof. Check in local coordinates; Cf. [MM].
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1) Symbolic Construction.

This is the usual symbolic calculus, carried out uniformly here on the blown-

up Zg of Z.

Lemma 2.2 There ezists Gy € I (Zq, Ay; End F(M)) which vanishes in
a neighborhood of 874/ Zg) such that

(D = X)G — Id = F, € C™(Zg, End F(M)).

Proof. In our notations, we are suppressing the density factor, which we
choose to be the Riemannian density dg, = z~? dg (or its lift). Lemma 2.1
above gives the lift of our operator D,. As for the Schwartz kernel of the

identity operator, on Z it is a Dirac delta section over the diagonal,
Id=2?hé(y—y')é(2 - 2"),

where h is an isomorphism on the bundle, and the factors of & comes from
the choice of density. Lifted to Zq, the factors of  just compensate for the

homogeneity of the delta function,

Id = h§(z — 2') 6(u).

From Lemma 2.1 we know that D,, therefore Dy—~Ag, is transversally elliptic
to Ay, i.e,, its symbol restricted to the conormal bundle of Ay, N(Ay), is
invertible. Now repeated application of Theorem A.6 and Theorem A.5
(eQuivalent to the recursive procedure in the standard symbolic calculus)
finishes the proof. The extra vanishing condition is trivial. Q.E.D.

For the simplicity of notation, in what follows, we will use “Hom” to

denote “End F(M)” and “F” denote “F(M)”. (One should not confuse the
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spinor bundle F with the error term F’s).

2) Model Problem.
It is important to note that the error ¥ is not a smoothing operator on
M, although it is smoothing for z > 0 and depends on « smoothly down
to # = 0. In order to obtain a compact error, one has to kill all the Taylor
coefficients of I} at ff{(Zg) so that F; projects downstairs as a smooth
function on Z. This is essentially reduced to a model problem on Euclidean

space as we shall see.

Lemma 2.3 There ezists Gy € pP~1C®(Zg, Hom) + log p C*(Z; Hom)
such that
(Dy — A)Ga — Fy = Fy +logp - Y

where Fi, Fy € C®(Z;Hom) and Fy 22 0 in the sense of Taylor series at
Q.

Proof. In terms of the polar coordinates { 2.6), we can take R to be the

defining function of the front face, and p = wy that of the non-front face of
Zg. Note that

x=pR.
Expand F; in the direction of R:

Fl ~ ZFl,i(w:yaz:z') Ri?

=0
where Fy; € C°(S5 x U xY x Y, F) are the Taylor coefficients, and U is a

trivializing neighborhood on B. It turns out to be advantageous to rewrite
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this expansion in terms z (see below),

F]_ ~ Z(P_iFl,i) .’Bi.
=0
The desired kernel will be constructed in the form
Gy ~ Zmi ei(w,y,2,2") +logp e,
=0

with e; € pP1iC*(S, x U x Y x Y, F), and ¢ € C~(Z, F), by solving
recursively for the e;’s. The logarithmic term will arise naturally in this
recursion.

Writing the Taylor series in terms of z introduces extra singularities in

the e;’s, but has the advantage that a corresponding series for (D, — A, )G

is easily obtained:
(D — 23)Gs ~ Y2 (Dy — A)es + (Do — Xy)[log p €.
Now in the projective coordinates ( 2.7),
D, = (Dy ®1+1@® Dre) + zB)(2, 9, 2,02, 8u, 8y),
with |

B(l) ~ Z "Bj_lB:}'(y7 Z,y 3z1 au) By)

izl
It follows that D, — A, has the same formn. Now to solve

(Dm - A‘.'1:)(;2 ~ Fly

we equate their coefficients, obtaining

-1
(Dy ® 14+ 1® Dre)e; = — Y B;_je; + Fy. (2.8)

i=0
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To invert the operator on the lefthand side of { 2.8), we treat the har-
monic and non-harmonic parts on Y separately. Thus, in terms of the
splitting

C*({(Zg), F) = ker Dy @ Image Dy,

Dy ®1+1® Dge splits accordingly as

1 ® Dge 0
0 Dy®1+1®D|Rp

The second piece can be more readily inverted. Hence we will first concen-
trate on the first one. This is the Dirac operator on the flat R?. However,
some care must be taken because of the extra singularities in e;’s mentioned
earlier. We observe that the function ;1; = wio is of precisely linear growth

in |u|, since

£

IS
[
(l
|
l

Therefore, the setting for our model problem is
Dgppv=f onR?

for f € C~(RP, F') having a growth condition at infinity. We need to solve
v with certain control over its growth. This can be done by introducing

suitable spaces. Following [MM)], we define for I € 7
Ji ={f € C=(R*—{0}, F); (n) = n|™*g(n) for some g € N and |f(n)| < C|n|™"}.
There is a regularization map (see {MM]),

et Jims SR, F); e(f)lpo = f-
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Now define J; C S'(R?, F') by
geTi<—g§= e(f) for somef € J,.

One checks that
"Dre t Tt — T

is always an isomorphism. Further any f € J; is smooth on R? with a

complete asymptotic expansion at infinity of the form (Cf. [MM])
flu) ~ 3 [ul 779 £5(8) + log [u| p(w),
>0
where p(u) is a polynomial of degree < I—p. Since Fj 4 has compact support

onu € RP, F1g € Jo. From ( 2.8), one has
(Dy @ 1 -I— 1 ® DIRP)CO = Fl,()f (2.9)

Let J;- be the part of J; that is orthogonal to ker Dy. Then it is not hard
to see that

Dy®@1+1®Dpe: - — J*

is an isomorphism. From these discussions we see that one can solve ( 2.9)

with e € J1 + J3t. Solving ( 2.8) inductively gives
e € j;'»i-l -+ P{-}-I—-—py

where P;.;_, denotes the space of polynomials of degree < i+ 1 — p.
In this way we construct a formal power series. Notice that u = e
and this means that the series for ¢’ (corresponding to the P terms) is a

Taylor series at @ on Z. Using Borel’s lemma to sum this to a smooth

' -
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function on Z and the other series as a smooth function on Zg gives G, as

desired. Q.E.D.

3) Uniformity.
We shall slightly modify G, before examining its regularity as an operator.
Write G = g, + logp - g3, then
(De —2A)Gy = (Do —2)gh + (Do — A )(log p - g3)

gy +logp - (Do — As)gy.

{l

This. implies that (D, — A, )gy = 0 at Q. Now let
G =G —(Gy—loge-g})=G1—g, +1ogR g}
€ I;Y(Zq,Ay; Hom) + pP1C™(Zq, Hom) + log RC™(Z; Hom).
Then G is a true parametrix,
(Dy — X;)G = Id + Fy

where F, € z?~'C*(Z, Hom). Taking into account the singular density,
one has Fy: C®(X,F) — 27'C*(X,F). We prove the same for G.
Lemma 2.4 G is a uniform parametriz for D, — X,

G :C®(X;F) — ¢ 'C®(X; F).

Proof. For every u € C®(X; F), we shall prove that 2Gu € C=(X, F) by
showing the tangential and normal regularity at the boundary separately.

The tangential regularity is in the form of conormal regularity (see Section
A.4),
G: C=(X;F) — A(X; F).
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That is, for some s, Vi -+ V,(Gu) is in the Sobolev space H*(X,F) for all
Vi’s in V4(X), the space of vector fields on X tangent to 8X at 8X. The
point here is that there is a lifting map (sce [MM] for details)

IL : vb(X) — V;,(ZQ)
such that [,(V) is also tangent to Ay. The integration by parts then gives
V(Gu) = (I(V)G)u + Y G(W'u),

where W' is the transpose of the projection of I(V) onto the right factor
M in Z. Note that because of the special type of the vector fields involved,
there is no boundary contribution. Now G € ¢ implies that I(V)G € G.
Hence it suffices to note that any operator with kernel in G is bounded from
C*(X; F) into some fixed Sobolev spa,cé.

To show the norfna.l regularity of G, one investigates the holomorphic
properties of its Mellin transform '

¢

fm(a:cé’ dz dg, dg € C~°(Z; Hom). (2.10)

We shall show that as a supported distributional density on Z, it extends
to an entire function of t. To see this we lift it to Zg, noting that z = pR

and

zdedg,dg = 2" PR? dRdw dy dz dz’ = Rp* Py,

with v = dRdw dydz dz' a smooth density on Zg. Thus the lift is of the

form
Rt
I'(t)

ptRp_l“"C;"v € C_“(ZQ;Hom). (2.11)



44

Recall that G = @4 — g} + log Rg;). G; will contribute an entire term to
( 2.11), since it is C* up to R = 0 and on its support p # 0. For g}, p'~?g!
is C°, and hence we conclude that

Rt pt .

— " R 1—p 1

NON O
is entire. The presence of the factor log R introduces the possibility of

simple poles at the negative integers of

Rt pt
L —_log R Rp'?glv.

Combining these two statements we see that the distribution ( 2.11) is

meromorphic in C with at most double poles at —N.

Consider the form of the residues. Since 1—,% is entire and R* is entire
away from the front face, where p'~?@ is also smooth, the support of the
residue must be contained in the front face. Moreover all these residues
.must be smooth in z,2',y as distributions in (R, w). Projecting down
to Z gives ( 2.10), which is therefore at worst meromorphic with residues
supported in Q. To remove the poles we need only subtract a distribution

of the form

L= (]'Og z)zf2(w7yrza z':y - y’) + (logw)fl(mrya 2y z',y - y’)v
where f; and f; are smooth in z and are chosen to have the correct Taylor

series at # = 0 to reproduce the residues. Now applying D, — A, we find
(Da = X)G = (Dy — A NG — L)+ (Dy — X)L € C%(Z, Hom).

Since F”(:—):c(é ~ L)dz dg, dg is entire by construction the same is true of

%w(Dm — X )(G — L) dz dg, dg. This implies that

(Do— )i 0 (i=1,2) (2.12)
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in Taylor series at © = 0. However, from the support and regularity con-

ditions on the kernels noted above, the operators defined by f; are of the
form . _

> 2Pi(z,2',y,8,).

=0 ‘

‘That is, they are differential operators in y with coefficients which are
smoothing operators in z and smooth in y. Then ( 2.12) implies that the
ranges of these two formal power series operators lie in the null space of
D, — A, (in the sense of formal power series). By the lemma below, the
* latter space has finite dimensional coefficients (see 4) below). Hence f;

vanishes as Taylor series in #. By definition this means ( 2.10) is entire,

This is the normal regularity of G.
By Theorem A.7 and Proposition A.4, we then have

w € C°(X,F) = 2Gu € A(X,F)n A(X,F) = C~(X, F).

Q.E.D.

4) Asymptotic Calculus.

In the proof of Lemma 2.4, we made use of the fact that the kernel space
of D, — )\, in the sense of power series has finite dimensional coefficients.
To make this precise, let us introduce the space of Laurent series [MM],
L(X,F) = {u € C*(X,F),2% € C*(X, F), for some ¢ € Z}/C™(X,F),
where C"°°(X , F') is the space of C* sections vanishing to all orders at the

boundary. £(X, F) is a module over the ring of formal Laurent series

£ = £([0,00))
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the variable z. Our operator D, — ), acts on £(X,F) in the obvious

- way.

Lemma 2.5 Assume that ker Dy gives a vector bundle on B. Let N C
'C(X, F) be the null space of D, — X\, acting on the Laurent series. Then N
is finite dimensional as an L-module. Further,

a) if Ag ~ AL+ Ay + - and M € spec(Dg) then N =0 and D, — X, is
" an isomorphism on L(X,F);

b) if Ay s real-valued, then Dy — A, is an isomorphism on the orthogonal

complement of N with repect to the L-inner product natum?ly induced by

G-

The proof of this lemma is defered to Section 4.4.
An immediate consequence of this lemma is the existence of the resol-

vent.

Proposition 2.1 If A ¢ spec(Do), then the resolvent (2D, — A)™! exists

Jor z sufficiently small. Further, it lies in a certain space G defined below.
Proof. Take A\, = Az. By previous discussions, there is a

G € I;*(Zq, Av; Hom) + p* ' C*(Zg; Hom) + log R - 2*"1C™(Z, Hom)
such that

(Dy —A2)G =Id+ F,

where F, € zP-'C™(Z; Hom). However, we can modifir G so that F, ¢
x?C*(Z; Hom). This is because the (leading) coefficient of z*~! in Fj

. must arise directly from the coeficient of z?~! in Gy — Gy, at least away
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from Q where thisis C*°. Thus it must be in the range of Dy. In particular,
we can remove it by adding to G a term in zP-1 C>=(Z; Hom). Therefore
F, : C°(X,F) - C°(X,F). In fact, F, : C®(R,;,C ~(M,F)) —
C*(X,F). Let u € O=(X,F). Then Fou € C®°(X,F) 5 L(X,F). Since
A & spec(Dy), by Lemma 2.5 (Cf. also its proof), there exists H(u) €
z-1r(C®(X,F)) C L(X,F) so that Fou = (Ds — Az)H(u) in the sense
of formal series. Let H; be the coeflicients of z* in H (¢ > —1). Then
H;: C®(X,F)— C*(M,F). Infact, H(C~=(M, F)) C C~(M,F). This
implies that H; is an integral operator with kernel H; € C®°(M x M, Hom).
Using Borel’s lemma to sum up the formal series H then provides us a
Gs € ¢ 'C=(Z; Hom), or 2?~'C*(Z; Hom) with respect to the singular
density, such that '
(D — Az)(G3u) = Fyu at 2 = 0,
for every u € C*(X, F). Letting G' = G — G, one has
(D — Az)@ =1d + F
with F' 2 0 at z = 0. Clearly @' has the same regularity as G,
G : C°°(X;F)r——> 2~ 1C®(X; F).
Note that (Id+ F)‘1 = Id + Ffor small z and 20 at z = 0. Putting
G =G'(Id+ F)™' = G' + G'F, it satisfies
(De — Az)G = Id,

ie. G=(D,— Az)™! € G where
G = I;Y(Zg,Av; Hom) + PP C®(Zg; Hom) + 2P 'log R - C*(Z, Hom)

+2?~1C>~(Z, Hom).
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And 2G = (31D, - ) e 2. Q.E.D.
Thus, the resolvent of our operator will lie in the space ©G, for which we
have precise description. We proceed next to study the mapping properties

of the elements in this space.

5) L*-boundedness of z(.
We shall show that each of
eIy (Zq, Ay; Hom), zp?10%(Zq; Hom),
z?log R. C™(Z, Hom), 2PC™(Z, Hom)

defines L% -bounded operators on L*(M, F). This s clear for z?C*(Z, Hom).

Now we treat
a) 2pP~1C=(Zq; Hom).
Since we are using the singular measure dg, = zPdydz, if G is a Schwartz

kernel, then

(Gd’)(wﬁy!z) = fM G(z,y,z,y',z')é(y’,z’)dgz
- ] 2P Qody' dz',
M
Now if G € 2p?~'C(Zq; Hom), G' H 272@ € a+1pp~10%(Z4: Hom) =

R'-PC>(Zg; Hom) . Therefore it suffices to show for those supported near
the front face. By using the Schwarz inequality,

J1CDE v ldyaz = [|[ ez, )0, )y &Py d
< [ 16 @y, 29, )ldy' d=') x (2.13)
([ 16" (@9, 2,0, |80, )Py d'dy d.
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Let
]G'I(Raw) = sup ,RP—IG’(R’W’*Z’ yr, Z')l

ERTS Y
in terms of the polar coordinates ( 2.6) on Zg. This is a smooth function

of R and w. Therefore

[160,9, 2,9/, )y’ a = [16(R,w, 2,9/, )| R* dR dw

< /1G'|(R,w)dR dw = C' < oo.

Plug this into ( 2.13) to get

f|(G¢)(0,y,z)|2dydz = C"f/]G'(O,y,z,y',z')|f¢(y',z')[2dy'dz’dydz
= & [([16'0,3,2,9",2)| dy do)\g(y/, )Py’ do’
< 0 [ 1o, )Py d.

' This is the desired L2-boundedness of zpP~1C>(Z4; H om). From the
proof, we see that the singularity here comes from the factor R'-?, which
is cancelled in the polar coordinates. The argument clearly carries over for
z?log R C*(Z, Hom).

b) I3 (Zg, Ay; Hom).

One reduces it to the L2-boundedness of
zly *(Zq, Ay; Hom) C vC%(Zq, Ay; Hom).

Then, since elements of zly ™ (Zg, Ay; Hom) vanish on the non-front faces
of the boundary, where p = 0, the same argument as above goes through for
zly™(Zq, Ay; Hom). For the reduction we need to establish the following

lemma.,
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Lemma 2.6 If A € I’(Zg, Ay; Hom), and v € C°(M, QM) is a positive
density on M, then there evists a constant C > 0 and B € I°(Zg, Ay; Hom),

self-adjoint with respect to v such that
A*A=~B*+C+R, RelI*™(Zg,Ay;Hom), (2.14)
where A* is teken with repect to v.

Before we go into the proof of the lemma, we explain a little on the

notations. Note that (see [M1])
I°(Zq,Ay; Hom) C C~%(Zg; Hom) = C~*(Z; Hom).
Thus every G € I°(Zg,Ay; Hom) defines
G: CX,F) —  CO°(X,F)
U U
Co{z} x M,F) — C=({z} x M,F).
The element v gives a positive density on every {z} x M, with respect to

which we can define
G :C®({z} x M, F) — C®({z} x M, F).

One checks that G* is still in I°(Zy, Ay; Hom) and its symbol behaves
like the usual symbols. (This is nothing but simultaneously taking adjoints
of the operators for each parameter.) |

Proof of Lemma 2.6. This follows from the formal properties of the

symbolic calculus. Recall the exact sequence of the symbol map

0 — I"Y(Zg,Ay; Hom) — I'(Zg, Ay; Hom) 55 ST(N*(Ay), Hom) — 0
(2.15)
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where N*(-) denotes the conormal bundle, see Theorem A.5. Here we are
suppressing the dénsity factor.

Any representative a € S°(N*(Ay), Hom) of go(A) is bounded, so there
exists a constant C such that b = C — |a|? for by € S%(N*(Ay), Hom)
real. Using the surjectivity of the symbol map, we can choose B, €
I%(Zg, Ay; Hom) with oo(B}) = by, then By = 3(Bh+ (Bp)*) is self-adjoint
and from the symbol calculus

R Cc_aa_Bel

Continuing by induction, suppose B; € I~ has been chosen fori = 0,1,..., N—
1 so that
RyH C—AA—(Bo+-. -+ By) eIV,

The next term By should therefore satisfy
Ry =2ByBy mod I-N-1,

To do this just choose o..x(BYy) = o_n{Ry)/2bo and By = L(B} + (By)*).
Finally choose B = 2(B'+ (B')*) where

B~ ZBJ = I°
J=0

and we are done. | Q.E.D.

With this lemma at our disposal, we can set out to show the L2-
boundedness of zI;*(Zg, Ay; Hom). Take x € C®(Zy) such that ¥ =1 on
the support of the given element A of zI;! and y vanishes on the non-front

faces of the boundary. Then by ( 2.14)

1481 = (4, xA"Ax9)
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= —lIxB4I* + Clixgl* + (¢, x Rp)

S (GO, if IxRel| < C')jg).

This reduces the L2-boundedness of zI5' to that of zly .

6) Smooth Dependence of the Resolvent. _ ,
By the principle of uniform boundedness, it suffices to show that for ¢, 9 ¢
L} M, F), G ¢ g, Fz) =< Gé, 9 >¢ C*=([0,400)). Here the inner
product < , > on L*(M, F) is induced by gar. First let us note that
F(z) € Li,.([0, +00)). In fact, one has ‘

J 1@ Ix@)ldz < cOoligla)vs (2.16)

where C(x) is a constant depending only on X, a compactly supported

smooth function on [0, 00). To see this, write out

F(w) = /G(waya Z, y'az’)¢(y’3z’)¢(yﬁz)dg; dg.

Then
JF@ @de < [ 1 16] 161 ide dg. do.

In polar coordinates we have
Gdz dg, dg = 2 PGRPAR dw dydzdz' = pPQdR dw dydzdz'.
Since

GexG = :z:Io‘l(ZQ,Av;Hom) + :Bpp_lc'oo(ZQ; Hom)
+zPlog R - C*(Z,Hom) + z?C*(Z, Hom),
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one finds

p PG € zp Pl (Zg,Ay;Hom) + RC™®(Zg; Hom)
+RPlog R- C*(Z, Hom) + RPC>~(Z, Hom).

Therefore we obtain { 2.16), using, in addition, Lemma 2.6. We now show

the tangential regularity.

Lemma 2.7 F(z) is conormal to {z = 0},
F(z) € A([0,400)).

Proof. To show this, we have to check that (28,)*F(z) € L;,.([0, -+o0))
for any integer k. For k = 0, this is (2.8). For k£ = 1, note that z8, lifts
trivially to V,(Zg), tangent to Ay. Since G (thus zG) is invariant under the
action of this type of vector fields of V4(Zq), (20;)G is also in zG. Hence

(mBE)F(a:) =< (23,)Gp,¢ >€ Li6e([0, +00)).

Repeating this argument finishes the proof. Q.E.D.

The next lemma gives the normal regularity.

Lemma 2.8 The Mellin transform of F(z),

I"%F(m) € ([0, +0),

extends to an entire function int € C, i.e. F(z) € A([0,+00)).
Proof. Note that “{,—‘(_t—;—F(m) =< (—“—’I%G)d),@b >. Hence %F(m) is

holomorphic on the half plane Re ¢ > 1. Now if ¢ € C°(M,F), then
Lemma 2.4 implies G¢ € C*(Z, F'). Consequently %F(m) is entire.
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For ¢ € L*(M, F), choose ¢; € C®(M, F) such that ||¢5 — ¢|[; — 0 as

& — 0. Set
Fy(z) =< G5, > .

We claim that {Z~ O] L= Fi(x)}s is a normal family of entire functions. Granted
this, the limit of the normal family {P(t) Fs(z)}s (which exists by the nor-
mality and the principle of uniform boundedness, i.e. the Banach-Steinhaus
Theorem) will also be an entire function with values in ¢ ‘°°( [0, +00}). On
the other hand, one has for Re ¢ > 1, %Fg(m) w5 F(z) weakly by
(2.8). This proves the lemma.

It remains to establish the claim. We shall show that the family is locally
uniformly bounded. For this note that for Ret > 1, and x € C*([0,00))
compactly supported

oo pt- a Retl—1
T BexE@ e < 20 in g
: Ret1
< ZLT 1l

where the last inequality comes from ( 2.16) (and l#sll2 < 2[i#]]). Since

y(t) = ®f "’ ) satisfies the functional equation

— = (i — a7
2 A0 =t -1), (217)
using integration by parts, we have for Re t > —k + 1,
o pt-1 ' C(X)Q(X)Ret+k—1 koo
dz| < o F, . 2.18
|} T e del < =Xgs Yoy, (218)

We want to estimate ||8:F5||L}“ in terms of ||¢||; and ||¢]|.. Without loss of

generality let us assume that F’s and Fj’s have compact support. Define

Bul) ¥ [" e re)as, B0 = [T E

F(w) de.
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Then
_ Fu(®)
MO
The following are the basic properties of Fir(t).
a) (B F)pr(t) = —(t — 1) F(t — 1).
b) (a:BmF)M(t) = —tFM(t).

¢) (Plancherel’s identity) < F, F' >= fR Fur(t) Fpp(3) di.
€t=0

(2.19)

Verifying a) and b) is just computations, while c) follows from Plancherel’s
identity for the Fourier transform, when we make the substitution z = e,

Now F(z) € C*([0,+00)) implies that F,(t) is entire. It follows from

( 2.19) that Fis(¢) is then meromorphic with at most simple pole at negative
integers. If, in addition, F(z) vanishes near z = 0, Fy(¢) will then be
entire. This can be seen trivially from the definition. |

Take ¢(x) € C*([0,+0c0)) identically 1 on [1,+00) and 0 on [0,1/2],
and put p.(z) = ¢(z/e). Apply Plancherel’s identity to we(x)8"F5(z) to

obtain
| e@\okE @) de = [ (00t Fo)u (o O T (Bt
By the above discussion, (.85 Fg)m(t)(p 0% F5) (%) is entire, which allows
us to shift the line of integration Re? = 0 to any other such line. Hence
| e@IeiE @ de = [ (0 0k E)u (e B R a (D) dt.
0 Ret=t+s

Letting ¢ — 0 and hoting that for Ret > 0, (@82 F5)n(t) — (0 F5)n(2),

we deduce
|1 R = [ (@R (2.20)

B [Retzk+3(t =17t~k 12 (Fs)pe(t — b — 1)(Fs)u(s — k — 1) dt.
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To estimate (Fs)p (%), we use b) above, Thus for any large IV,
N
(E)ae ()] < C(L+ Je)™ Y |((28,)? Fy)ae(2)).
=0

By the invariance of zG under the action of z4,, (z8.)? F; obeys an estimate

of the type ( 2.16), which yields

(28 Fo)ua (t)] < cal®et=1g[1, 1w,

provided Ret > 1. Combining these two, we finally arrive at

(E)a(t)] < CaB* 21 4 1)l (2.21)

The claim follows from ( 2.18), ( 2.20), and ( 2.21) by taking N > k + 1.
Q.E.D.

Proof of Theorem 2.1. The first statement follows from 1), 2), 3).
The second statement is in 4). The smooth dependence of the resolvent on

the parameter is a consequence of Lemma 2.7, 2.8 and the following fact

(see Theorem A.7),
A([0, +00)) N A([0, +00)) = C=([0, +o0)).

Q.E.D.

2.2 Asymtotic behavior of spectrum

The proceding analysis of the resolvent of ti bears important implica-
tions for the spectrum of D, in the adiabatic limit. However, before one

can apply regular perturbation theory to obtain the asymptotic behavior
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of spec( D), one needs certain finiteness results. To this end we now take

a closer look at our operator by exploring the local geometry of the fibration.

In terms of the decomposition
L*(M, F) = Image P @ Image P,
where P = Py, p,, our operator can be written in the matrix form

1 A 4,
z A3 Ag

where (see ( A.14))
-1 L. pl T
Ay = 27 Dy + P DgP-+zP EP’
- T
Ay = PLDBP—l-:cPlZP,

Ay = D0+mP—1—1P.

Lemma 2.9 a) There exists a constant Ao > 0 such that spec (|4,]) is
contained in the half line [lm“,+oo). |

b) Az (consequently A}) is bounded on LE(M, F).

Proof. a) is essentially Proposition 4.41 in [BC2], see also the outline
of the proof for Theorem A.3.

b) First note that the commutator [Dy, Dg] =1 DyDp + f)BDf is a
first order differential operator which acts fiberwise (Cf. [p.51, BC2]). On
the other hand PL[Dy,Dy]P = P-DyDgP is fiberwisely of finite rank.
Therefore P+ Dy DpP = (P Dy P*)P*DpP is bounded on L*(M, F). But
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(P1DyP*4) is also bounded on L*(M, F). It follows that P-DgP, con-
sequently A, = PLDpP + zPl%P, is bounded. Q.E.D.

To have a first picture of spec(D,), we deform 2D, to an operator whose
spectrum we know much more about. For this purpose, the following lemma

is quite useful.

Lemma 2.10 If T(¢€) is an analytic family of self-adjoint operators on a
Hilbert space. Then its eigenvalue A(€) (which can be arranged to be analytic
in €) satisfies

N(e) = (T'(e)d(e)s p(c)) (2.22)
where ¢(€) 13 a normalized eigenvector associated with the eigenvalue A(e).

In particular,

(N ()] < 1T (e)-

For the proof, see [K, p.391].

Lemma 2.11 Consider the operalor

A, 0
0 As

Its eigenvalues A, are analytic in © for ¢ > 0. Furthermore for the positive

constant Ay of Lemma 2.9, either

|Az] > (2.23)

Ao
s
xr

or X, is analytic at = 0,

Ae = Ay + Ma+ -, with Ay € spec(Dy). (2.24)
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Moreover for each Ao there corresponds an eigenvalue 1Xe of %Dm 30 that
1 -
I —nl<c (2.25)
x

for a uniform constant C.

Proof. The eigenvalues of 7" are either cigenvalues of 4; or that of

As. Accordingly, we call them of type I or II. By the p.revious lemma, the
eigenvalues X_ of type I, i.e. of A; satisfy

el >

8 |2

On the other hand As = Dy + :CP%P is an entire famﬂy of self-adjoint
operators (in the sense of Kato). Therefore its eigenvalues X, (type IT)

depend analytically on & and we have ( 2.24). In this case, we also have

uniform remainder estimate

Az = Ay + 2C(z), (2.26)

- with |C(z)] < C uniformly. This can be shown by the argument below,
using the deformation Ag(A) = Do+ Az PL P and the fact that IPIP| <.
Now consider fhe deformation
A A4,
AA; 4,

T()) =

we have T(0) = T and T(1) = 1D,. For each fixed & > 0, T(X) is an
entire family of self-adjoint operators. Therefore its eigenvalues depend
analytically on X\. Thus for each Ap of T(0), there corresponds a i)\m of
T'(1). Moreover (see Lemma 2.10)

=A< [Iroym<e, (2.27)
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where the last inequality follows from b) of Lemma 2.9.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1 For z > 0, D, is what is called in [K] the
analytic family of type (B) of self-adjoint operators. The first statement
follows immediately. Thus the main point here is the study of the behavior

of A\, as ¢ — 0. Let us begin with

a) Regular Perturbation.
From Theorem 2.1, one knows that for A & spec(Dy),

(épw N (M, F) — LM, F)

is C*. It follows that for any A; € spec(Dy), there is €5 > 0 such that

Pa) = fn (D, — 31

28 J|A—A|=eq X
is well-defined and C* in z as a family of orthogonal projections. The

following lemma says that they are unitarily equivalent to each other.

Lemma 2.12 Let P and Q be (orthogonal) projections on a Hilbert space
with [P — Q| <1, then

W=[1—(P-Qy|7""[PQ+(1-P)(1- Q)
is well-defined and invertible (unitary ). Furthermore,
W =[(1-Q)(1 - P)+QP|[1 — (P — Q)73

W-1PW = Q.
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For the proof of this lemma see [p.72, RS].
Lemma 2.12 applied to the family P(z) produces a smooth family of

unitary operators U(z) such that
U(z) ' P(z)U(z) = P(0) (z small).

Moreover, U(a:)‘l(%Dm — M — &)~ 'U(z) is a C*™ family on Image P(0):

(:D=2—2A1—e)?
—

Image P(z) Image P(z)
T U(=) TU(z)
Image P(0) — Image P(0).

To apply regular purturbation theory one need to know that
dim(fmage P(0)) < +oo. This is established below.

b) Finiteness.
To finish the proof of our theorem, we note that, being a smooth family of
projections,

rank P(m) = rank P(0).

Further, by the discreteness of spec(D,) and functional analysis, for z > 0,
Pzy= & P, (2.28)

[+ A2—As]<eo
where Py, is the orthogonal projection onto the A;-eigenspace. In other
words, rank P(z) equals to the number of As (counted with multiplicity)
so that %,\m lies in an €y-ball around A;. For z small such Am_ could only

correspond to the eigenvalues A, of A3, which obeys

Ae = A+ XMz + -
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with XAy € spec(Dy). This, together with ( 2.27) and ( 2.26), implies that
rank P(z) is bounded from above by the number of eigenvalues of Dg lying
in a (2C + ¢)-ball around );, counted with multiplicity. There are only
finitely many of them, yielding

rank P(z) < +oo,

dim(Image P(0)) < -+oo.

Thus U(z) (2D, — A\, — &)7'U(z) is a smooth family on a finite di-
mensional vector space. By standard functional analysis 50 is its inverse
U(z) (2D, — M — &)U(z) = U(z)"(2D,)U(z) — A; — €. One can then
apply the following lemma (Cf. {Sn|, Lemma 5.2), showing the existence
of complete asymptotic expansions for those A, with i)\m lying near an

eigenvalue of D,

Lemma 2.13 Let C(z) be o family of symmetric matrices whose element
have complete asymptotic expansion in « as ¢ — 0. Then the eigenvalues

of C(z) have complete asymptotic expansions.

Proof. For any n, we can write C(z) = A,(z) + B,(z) where 4,(z)
is polynomial in w hence analytic and B,(z) = O(z™). Since all matrices
are symmetric, the difference of eigenvalues of C(z) and those of A,(z) is
O(z") and by standard theory (on regular perturbation, [K], [RS}) those of
A, are analytic. | | Q.E.D.

To show the alternative for the eigenvalues of D, we use ( 2.27). Thus
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if A, is of type I so that z|X.| > Ao, we have

Aol > 2| - O > 2 “ X,

provided z < 233.— On the other hand, if A, is of type II, we have
1 -
=] < Azl +C < Ay +2C
xr

by ( 2.26). In particular {2),} is uniformly bounded. They must converge
as ¢ — 0 to an eigenvalue of Dy. Otherwise, a subsequence of {1A;}
converges to A; € spec(Do). This implies that the resolvent ( %Dm — M)t
can not exist no matter how small z is, in contradiction to Theorem 2.1.

It remains to prove ( 1.2). Choose A ¢ spec(D,) real and consider

A]_ — A EA.g
S(€) = .
EA; A.3 — A
Set T(e) = S(€)~!. One has
d d.S € 0 Ag
279 = 50 B s = 19 T(e).
€ Ar 0
By straightforward calculation, one finds
T, I
T(G) = )
15 T
where
T1 = (A]_ — A EzAz(Ag — A) IA )_
T2 = ”'E(Al — A)—lAz(A;; —A— GZA;(.A.]_ — )\)_114.2)—1,

T3 = (A3 — A= EzA;(A]_ — A)——lAz)_l.
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From Lemma 2.9, we have
|T1]| < C=, ||T2]| £ Ca, |Ts| < C.

It follows then
d .
— < Cz.
|S7(e)) < ca
This, together with ( 2.22), implies [X'(¢)] < Cz. But A(1) = (2= — X))
and A(0) = (Xz'— A)~! where A, is the same as in Lemma 2.11. Thus

22 07— (R, = A < O,

€

or

de < o -
—_— < —_— — .
= = %ol < ColZ2 = A A - AL (2.29)

Since A,/z — Ay, we must have A, = A; + C(x)z, where |C(z)| < C.
Pluging in ( 2.29), and using the estimate ( 2.25) of Lemma 2.11, one
obtains

|A—m - Al] S C'm)\z.
€T

This is ( 1.2). Q.E.D.
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Chapter 3

The uniform asymptotic

expansion

In what follows we will also use the notation D, e~*”> to denote its own
kernel, taken with respect to the metric g. Therefore tr(D,e~tP%) could
mean either the integrated trace or the pointwise trace, depending on the

situation. We shall make it clear in the context.

Proposition 3.1 One has the following pointwise uniform asymptotic ex-

pansion (compare [BC2]),

N-1
tr(Dye™tP%) = 3 a;(1)(tx?)? + O((t2?)N/?), (3.1)

i=—n

where a;(t)’s are bounded for t > 1, and so is O().

Proof. We first localize the problem, i.e., we transplant the problem
to a trivial fibration whose base space is an Euclidean space. Then we

construct a parametrix by taking the product of the heat kernels on the
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base and along the fibre, and then applying Duhamel’s principle. The

asymptotic expansion comes from the standard heat expansion.

3.1 Localization

Fix a point y € B, let U = B, (y) in the metric gg for a fixed small number
ro 2 0. Denote by K,(t,y,2,9,2') be the kernel of D e *P= with respect
to the metric ¢ = 7*gp + gy.

Lemma 3.1 K,(t,y,2,y',2') decays ezponentially as ¢ — 0 for those y' &

U, i.e., there ezists positive constants C and C' such that
IKm(tay:z:y’:» z’)] < Cﬁi_pe_c'wzﬁmz. i (3.2)
One has the same bounds for the derivatives in y,z,¢', 2.

Proof. This follows essentially from the theorem of Cheeger-Gromov-
Taylor. Let K,(t,y,2,y',2') be the kernel of D e~tP= with respect to the

metric g., then
Ka:(tyy:zay’sz,) = w—pkw(tayazay',z')-
By ( 1.17)

Rty < Sy [ sy as
T2 o hgin Jder _
where » = min(ro/3,inj(M,g)), F(A) = Ae~tV ef Ag(X), and d, = the
distance in g, between (y, z) and (v, 2') > y,y'/z > y,4'/22 4 for © small.
Note that (see [CGT, p.28]) |

: . Clk) _1/5 _.
|78)(s)] = ,-g(k+1)(s)j < t(TE“i)a—zt 1/2g=s*/8t
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Therefore,

. C oo 2
K.(t,y,2,9,2") < —f 1122 8 gy
I ( ’y’ ’y 7 )l —_— ﬁ szz

< O 5 e
TV

This implies ( 3.2), The estimates for the derivatives are similar.

Let ry be small so that U is a trivializing neighborhood of 7. Consider

now the trivial fibration
Y — M =Y x R®P — RP,

g - f*gRP +9Y,

where gg» coincides with g in a neighborhood of 0 and is flat outside a
compact domain. gy coincides with gyv,p in a neighborhood of 0 and is
constant outside the compact domain. Correspondingly, we have D,. Let.
K.(t,y,2,9',2') be the kernel of D e~*P% with respect to g. The following

lemma says that instead of considering D, we can just as well consider D,.
Lemma 3.2 K, and K, differ by an ezponentially decaying terms,
le(t,y,z,y',‘z') - Kw(t:yazay’}z’n < Ctz e 0/,

Proof. Basicélly it is because that inside a small neighborhood the two

operators coincide while outside the neighborhood the heat kernels decay

exponentially. Let G, and G, be the kernels of e~tP= and e~tP=. Then

K,=D,G., K.=D.G,.
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Choose a smooth function ¢ = ¢(y,y') such that ¢(y,y') =1 wheny' € U/3
and ¢(y,y') = 0 when y’ ¢ U. Consider
Gw(t, y, z, y"? z”)¢(y’ y") - Gw(t, y’ z, y”’ Z")¢(y1 y”)
t g _
= /(; Bs f Gw('sv Y, z,y', z')Gz(t — 8 yla z': yﬂs z")ﬁb(ya y')¢>(y', y”) dy' dz' ds
t L
= “/(; /Gx(s,y,z,y',z')(Dm — Dm)Gm(t - s,y,2,y", z") X

oy, ¥ (v, y") dy’ d;' ds.

Since D, = D, in U, one has

Ko(t,9,2,9", 2" ) (v, y") — Koty 4, 2,4", 2"y, y")
== f; f DoGa(s,y, 2,y 2 (D — D.)Gal(t — 5,9, 2,9, ") X

| (v, y") ¢y, y") dy' d2' ds

== [ L (e~ DDl 3,208/, )Gult = 8,557, 2) X

d(y,y") d(y,y") dy' dz' ds.

Apply the previous estimates on the derivatives of G, and using the fact

that as an L? operator G, has norm bounded by 1, we find
| Ke(ty52,8",2")8(y,¥") — Ba(ty v, 2,4", 2")$(y,y")| < CtaPe='/%",
In particular one has
| Ks(ts v, 2,y", z.") — K.(t,y,2,y",2")| < Ctz—"eC'/=

when y,y" < ro/3. For those y,y" such that y,y"” > ro/3 each of K, and
K, are exponentially decaying by ( 3.2). Combining the two finishes the
proof. Q.E.D.
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3.2 A “rough” parametrix

By the above result we can replace the original fibration by the trivial one
Y —M=Y xR — R

We now construct a parametrix for our operator living on the trivial fibra-
tion. For the simplicity of notations we will suppress the “bar’s” below.

Recall that the tangent bundle of M splits as the Whitney sum of its

vértical space and its horizontal space by the connection,
T™M =TV ¢ TH,
and the horizontal lift gives an isomorphism
T,R? =S 10 (3.3)
for any z € 77 (y). Also we have by ( A.14),
., 9 T

where Dy is the family of the signature operators along the fibres and Dp
the signature operator on RP lifted via the isomorphism { A.16). Taking
the square of ( 3.4) we have

. . T . T T
D = Dy + 2[Dy, D] + @’ Dy + &*[Dy, 7] + =*[Dp, 7]+ =*( )"

Recall the basic fact that [Dy,Dp] is a first order differential operator
acting fibrewise. Thus we can construct the heat kernel F,(t,z,2,2'} of

D% + :r,;[Dy,DB]. Here the subseript indicates its dependence on the base
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variable. Let E(#,y,4') be the heat kernel of =03, originally living on R?,
and lifted to M via the horizontal lift. Consider

Km(ta Y.z, y', z') = Fy(ta &, z, z')E(tasz, Y, y')a

Gz(t,y,2,9,2") = (8/0t + DL K. (t,y,2,y, 7).
Note that here, and all throughout, we use y’s as the coordinates of the

base, R?, and z’s as the coordinates of the fibre, Y. One has

" Lemma 3.3 K, is a “rough” parametriz for 8/0t+ D2, i.e. it satisfies the

eslimate
[(8/8t + D) K,| < C(tz?) /2122

fort > 1.

Proof. We calculate,
G, = (8/0tF,)E + F,(8/8tE) + (D} + z{Dy, Dg))F,E + «*(DYF,)E
- . . T
+ 2} (DpF,)(DRE) + o' F(DBE) + 2" F,(RE) + 2*([Dy, 7]F,) B
. . T . T T
+ E(DYE) +2°(Ds, 1R)E + 2 F((Dp, )B) + 2 (7' F
- . . T
= &'(D}F,)E + "D F,)(D3E) + 2*F(RE) + *([Dy, 71F,)E
- . T - . T T
+ 2’F(DpE)+2*([Dp, 71F,)E + 2 Fy([Ds, 7] E) + «*(3 ) F, B3.5)
Here E}; etc. are first order differential operators acting horizontally, and
the curvature factor R comes from the use of the Lichnerowicz formula.

To estimate ( 3.5), we introduce the following notation. We use | |o to

denote the sup norm, and | |, ; the sup norm of all the derivatives up to i-th
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order. Here we make the convention that derivatives are taken with respect
to the space variables but not the time variable. Thus {Fy(2, ©, 2, 2')|co,iy iz is
denotes the sup norm of F' together with its derivatives with respect to ¢’
up to iy-th order, z up to i,-th order, 2’ up to ¢3-th order.

First we show that for ¢ > 1,
|Fy‘(tv Ly 2, z’)|0°.i1,iz,i:| < C(ih "':2,"':3)'

In fact, for ¢; = 0, this is the standard heat kernel estimate and follows from,
for example, [CGT]. For arbitrary 7, note that, since dim ker Dy is assumed
to be a (finite) constant and D2 +z[Dy, D] is a small perturbation of D%,
it follows that all its eigenvalues are bounded away from 0 by a positive
constant Ag except a finite number of them, which decay in #. Since the
number of those is dimker Dy, it follows from Theorem 1.1 and a minimax
argument that such eigenvalues must be decaying quadratically. Let P be
the projection on the space spanned by the eigenspaces corresponding to
such eigenvalues. P is a smoothing operator which depends smoothly also
on the base variable. Let F)(,z, z,2') denote the Schwartz kernel of PF, P.
F(t,z,2,2') obeys

|F3(t7‘c’z’z’)|m.i1.iz.ia < C(ila’:2>i3)' (3'6)

Put Dy — D% + z[Dy,Dp] — P. Then its eigenvalues are bounded away
from 0 by A¢. Therefore if F,(t,z,z,2') denotes the heat kernel of Dy, for
> 1,

|Fy(t’ Loy z’)|00,0,1‘.2,1‘.3 < G(?:g, ?:3)6_M° .
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Now by Duhamel’s principle,

9 - I . 0Dy _
%Fy(t,m,z,z') = —/l; LFy(s,m,z,z") 5;;’ F(t—s,z, 2", 2"} d2" dt.

To estimate this convolution, we consider the time intervals s < t/2 and
8 > /2 separately. If s <1/2, then £ — s > ¢/2. Thinking Fy(s,z,2,2") as
the kernel of an integral operator on L*(Y) whose norm is bounded by 1,

we see that by the elliptic estimate,

) 8Dy -

| fY E(s,z,z,2" 8yY B, (t—s,z,2",2") d2"c0,0,i2i3
n s 9Py &

S HQﬁi_D_}e,z_ayY Fy(t — 8, :I}, Z", z')“LZ(Y)

< C|Ey(t — s,2,2", 2" ) 00,200 42255 < C(iz, is)e™.

On the other hand, if s > /2, note that

F,(t—s)d" = L(aiy Y Fy(s)Fy(t — 8) dz".

_ 0Dy

7 L
[RIOES
Thus letting F,(t — s,x, 2", 2') play the role of Fy(s,,z,2"), we obtain the

same estimate. Hence

a 7 - . -
|%Fy(t!wnza z’)|oo,0,ig,z'3 < C('Lz,’t‘,a)ie ﬂo.

Or

|F§(ts L, 2, z')ho,l,iz.is < C(izy ?:3)-

Proceed inductively, one proves that
]Fy'(t’ Ty 2, z')lw»il,izyis < C("ils ?:21 1’3)

Combined with ( 3.6), this gives the estimate we want.




73

Secondly, for 2% small, note the standard heat kernel estimate, which

follows from the finite propagation speed technique [CGT],
[E(t2?, 9,4 Y coyinia < Clin,ia)(ta”) /3127012,
From these discussions we see by ( 3.5)
1Go| < C(t2?)2 252 fort> 1. (3.7)

Q.E.D.

Denote

¢

G #G, = —f [Gz(s,y, z,y, 2)GL(t — 8,9, 2, y", 2") dy' d2' ds.

0
In general denote
GT = Gt #G, .
R L A
m+1

A version of Duhamel’s principle says

m—1
e7Pr = 3 (1) GLHK, + G e R, (3.8)
+=0

To apply this to get the asymptotic expa;nsion, we need estimates on the

m-fold convolutions GT*.
Lemma 3.4 G7' improves with m,
|G™| < C(m)(ta?)~"/2+m-1)/22 (3.9)

Proof. Let us begin with G,#G;. We divide the integral over [0,1]
into two, one over [0,1/2] and the other [t/2,1],

£/2
Gm#Gm = “‘/ me(s,y,z,y',z')Gw(t - S)y'rz’) y": z") dy’ dz' ds
0
\ .
_ // /Gm(s,y, 2,9, 2)G(t — 5,9y, 2, y", 2" ) dy d' ds
t/2
def

= I+IL
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By ( 3.5) and integration by parts we can rewrite I as
tfz ! [ ! t ! " M ! !
I:_-/o me(s,y,z,y,z)Gw(t—-s,y,z,y ,2") dy' dz' ds, (3.10)
where by the same consideration as in showing ( 3.7)
|G| < C(ta?) /211,

As an integral operator on the L? space the norm of K, is bounded by 1.
Therefore,

Il < t/2|GL(t s, 4", 2")|2

< C(ta?)™*32,
The estimate for II is similar. In this way one obtains
|Go#£Ga| < C(t2?) /2,

In estimating the m-fold convolution one divides the time interval into m
subintervals, on each of them one of the m-tuplet #, —#,,-+-, 4.5 — 1,y is
greater than or equal to ¢/m. One lets the kernels corresponding to the
other time parameters play the role of K (after integration by parts), and
proceeds as for G, #G,. ' Q.ED.

Now by the standard heat asymptotic expansion and the abové estimate

we arrive at the uniform asymptotic expansion as claimed.
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Chapter 4
Hodge-Leray théory

In Chapter 1, We. proved the adiabatic limit formula ( .2) with the global
contribution expressed in terms of the very small eigenvalues. Here, con-
fining ourself to signature operators, we identify this global contribution
with a topological invariant constructed from the Leray spectral sequence
of ‘the fibration. In fact one can recover the Leray spectral sequence from
the eigenspaces associated to these eigenvalues. This result, termed the
Hodge-Leray theory.for the apparent analogy with the Hodge theory, is
partly motivated by MM], where they relate the Leray spectral sequence

to the asymptotic solutions.

Included in Section 4.1 is a brief review of signature operators and their
relation to Dirac operators. Section 4.2 contains our main results in this
chapter, Hodge-Leray theorem, which states that the space of eigenforms
corresponding to the cigenvalues which decay polynomially of degree at

least r is isomorphic to the E, term of the Leray spectral sequence, and the
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adiabatic imit formula of n-invariant for signature operator. First we recall
the general theory of spectral sequence. Then the space of eigenforms corre-
sponding to asymptotically the same eigenvalues is considered and smooth
parameter-depending basis constructed by the regular perturbation theory
along with Theorem 2.1. From these we construct the spaces used in the
Hodge-Leray theorem. The Hodge-Leray theorem is shown by introducing
an auxiliary complex which incorlpora,tes the asymptotic properties. Sec-
tion 4.3 is devoted to the applications of our adiabatic limit formula. First
we introduce the non-multiplicativity of signature and we interpret the the
works of Chern-Hirzebruch-Serre and Atiyah-Singer in this context. Then
we give intrinsic characterizations by virtue of Bismut-Cheeger’s Families
Index Theorem for manifolds with boundary and the adiabatic limit for-
mula of n-invariant. In the last section we will discuss the formal Hodge
decompsition on the space of Laurent series, which is used in Section 2.1

and the proof of the Hodge-Leray Theorem.

4.1 Signature operator

Let M™ be a compact Riemannian manifold. Consider the bundle of differ-

ential forms A*M = A*T*M. The exterior derivative d acts on it:
d: C*(A*M) — C®(A*M).

Let & be the formal adjoint of d, then d + § is a first order, self-adjoint,
elliptic differential operator on A*M such that

(d+ 5)2 - A:
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the Hodge Laplacian. The well-known Hodge.theorem [dR] is

Theorem 4.1 (Hodge) The kernel of A can be identified with H*(M),
the cohomology of M. In fact, in every de Rham class, there is a unigue

harmonic representative.

Now assume that M is orientable. The orientation together with the
metric gives an (oriented) volume form dvol on M. The Hodge * operator

is defined such that
a A xf = (a,B)dvol

holds for e, 8 € A*M, where {«,3) is the induced metric on A*M. One
checks that §|p» = (—=1)"T"+1 % dx. Further, x®|4» = (—1)""*2,
Assume in addition that n is even. Then 7|s» 4f % defines an involu-

tion on A*M, which therefore gives rise to a splitting
A'M =A%, QAL
Since d + é actually anti-commutes with 7, in terms of this splitting,

0 A
d+6= ,
A0

where
A CW(A:_) — C®(A")

is called the signature operator on the even dimensional manifold M. The
terminology comes from the basic fact [AS] that the index of A gives the

signature of M.
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If dimM = n is odd, such decomposition no longer exists. However,

one sets 7|p» = 21" 1/2x and
A=7(d+8): C*(A*M) — C*(A*M).

An important fact is that in this case A is the tangential part of the signa-
ture operator on an (7 4 1)-dimensional manifold which bounds M. To be
more precise, let N™* be a compact Riemannian manifold with 9N = M

and assume that the metric on N is of product type near the boundary.

Then
Ay = o(0u + Anm),

where o is a bundle isomorphism, 9, is the differentiation along the normal
direction of the boundary, and the equality is to be interpreted with the
identification (Cf. [APS])

L(N) = AT (M),
The Atiyah-Patodi-Singer theorem in this case yields

N
sign(N) = [ £(5-) ~ n(An). (4.1)

Signature operators are Dirac type operators (at least locally so). In

fact, one has the bundle isomorphisms (Cf. [Gi]},

MM =2 F(M)® F(M), ALM= Fy(M)® F(M).
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Under these isomorphisms,

= D, Q@ F(M) ifniseven,or
A = DQF(M xR) ifnisodd.

Suppose now that M is an oriented odd dimensional manifold which is
fibered by { A.9). Here we assume the base B, and the vertical bundle TV M
are both oriented. (In this case we say the ﬁbratién is oriented.) By the
Hodge theorem, it is easy to see that all the assumptions in Theorem 0.1

are satisfied by A,. Therefore the following is an immediate consequence

of Theorem 0.1.

Corollary 4.1 The adiabatic limit of the n-invariant of signature operator

always exists. Moreover,

RB
limn(A4,) = Zf L{(=—) N7+ n(Ap @ ker Ay) + lim Z $gnAg.
or—0 B 2 a—0 Ao a0

For the rest of this chaptér, we will develop a tool to identify the last

term here with a topological invariant.

4.2 Hodge-Leray theory of the very small
eigenvalues

In this section we shall prove Theorem 0.2. We will use Serre’s construction
of the Leray spectral sequence. To relate our space F, to the E,-term of the

Leray spectral sequence, we introduce another complex which incorporates
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the asymptotic properties in its filtration. We first recall the general theory
of spectral sequence.

Let (C,d) be a filtered differential complex with filtration {F?(C)},ez,
then we can construct differential complexes ( E;, d;) as follows.

First, set
ZP = FP(CYNd(FPH(C)), —-oo<p< oo, 0<1i< o0,

Df = FP(C)N d(F”_"(C’)), —00 < p<oo, 8<14 < 00,
Z% = FP(C)Nkerd, D¥ = F?(C)nd(C).

Clearly
D%,’CD{’C---cDgocZ;c---chCZP.

Define
B = Z#/(ZI% + DY), 1<i< oo,

E§ = Zg/FP*1(C) + d(FP*(C)) = FP(C)/F*T(C).

The differential d naturally induces a linear map & : E? — E?** such that
& o df =0,

Let E; = @,E7, d; = ®,d;. The following proposition is a basic fact of
spectral sequence [GHV]. | |

Proposition 4.1 The projection Z! — E! restricts to Z%,, to give a
surjective linear map Z7,, ~— HP(E;, d;) which in turn induces an isomon-
phism |

E?., =5 HP(E;, d;).

3
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In general, a sequence of differential complexes ( E;, d;) is called a spectral
sequence if E;; = H(E;, d;), and E; is usually refered as the E;-term of
the spectral sequence. Thus a filtered differential complex gives rise to a
spectral sequence.

Later we will need to compare several spectral sequences. For that

purpose the following basic principle of comparison will be quite useful

[GHV].

Proposition 4.2 Suppose (C,d) and (C',d') are two filtered complezes and
there exists a filtration preserving homomerphism C ~— C' which also in-
tertwines the differentials. If the homomorphism induces an isomorphism
between the E. -terms of the two spectral sequences, then it induces isomor-

phisms between all E,-terms for r > ry.

We now recall Serre’s filtration. Consider the fibration Y — M = B
and basic complex (C*(A*M),d). Serre’s filtration is defined as follows

W e Ff =<« w'(p),fl(p) A Ar(p) >=0

whenever [ — ¢ + 1 of the tangent vectors ;(p) are virtical. |

In our case, we are given a splitting TM = TEM @ T"M =2 TBa TY
thus T*M = T*B @ (TY)" and A*M = A*B ® A'Y

Formally, we can use a(y, 2) dy® A dz? (y local coordinates of B, z local

coordinates of Y) to indicate such a splitting. Then Serre’s filtration is just
F = {a(y,2) dy® A dz° : |} > i}

It is well-known that Serre’s filtration gives rise to the Leray spectral se-

quence of the fibration, (E;,d;).
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Consider now complex (£(X,Y A*),d). It comes equipped with a natural
filiration F* = {¥;5;a;27}. By the general theory quoted above, we can
construct spectral sequence (£;,d;) = (@,E7,®,d?). Note that z? : F* &
Fit4 induces E? = EPYY. Further the diagram

~ ar - -
EF 2 EPT

let L=t

- d'ij-l- q - .
Ef+q i Ef+q+=

commutes, ¢?d? = df™z9. This implies that E; = E? @ £(z) (with the
natural gradation induced by that of £(z)) and & = 2*d? @ 1.

Explicit calculation showes

Ey = C*(A*B @ C°(A*Z)) ® L(z),

By 2 C®(A°B @ H'(2)) ® £(=),
iy = BY (B, H'(7)) ® £(=).

By the finite dimensionality of E,, this spectral sequence must degen-
erate after finite steps.
Remark These quotient modules (£(z)-modules) can actually be viewed

as vector spaces.

To introduce the spaces considered in the Hodge-Leray theorem {The-
orem 0.2) we proceed to construct nice bases for certain spaces. These
bases will also be used in proving the Hodge-Leray theorem. Let us first

introduce some notations.
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Let A, denote k-tuplets of real numbers
A = {20y A1y ooy Apen}
and similarly we use A to denote inﬁnite sequence of real numbers
A= {2, A, )

Also, let A be a function of # which has complete asymptotic expansion
at @ = 0. When we say A, € A, we mean that the first k coefficients in the

asymptotic expansion of ], at ¢ = 0 is prescribed by A,
A;N Ag-l—Al.'B-[— "'*{“Ak_lﬂ:k_l‘{-"'.

Similarly A, € A means all the coeflicients are prescribed by A. Now for
the eigenva.lues Az of A, set A = A,/ and define

Gn= P E(),  Gi= D E(), (4.2)

ALEhs MeA

where E().) is the eigenspace associated to A;. Thus G, is the direct sum
of the eigenspaces corresponding to the eigenvalues whose first coefficient in
the asymptotic expansion is 0 and whose next k coefficients aré prescribed
by Ak, and G, is the direct sum of the eigenspaces corresponding to the
eigenva.lués whose first coeffient is 0 and whose other coefficients are all

prescribed by A. Obviously
GA C GA,, C GAk_1'

Proposition 4.3 Let A, be an eigenvalue owar such that Ay ~ doz+ A2+
--- and let A be the infinite sequence given by the coefficients of A,. Then
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Gy s a family of finite dimensional vector space which depends smoothly
on z down to x = 0. That 13, there is an orthonormal basis for G, which

18 smooth in = down to z = 0.

Proof. Same analysis as in the proof of Theorem 1.1 reduces it to the

finite dimensional case. Therefore it suffices to prove the following lemma

Lemma 4.1 IfT(=) is a finite dimensional family of self-adjoint operators
which depends smoothly on z. Then Gy, = @y cp E(A:) depends smoothly
onz for allk=1,2,...,00. (As =A) '

Proof. Note the slight modification in the definition of G A.r The idea is
to show by induction that the orthogonal projection @.(z) on Gy, depends
smoothly on @. Then by Lemma 2.12 we have a smooth family of unitary

operators Vi(z) such that

Vi(2) " Qr(2)Vi(z) = Q(0).

Therefore the desired basis can be gotten by taking the Vi(x)-image of an
orthonormal basis for Image Q4 (0).

By the discreteness of spec(7'(0)) there exists an € > 0 such that Xg is
the only point of spec(T'(0)) in |A — Xo| < €. By the first resolvent formula
and the smoothness of T'(z) |
| N
2mi

Q@) =5 [ (T@) -7

is well defined for small = and is smooth. One easily sees that Q(z) = Qy(=).

Now assume that @k—1(z) is smooth, then the family

S(z) = Vi(z) ' T(z)Vi()
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is smooth on Image Q,.,(0) and the eigenvalues of S{z) are the eigenvalues
of T(z) having the first £ — 1 coefficients of their asymptotic expansions
prescribed by A;_;. Set

R(z) = S(z) — (Ao + Mz + 00 + A1) f

(Bk )

This is a smooth family of self-adjoint operators and as above one finds
1

2

Qu(z) = flA_mm(R(m) _2)YdA

This showes that Q,(«) is also smooth and the induction is completed.
Since we are in a finite dimensional space the induction process must

stop in finite steps, proving it for k = co

Now we can proceed to prove the Hodge-Leray theorem of the very small

eigenvalues. Consider A} = {0,0,...,0}, r > 2. Then Gy is the direct
e’

r—1
sum of the eigenspaces associated to eigenvalues which decay at least like

z". From the previous discussion one knows that G e is a smooth family of

finite dimensional vector spaces, thus it makes sense to consider
.E,. = lim GAB
c—0 T
for r > 2.

Theorem 4.2 (Hodge-Leray theorem) (E,,z7"d) forms a speciral se-
quence which is isomorphic to the Leray spectral sequence of the fibration.

Moreover, the * map induced by the metric g, gives rise to the duality map.

Proof. We will prove E, = E. by showing that both of them are

isomorphic to E‘f .
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a) E, = E® for all » > 0,

Consider the natural inclusion:
C=(A*M) — L’.(X,v A*),
a(y, z) dy* dz# — zl*a(y, z)(%)“ dz?.

This is clearly filtration preserving. Thus it induces homomorphisms ? :

E'f — E',’,’ Define

p=0 p=0
ie. 1, =37 oz7P® (p=dim B).
We show that z, is a homomorphism which preserves the differentials.
In fact we know that
B &, g
I L&t

Er il y  Fptr
* r

commutes. Hence #2¥"dP = d2:2 and z9d? = di*?2%. Therefore

~-p—t p+r Ip _ ,—p—r Jo.p . JO..-p.P
PR = TP AN = d 2Pk

This shows
B 5 E
J,%,. lzr
B L g

commutes, i.e. 1,d = da,.
Furthermore, the explicit calculation (Cf. p. 81) showes that 1, induces

isomorphism for r < 2, therefore it induces isomorphisms on all r.
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b) E, 2 E?, for r > 2.
Recall that the scaled metric g, induces a bilinear form
L(XY A*) x L(X,Y A*) =2 L(z)

and < d-,- >=< -,§- >. This is the same as saying that § is the adjoint
of d with respect to g, for every z. (Here of course we are suppressing the

z-dependence of §.)
Our operator A, is, up to sign, *(d + §). Therefore if Ayp. = Az,
theﬁ
ldpall® + 1802 1* = [Xa|*[l0all?. - (43)
For simplicity we will use the shorthand notation z ~ z" for z €
Fr(£(X,Y A%)). One has (CL. ( 4.3))
(d+é)z~a" <= dz~2", §z~z". (4.4)

Basic to our proofis the observation that (E,, z™"d) does form a spectral
sequence, though it is not clear if it comes from a filtered complex. To see
this, let us first show that 2="d maps FE, into E,. In fact, by the definition
of E, and ( 4.3), ( 4.4), it suffices to show that d leaves each eigenspaces
invariant. This can be seen in the following way. Clearly d maps the 0-
eigenspace to 0 (by, say, { 4.3)). Now let A, # 0 be an eigenvalue of A, and

v, a corresponding eigenform, A p. = A .. But
A, =txdLtdx*.
Thus

s = *d(Epa/Ne)+ dx (L. /Ae)
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Since *dy, (d % 9.) is coexact (exact) and A, takes coexact (exact) forms

to coexact (exact) forms, one must have

Am(*d¢m) - Am(*d¢m)) (4°5)
Al l) = Aa(dx ).
That is, the eigenspace corresponding to a non-zero eigenvalue splits into

the direct sum of coexact and exact eigenspaces. Obviously d takes exact

forms to zero. And ( 4.6) is the same as
*d(xdipy) = Ay(*dip,).
Taking d of this equation one finds
d* d(xdipy) = Apd(xdip,), or d*(dxdip,) = A(d* dib,).

This proves thie invariance of the \,-eigenspace under d.
To see E,yy = H(E,,z "d), note that by the finite dimensional analog
of the Hodge theory

H(E,,2™"d) = ker(z~"d) 1 ker(2""6).

Together with ( 4.3), this implies A, = O(z"*!) and the converse is easier.
Let h, = dim E;, h = dim E,, = dim H*(M). By Proposition 4.3 we
can choose

Py ey PRy Phy (4.6)

such that ¢i,..., s, form a smooth basis for F,, all . From ( 4.4) it is

clear that ( 4.6) induces a linear map

E, — E°,
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It is a homomorphism between the two differential complex because the two
differentials are formally identical. We will show that it is an isomorphism
by showing that it is an isomorphism for » = 2.

1-1: If 2z € E, s4. 2z = 0in E°, then z = 25 + dz; with 2z, ~ 2 and
dzg ~ 2", z; ~ 2"t1, dz; ~ 20, But then édz; = 6(z ~ z5) ~ z, therefore
dz; ~ = and thus z ~ z. i.e. z=01in F,.

onto : Let z € K2, then z ~ 2° dz ~ z?. Consider 2’ = z — T2, <
@i,2 > ¢i, 2 LE, and d2 ~ z?, By the formal Hodge decomposition
(Lemma 2.5) 2’ = (d + 8)z1, 21 ~ 2~ 1. Now d2' = dbzy ~ 2 = 62, ~ 2,
ie. 8§z € Z]. Also dz; € D?. Hence z' = 0 in EB. This show that the map
ig onto for » = 2. Q.E.D.

4.3 Adiabatic limit of n-invariant and non-
multiplicativity of signature

In Chapter 1, we proved ( .2), the adiabatic limit formula. There the global
contribution is found to be ¥y, 1,—0limsgnA,. In the light of the Hodge-
Leray theorem proved above, it should be possible to characterize this term
topologically. This is indeed the case here. To have a topological counter-
part of this term, let us first discuss some algebraic aspects of the Leray

spectral sequence.

Let Y — M™ — B? be a fibration of closed manifolds. Consider the
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Leray spectral sequence (E,,d,). One has
E; = H'(B,H"Y)), Ew = H*(M).

As a matter of fact (E,,d.) has fine algebraic structures as shown in the

following theorem [F].
Theorem 4.3 ) There is o bigrading on E,: E, = @, ; E}’, and
d, : E:’j —y Eibnd-r4l

Set B* = @;y;-4 E. Thus d, : E¥ — EFL,
2) For allr > 2, the group E, may be endowed with a natural multiplicative

structure, i.e., there is ¢ mapping

Ei»j ® E',’f’I , E::+k,j+l,
a®b — a-b,

which defines the associative and distributive multiplication consistent with

the action of differentials,
d(a-b) = da-b-+(—~1)*a.db, if a € EF.

The multiplication in E, induces that in E. ;. Moreover, the multiplication

in By and E, coincides with their natural ring structures.

Now assume that our fibration is oriented in the sense that both B and
the vertical bundle TV M are oriented. The orientation of TV gives a
trivialization of the flat line bundle H*~?(Y) on B (note that n—p = dimY).

Together with the orientation of B one finds

" = HP(B,H"?(Y)) = H?(B) ~R.
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Thus the multiplicative structure on FE, gives rise to a Poincaré pairing
EF@ Er~* R,

i.e., sy is a'so called Poincaré ring with differentiation, defined as follows
[CHS].

A graded ring 4 = @, A4; is called a Poincaré ring if dim A, = 1 and
the multiplication is graded in the sense that

gy =(~-1yz if =z€A,ye A;.
Further the bilinear pairing
ARA,;— A, =R

is a Poincaré pairing (i.e. nondegenerate).
A differentiation in a Poincaré ring is a differentiation d of degree +1

such that dA4,,_; = 0 and d is also an anti-derivation,
d(zy) = (dz)y + (—1)'z(dy), if z € A;

It is proved in [CHS] that the derived ring of a Poincaré ring with differ-
entiation is again a Poincaré ring. Thus all E, for r > 2 are Poincaré rings,
and if we denote £; the natural base for E} induced by the orientations,
then it induces a natural base £, for each E (r > 2) (Cf. [CHS]). Now

consider the bilinear pairing:

T ! E®E —R

(e @ %) =< ¢ - dp, & >E< 0, dp >



92
It is easy to verify that
<y detp >= (1) eortdesdt) <y d o >

In our situation n = 4m — 1. This implies that 7, restricted to E*™! is
symmetric. By viewing 7, as a symmetric matrix one can take its signature,

sign1,. Now define

T= Z $tgn Tr,
r>2

This is clearly a topological invariant.

Theorem 4.4 (Adiabatic limit formula) We have the equality

1
T = — E lim sgnA,.
2 Ao,)lz(}m_’o

Consequently the following adiabatic limit formula holds,

R? |
lim 7(A.) = 2/3[:(%) A7+ n(Ap ® Ker Ay) + 27.

_Proof. It suffices to to show the first equality (see Corollary 4.1). To
do this, let us consider

1) Partial-symmetry of eigenvalues of .Am.

It is enough to consider A = xd £ dx : Q(M) — Q(M). Since * :
Qever — 0°4 is an isomorphism, A is just two copies of its restriction to

Q°¥4, By Hodge decomposition
Qodd — Hodd @ dQeven ® SQeven

Observe that the operator A annihilates H°¥, coincides up to sign with dx

on dQ¥***", and with xd on §Q°"*",
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Now dsk : dQ% — dO¥%-2-2 xd : §Q% — §Q* % and 2p # 4m —

2p — 2 2p == 4m ~ 2p iff p =m. Hence we can decompose
A= AO D Al o Az:

where A is the zero operator on H*™ and A, = *d on §°™ and A, is an

operator of the form
0T

™ 0
therefore having symmetric spectrum.

This shows that
1.. e
¥l = ¥l
Ag,A1=0 Ag,A1=0

where ' indicates that the summation is over all A which are the eigen-

values of *d on (*™~?
2) Since E; = H*(B,H*(Y)), it inherits an inner product (-,-), which

then induces an inner product on each E,. Define

<P, dr'llb >= ((101*rdr§0))

then as symmetric mappings the eigenvalues of 7, are the same as those of

*,d.. By Theorem 0.2,
d, ~z77d, *p K,

We see immediately that the first statement of Theorem 4.4 holds. The
adiabatic limit formula follows then from ( .2). Q.E.D.
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As an interesting application we now give intrinsic characterizations of
the non-multiplicativity of signature for manifolds with boundary.

Chern-Hirzebruch-Serre first studied the multiplicative behavior of sig-
nature for closed manifolds [CHS]. They showed that for a fibration Z —

N™ — B, we have the multiplicativity
signN = signB - signZ (4.7)

provided Z, B are closed manifolds and m ( B) acts trivially on H*(Z). Later
Atiyah [A] gave an example showing that this naive sense of multiplica,tivity
does not hold in general. However, he observed that, by the Hirzebruch
signature theorem and Atiyah-Singer Family Index Theorem [AS], one does

have a generalized multiplicativity,
signN = /B L(B) A ch(Sign?), (4.8)

where £(B) is a characteristic class which may substitute for the Hirzebruch
L-genus, Sign? is the signature bundle of Z over B and ch(Sign?) is its
Chern character. When m;(B) acts trivially on H*(Z), this reduces to { 4.7).
See Introduction for a purely topological formulation of this generalized
multiplicativity.

This generalized multiplicativity has a Leray spectral sequence inter-

pretation. Consider the pairing
E: ® E:t_i - R)
YRY — <p- P, & >,

where E, is the Leray spectral sequence of the fibration and ¢, is defined

in the same way as before. When n = 4k, the above pairing restricts to
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a symmetric pairing on E2*, whose signature will be denoted by ¢,. Then
( 4.8) is equivalent to

02 = O

This follows from [CHS] and the signature theorem for twisted coefficients
[L}, [AS].

However, for manifolds with boundary, the generalized multiplicativity
fails, as can be seen in the following example.

Example. (Disk bundles) Let VZ — B? be an oriented 2-plane bundle
over an oriented surface. Denote ® the Thom class and x(V') the Euler
number of V. Consider its disk bundle D* — D(V) — B? with its sphere
bundle S(V'). By the Thom isomorphism

H*™*(B) =5 H*(D(V),5(V)),

one easily finds
stgn(D(V)) = sgnx(V).
But sign(B) = sign(D?) = 0. In particular, if V is the Hopf bundle,
sign(D(V)) =1 0. '
On the other hand, note that by the extended Novikov additivity [BC4]
and ( 4.8), the difference, called the non-multiplicativity of signature (cém—

pare also Introduction),
dif 1 .
A= f L{B) A ch(Sign?) — signN
B

depends only on the associated boundary fibration ¥ — M — B, where
Y = 0Z,M = ON. We assume here B is closed, and we will assume below

that dim B is even.
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a symmetric pairing on E2*, whose signature will be denoted by o,. Then

( 4.8) is equivalent to

T3 = Tuge

This follows from [CHS] and the signature theorem for twisted coefficients
L), [AS). |

However, for manifolds with boundary, the generalized multiplicativity
fails, as can be seen in the following example.

Example. (Disk bundles) Let V2 — B? be an oriented 2-plane bundle
over an oriented surface. Denote ® the Thom class and x(V) the Euler
number of V. Consider its disk bundle D> — D(V) — B? with its sphere
bundle (V). By the Thom isomorphism

H*}(B) =% H'(D(V), S(V)),

one easily finds
stgn(D(V)) = sgnx(V).
But sign(B) = sign(D?) = 0. In particular, if V is the Hopf bundle,
sign(D(V)) =1 £0.
On the other hand, note that by the extended Novikov additivity [BC4]
and ( 4.8), the difference, called the non-multiplicativity of signature (com-

pare also Introduction),
A | L(B) A ch(Sign”) — signN

depen&s only on the associated boundary fibration Y — M — B, where
Y = 8Z,M = ON. We assume here B is closed, and we will assume below

that dim B is even.
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Theorem 4.5 The topological invariant T, which is defined from the closed
fibrationY — M — B, intrinsically characterize the non-multiplicativity
of signature. That is, whenever there exists another fibration of manifolds

with boundary 7 — N™ — B such that 8Z =Y, ON = M, then 7 = A.

Proof. We start with ( 4.1), Atiyah-Patodi-Singer’s signature formula
for manifold with boundary, and take the adiabatic limit of both sides. The
lefthand side remains since signature is a topological invariant. The first

term on the righthand side yields, by Lemma A.3,

RB
L -
/N (211'2) L:( 27t /1;3 Zm) (f ))’
while the second term is the adiabatic limit formula (Theorem 4.4). There-
fore we obtain

sign(N) = / 271'1,) A (./ (27m ) - f (271'2 A - l (4p @ ker Ay)

2
- /1.3 Zm (f E(Zm =M=

where the n-term drops out because dim B is even. On the other hand,

Bismut-Cheeger’s Families Index Theorem states that f C(f—:;) —fis a
z

representative for the chern character of the signature bundle Sign?. Com-

bining these two finishes the proof. Q.E.D.

Thus we characterize the non-multiplicativity of signature intrinsically
in terms of the topological data of the boundary fibration. One can also
give an intrinsic characterization in terms of the analytical data.

Theorem 0.4' Let

Vo= limit of space of A,-harmonic forms on M in the adiabatic limit,
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Vi =limit of space of A;-eigenforms such that A, > 0 (respectively < 0) and
Az s O(z?).

Then Vy @V_® Vo = H*(B, H(Y)), and 7' = dimV, —dim V_ = 7. There-
fore 7' = A whenever the fibration Y — M — B bounds Z — X — B.

Remark One can also study the non-multiplicativity in the “dual” case,
i.e. for fibration Z — N — B where the fibre Z is closed but the base B has
boundary. Theorem 4.5 holds in this case as well. Instead of the Families
Index Theorem for manifolds with boundary, a transgression formula for #

is used.

4.4 Formal Hodge decomposition and asymp-
totic analysis

In this section, we discuss the analysis of formal asymptotic series and
prove the formal Hodge decomposition (Lemma 2.5). Consider the manifold
X = [0,00) x M with its boundary My = {z = 0} and the “compressed
form bundle” YA* (see [MM] and Section 2.1). Formally a smooth sec-tion

of VA* is a linear combination of the form
d
a(z,y,z)dz* A (—y)ﬁ
]

with a(z,y,2) a smooth function.
The metric g, gives rise to a well-defined non-degenerate inner product

< +,- > on YA* which in turn gives us a Hodge * operator

* 2 VA* Y AN (4.9)
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This is nothing but a uniform construction of the * operators on M for the
parameter z down to = = 0.

Since d € Diﬁ'%,(X ;¥ A*) its formal adjoint § with respect to < -, > is
also a V-differential operator and A, = *(d + §) up to a sign.The operator
A, can be restricted to C®(M,,Y A*), the resulting operator I(A,), called
the indicial operator of 4, (Cf. [MM]), is just Ay.

I{ Az )uo = (Aut) o=,

where v € C®(X,Y A*) such that u|,_q = u,.

Consider now A, — A, where ), is a smooth function of z and vanishes
at £ = 0. Thus ésymptotica,lly As = 2A1+2? Xy +. -+ Then I(A,—);) = Ay
again and its kernel is the fiber harmonic forms Y E;, which can be viewed
as a smooth bundle on the base B. Recall that A, = PA_P is the signature

operator on B coupled to this bundle.
Let

EZAI = {'U € COO(MQ,V A*), v E Coo(B,V El) and (AQ —_ )\1)1) = 0}.
Clearly E}* is finite dimensional.

Lemma 4.2 The space B3 C O%(My,Y A*) consists precisely of the bound-
ary values of Y A*-forms which are “\,-harmonic” up to second order error:
By = {ug € C®(M,,Y A*); Fu e C=(X,Y AY)
with wlar, = up and (A, — A)u € 22C°(X,Y AM)].
Proof. We mimick the proof of (49) in [MM]. Essentially by definition

the space YE; is characterized as the boundary values of harmonic YA*-

forms modulo first order error. Thus for any « with boundary value uq €V
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E;, we must have A,uly, = 0. Thus
Agu =zv, v € C®(X,Y A*) and 4ou = P(v).

Hence

(4y ~ A)u = (v — Mu) + 2?w, w € C°(X,Y A%).

By the Hodge Theorem on the fibre, we can choose u; € C=(X,Y A*) such

that restricted to boundary,
v — Pv = Ayu; = (4, — A)uq + zul.

‘Thgrefore,
(Az — Aa)(w — muy) = 2(Ao — A ug + ziwl.

_Therefore if uy € Eé‘, u — zu; is Az-harmonic up to second order er-
ror. Conversely, if v € C®°(X,Y A*), u|yp, = uo €¥ Fy, and (A, — A u €
z2C*°(X,Y A*). Then

z(v — Au) € 22C7(X,Y A*),

(v —Mu)lay, =0, or |y, € Ei.

From above then
(Am — )\a,)'llf = fC(A[) — /\1)'“.0 + :BZ'UJ;,

hence (Ag — A)ug = 0. Q.E.D,
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To show Lemma 2.5 consider the space of Laurent series introduced in
Section 2.1, £{X,Y A*). This is a module over the formal Laurent series
ring £ = £(z). By choosing an extension

C®(M,,Y A*) — C=(X,Y A*) — L(X,Y A*),

we can identify L(z) - E} as a subspace of L(X,Y A*). This subspace is
finite dimensional over £(z) so has a basis e;,...,e;. the inner product

<,>¢ gives a bilinear form
LX)V A*) x LX)V AY) — L(z).

Using this to orthonormalize the basis, we obtain a projection operator

onto a complement to £(z) ¥ E;:

my s L(X,)Y A*) — L(X,)V AY),

L
o (f)=f -2, < frei > e

i=1

Now our operator A, — A, also extends. We have

Lemma 4.3 The operator P, = w3 (A, — A\)my is an isomorphism on

my L( X,V A%).

Proof. We first show the surjectivity by an inductive argument. Since

our operator has the decomposition
Ay, = Ay +zdp + x*V,

the basic idea is to invert each term su'ccesively, using respectively the

Hodge theory (or ellipticity) along fibers and on the base. Thus if f €
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7 L(X,V A*) then the leading term z'f;,! € Z must have coefficient f; 1V
E}'. By the Hodge theorem along fibers we can choose u; € C®(M,,” A*)
so that |

fi=Aywu + Pfi.

Therefore f' = (4, — A;)(z'w;) — f has leading term z'Pf;. Now by the
ellipticity of Ao and the assumption that f; 1V Eg“ one has Pf; = Agu;_

for some u;_; €¥ Ey. It follows that

7 (Ax — A ) (2 — 2! 'uy_y) — f = O(=H).

Let w' = w3 (z'uy —2'1u;_;), then (zlu; — 2 1uy_y —u') = my(zluy 2" uy_y)

and thus by the above lemma (and the definition of wz) we have
(Aa: - Am)(mlul _ ml—lul—l _ ul’) — O(wl-l-l').

Hence
77 (Aa — Aoy’ = O(a™).
Proceeding inductively in the Laurent series we can construct u such that
o (Ay — Ag)miu = f.
To show the injectivity let f € 73 £L(X,Y A*) such that m3 (Aa—Xa)my f =
0,i.e., (Ay — A, )f € L£- Ey'. By the surjectivity proved above one can find
au € myL(X,Y A*) so that f = (A, — As)u. Thus

< (4 = Xo)’u,u >=0.

This implies that the leading term of f must vanish, proving the injectivity.
Proof of Lemma 2.5. Certainly N is finite dimensional £-module

since m, is injective on it. Let B be the inverse of my (A, — Az)75 from the
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previous lemma. The projection of the matrix equation

oAy — Ag)my  ma{Ag — M)y ' f!
y(Ae — Ag)my my(Ag — )7y u” f"

onto the image of my i then

Qv = (my(Ay — Ag)my — ma(Ag — Ag)my By (Ag — Ag)ma)v

=g = f’ —_ WZ(A:B —_ Am)ﬂ;Bf,’.

That is, if (v',u") satisfies the first equation then v = o' satisfies the second

and conversely if v satisfies the second equation then

u v

u” Bf" — B(m(Ay — Ae)ma)v

The null space of this self-adjoint operator @ is wo N and by standard argu-
ment it is an isomorphism on the orthocomplement in 7w, £(X,Y A*). This

showes that A, — A, is an isomorphism on N1,
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Appendix A

Bismut-Cheeger’s adiabatic

limit formula

This appendix contains the algebraic and geometric preliminaries, which
are mostly taken from [BC2] and [B]. Results that are basic to our discus-
sions, in particular, recent results of Bismut-Cheeger on the adiabatic limit
of n-invariants will also be reviewed. Finally, for use in Chapter 2, we

include some facts a.bout the analysis on the manifolds with boundary.

A.1  Z;-gradings, Clifford algebras and su-
perconnections

A vector space V is called Z,-graded if it comes equipped with a direct

sum decomposition V = V5 @ V;. This decomposition determines and is
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determined by an involution p
de f ;
plv; = (-1). (A1)

A 7,-graded vector space 4 = A,® A;, which is also an algebra, is called
a Z,-graded algebra if A;4; C A; ;. We will use subscripts on elements
to denote their grading, e.g. a; € A;. All such subscripts take values in Z,.

The supercommutator of a;, a; is defined as
[a;,a5] = aja; — (—l)jj'aj.a,j. (A.2)

If V is a Z;-graded vector space, then End(V) is naturally a Z,-graded
algebra, where Endy(V) consists of endomorphisms commuting with the
involution p and End,(V) consists of those anti-commuting with p. A
Z,-graded representation of a Z,-graded algebra A on a Z,-graded vector
space V is a grading-preserving homomorphism ¢ : A -— End(V), i.e.,
$(45) C Endy(V).

. Given A,V,¢ as above then

tr,(a) = tr(pd(a)) (A.3)

defines a supertrace on A. This is a linear map whose kernel contains all
supercommutators.

If A, B are Z;-graded algebras, their Z,-graded tensor product AQB is
naturally isomorphic as a vector space to A ® B. The multiplication on
AQB satisfies |

| (a®b;)(c®d) = (—1)* ac;y®b;d.

A®B inherits a natural 7Z,-grading, determined by p4 ® ps.
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The following constructions will be quite useful. Let ¢, i be represen-
tations of 4, Bon X, Y. Let C? = C @ C define the grading on C? and let
J, K € End;(C?) denote the involutions,

— 01
K
i 0 10

Note that JK = —KJ. If the grading on X @ Y ® C? is determined by the
involution Id ® Id ® i+JK, then

a; @by — $(a;) ® ¥(bj) @ JIKY (A.4)

defines a Z,-graded representation of AQB.
Let ¢, ¥ be as above. In addition, let ¢ be Z,-graded and p be as in
( A.1) for Y. Then
a;®b — $(a;) ® p'4(b) (A.5)
defines a representation of AR B. If ¢ is also Z,-graded, this representation
is Zy-graded for the natural Z,-grading of X @ Y.

Let V™ be an Euclidean space. The complex Clifford algebra CI(V") is
generated by an orthonormal basis {e;} of V satisfying the relations

8,'65; -|— eje; = —25{j.

As a vector space CI(V") can be identified with the complex exterior alge-
bra. The Clifford multiplication is then exterior multiplication minus inte-
rior multiplication. The elements e, = e;, - - - €;;, where & = (i1, - -+,1;), #; <

-+ » < 14, form a basis for CI(V™). The subspaces Cly(V™), Cl1(V™) spanned
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by those e, with |a| even, respectively odd give CI{V™) the structure of a
Z,- graded algebra. If V is oriented, the element

tFey--regpy ifn=2k—1
o 1 2k—1 (AG)
?:ke1---62k if n =2k

is independent of the choice of {e;} and satisfies 72 = 1.

For n. = 2k, up to isomorphism, CI(V™) has a unique irreducible module
F, which has dimension 2* and is Z,-graded (by ¢(7)). In fact CI(V") =
End(F). We will follow the standard convention and write F}, @ F_ for
Fy @ Fy.

If n = 2k — 1, CI(V") has two inequivalent irreducible modules, each of

dimension 2°~*. For arbitrary n,
€ —* €{€pp1

defines an isomorphism, CI(V") o~ Cld(V"’@R). Thus we can regard F, F_
for V"®R as (inequivalent) modules of CI(V") (and 7 — £Idp, ). For V-1

oriented, the notation ¢r(a) refers to the representation F.

Lemma A.1 1) If n =2k is even then

PR LI DI CRRtY o
e ik fa=(1,.,2k)

2) Ifn=2k—1is 0odd and la| > 1,

ifat (1,2 —1)
iRkl Gf o= (1,040, 2k — 1),

tr(es) = (A.Sj
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Lemma A.2 The irreducible modules of CI{V"®W™) can be obtained from
the irreducible modules F(V™), F(W™) for CI(V™), CI(W™) as follows,
1) For n,m both odd, the module F(V™) ® F(W™)® C? defined by ( A.4)
is trreductble.

2) For m even, the module F(V™) ® F(W™) defined by ( A.5) is irreducile.

The proof of these is fairly easy, and we omit it (see [BCZ])

Finally, we note the effect of scaling the inner product <, >onV.
For any inner product, CI{V™") coincides as a vector space with A*(V) ® C.
Fix an inner product, < , > and let CL (V") denote A*(V) with Clifford
multiplication coming from =2 <, >. Then the automorphism of A*(V)®
C induced by av — v, provides a natural isomorphism CI (V") = CI(V").
It also provides a natural isomorphism between the orthonormal frames
{ze;} for 7% <, > and {&} for <, >. Thus, although there is no
canonical choice for the space F(V') for <, >, any fixed choice also provides
an irreducible module for Cl,(V?") via the above isomorphism.

In the sequel, if M is a Riemannian spin manifold, we will always as-
sume that the space of spinors has been chosen independent of the scaling
parameter of the metric. As a consequence, the action of ze; € Cl,(T,M)
on F, is independent of # and the Dirac operator D, corresponding to

22 <, > is D, where D is the Dirac operator for <, >.

A vector bundle E over a manifold M is called Z;-graded ( see [Q]) if it
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comes equipped with a Whitney sum decomposition E = F, @ E;. Consider
Q(M, E) = Q(M) ®no(M) QD(M,E),

the algebra of E-valued smooth differential forms with complex coefficients,
where Q(M) = @QOP(M) is the algebra of smooth differential forms with
complex coeflicients and Q°(M, E) is the space of smooth sections of E.
This is a (M )-module. It has a grading with respect to Z x Z,. However,
we are primarily concerned with its total 7,-grading, and so regard it as a
Z,-graded module over Q(M).

We will be working in the Z,-graded algebra of endomorphism valued

forms
M, End(E)) = QM)@aun°(M, End(E)),'

and we shall write wX instead of w®X. This algebra operates on Q(M, E)
on the left:

(wX)(ne) = (—1)#eX)eamy A X (e).

The following is easily verified (Cf. [Q]).

Proposition A.1 In the above way the algebra Q(M, End(E)) can be iden-
tified with the algebra of operators on QM,E) whick are Q(M)-linear in

the sense that the even and odd components satisfy
T(we) = (—1)deaTNdeaw), 77( ),

After D. Quillen, [Q)], we define a superconnection on E to be an operator

D on Q(M, E) of odd degree satisfying the derivation property

D(wa) = (dw)a + (ml)deg“’wDa
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for w € Q(M) and a € Q(M, E). For example, a connection in F preserv-
ing the grading, when extended to an operator on (M, E) in the usuall
way, determines a superconnection. Using Proposition A.l sees that the
difference of two superconnections is an odd element of Q(M, End(E)).

If D is a superconnection and ¢ € (M ,-End(E)), then the supercom-
mutator [D,gb} as an operator on (M, E) is linear over (M), hence an
element of Q(M, End(E)) by Proposition A.1.

Proposition A.2 One has

d(t"'s‘;b) =tr, [D: ‘nﬁ]

Proof. see [Q].
In the sequel, we want to consider infinite dimensional analogues of
vector bundles and superconnections. In principle, results discussed above

continue to hold, although some care must be taken in their application.

A.2 Elementary geometry of fibrations

Let
Y-MIBHB (A.9)

be a fibration of smooth manifolds. A connection determines a splitting of
the tangent bundle of M into its vertical subbundle and horizontal subbun-

dle, _
T™M =T"M @ TH M.

Let PH, PV denote the projections on T#, TV relative to this splitting.
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If U is a locally defined vector field on B, we denote by U its horizontal
lift. The integrability tensor (or curvature) of 7#M is the 2-form R on
TH M with values in 7V M defined by

’R’(ﬁrf/) = _{ﬁ)ﬁ] + {Ua ] = _PV[[},I?]_

Now equip M with a submersion metric ¢ which respects the above
splitting, |
g=m"gp+gr.
Let 72 be the Levi-Civita connection of TB. 2 lifts to a so called Eu-

clidean connection on T¥ M, which we still denote by /2,

VeV = viv,
Vﬁ,ff = [W,V] if W is vertical.

Also let 7Y be the connection on TV M defined by the projection of the
Levi-Civita connection 7* on TM. Then v = v¥ @ Z defines a connec-
tion on T'M which preserves the metric g. If we let T be the torsion tensor

of this connection and S the difference tensor of vl and v,

One has
1) T takes values in TV M and it vanishes on TV M.
2) For Wy, W, vertical

. . 1
< S(WW,, Uy > = — < S(W)U, W, > = 5 < A(}I(Wﬂ,Wz >y
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where A is the second fundamental form of the fibers.

3)

< S(ﬁz)Wuﬁz > = —<S(0)0,W, > =< S(W1)Uy, U, >
1 r -
L= 5 < R(UI,UQ),Wl >y

and all other components of < $(-).,. > vanish.
It follows easily from these that if \71* is the Levi-Civita connection of

gs = & *7"gp + gy and §° = vL’” -~ ¥/, then
PHS™ = 2?PHg, PVS®* = pPVs,
and hence the limit,

lim ™ = — PES =+ PVs§

z—0

exists and is in uppertriangular form (with respect to the splitting) with
the diagonal entry 7. Consequently, its curvature is also in uppertriangular

form with the diagonal entry R = /. From this we deduce

Lemma A.3 Let P be an O(n)-invariant polynomial on the Lie algebra

o(n), and R®, R= Rr ® RE the curvatures of 7¥°, <7 respectively. Then

lim P(R*/2ni) = P(R/2mi) = P(RY [2xi) P(R® [2m3).
Let v be an arbitary vector bundle over M. Associated to 7 is a vector
bundle 4 over B whose (infinite dimensional) fiber 7, is the space of the
smooth sections of 7|,-1(,). There is an obvious functorial isomorphism

between the space of smooth sections of y and the space of sections of ¥

which are smooth in the appropriate sense.
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If v has a connection /7, then we define the associated connection 77

(sometime abbreviated 7) on by

3= vg-fs, (A.IO)

SN

\Y%

where 3 denotes the section s of 7, regarded as a section of 4. Clearly, the

curvature R7 is given by
RY (U, U,) = R'(0h,0,) — V;(Uul?z) (A.11)

If 4 has a hermitian inner product < , >, then an inner product can be
defined on 4 via <, > and dz, the smoothly varying volume forms on the
fibers induced by gy,
Guip= [, <sis>ds
71 (p)
Even if v/7 is unitary, 7" need not preserve this inner product. For this,
one can correct it by subtracting a term involving the mean curvature of

the fiber Y. In fact, ¥g* = v — 1Y < Agle:),e; > is unitary.

A.3 Bismut-Cheeger’s adiabatic limit formula

Suppose that:M, is a compact connected Riemannian manifold, which is
oriented and spin (abbreviated spin manifold). Thus, the SO(n)-bundle |
of oriented orthonormal frames in TM is covered by a S pin(n)-bundle @,

so that the covering map restricts fiberwisely to the covering projection

Spin(n) — SO(n). Since Spin(n) is canonically embedded in CI(R"), the

irreducible module F of CI(R™) gives rise to a hermitian vector bundle
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on M, also denoted by F' (or F(M) when there is a need to indicate the
base manifold). The Clifford multiplication on F by a tangent vector is
well-defined:
TM —— Hom(F, F).
Since SO(n) and Spin(n) have the same Lie algebra, the Levi-Civita con-
nection v7 of M lifts to @, thus inducing a connection on F, again denoted
by v (or sometimes /7). Let {e;} be a local orthonormal frame on M, the
relation between the two connections is
1
Vx = ZZ < VVxeie; > ee; - f, (A.12)
)

where f is a section of F' and “.” indicates Clifford multiplication.

The Dirac operator D acting on F is defined by
C®(M,F) —» C*(M,T*"M Q@ F) > C*(M,TM ® F) — C*(M, F),

with the first arrow given by the connection and the second the metric, and

the third the Clifford multiplication. Locally,

D:eive;-

This is a first order self-adjoint elliptic differential operator whose symbol
is given by the Clifford multiplication. Similarly, if £ is a hermitian vector
bundle over M with a unitary connection 7¢, one can define a Dirac type

operator on F ® £,
D®E= eV ® V) =€ Ve, @1+ & ® VS,

We call D @ ¢ the Dirac operator coupled to the connection ¢ (or twisted

Dirac operator). For the simplicity of notation, we will sometimes denote
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D ® £ by D alone. This notion generalizes suitably to superconnections
[BC2]. Thus suppose £ = ¢, @ £_ is Z,-graded with a unitary connection
¢ preserving the grading. Then ¢ extends to a supperconnection and
any other supperconnection is of the form /¢ + V with V an odd element
of A*(M)®End(£). Write V = Y3-0 V; as a sum of j-forms with values in
End;y1(£). We define the operator V. on F(M) @ £ by

K = 26,‘1 . -e,-J.V}(e,-l,...,e,-J.).

If we assume that V; takes values in self-adjoint (respectively skew-adjoint)
elements of End;;({) for j even (respectively j odd), we can again form

the self-adjoint operator
Det{+YV,

which we call the Dirac operator coupled to the supperconnection (¢, V).

The n-function of the Dirac type operator I is defined for Re s > 0 as

]. oo 2l 2
ms) = *"""';-"'—/ it 7 {r De_tD dt.
G =tk PP

In terms of the eigenvalues A of D, (s) can be written as
n(s) =3 il’?ﬁ,é-
A#0
The parity of dim M plays a role here. We note that when dim M
is even, 7(s) vanishes identically. In fact, 7 of ( A.6) now gives a well-
defined parallel section of End F, anti-commuting with D. It follows that

pointwisely

tr(De™tP’) = tr(rDe~*P° 1) = —tr(De~tP"),
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Thus for an even dimensional spin manifold, tr(De™*? 2) is identically zero
(pointwisely), consequently so is 7(s). On the other hand, for an odd
dimensional spin manifold, we have the following local regularity result due

to J.-M. Bismut and D. Freed, [BF].

Theorem A.l1 Pointwisely there is a uniform asymptotic ezpansion,
tr(De” tD Xp,p) = Z b‘+z t=+' + O(t2+N+1) (A.13)
consequently n(s) is holomorphic in Re s > —2.

Of particular interest is the value of n(s) at s = 0, which is called

the n-invariant of D, denoted n(D). Its significance can be seen from the
following result, [APS].

Theorem A.2 (Atiyah-Patodi-Singer theorem) Let N be an even di-
mensional compact spin manifold with boundary M, ¢ be a hermitian bundle
on N with unitery connection /¢ and curvature L. Assume that the met-

ric on N and the connection on { are of product type near the boundary.

Then

ind(D) = [ 4 (_1?_) Atr(eE5) n(DM)+dizm(ker Dur)

where Dy is the Dirac operator on N together with'the Atiy&h-Patodi-Singer
boundary condition (Cf. Appendiz B).

R S

From here we define the reduced n-invariant

(Dag) = n(DM) + dim(kerDM).

2
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This is a spectral invariant and in general, it does not depend continu-
ously on the metric. In the process of deformation, it has simple discon-
tiuities caused by the crossing of zero spectrum. When a negative eigenvalue
reaches zero, 7 will jump by 1, and when a positive eigenvalue reaches zero,
7j will jump by —1. Since 7 has only integer jumps, its modulo Z reduction
will depend differentiably on the metric.

Now assume that M is the total space of a fibration ( A.9). The rescaled
metric g, gives rise to a family of Dirac operators D,. The limiting be-
haviour of 7(D.,) (or n(D.)) is refered to as the adiabatic limit. As for the
existence of such limit, generally we have (Cf. [C2], [BC2])

Proposition A.3 4s e R/Z-valued function, the imitlim,_ 7#(D,) exists.

However, we are more interested in the question of when this limit
actually exists in R, and if it exists, how it relates to the other index-
theoretic quantities. This is studied in the recent work of Bismut-Cheeger
- [BC2] in case Dy is invertible, which we now summarize briefly.

Assume from now on that dim M is odd. Then from Lemma A.2, we
have

F(M)=="F(B)® F(Y).
Let £ be a hermitian bundle on M with unitary connection /¢ and curvature

Lt and let $7* denote the connection on F(M) ® £ defined by
1
V=V - o3 < Seden >,

where {e;} is a local orthonormal basis for TV M. The Dirac operator along
the fiber Dy is defined as Dy = e;5/,, where ¥/ is the Euclidean connection
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on TV M defined in Section A.2. We have the following nice formula for
D,.

Lemma A.4 If {f.} is an orthonormal basis for TB, then

D, =2} faV§, +Dr - = ¥ fafaT(farfa).  (A14)

asf
For simplicity, we will denote D =3, [V T =Y ucs FafaT(Fxr fo)-

Proof. D, is defined via the lift of the Levi-Civita connection of g,.
( A.14) follows from a straightforward computation by virtue of { A.12)
and the results of Section A.2 (see also [BC2]).

We now recall the definition of the Levi-Civita superconnection intro-
duced by Bismut in [B]. The smooth sections of F(Y) ® £ can be viewed
as the smooth sections of a vector bundle over B, as observed at the end
of Section A.2. Denote this bundle by H,, = Hf & HY. The connec-
tion * induces a connection on H,, @u. This is a unitary connection
on H., with respect to the natural metric defined by the L*-metric on the
fibers of { A.9). If we wish to regard the operator D, as acting on sections
of F(B) ® H,,, we simply write v/ for v* in ( A.14). The Levi-Civita
superconnection By on H,, is the superconnection |

(T)

YL (A.15)

B, = ﬁ'u + /2Dy —

where (T) = Locp dy® dyPT(fu, fs), and dy® denotes the 1-form dual to
fa. Tt follows from ( A.14) that 2D, is the Dirac operator coupled to the

Levi-Civita superconnection B,—.
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on TV M defined in Section A.2. We have the following nice formula for
D,.

Lemma A.4 If {f,} is an orthonormal basis for TB, then

2
Do=0Y fa Vi, +Dr = = ¥ fufsl(fasfo)  (A14)

a<B
For simplicity, we will denote Dg = ¥, oVt T =3, Faf8T(fas f3)-

Proof. D, is defined via the lift of the Levi-Civita connection of g,.
( A.14) follows from a straightforward computation by virtue of ( A.12)
and the results of Section A.2 (see also [BC2]).

We now recall the definition of the Levi-Civita superconnection intro-
duced by Bismut in [B]. The smooth sections of F(Y) ® £ can be viewed
as the smooth sections of a vector bundle over B, as observed at the end
of Section A.2. Denote this bundle by H, = HI @ H;; The connec-
tion 7* induces a connection on H,, ﬁ'u. This is a unitary connection
on H,, with respect to the natural metric defined by the L*-metric on the
fibers of ( A.9). If we wish to regard the operator D, as acting on sections
of F(B) ® H,,, we simply write 7 for ¥ in ( A.14). The Levi-Civita
superconnection B; on H, is the superconnection |
o(T)
441/2°

B, =< +#/2Dy — (A.15)

where oT) = Yacp dy™ dy?T(fa, fs), and dy* denotes the 1-form dual to
fa- It follows from ( A.14) that 1D, is the Dirac operator coupled to the

Levi-Civita superconnection B_-2.
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The asymptotics of kernels associated to the Levi-Civita superconnec-
tion exhibit some remakable cancellations. The first one is expressed in the
local index theorem for families, [B], [BF], which says that when dimY = 21
is even

- —py_ 1 302 BY Vo f o LS
%Exc}tr,(e )= WLA(@R Jtr{e ™), (A.16)

or when dimY = 2] — 1 is odd

. odds —B? 1 5. gt
lim 1r°4(¢~5F) = o fy AGRY Ytr(e™ T, (A.17)
where #r°% indicates taking the odd form part of tr.

Essential to our discussion are the other two cancellation results, [BC2],

[BGS], which state that when dimY = 2[is even

tr,[(Dy + %)e"ﬂf] = O0(t'*) as t — 0, (A.18)
or when dim¥Y =2l — 1 is odd
T 2
tr*[(Dy + %)6_3*] = O(t/?) as t — 0, (A.19)

where {pve"

indicates taking the even form part of #r. We now show that
the expressions in ( A.18), ( A.19) are also well behaved for the large time.

We claim that for dimY = 21,

tr,[(Dy + E%?)e‘B?] = O(t™") as t — oo, (A.20)
and for dimY =2/ -1,
tr* " [(Dy + @)e"ﬂf] = O(t7") as t — 0. \ (A.21)

41
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In fact, let us define ¢, : A*(B) — A*(B) by

©tarmy =

e

Then the key observation is

t,re'uen[(DY ( )) (v Y4+ VEIDY - J7—1)2 t(tTeveﬂ[(DY+C(:1) )e—t(6u+DY—£Liq"l)2])’

and

ir (D7 + LTI g fun (0¥ 4 ALy

For t large, (DY + 5(49)6“(6“"”1)1":{411)2 is uniformly bounded. Thus, ex-
cept the O-form component, ¢, ((re*"[(DY + E%1))e‘t(V.'uJ‘”JDY‘'cii&u)z]) decays
like =, But its 0-form component is just ¢tr(DY e %P} which decays
exponentially.

As for the other parity, the same reasoning shows that we just have to

worry about the 1-form component, which is by Duhamel’s principle
Vitr, (DY DY e P = Vi tr,[(° DY) DY e HPT)

exponentially decaying as well.

By virtue of (A.18 - A.21) we now define a differential form on B, the

7} form

s f tr,[(Dy + De-Bi) 2 if dimY = 21

trem Dy + 4Iye-Bi) & it dimY = 20— 1
7 g ,

For example, the ﬁrsf integral is convergent at 0 because of ( A.18), and

convergent at oo because of ( A.20).
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The # should be viewed as a higher dimensional analogue of the 7-
invariant. In fact, when dimY = 2! — 1 is odd, its 0-form component is
exactly the - invariant of the Dirac operator along the fibre. We also point
out that when dim Y = 2/ the 1-form componet of 7 represents the Quillen
connection of the determinant line bundle detDy, which is interpreted by
Witten as the covariant anomaly, [W]; see also [BF], [C2], and [F]. We now
normalize 7 by defining

1 K . -
Z (271_2-')3 ["1]2_1'—1 ifdimyY =21
R o ;
Z (27I'i)j {77]23' fdmY =2/—1

=
I

Here we decompose the odd (respectively e{'en) form 7 into its homogeneous

components [fj]2;_1 (respectively [#]a;)-

Theorem A.3 (Bismut-Cheeger) Assume that Dy, the Dirac opera-
tor along the fiber, is always invertible, then the limit lim, o 7j(D,) =

lim,_o 37(D.) ezists in R and
. RB
i #(D.) = [ A=) A
Moreover,
. ~ RZ ¢ fomi
div= [ A(G=) A tr(emE ),

We present an outline of the proof given in [BC2}, emphasising on the
ideas and techniques we will be using. One is refered to the original paper
for further details.

Outline of Proof. As we noticed above, the parity of dim B (or equiv-

alently, that of dimY, since we now always assume that dim M is odd)
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makes only a slight difference in the discussions, which are otherwise par-
allel. Thus we assume the dim B is odd.

1) There is a uniform lower bound for the smallest eigenvalue of D,.

Set B, = 32, fa(V}, — $f8T(fa, f5)) then ( A.14) implies
DI = (Dy)? + alDy, B.] + 2" 2.

By the results of Section A.2, one easily sees that the operator [Dy, E,] is
a first order differential operator which acts fibrewise. Thus if  is small
enough

1
D% > (Dy)* +z[Dy,E.] > E(D_Y)Z,

where the last inequality follows from Garding’s inequality for Dy and the
assumption that Dy is always invertible.

2) For t € (0, T}, we have uniform convergence,

)e P )+0(2(1+T))
(A.22)

(T)

lintljtr(Dae_Dit)— /T / ﬁ(iRB)trm"((Dy—i—T
T B

 (2mi
for some N.

The main technical tool here is the so called Getzler’s transformation
[G], [BC2]. We first introduce an auxiliary Grassman variable, z (i.e.
22 = 0), which is odd; see [BC2] for the reason. Omnce z has been in-
troduced, instead of :considé‘ring tr(D,e~P3), we can consider the part of

tr(e'Di"'"‘D”‘/E) which involves z, denoted by trz(e_Di"'ZD“‘/s). In fact, an

application of Duhamel’s principle yields

2 2 ¥
e~Di+zDavt _ -Dit + zx/wae_D=t.



.
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Thus,
trz(e“D£+‘D”‘/E) = zx/ftr(D,,e_Di*).

To define Getzler’s transformation, one first has to localize the problem.
The estimates of [C2], Section 3 and a straightforward generalization of
the arguments of [C2], Section 4 show that we can pretend that our base
is R?-! with a metric flat outside a compact set, the error term being
exponentially decaying in z as  — 0. Similarly, we can assume that the
bundle is isometrically a product on that region.

By definition, Getzler's transformation, G2, of 2 function (usually the
sciuare) of a Dirac operator means that we conjugate this operator by the

coordinate change in R%-1,

ya N 51/2ya,
and make the replacement

fo—r 672 s

in the Clifford variables and change the Clifford multiplication, -, to -5,

which satisfies
6_1/2fa i, 6——1/2](}3 + 6—1/21:,6 s 6_1/2fa = —-2(5043.

The main algebraic ingredient in the application of Getzler’s transformation
is a Lichnerowicz type formula, which contains no singular terms of 6, Cf.

[G], [BC2], and [D]. In [G], the usual Lichnerowicz formula implies that

Getzler's transformation of the square of a Dirac operator converges to a

Hermite operator (or harmonic oscillator in Physicist’s term), whose heat
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kernel is explicit. For D2t — 2D +/t, one does have a Lichnerowicz type
formula; see (4.53) of [BC2]. However, it contains a singular term. What is
remarkable is that this can be removed by a simple algebraic manipulation.

Thus, one first conjugates the operator D%t — zD_+/t by
zy™ zy* .
e:’('%)%g’F =1+ ‘2“('%2—'}):/2,
and then applies Getzler’s transformation G(tmz)zn. The formula (4.68) of
[BC2]| says that
o),
f ]

where H is the generalized Hermite operator on R¥*~! which was considered

i, Giaa 6T (D2 = 2D./i)e T ) = Mt B — o(viDy +

by Getzler in [G]. Now the same arguments as in [G] show that

trz(e—DﬁtHDﬂ/f)

e RO 4

_ VT B (T)
= (27['2,)1[1(2}2 ) A zv/ttr,[(Dy +
uniformly, forte[s, T]. Or

(‘ziTV/BA(*’RB)tn((DY + C(T)) “By__

2)ye-m1)

tr(D e~Pity (A.23)

2 / ZtI/Z

To see the convergence is actually uniform for ¢ € [0,T], it suffices to

show that the coefficient, ¢, in the small time expansion,

1 2
tr(Dye %) = ¢, + O(¢
—tr(Dae) = e+ O(1),
approaches a limit and that the remainder term remains uniformly bounded

by ct, independent of . To this end, note that

tT(Dme_Dit) — trz(e—t(DE,—zDz))

1
zzm

2f t3/2
2 /7 tsfztr"

e e, (A.24)
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l'ya.fu

where £, = Gple = (DXt — zﬂmﬁ)e‘%&] is Getzler’s transformation of

D2 — 2D, except that we desingularize it by first conjugating the operator.
By (4.68) of [BC2] (taking v =1, €'/ = 2), L, is smooth family of elliptic
operators down to z = 0. (In fact, £, = H+ Bf — z(Dy + -c—(;—r-l)) Since the
asymptotic expansion of fr(e =) at the origin depends only on the local
sjmbol of L., it follows that the coeflicients in this expasion converge as
z — 0, to those in the expansion for tr(e”**) and that the remainder terms
are bounded by ¢t independent of z. Puting this together with ( A.23) and
( A.24) we see that ¢, — ¢p and that the remainder is bounded by ct
independent of .

Remark The above argument contains a proof of ( A.18) and ( A.19);
see [BC2].

To have a remainder estimate for ( A.23), notice that a straightforward
generalization of the argument of [C2} shows that, for fixed ¢, there is an
expansion

2k—1
tr(Dme_*Di) ~ Y a B (2k-1) (A.25)
=0
whose coefficients and remainder term are bounded by T for say t € [1, T
and some N. Then ( A.23) implies that ( A.25) does not contain singular
terms. The desired estimate follows.

3) Large time contribution is negligible as & — 0.

This is shown by using 1) and the finite propagation speed technique
[CGT].

From the proof we see that
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Corollary A.1 Without the assumption that Dy is invertible, one can still
find a small positive number a such that

A RP - s g ~D2t
lim =n(D,) = f AG) A+ limg o= ] tr(Dye~D3)dt, (A.26)

z—0 2

provided either one of the limits ezists.

A.4 Analysis on manifolds with boundary

There are two ways to describe pseudo-differential operators, the symbol
description and the Schwartzian kernel description. The two are related by
the Fourier transform. The advantage of the Schwartzian kernel description
over the symbol description is that it allows a precise description of the
singularities of the Schwartzian kernel of pseudo-differential operators. This
will be important for the pseudo-differential operators on manifolds with
boundary. The Schwartzian kernel of a pseudo-differential operator gives
rise to a conormal distribution [Hor] [Me].

Let X™ be a C® manifold, E a C® vector bundle on X, and Y* C X
a (closed) submanifold. Let V = V(Y) denote the space of vector fields
on X which are tangent to Y at Y. The space of V~diﬁ'erential operators,
Diffy(X, E), is generated by V, i.e. elements of Diﬁ'v(X , E) are sums of
products of elements in V. The space I(X,Y; E) of distribution sections

of E, conormal with respect to Y, is defined to be the set of distribution
sections u € D'(X, E) such that Vi ---Viu € H¥(X), V; € V(Y) for some
real number s = s(u)} and all k. Here H*°(X) denotes the Sobolev space on
X. Thus I(X,Y; E) are distributions which have fixed regularities under
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the action of V-differential operators. The following theorem (see [Hor])
says that such a distribution is locally defined by a symbol via the oscillatory
integral.

Theorem A4 v ¢ I(X,Y; E) iff p;u € I(X,Y;E) for every ¢; in a -
partition of unity on X. If X is an open set in R* and Y is defined by
2 = (23, ++,2) = 0 while E == X x C¥, then any u € I™(X,Y;E) with

compact support is of the form

u(w) = [ <> ale", £)a¢,

where a € S(R™* x R*; CN), the space of symbols. Conversely, every u of
this form is in I(X,Y; E).

The order of symbol gives a filtration on the space of symbols which in term
gives a filtration on the space of conormal distribution. The significance of

this filtration lies in the following [Hor]

Theorem A.5 We have the following short exact sequence
-1 1/2 " 1/2 s am 1/2
0— I (X,Y; 95 QF) - I™(X,Y; Q5 ®E) > § (N(Y)?QN(Y)®E)_’01

where N(Y') is the normal bundle of Y in X and Q'/? denotes the 1-density

bundle. o i3 called the principal symbol map.

The space of conormal distributions behaves nicely under the action of

pseido-differential operators (Cf. [Hor]).

Theorem A.6 If u € I™(X,Y;E), and P € ¥™(X,Y; F) is properly
supported, then Pu € I™™(X,Y; F) and the principal symbol is that of u
multiplied by the restriction to N(Y') of the principal symbol of P.
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Finally, we note that conormal distributions have singularities only on
the submanifold ¥ and then only along the normal directions (this can be

made precise by the notion of wave front set of a distribution).

Now suppose X is a C o"-rma,nif;old with boundary. The boundary 89X is
therefore a closed submanifold of X. In this case, the V-differential oper-
ators are called the totally characterictic differential operators. Regarding
to the behavior at the boundary, one has three types of distributions. Thus
Cc— ()%) are those which have no control at the boundary at all. In gen-
eral, we wish to consider only the distributions having “slow growth” at
the boundary. The space of extendible distributions is defined as the dual
of the space of smooth functions on X vanishing to infinite order at the

boundary, '
C¢==(X) = (C=(X)Y |
and the space of supported distributions is defined as the dual of the space

of smooth functions on X (up to boundary),
E-=(X) = (C=(X)).
The space of almost regular functions
AX) =I(X U X,0X)
and its supported counterpart
A(X) =KX UX,8X)nC~*(X)

play an important role here. Roughly speaking, A(X) is the space of func-

tions smooth in the interior of X and along X, singular only along the
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normal direction of 8X. We mention that the relation of A(X) to totally
characteristic operators is similar to the relation of C>(X) to the pseudo-
differential operators when X is a compact manifold.

In dealing with regularity on manifold with boundary, of equal impor-
tance is the dual of A(X), denoted A'(X). Intuitively, A'(X) consists of
distributions having normal derivatives on 8X of all orders, thus suggesting

the following [M2]

Theorem A.7 On any C®-manifold X with boundary,
A(X)n AX) = ¢=(X).

A more workable description of the space A'(X) is furnished by the
Mellin transform. For simplicity, we assume that X = [0,00). The Mellin

transform of a smooth function u on [0,00) is defined as

up(z) = j:o " u(x)de

if Re z > 0. This can be extended to distributions (C~= or C~*) by
duality. The normalized Mellin tranform is just Fu(lfj In general, they are .

defined only for Re z large.

Proposition A.4 A'(X) can be characterized as those distributions u whose

normalized Mellin transform 34 € C~°(X) eztends to an entire function
I(z)

of z.

See [M1] for its proof.
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Appendix B

A proof of the Families Index
Theorem for manifolds with

boundary

The Families Index Theorem for manifolds with boundary is proved in
[BC2] by the cone method. There the singularity is essential. Here, with ad-
ditional assumption, we give a proof along the line of Atiyah-Patodi-Singer
[APS]. The Atiyah-Patodi-Singer boundary condition plays an important

role.

| To be more precise, suppose we are given the following data:
a) A fibration of compact manifolds Z%* - N — B with base B
closed and fibre Z2* having dimension 2k and nonempty boundary 82 = Y.
Associated is then the boundary fibration Y — M — B where M — 8N.
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b) A splitting TN = THEN @ TV N with TV N the vertical subspace on
which a metric gZ is given such that ¢Z becomes a product metric near
- ON. Asin [B], we can define connection vV on TV N with curvature R?
(see also Section 1.2).

c) A hermitian bundle £ with metric and compatible connection whose

curvature is L¢. These are of product type near 8N.

With these data (and additional spin conditions if necessary), we can
consider DZ, the family of Dirac operators along Z. Let Dy denote its
tangential part near the boundary. We give a proof of the Families Index

Theorem for manifolds with boundary in the following case.

Theorem B.1 Assume that ker Dy is a well-defined element in K°(B).
Further, assume the boundary ﬁbmﬁon has compact holonomy. Then

Ind(DZ,P,), the index bundle of DZ with APS boundary condition [APS],
is a well-defined element in K°(B) and its chern character is represented

in cohomology by
1 RZ iLf fox - 1
,/;A(g) A tr(e ) -7 _.ECh(kerDY).

When B is a single point, 7 reduces to the usual n-invariant and the
above recovers the Atiyah-Patodi-Singer theorem [APS)].
Proof. The outline of proof is
- 1) We show it is possible to define a superconnection for our family of

the APS boundary value problems and we establish a heat equation formula

for ch(Ind(Df, Py).
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2) In order to have local convergence in the interior, we have to use
Levi-Civita superconnection of [B]. (See also [Q].) But for the computation
near the boundary, it is much easier to use the unitary superconnection of
[BF], [B]. We patch them on the cylinder.

3) To calculate the contribution from the mixed term, we let the cylinder
become longer and longer and bring in the adiabatic calculation in the spirit
of [C] and [BC2].

4) It is much easier to deal with numbers than with forms. We couple
our forms with A-genus and employ the meromorphic continuation method
of [APS]. To get back to differential forms, we use a method of Bismut (in
the second proof of [B]). |

1) APS boundary problem and heat equation formula for the index
We first consider'genera,l first order differential operators of the split
type. Suppose that

A: C®(Z,E) — C°(Z,F)

is a first order elliptic differential operator such that in a tubular neighbor-

hood of the boundary dZ =Y it is of the form

o

A = o(8, + B), (B.1)

where ¢ is a bundle isomorphism given by the symbol of A in the direction
du, and B : C=(Y,E) — C=(Y,E) is a sclf-adjoint first order elliptic
differential operator on Y, called the tengential part of A. Consider the

spectral projection Py of B onto the eigenspaces with non-negative respec-
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tively negative eigenvalues. The Atiyah-Patodi-Singer boundary condition

(abbreviated APS boundary condition) for the operator A is P, (¢|y) = 0.
In {APS], they showed that the following are true.

a) Let C*°(Z, E; P, ) denote the smooth sections ¢ of E such that P, (¢|y) =

0. Then there is a linear operator Q : C*(Z, F) — C*(Z, E; P,) which is

a parametrix for A : C%(Z, E; P) — C°(Z, F). i.e., both AQ—1,QA—1

are smoothing operators.

b) Q extends to a continuous operator H'~! — H' for I > 1. Therefore
C*(Z,E;Py) — C*(Z,F)
and
Ay: H(Z,E;Py) — H"YZ,F) forl>1

are Fredholm operators with the same null-space.

c) Denote D = (A, P;). When Z = R, x Y is a cylinder, the heat kernels

e~*P"P, 7P are explicit in terms of the spectral resolution {\, p»} of B:

PP AZM _Azt{exp( (”4;”)2)_exp(%f;”—)z)}w(w)fam(y)
+2 \/_i{exp( = ))+exp(—(3;;—”)2)
| +x.o;-f‘(U+°)erfc(“2 ~ — AVD}ea(z) ® paly),

ot _ \/*_ exp( ) e 0 ) 0 ate)

_)‘2 u 4 v)?
i o P e =

_,\e“.(”“L”)erfC(_ uzj;; + A‘/Z)}‘P'\r("’) ® valy),
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where erfc is the complimentary error function defined by

2 e 2
erfe(z) = —-—f e ¥ du.
N '

Now suppose that Z is parametrized by a closed manifold B, i.e., Z is
a typical fiber of the fibration ( A.9). Correspondingly, we assume that a
smooth family A, of the form ( B.1) has been given on Z, where y € B
(we sometimes suppress the subscript). We want to study the parameter
dependence of the APS boundary problems. We begin with that of the
APS boundary conditions.

Lemma B.1 Assume that dimker By is constant, where B, is the tangen-
tial part of A, (Cf. ( B.1)). Then P, is a smooth family of pseudodiffer-
ential operators of order 0. Consequently, D = (A, P,) is a smooth family
of APS boundary value problems. The same for D* = (A*, P_).

Proof. Since B, is a smooth family of self-adjoint elliptic differential
operators, by the compactness of B and the assumption, we can find § > 0,

such that for all y € B,

spec(By) N {|z] < 6} = {0}

Consider the Dunford-Schwartz integral

1
-1 - -1 _ -1 A

where I', is the counterclockwise contour:

arg A =dn/4if |A| > 6, or |A| =6 m/4 < arg A < Tn/4.
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By the standard theory, Bi' is a smooth family of pseudodifferential op-
erators of order —1. Consequently, P, = BB;' is a smooth family of

pseudodifferential operators of order 0. Q.E.D.

Next we address the existence of the index bundle.

Lemma B.2 With the same hypothesis as above, H'(Z,E; Py), H"(Z,F)

are smooth family of Hilbert spaces and
D,: H(Z,E;P,)— H'(Z,F)

is a smooth family of Fredholm operators. Thus D has a well-defined index
bundle as an element of K°(B).

Proof. The statement about H'™*(Z,F) is trivial. To prove that of
HYZ,E; P,), we fix a yo € B and construct a smooth family of invert-

ible operators
ﬁ(y) : Hl(zyaE;P—I?’-') - HI(ZymE;P-IB-m)'

In fact, since PY is a smooth family of projections, by Lemma 2.12, there

exists a smooth family U(y) of invertible operators (on L*(y)) such that
U () PLU () = PP, (B.2)

By the explicit formmula there, one sees that U(y) is actually pseudodifferen-
tial of order 0. Now we want to extend U(y) to U(y) : H'(Z,) — H'(Z,).
Then it is clear that from ( B.2) U(y) restricts to

H'(Z,,E; PY) — H'(Z,,, B PP).
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To extend U(y), one first deform U(y) to the identity operator and then
extend U(y) to be the deformation on the cylinder and identity in the in-
terior. Q.E.D.

By a) and b), D and D* are elliptic boundary problems. Set

o D
A=
D0
We construct the heat kernel of A2,
o _ e—tP"D 0
- 0 e—tDD?

Proposition B.1 e ** is a smooth family of heat kernels parametrized by

B.

Proof. We first study the resolvent (A% — X)~}, showing that it depends
smoothly on y € B as L?-operators. To do this, we will construct a nice
parametrix by patching together the interior parametrix with the boundary
. parametrix. Let @, be the Green’s operatores for (A* — A) on the double of
Z. Then it follows from the standard theory that ¢, .as a pseudodifferential
operator of order —2 depends smoothly on y € B. We now study the
corresponding operator @, for (A2 - A) on the ha.lfﬂ_ﬁ_cyl.inrder Y x R,.
To solve (A* — A)f = g, we expand f and g in terms of the spectral
resolution {A;, ¢, } of B:

Fzu) =Y Puwdn(z),  9(zw) = 30 n(w)dn(2)-
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We must now solve
2
—S + (V= N, = o,
Fa(0) = 0if Ay > 0 or F(0) 4 A £, (0) = 0if Ay < O
We take the explicit solution
1 U +oo
) = ([ g@)F o+ [ g0)e do) +

where A = /A — X\ with ReX > 0 and

i 1 oo b s
(3 + m)fo g(v)e dvif Ay <0

It folows that @, = Q{ + @Y, where @} is given by convolution in the

L[ go)e dv it Ay > 0
o) =/, gv)e dv if Ay >

t-variable with

e(t)  _Ex etV =2
(&)= 5z «( )2\/32 ~—

where €(t) is the characteristic function of the nonnegative line, and QY has
as kernel that of
e~ tVBE=X e—tVBT-X e—tVBI-X
€(t)——=—==P ¢
W= T G =

Hence, Q, as L*-operators depends smoothly on ¥y € B. Moreover, the

)P...

kernel of @, is smooth in all variables away from the diagonal and the
boundary.

Now let ¢’s and #’s be as [APS] ( see also p.141). Put Q = ¢ Q191 +
$2Q2%2. Then @ is a smooth family of L?-operators such that (A2-A)@—1d
and Q(A?— ) —1d are smooth family of smoothing operators. This implies
that (A? —~ A)~! is smooth in y € B as L*-operators. Consequently, so is

et = L f e (A2 — X)) dA,
Ly

T 2m
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To show that e~*4’ is smooth as smoothing operators, we need the

following lemma.

Lemma B.3 Let K : B — L(L*Z),I*(Z)) be a smooth family of L*-
operators. Suppose that for ally € B, K(y) is actually a smoothing operator

with kernel K(y,z,2'). If, in addition, we have the uniform estimates
]B?Bﬁz'K(y,z,z')] < Cla, ),

then K(y,z,2') is also smooth in y. i.e., K is actually a smooth family of

smoothing operators.

By the construction as in [APS], one can check that e~*4" satisfies the

hypothesis above, yielding the desired result.

We now restrict our attention to the family of Dirac operators. Let
H>®, HY be C%-sections of F(TZ)® ¢, Fu(T'Z)® €. We regard H®, HE
as C*-sections on B of infnite dimensional vector bundles. Recall that one

can define a connection ¥ on H$ via the horizontal lift

6}(}* = Vxuh

If the holonomy of the fibration is compact, then

[@,A] =0 (B.3)

and v/ + 24 on H® @ A*TB is reduced to the unitary superconnection
V4 VIA. By ( B.3), (v + ViA? = @2 + 1A% and 62 = R is a 2-form
valued first order differential operator acting fibrewise. By the nilpotency




138

B

of the exterior algebra, e~* is well-defined and is a form-valued differential

operator acting fibrewise. Thus the superconnection heat kernel can be

defined as
(TR _ R (gt %), (B4)

However, we only assume that the holonomy of the boundary fibration is

compact, or the holonomy of the fibration is compact near the boundary.

We have

Lemma B.4 The superconnection heat kernel e~ (V' HVEAR ogists for small
t and its supertrace tr,e=V VI s 4 smooth differential form of even

degree which is closed and represents the renormalized chern character of

the index bundle ch(IndD).

Notation ch(¢) = tr(e~L* if L¢ is the curvature operator of ¢&. Thus ¢k
differs from ch by the factor 21;

Proof. Since the holonomy of the boundary fibration is compact, we
can use ( B.4) to define the superconnection heat kernel on the half cylinder

while in the interior we use the superconnection heat kernel on the dou-

ble. The two are patched together by the standard procedure, producing a

parametrix with an error term exponentially small as + — 0. The first claim
follows then from Duhamel’s principle. The proof of the second statement

is essentially the same as in [B].

For later use, we shall make some computations for our superconnec-

tion heat kernels on the half cylinder, N = M x R,. Locally we use

the coordinates (y,z,u). Denote the pointwise kernel of e~ (VHv#4)? hy
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Py, z,u,y',2',u') and set

K(t) = /:’ jY tro(P,) dz du.

Then by ¢) on p.132 , we find

A
. K(t) = - 3 2 erfe(AVE) j =
2 Y
. Thus
1

mzz\e_)‘ztfye‘ﬁtm -pordz

— tT(Dye_(e’*"‘/ED")z).

\art

Note that
1—
K(t) — —Ech(ker Dy) ast goes to infinity.

Moreover,

, 1—
. K(t)+ Ech(ker Dy) — 0 exponentially.
One deduce via integration by part,

Lemma B.B We have

b in( Dye-THIPI g — g f T K (D) + %E(kel‘DY)]dt-
0
(B.5)

ek

2) Levi-Civita superconnection.

From the manifold IV, one can construct a closed manifold X = NUpsy N

by the doubling procedure. We shall use A again to denote the operators
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obtained by the doubling construction. On a closed manifold, of great

interest is Bismut’s Levi-Civita superconnection

e(T)
4

The following cancellation result is proved in [B].

v+ Vid—

kel (T .
Theorem B.2 The pointwise supertrace tar',e_(wr‘/m—?(7%)2 of the heat ker-
nel of the Levi-Civita superconnection has the following asymptotic expan-

ston

. . N '
tr,e'(V“’“‘i‘%)‘ = 3 ayt*? 4 oIy,

k=0

where ag = A(1R?) A tr(e~T*).

Remark Note that (7 + viA — —ff%)"’ = t(:};@ + A — <IN Tf we let
¢ be the homomorphism from A(B) into itself which sends a one-form w

to %w, then

trye VLAY _ o (1, e~ (T AT,

From this and the standard elliptic theory, one easily sees the existence of
an asymptotic expansion. It also follows that the coeflicients in the asymp-

totic expansion are local.

Thus the Levi-Civita superconnection yields local convergence, which
in génera.l does not happen to the unitary superconnection. However, to

incorporate. the boundary condition, we have to use the unitary supercon-

nection. We now patch them up near the boundary.
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Let ¢(u) be a smooth function on [0,1] such that it is identically 1 on
[0,a] and 0 on [1 — a,1], where @ is a small positive number. Consider the
superconnection

p(u)T

B=<g tA -
v+ Vi VG

The same consideration as in showing Lemma B.4 shows that the super-

connection heat kernel for B also exists for small 2.

- w7 —
Lemma B.6 tr,e—(v""/“_ijt ¥ is also a representation of ch(IndD). In
fact, we have |

L i o g O L G Vo
83 4\/z

Now let e; be the heat kernel of {7 + v/tA on the cylinder constructed
earlier, e; the heat kernel of B on the double of Z. The parametrix R for
¢~B*, the superconnection heat kernel with the APS boundary condition,
can be constructed by patching together e; with e,. More precisely, let
p(b,c) denote an increasing smooth function of the real variable u, such

that p = 0 for v < b and p = 1 for © > ¢, and define smooth functions

b1, P2, %1, %2 by

b2 =,0(1/4,1/2), P ZP(1/2,3/4),
""?51':1"‘»0(3/471)’ 14[’1:1_71[’2-
Note that ¢; = 1 on the support of ;. We regard these functions of u

ag functions on the cylinder M X [0,1] and then extend them to N in the

obvious way. Finally we put

R = $re1t: + Paertha.
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Omne checks that
e® — R=0(e ), (B.6)

From this and the above lemma, we have
" RB _ . RB 1
/B A(5=) Neh(IndD) = /B A=A /0 fY (tr, P)(y, 2, %)y () dz du

. R®
+ fB AN /,,(tnez)qbz + 0(e™").
Because of ¢) on p.132, it follows that, in the first term, we can replace
1 oo N
¢1 by 1 and f by / so that we end up with fBA(%;) A K{t). On the
0 0

other hand
N

ir,eq = Z apt®’? + O(t(N+1)/2).

k=—mn

Thus,

jB ﬁ(—g)/\K(t)m /B A(?B

™

) Ach(IndD) — ¥ tkszﬁ(—g;)ALak.
= (B.T)

3) adiabatic limit.
Let us consider the differential form of even degree (Cf. ( B.3))

R 1 o0 sl e
R~

By virtue of ( B.3), this integral is convergent for Res > 0. Standard
method showes that #,(s) has a meromorphic extension to the s-plane. It
is possible that s = 0 might be a simple pole for 7};(3). We thus define 7, (0)
to be the finite part of % (s) at s = 0:

Jl‘lrssmcﬂ“h(S))|

8

1(0) = (sfh(s)) ls=0 = (Mn(s) — s=0-




The foregoing discussion together with ( B.5) implies that f ./-1(32—;) A
B

7i1(s) is actually regular at s = 0 and its value at s =0 is given by
fA(RB)w(o)—jA(RB)A[f — L2k (ker Dy) + TH(IndD)
B 27 KN P 5 10 T RN y) + ch{In !
or
fA(Rf-)A—h(I d@)—/A(RB N[, a0 — 5eR(ker Dy) +m(0)}. (B8
B 27 e ~ JB 271') [Zao—zc(er v)+ () (BE)

Note that if we replace DZ by D% @ 7*(, where ( is a vector bundle on
B, we have the same formula ( B.8) except that every integrand be wedged
by ch(¢). Since ch: K°(B) — H*(B) is a rational isomorphism, we have
the following consequences:

1) Res,—of1(s) is exact. This justifies the way we plugin s = 0 in the
above formulas.

2) ¢h(IndD) is represented by
j L A(ker Dy) — (0
Zag— 2.: er Dy) — 7:1(0).
Now by the remark following Theorem B.2, we have
aolz-vx[o1] = A(R?) A t"(edLe)-

Thus

. _ VYA _Lt ﬂl-—h- s f
LGO_L_YX[D,I]A@R YA tr(e™™) 5¢ (ker Dy) — 7(0) + 3 ag-

x[0,1]
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It remains to identify j ao. We shall calculate it by the adiabatic

Y x[0,1]
limit method. The starting point is that instead of using metric du® 4 g on

the cylinder, we use §-2du? + g. Then the whole discussion goes through

and in fact we observe that

1) The index bundle IndD remains unchanged. This follows from the
charaterization of ker D and ker D* in [APS] as the L2-solutions repectively
extended L%solutions on the elongation manifold.

2) In ( B.6), O(-) is uniform in 5.

Therefore we can take the limit § — 0, obtaining a representative for
ch(IndD) where ao is replaced by lims_.o @o- Recall that @, is the constant

term in the asymptotic expansion of tr,e~B" and we can assume that B lives

in M x R since we are only interested in ap restricted to the cylinder. From

Section A.1, we know that F(M x R) = F(M) ® C? with grading given by

1 0
the involution p = 1d ® . Moreover X ¢ TM acts like
0 -1
01 |
X® , |
1 0
whereas % € TR acts Like
-1
Id® .
1 0
0o —1 01
Put eg = and ¢ = . In what follows we will abuse
1 0 10

notations and suppress the “®” sign. One has

B=v+ \/Eaueo +VtDyo — (“)\C[(T) . (B.9)

R A R AT
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At any fixed point 2o € R, consider the coordinate change

U — Ug
V=

)

Under this new coordinate, the rescaled metric becomes
dv® + g.

Therefore, if we let Bs denote the superconnection in the rescaled metric

corresponding to { B.9), then

w(uo + 6v)e(T") -
44/ ’

Since this is a smooth family of superconnections, for the pointwise super-

Bs = 7 + V/t0,e0 4+ VtDyo —

trace, one has

i ~B] —(Sar/i8, et/ Iy — 2LH0Ye(T) vz
]311%'“'36 Bﬁ'Mx{uo} = t'r’,.,e (V-I-\/“ eo+VtDyo —_.17?"_‘7)

(= _‘P(""D)C(T} 2 2 2
t?‘_.,[e (¥+vtDye S —e) eﬁta,,eo] = 0.

This is because the term of which we are taking supertrace does not involve
eo. By the property of the supertrace (Cf. Lemma A.1l), its supertrace
vanishes.

Since in the adiabatic limit, the volume grows like 6!, we need to

compute lims_,o -d‘—igtrse_ﬁi. This can be done by Duhamel’s principle:

d 2 2 d 2
ﬁt'r‘sensﬁ |6:0,’u:0 = utrs(e—BD#E(Bﬁ)z|6:0,‘v:067£‘0)'

Computation shows

d (o) (T)

—(BJ)2|5:0,1)=0 = ———4—600'-

dé
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Thus

! ~ g )e
e_B'z;#i(ﬁﬁf|6—0,v=06_8g - _¥ (UG)C(T)e o L e_(v+ﬁDY"_P Loy

4" Vant
To compute its supertrace, note that the Clifford element must be satu-
rate, i.e., if we let ey, ¢€,...,€, be an orthonormal basis of TM, then the

supertrace of F(M x R) is nontrivial only on the element

eo(ero)(ex0) -+ - (en0),

which involves an odd number (n) of ¢’s. From this fact, and the fact that

the trace on F(M) is nontrivial only on Id and e; - - - e,, we see that

2 ( 0) —(V+'\/—Dy0' plug)e(T) 0')2 1 even C(T) ,(@_}_\/ED},._ p(u )C(T)U)z
1 sl T 4/t tr 44/t .
-2l | = gt (e O

Hence,

d 52 1 e(T) o~ (THVID P(“D)C(T) 2
¢ ,€ B3 EPP—— $peven V+ Y— o)
d(S r |6—0, =0 2\/7—1_ T [ 2\/%‘ }

Moreover, the argument in [C2] can easily be adapted in this simple situa-

tion to show that

G’UC'R.[

(T3 —(V+\/_Dy—ﬂ1°§:[—) 2 ] 0(53/2)'

t'I‘,,e“BﬂMx{uo} 5— c
2/ 24/

This implies that

lim t'pse_Bg — / / even( uz;_(T) g(v+\/upy_ﬂ£)_€(ﬂ)2 dz du

60 JY x[0,1]
C(T) —(V‘l'\fDY— )2
— E'Ue'fl d

Consequently, if we expand

2\/_[ f emm( 2\/) A{V+\/—Dy— )2 dzds = Z C tk/Z—I-O( (N+1)/2),

k=—mn




then

lim ag = —'Oo.
80 /¥ x[0,1]

This shows that ch{IndD) is represented by
- 1—
A(iR®) A tr(e™ ™) — Zeh(ker Dy) — #(0) —
Ly o AGE?) A tr(e) = SeR(ker Dy) — n(0)
To finish the proof of Theorem B.1, we just have to show

= ﬁl(ﬂ) + Ch. (B.IO)

This can be seen as follows.

For ¢ small and u large, consider

1 “ — even scC T - 'Y'“'
I”(s):m2ﬁ£ t 7 2o [(Dy + 4\([)) (V42D ’]dt

Differentiate with respect to s, one finds

di* 1 jt
ds 27 Js

« T).. - se
t—l/zt even ‘SC( 2 _2M
—ﬂ_/; r T (Dy + i )2(V + ViDy 3

—I/Zt,re'uen[ C‘g:T)e—(?}-l'ﬁDY“'aTc(f_gl)z] dt

AT) - rvivv =287 g

On the other hand

ie_(ﬁ‘Jr\/fDY—J—l ; V- : Y__Tl)z.
dit i '

Therefore,

(7+vtDy E(_J_‘))z]

( ) | '. i
\/‘ )Z(V‘F‘\/—DY* 4\/-

C(T) d eﬁ(v+\/"DY"ﬂﬂ)2
2 dit

7t,re'ue~n[

AR
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Integration by part gives

ar . 1 tr e’uen[ (T) —(V+\/—DY %9')2 — ¢t even[c(T) —(V+vuDy - ﬂ_l)z]

ds 2/
Or

i 2«/_ 4f

even[ T) —(V‘l'\/—DY*Lﬂl)z]ds

4/t

poven( AT) (I HVaDx =5 4o (B 11)

(1) -1"(0) = 3 \/_ /
b

Note that when v — +o0,

Iu(l) —>I( 1/2t even[(D + ( )) —(V+VtDy Jyl) ]dt

v A

which is convergent by virtue of the ca,ncella.tion result (A.21). Similarly

I“(0) - I(0) 240Dy e (VHVEDYP) gy

ol
which is convergent because of ( B.3). On the other hand, for « large,
tﬂr[i—l _(V"I"‘/_Dy_ﬂﬂ)g] is uniformly bounded (Cf. Remark after Theorem
B.2). Therefore, taking w — 400 in the formula ( B.11), one obtains

(1) —I(0) = N f even| 2 ~(PviDy- 37 4 (B.12)

Now when { — 0,

+oo I o
I(].) - ﬁ :/ = 1/2t eveﬂ[(D 1T C(T)) —(V“l“\/-DY —(52')

0

which is convergent because of the cancellation result (A.19). Unfortu-
nately, we do not have a corresponding statement for the unitary supercon-
nection, therefore the same thing does not happen to I(0). However, we

claim that

#1(0) = the finite part of I{0) when ¢ — 0.
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To see this, recall that for Res > 0, we have
+oo " E N
n(s) = /0 t4Y3 [ Dye~(VHVIDY)] gy 4 fo Y2 [ Dy e~ (VHVEDYF| gy,
For t small, one has the asymptotic expansgion
. N
tT[DYe“(v-H/EDY)g] = Z aktk‘lz -|— O(t(N+1)/2).
k=—-n
Plug this in the formula for #;(s), we obtain
+o0 ." 2 N - a
f(s) = / ts—l/ZtTIDYe—(V+\/EDy) |dit + k (sHk/241/2
0 k

S s+ k[241)2
+O(t"+1+N/2).

This is how we see the existence of meromorphic extension of #;(s). In fact,
we can see more. [t follows that

N

1(0) = I(0)+ >

k=—nhs—1

Zak
E+1

£+ oV,

Our claim follows as well.

Armed with this and formula ( B.12), we easily arrive at ( B.10). QED.
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