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Abstract of the Disgsertation
Normal Two Dimensional Elliptic Singularities
by
Stephen Shing~Toung Yau
Doctof of Philosophy
in
Mathematics
State University of Wew York at Stony Brook

1976

Let p be a singularity of a normal two dimensioual Stedn
space V with p as its only singularity. Let w: H + V be the
minimal resolutilon of V with nonsingular Aj's and nommal crossings,

tional

where the-Ai's are the irreducible componients of the e
set A = ﬂ-l(p}. Suppose p is a weakly elliptic singuliarvity. We
introduce the concept of an elliptic sequence. This is defined
purely topologically. Whenever the canonical divisor 117 supporied
on A exlsts, we prove that -K’ is actually equal ro the summmation

of the elliptic sequence if 7 is the minimal resolution. Moresver
dimHl(M,ﬂ) Z the length of the elliptic sequence. A wookly

elliptic singularity is called a maximally elliptic sinsularity

if K* exists and dimHl(M,a) = the length of the elliptic sequence.
Maximally elliptic singularities may have dimﬂl(M,ﬂ} arbitrary large,
In case the length of the elliptic sequence 1z equal to one, then

the singularity is minimally elliptic in the sense of Leufern. If




K’ exists and the length of the elliptic sequence is equal to two,
then p is called an almost minimally elliptic singularity. Mini-
mally elliptic singularities and almost minimally elliptic singu-
larities with‘ﬁ%) Gorenstein are maximally ellipfic siﬁgularifies
Let m be the maximal ideal'inuJapw We prove that maximally
elliptic singularities havevsp Gorengtein. ¥Yor maximaily

elliptic singularities, if ZE'ZE 5 =2 where ZF-is the fundamental

cycle on |E|, then m® = D(-z). 1If ZE'ZE'S ~3 and p is a hyper-
surface maximally elliptic simgularity, then the Hilbert functien

forvf% is given by -nZ-Z.

It is known that dimHJ(M,S) is independent of the resolu-
tion. We prove that if Hl(M;D) = g2 andvf% is Gorenstein, then

7

p is a weakly elliptic singularity. Let ZB .
: 0

BR’ZE be the
elliptic sequence, We prove that mf}éi@(—'§OZB ) .
=0 By

4
then n) = @(n.ZOZB Y. TIn particular, the multiplicity of the
i= i

. < e
If 2,07, S -2,

i _
singularity 2 miZOZB 2 and the equality holds if ZE-ZE s -2, ¥If
‘ = i

ZgtZp S =3, then the Hilbert function dim mn/mn+l for,§§ - is given

% :
by nn(_EOZB 2). Examples show that these kinds of results are
i=0 B,

i
sharp, TLaufer has an example which shows that HI(M,D) = €% and

vﬂ; Gorenstein do not imply that p is an almost minimally elliptic
singularity. However, a partial converse is shown for hypersurface
_singglarities.~ We are able to list all possible weighted dual

2

graphs for hypersuiface singularities with HI(M,S) = €%, We prove

that for hypersurface singularities, if Hl(M,@) = €2 and Hl([E[,Z) =0,




then it is an almost minimally elliptic singularity. In fact, for
hypersurface singularities, ifrﬂl(Mgﬂ) = €2 and ZE-ZE < =2, then
it is an almost miniﬁally elliptic singularity. For an almost
mini?ally elliptic singularity p with f€$ Gorenstein, p is
absolutely isolated provided that ZE-ZE £ -3, In fact, after
blowing up p at its maximal ideal, one obtains only rational
déuble points and a minimally elliptic singularity. Examples
also show that this result is sharp.

We are able to give a complete list of all weighted dual
graphs for weakly elliptic double points by using the fact that
-K’ = the summation of an elliptic sequence. Moreover, each of
these weighted dual graph, a typical defining equation is given,
Later, we get a lower estimate on the dimension of Zariski tangent |
space of general two dimensiomal normal singularity in terms of

the fundamental cycle Z,
dim /2 2 x(Z) - 77 + aimitQL,(-2)) - dimE (06,0(-22))

This kind of estimate is sharp in the sense that equality holds
for certain singularities. In case of maximally elliptic singu~
larities, we show that dimHl(M,8(~Z))= dimHl(MJ§(~ZZ». “In particular

for maximally elliptic hypersurfaces, Z-72 Z -3.
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LIST OF SYMBOLS

v = two dimensional analytic space

_VO = the sheaf of germs of holemerphic functions on ¥,
O = the stalk of the sheaf 1} over p.

v op v

r v = the set of holomorphic functions on V.

E = minimally elliptic cycle.

Z = fundamental cycle.

Q = canonical sheaf, i.,e. the sheaf of germs of holemorphic

2-forms.

m = maximal ideal of § .
: . VP

|D| = gupport of the divisor D.

let D=1 diAi, F = ZfiAi be two cycles on complex two dimensional

manifold M.

it

inf(D,F) inf (di,fi)Ai.

B o

Let T be a coherent sheaf on M.

H, (M,F) cohomology with compact support.

Convention of weighted dual graphs: vertices without specifying
genera are of genus zero. We record the multiplicity z, of Ai in
:the fundamental cycle Z2 = ZziAi by placing that integer in the

orresponding position of the vertex
A4 -4

S T L S

e. 8.

o &

-3 -1 -3

Z=1 3 1= A1+BA2+ A3+A4

et D o= EdiAi be a positive cycle. Let BE |D|. Then D/B =

1 1s a positive cycle where £, = d, if A,¢ B and £, = 0 if
i i i i
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INTRODUCTION

The c¢lassification of normal two dimensional singularities
can be studied by the resolutidn of singularities. The resoclution
problem has been studied by Zariski [40], Hirzebruch [13],
Hironaka [11],Brleskorn [5} and Abhyankar [1]. .In resolving a two
dimensional singularity p, one replaces p by a compact analytic
gpace A. Because p is 2-dimensional, A is I-dimensional. Let
A= UAi be the decomposition of A into irveducible components.
Thus, each Ai is a (possibly siuéular) Riemann surface. It is

-egsy to reduce all considerations to the case where the Ai are

- nongingular, intersect gransversely, and no three meet at a point.
There is a purely topological bul very important: criterion dﬁe
to Grauvert [7] and Mumford [26] which says that A comes from a
resolution if and only if the intersection ﬁatrix (Ai'Aj) is
negative definlte.

The classification problem of isolated singularities of
complex surfaces have been atudied from various stand points. Taut
singularities in the sense of Tyurina [35] have been studied by
Grauert {71, Brieskorn [4], Laufer [22] and Wagreich [38]. The
’élytic structures of the taul singularities are determined by
the topological information of théir welghted dual graphs. The topo~

logical classification of normal two dimensicnal gingulavities has




bean studied by Mumford [26], Wagreich t37}, [38] and Brieskorn [4].
Let p be a singularity of a normal two dimensional amalytic

space V.  In 1964 M, Artin introduced a definition for p to be

rational. Rétional singulgrities have also been studied by, for

iﬁsﬁance, Duval [6], Tyurina [34], Lipmén [25], and Laufer [20].

in 1970, Wagreich introduced a definition for p to be weakly

elliptic. | Let us recall the definition. Let w: M - V be the

resolution ¢f V and A = ﬂ—l(p) be the exceptiongl set. Let Z

be the fundamental cycle [2 p.132) of A, Let 9(~7) be the sheaf

of perms of holomorphic functions on M whose divisors . are at

least 7 Let @Z i @/6(~Z). Then x(Z) = dimHO(M,&Z) - dimﬂl(M,ﬂZ)
may be computedlfrom the weighted dual graph I' via the Riemann - Roch
Theorem. Weak  ellipticity is x(Z2) = O? The conditions for p

:‘to be weakly elliptic is in fact independent of the choice‘of the
vesolution [37 p.423]. In [24]), Laufer defines a cycle E > 0

to be minimally elliptic if x(E} = 0 and x(D) > 0 for all cycleé

-

.D such that 0 <« D < E. 1In the case of weakly elliptic singularities
e proved that there exists a unique minimally elliptic_cycle .,
Weakly elliptic singularities have occurred naturally in papers
Grauert {7], Hirzebruch {12]:?Orlik and Wagreich [27], [28],
aéfeich {381 and Laufer [22].’ Karras and Saito have studied some
.#hese particular weakly elliptic singularities. Recently, Laufer

veloped a theory for a general class of weakly elliptic singu-

ities which satisfy a minimality'condition. He proved that p




is minimally elliptic if and oaly if Hl(M,ED = @ andvﬁb is
Gorenstedin., TIf Z-Z £ -3, then the Hilbert function for the
ring‘#%i is glvem by -nZ.Z. Also, the singularity p is absolutely
isolated., After blowing up p at its maxiﬁal ideal, one obtains
only rationsl dauble poimta.as singularities. If Z.Z = -1 or -2,

then p is & double point.
l .

a weakly elliptic singularity. When w is

m

Suppose p 1
the minimal good vesolution, we introduce the concept of an
elliptic sequence. This is defined purely topolggically.
Whenever the canonical divisor K* supported on A exists, we
prove that K’ is actually equal to the summation of the elliptic
sequence if 7 is the minimal vesolution. Weékly elliptic singu-

larities can be effectively studied by elliptic sequences. We

prove that for weakly ellintic singularities, dimHl(M,S) 3 the
length of the ciliptic sequence. A weakly elliptic singularity
is called a wesimally elliptic singularity if K’ exists and
dimHl(MDS)‘x the length of the elliptic sequence. Maximally
[liptic singularities may have dimﬂl(M,S) arbitrarily large.

n case the Ilength of the elliptic sequence is equal to 6ne,

slty is minimally eliiptic in the sense of Laufer.
'egists and the length of the eliiptic seqﬁence is equal to
then p iz called an alwost minimally elliptic siﬁgularity.
ily eliiptic-singularities and almost‘minimaliy elliptic.

sritdes with @b Gorensteln are maxiwally elliptic
- v : .




singularities. We prove that maximally elliptic singularities

have ﬁgp Gorensicin. For maximally elliptic singularities, if

ZE-ZE 5 =2 where EE is the fundamental cycle on !E[, then

md = §(- ?) If Zetfp 5 =3 end p s a hypersurface
£ ¥
maximally elliptic singularity, then the Hilbert function of {)
equal to -ni-z,
Rational wingularities have H (M,0) = 0, The hypersurface

1
singularities are ually deuble points. TFor H (,0)

Laufer was able to iz

(.l

t all weighted dual graphs of hypersurface
singularities. 1t is a natural question to ask for a theory for

those sinpularitics with H](.,u) €? and Q Gorenstein. It

should be mention:d that hypersurface singularities and complete
lntersections are Ceprenstein. We can prove that if H (M,SD
and‘ﬁ%{ is Gorvensiein, then p is a weakly elliptic singularity.

Let ZB',N-«m-_,Z\}'s #. be the elliptic sequence. Let m be the
I L]

e £
" ‘ 2

maximal ideal in,vpp. We prove that m8 & O(- ZB.). If
: _ =0 B

o £ -2 then wl s (- E Zy ). In particular, the multiplicitcy

E E i—.o bi
of the singulariiy » - T YB and equality holds if ZE-ZE s -2,

: =0

. . ‘e + ,
ZE*?E ~3, then rhe Hilbert functien QlHLHP/mF 1 for V®p is

iven by mn(‘zgz11 2y, fxamples show that these kinds of results
=0 Py

harp. Laufer has an exanple which shows that Hl(MﬁCD

v€$ Goremstein do not dmply that P 18 an alwost winimally
iptic singularity, However, a partial converse is shown for
rsurfaca singularities. We are able to list all possible

ted dual graphs for hypersurface singularities with Hl(M,S)




Hi

We prove that for hypersurface singularities, if Hl(Mwﬂ)

€2 and

Hl(]El, Z) = 0, then it is an almose mdnime

In fact, for hypersurface singularities,

ZE‘ZE = -2, then it is an almost winimally ellipric singularity.

‘For an almost minimally elliptic singularity p owich O Gorenstein,
: VP

P is absolutely isolated provided rhar p/

E‘ZE 5 o~3. In fact, qfter

bloewing up p at its maximal ideal, one obtains only vational
double peints and a ninimally elliptic singularity., Examvles
also show that this result is sharp.

One of the important questions in moimal two dimensional
singularities is "the classification of all weightéd dual graphs
for hypersurface singularities™. Double points are hﬁpersurface

singularities., In 1970, Wagreich proved thar ‘or double points,

~h

Z+Z 2 ~2. Using this fact, he listed most of the pessible

ﬁeighted dual graphs of weakly ellipric doubia proints. Using

‘the fact that -KX’ = the summation of an elliptic sequence and a

combinatorial argument, we give a complete 1ist of al1 welghted
al graphs for weakly elliptic double poinisa.  Moreover, each of
ese weighted dual graphs, a typical defining squation is glven,

» We gel a lower estimate on the dimensdon of Zaviski tangent

e of general two dimensional normal gingularity in terms of

- ZeZ 4 a1, 0(-7)) - eimit® (i, 8(-22))




This kind of estimate is sharp in the sense that equality holds

for cevtain singulavities. Tn case of maximally elliptic singu-

Jarities, we show thar dimﬂl(M;8(~Z)) = dimHl(M,9(4ZZ)). In

partic for maximally elliptic singularity, Z.Z 2 -3. This

enables vs to list all the possible maximally elliptic hyper-
surface singularities. However, the list is too long to be
ineluded,

I Chapter 11, we iﬁtroduce the concept called maximal
ideal cveie Y. Whenever the canonical divisor ﬁ’ supported on

A existz, we prove that Y canpot be greater than -K*, 1In

Chapter VI, we give a necessary and sufficient coﬁditions for

a weakly elliptic singularity to be Gorenstein or maximally
elliptic. A weakly alliptic singularity is said to be quasi-simple
elliptic if the winimally elliptic cycle consists of elliptic
(:_urve~ It dis known that 4f v@% is Gorenstein? then the canonical
divisor supported on A exists. Conversely if I' is a weilghted

of an almogt minimally quasi-simple elliptic singu-

the canonical divisor K° exists, then there exists a

structure for-an associated singularity.




GUAPTER I

PE\FL r‘JINAR T

For the sske of convenience to readers, we include the
basic koowledge for reading this paper. Most.of these can be
found in [24].
Let V be a complex anglytic sbvavity of a domain in ¢
given bv V = = {2z SRETIRERES, £,(2) = Gy 4 = 1,2,3,..0,r)

Let V = Ulvl be the decomposition of ¥ into irreducible components,
"L b=

Definition 1.1 dim V = max dimVi
‘ 15125k

Def]nlrloqm;*% A point p e V is a vegular peint of V if the
af,

L is a subset of

Jacobian (EE&ﬁ(p)> 1332w, 1e1 W
(1,2,e...,7) and {fi}ial is a wdnimal cet of defining equations
for V at p, has maximal rank. If P iz not a regular point of v,
p is called a singular point of V. A sipgular point p of V is
called a two dimensional singularity of V if V is two dimensional
near p.

Definition 1.3 A germ h uf a fun‘atou defined on the regular

points of V near p is said to he weal Ty ho]omorph:c at p if h
is holomorphic on the regular points near p and locally bounded
m

near p, Let & and § be respectively the sheaf of germs of weakly

holomorphic functions and sheaf of germs of holomorphic fupctions

- i
on V. There is a natural inclusion <= O, ¥V is normal at p if




A S
SpC: QP is an isomorphism. V is normal if © v, d.e. if V is

normal at each of its points.

Definition 1.4 Tf V is an analytic space, a resolution of

the singularities of V consists of a manifold M and a proper
holomorphic map w: M -+ V such that v is biholomorphic on the
inverse image of R, the regular points of V, and such that ﬂ—l(R)

is dense in M.

Pefinition 1.5 A nowhere discrete compact analytic subset

A of an analytic space G is called exceptional (in G) if there

exists an analytic space Y and a proper holomorphic map ¢: G+ ¥
such that ¢(A) is discrete, ¢: G - A > Y - &(A) is £iholomorphic
and such that for any open set Ue Y, with V = @nl(U),
@ﬁ: u,%) » (v, is an dsomorphism.

If A is exceptional in G, we shall sonetimes say that A

can be'blown down" ox ¢ blows down A.

Definition 1.6 A resolution m: M =+ V of the singularities of

V {with nonsingularx Ajfs and normal crossings) is a minimal (good)
resolﬁtion if for any other resolution (with nonsingular Ai‘s and
normal crossings) f': M' » V, there is a unique holomorphic maf
p: M' -+ M such that n' =« . 0.

A winimal goo& resolution for lsolated two dimensional

singularities always exists and is unique [191,

?
!




Let ¢ M > V be a resolution of normal two dimensional
Stein space V. We assume that p is the only singularity of V.
Tet T Hp) = A = U Ay, Lsds ﬁ, be the-decomposition of the excep-

i

tional set A into irreducible components, Suppose % is the minimal
good resolution, The topological nature of the embedding of A in
¥ is described by the weilghted dual graph T [14], [19]. The
vertices of T correspond to the Ai. The edge of T connecting
the vertices correspondiag to A and Aj, i+# j, correspond to the
i Finally, associated to each A4 dis its genus,
11, @8 a Rismann surface, and ite weight, Aq Ayt the topological
self-intersection number. T will denote the graph;'albng with the

genera and the weights,

inition 1.7 deg Ay = XAMA4, 34 10

A eycle (or divisorial cycle) D or A is an integral com-

bination of the Ay D = EdiAi} 1 £41 2£n with d; en integer.

In this paper, "ecycle" will always mean a ecycle on A. There is

f+]

natural partial ordering, denoted by <, between cycles defined
ﬂﬁy comparing the coefficients. We shall only.ﬁe considering
veles D 2 0, We let suppD = IDI 21}Ai, di # 0, denote the
'ubpart of D.

Let & be the sheaf of germs of holeomorphic functions on
1Let &{-0) be the sheaf of geyms of holomorphic functions on
.h;;h vanish to order di on Ai‘ Let&5D denote $/8(~-D). We

dim" to denote dimension over €.
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(1.1) X(@) = ain HOOLY) - dim Wh01,0))
Some authors work instead with the arithmetic genus Pa(D) =1 - x(y.
The Riemeann -~ Roch Theorem [31 p.75] says |
(1.2) x(D) = —%_— (DD + D-K).
In (1.2), K is the canomical divisor on M. D-X may bé defined as
follows. Let w be a meromorphic 2-form on M, i.e. a meromorphic
gection of K. Let (w) be the divisor of w. Then DK = D- (w)
and this ausber is independent of the choice of w., In fact, let
g4 be the geometric genus of Ay, 1.e. the genus cf the degingulari-
zation ofVAi, Then [31 p.75]

(1.3) AR = —AgAy + 285 — 2 + 284

where €1 1s the "nuwber" of nodes and cusps on A;. Each singular
point on A; other than a noﬁe or cusp counts as at least two
nodes.  Fortunately, such more complicated singularities will not
‘occur in this paper. |

The minimal resolution of V is characterized by there
eing no As which is a non-singular rational curve with AjrAg = -1
p°364]. The intersectién matrix (AioAj) is negative definite
61 so by (1.3) we see the following.

Provosition 1.8: m is the minimal resolution of V if

only if Ai-K 20 for all Ai,
It follows immediately from (1.2) that if B and C are

3. than

(1.4) X(B+C) = x(B) + x(C) ~ B+C.




il

Associated to 7 is a unique fundamental cycle 7 [2, pp. 131-132]
such that 7 > 0, Ai'Z £ 0 all Ai’ and such that Z is winimal with
respect to those two properties. Z may be computed from the inter-
section métrix as follows [20 p.607]via what is called a computatidn
sequence (in the sense of Laufer) for Z

zmo’ Z=A' ’z?«zz]_"}‘Ai s e s ey Z.=Z, 1+Ai

ve ol =4 '+Ai' = 7
2 J J- ? £ L1 -LQ;

b

where Ai.1 ig arbitrary and Aij'zj—l

represents the sheaf of germs of sections of a line bundle over

>0, 1<y 2 b Ozy /0C2)

1 .

- : ) O c - .. )
A. of chern class wAiJ Zj—l' So B (M, 5( Zj_l)/Q( Zj)) - 0 for

W,

1.

e

(1.5) 0>9¢2,_/0¢-2) >0, ~Q, o

J j-1

is an exact sequence. From the long exact homology sequence for

(1.5), it follows by induction that

(1.6) o0, ) = ¢ 1Sksg |
, % .
ok S - -
(1.7) dimH (M,f)zk) = & dimH* (M, 8( zj_l)/t)( 2.0
1335k

(1.8) HZ(M,F) = 0.

any coherent sheaf F on M [33].

Let Zk be part of a éomputation sequence for
= 0, Then dimHl(M,@D) £ 1 for all cycles

Also, (D) =z 0,
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Definitjon 1.10 A cycle B > 0O is minimally

X(E) = 0 and x(D) > 0 for all cycles D such that 0 < D < E.

Proposition 1.11 Let Zk > 0 be part of & computation

sequence for the fundamental cycle and such that v{Z1} = {},

~y
3
[ -
e
[

=
Y
9,
=

Let B = J brAi and C = % ciAi’ 124 %0, be any

H
-
:
=
o
(w3
o
e
i
-
=
e
=
N
o
,
-
@]
p—
T~
.

that 0 < B, C £ z, and x(B) = x(C)

154 sn, Then M > 0 and x(M) = 0. In particuis

a unique minimally elliptic cycle T with [ < 7
Wagreich [37] defined the singularity p to b elliptic

if y(D) 2 0 for all cycles D > 0 and x(F) = 0 for some cyeles

¥ >0. He proved that this definition is independsui of the

resolution. It is easy to see that under this hypothesis, v(2) = 0,

=t

The converse 1s also tvue [371, [24). Henceforth. we will adopt
the following definitdion,

Lic XF % (Z2) = 0.

-

Definition 1.12 P is said to be weakly ellip

=

The following analogue to propositicn 1.11 holds for wealily
211liptic singularity.

Proposition 1.13  Suppose that () 20 for all cyecles

.0. Let B = ¥ biA; and C = & ciAi’ 124 2n, be any cycles

(that 0 < B, C and (B) = %(C) = 6. Let M = »

sin{b, ,c ) A,
,xgil,cl)Als
=n., Then M > 0 and y(M) = 0, In partleular, there exists

Unique miniwmally elliptic cycle ¥.




Lemma 1.14 Let B be a minimally elliptic cycle. Then

¥

for AjC": Aj'E wz “1’.:‘3.:‘]"1(. Suppose additionally that 7 is the

minimsl rescliotion. Then E is the fundamental ecycle for the singu-

- supp B as its exceptional set. Also, if Ek is part

larity hawv

o sequence for B as a fundamental cycle and

of a computa

3, then the computation sequence may be continued

st E, g0 oz to terminate at E = B with A;. = Al
: % i, 3

Let n: M - V be the minimal solution of

the normal two dimensional varlety V with one singular point p.

v . ] -1
Let 7 be the tundamental cycle on the exceptional set A =1 (o).

Thew the following are couivalent:
iy Z ts a wminimally elliptic cycle

# ~A-K for all irreducible components Ay in A

]
S
Mo
1=
-
]
1

0 end any conmnected proper subvaviety of A

w2
S
—
(S
P’
Hi

is the exceptional set for a rational singularity.

Let: p be a normal two—-dimensional singularity

if the minimal resolution m: M > V of a

the conditions of theorem 1.15.




CHAPTER TI

BASTC THEQRY FOR WAARLY BLLIPTIC SINCULARTTIES AND

§1 Minimal good resolubtion of weakly elliptic singularities
In this section, we study rthe minimal good resolution

of weakly elliptic singuiarities. We want to vnderstand the

nature of the computatios sequence for the fundamental eycle Z

and what kind of curves can be in the exceptilional fibre.

Lemma 2.1 Let w: M+ V he a resolution of the normal

two dimensional space V with p as ite only singularity. Let

ﬂ_l(p)‘= A =1JAi, 124 2 u, be the decomwposition of the excep-

tional set A into irreducible companemts,. Suppose there exists

a minimally elliptic cyele B on A. Then suppE = Ay, if and only

if either Ay is a noﬁsingular eliiptic curve ot Ay is a singular

rational’curva with nods or cusp sinéularity, Lf suppE = UAi’

1245k, and &k 2 2, then XCAT)= ., = x(Ak) = 1 and

A19°“'5Ak are nouglngular rational cuzﬁes,

Let. Z be the fundamﬁﬁtal eycle on A, 1f x(4) = 0 and

n > 2, then X(Ak+l)m.tozx(An) = 1. In particular,kif suppE con-~

;ists of more than one irreducible component, then all Aiq

1 % n, are nonsingular rational curves. If suppE = Al’ then

1 Aj, 2 1'% n, are nensingular rational curves.,




Proof We claim that suppE = Al if, and only if,
x(Al) = 0, Suppose suppE = Al. Then E = nAl for some positive

integer n,

x(wA) = x(A)) + x((n—l)Al)_— (n-1)A, Ay

It

a(=b) ,

n x(4)) - =3 1%

(n-1)

Since (E) =0, x(Al) = e A -AI. By definition of miniwally

2 1
elliptic ecycle (Definition 1.10), X(Al) = jﬁ%ggLA]~-A z 0.

;2
iﬂ%ll,Al.A <0, Therefore X(Al) = 0., Con-

However, X(Al) = S

versely, if x(Al) = (0, then E = A This completes the proof

1.
of our claim. By (1.2) and (1.3)

x(A)) = - l—(A_-A, + A, +K) where K is the cancnical
1 2 171 1 ..

divisor on M

-1 . G

=-3 (Al-Al: Al-Al + 2g1—2 + 251) where 6l is

' the "number" of nodes and

cusps on Al

=1~ -4

Therefore

x(A)
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So supph = A 48 aithey A, is a nonsingular elliptic curve or Al is

ditlenal curve with node or cusp sinpgularity. If

a singular

2, thon X(A{) » 0 for J.f‘-s.i <% suppE by the

7

el

vimally elliptic cyele. On the other hand,

definition oi

x(A )

A
[
-

{1.1) and {1.8). So X(Ai> = 1 and hence 1 - &y Gi = 1

for 1 2 4 £ . This

<5 that gy 0 = Gi, i.e. Ajg,

1243k, ave ronadnguiss CUTVES .
¥ i

To prove the veslh of the lewmma, it suffdices to show that
) 5

guppl, x{2) = 0 implies

if x(Z) = 0, theo y(A = L for Aj

that (D) 2 0 iae D » O {24, Corollawy 4.3]. By (L.1) and (1.6), we
know that X(ii} <1, S0 0 S x(Ai) £—1Q HOW?Ver, X(Ai) cannot be equal
to zevo by Troposition 1.23. Therefore'x(Ai) = L for Ai‘q; suppE,i.e.,
rational cuzves.

Let n: M =+ V be the minimal resolu— n

¢ gingulacity p. Let 7': M' - V be the
smindmal resoluticn such that A, ave nonsingular and have normal

transversely and no three meet at a

point, Then v = 7% and oll the Airare rational curves except

A]_iﬂ a nougingular elliptic curve. AZ""An are

mal curves.  In this case, ™ = 1'. In fact,

AyyeeiA



(3) A, 18 a ratlonal curve with a cusp singularity. AZ""An

.

are novsingular vational curves and have normal crossings. In

fact O % Ayrhy <1 For i # 3.

4 AXL A, ars monsingular rational curves and have normal
i el

crossings except A] and AZ having first order tangential contact

at one poiat. In faect AleAz =2 gnd 0 < Ai-Aj £ 1 for i # i,

(i,§) # (1,2) and G5 # (2,1).
(5) A1l A; are vonsingular rational curves and have normal

except A 4 A, all meeting transversely at the same
= 15 25 3 g Y

oint., In fact, if n Z 4, then 0 £ A,*A, 21 for 1 £ 41 S n,
p , 185

T ] a A e e . =
J P | S W J 1nd ll [&2 1, A3 (A1+A2) 2.

In case (2), ©' has the following weighted eual graph as

’ .
1 (\“»ﬂmwff -1 with Wy > 5

In case (3) -~ (5), @' has the following weighted dual

S S —

g -1 -, : >
Wy 3 with wi 2 1

IA
e
A
(%]

roof is long but straightforward with many cases.

2.3 Let 7 be the minimal resolution with non-

ar Aﬁ‘and aormal crossings for a weakly elliptic singularity.

17




Then E may be chosen as part
Moreover, if Zi <78
Z and Am Lo supp(E—Zj)3 then
tinued past Z, so that A, =
J e
Proof:

Proposition 2.4

minimal rescolution.

following forms

(2) If A <A

tion for a minimally eliipitic sin;

= BAL b 34 4+ 2A, b A
)

Let E be the winimally elliptic eveie, E £ Z, the fundamental cycle.

of 2 computation sequence for Z and
is part of a computation sequence for
the computation sequence may be con—

A .
m

The proof is the same as Corollary 3.6 of [24].

Lett 7 he the minimal good resolu—

tarity. BSuppose T 1s not the

Then the fundamental cycle is one of the

(T) . with ¥, 25
bl B -
/’ \ 2
A ‘\\%\m e - A 7 o= O FA
1 e 2 1 ‘9
~ A
3 3
AL
'-( ) with w,i z 2
“Wé . mw4
Frmmmed e e 2 %454
AZ Al A4_
(1) if Ayrhy £ =3, Apehy S =3, AcA, 5 -3, then
Zo= 3A. A, P AL+ A

2 3 4

4

= WZB‘A3*A3 = -3, A ‘Aé < =6, then

L p2 -

&

18




(3 If AZ'AZ = =2, A3«A3 S =4, AA'AA < —4, then

7 o= 4 .
il !Al + 2A2 + A3 + A4

Proof: An easy case by case checking.

Proposition 2.5 Let w: M -~ V be the minimal good

resoalution of a normal two dimensional Stein space with p as its

only weakly elliptic singular point.

Case 1: If suppE has at least two irreducible components, then for

any computation sequence of the following form ZO = (, Zl = Ay
1

1 for § 4+ k and

vsesld, = B, ooy Z = Z. We have Ai‘eZ

L
3
= 2. If suppZ — suppE # ¢, then for any Ay S suppZ-suppE
1

k 4~1

Ac 7
1
k
we can choose a computation sequence of the following form

k-1

Z =0, 7, = A, z

o 1 11

suppZr < suppZ-suppE and Zr+1 - ér""’zr+k - Zr = B, 1s part

=F 4+ Z ,...4, = Z such that
r L

r+k

seansZinZygsees

cof a computation sequence for Z. Moreover, any computation sequence
.of the above form has the following properties: A.i_-Zj__1 = 1 for
= 2,

i#r+kand Air+kbzr+k—l

computation sequence of the following form Z0 = 0, Z1 = Ai]‘= E,
Z, = Z, we have Ay *Z, = 1 for all j. If suppZ-suppE # ¢,

i i1

i _ . T - AL 7 -
uvence of the following from 50 0, Zl All""zr’ 2 41

A yeeel, = 7 where A = E. Moreover, any computation

% i
_ +1 o :
tence of the above form has Ai Dijl = 1 for all j.

19
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Proof: Case 1 0 <A 2, ,=A; (B~A_ )
i k-1 1 :
Tk k ik
= ~A K - Ai -Ai by Tenmma 1,14
k k Tk
= —2g, +2
T

So g, = 0 and Ay tZ 2. Since x(Z) = 0, Hl(M,C%) = € by

(1.1) and (1.6). As all Ai are nonsingular rational curve, there-

fore (1.7) and Riemann — Roch Theorem will show, that Ai;nzj“l = 1
for j # k.- !

From the above proof, we know that for any_Ai ¢ suppE
such that there exists Aj é% suppl and'AinAi > 0, then e, = 1 and
Ai'Aj = 1, where e, is the coefficien; of A; in E. It is easy
to see that the computation sequence in case 1 of the proposition

can be chosen. WYow we are going to prove the last statement of

z.) =2

case 1. By the above argument, we know Air+k(zr+k“1 ~ 7.

and hence Aj «Z Z 2 because A; < suppE and
Frik FRel Trtk _
Zr = suppZ~suﬁ§E. Since Hl(PLEE) = ¢, by (1.7) and Riemann -

Roch Theorem, there is at most one Aij.zjfl = 2, 8o Aif+k.zr+k~l = 2

‘and Aij-zj_l =1 for j # 1+ k.
ase 2: Since x(E) = x(Z) = 0, (1.1) and (1.6) imply thét Hl(M,@Z)
¢ = Hl(M5®E). So by (1.7) and Riemann - Roch Theorem, it

_zows immediately that Aijizjul = 1, for all j.

Now let us prove the last statement of case 2. DBy

ma 2.1 we know that A4 is a nonsingular elliptic curve,
1




Moreover, for any Aj # Ay " A4 is a nonsingular rational curve.
k1

e N -1 - . _ - A
By (1.7) and H (M,OZ) €, we have d:LmHl M, 9O Zr)/f)( Zr A'lr-i-l))

< 1. The chern class of the line bundle associated to

5 (7 (=7 ~A on A . is -As  e7 = wl; By Serre
w( r}/ O( r 1‘1?!_1) ir+l et “r Y.

w2y -~ 2%+ Ay cZ=A5; . +Z. So A +Z = 1=
8 lr—}-l g 1- L ir’i'l

41 1 r
dimrt i, O (-2.)/ ®(~zr-Air+l)). By (1.7), Serre duality theorem
arid Riemann - Roch Theorem, we know that Adw'zj—l = 1 for all j.
J

Moreover, A; ave nonsingular rational curves for j # v + 1.

Lorcllary 2.6 Let w: M = V be the minimal good resolution

of a normal two dimensional Stein space V with p as its only
weakly elliptic singular point. Suppose suppE = Al. Let
Z == ZziAit Then Zl = 1.

Proof: This is contained in the proof of case 2 of

the above Proposgition.

§2 Laufer-type vanishing Theorem

Proposition 2.7: Let p be a weakly elliptic singularity. Let
1 M+ V be the minimal good tesolution of a Steiﬁ neilghborhood
;ﬁ of p having p as its only singular point. Let Y > G be a cycle
@:the exceptional set A such that AiaY 2 0 for all irreducible
?onents Ai of A. Let Z be the fundamental cycle and E the

inimally elliptic cycle. Let O = Zo,...,Z = 7 be a computation

&

QQuénce for Z with E = and Ai such that Ai *Y < 0, Then

7
k K K

duaiity Theorem and Riemann Roch Theorem dimHl(M,ED(an)/f)(-ZrQAi ))
1



Hl(Ma‘S(“Y-Zj)) =0 for 0 2§ £ 4,
Proof: The proof is similar to the proof of Lemma 3.11 in [24]7.

Proposition 2.8: Let p, my, My, V, ¥, Z and E be as in Propisition

t
2.8, Let E= 3 e,A,. Suppose E-Y <0, Let A, be an arbitrary
i=1 i'i L

AiEE suppE. Then p: HO(M,(S(—Y)) > 120, @(—Y)/f)(—YwAlb is sur~
jective if Al ig an elliptic curve or if there exists Aj £ suppE,

Aj # A; with Aj-Y <0 or if e, > 1. If A, is a rational curve,
0 for Aj # Al’ Ajgg suppE, and ey = 1, thenm the image of
p is a subspace S of codimension 1 in HO(M, ®(=YD/€U(—Y~A1)}.

>
e
1

If dim § 2 2, then the eléments of § have ne common zerces as

gsections of line bundle 1. on Al agssociated to Q}("Y)/<9(—YmAl)‘

If dim 8 = 1, then there is one common zero at a point q e A

with q ¢ Aj where Aj'Y = 0 and _A.j <. suppE. . ﬁ

“Proof: The proof is similar to the proof of lemma 3.12 in [24]

Structure Theorem for weighted dual graphs of weakly
elliptic singularities

For weighted dual graphs of weakly elliptic singularities,
‘can obtaln some information from the following two propositions.
ch more complete information is given in Chapter III,

Position 2.9: Let w: M+ V be a resolution of a normal 2

nsional Stein space V with p as its only weakly elliptic

larity. Let E be the minimally clli@tic cycle on A = ﬁ“l(p).

B is a connected subvariety of A such that B 42 supph,
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Then B dis the cuceptional set of a rationagl singularity..

that B is exceptiomal in M follows from [19-p. 89

Lewra 5.11). - Lat ZB denote the fundamental cycle on B, It
folilows by [7, p.132 Theorem 3] that x(ZB) 5 1. On thé other
harsd. since p is & wealkly elliptic singular point, X(ZB) 2 0,
l'sl-to zefrﬂ Otherwige it will contradict the
the minimally elliptic cycle by Proposition 1.13 since

efore yw{7Z.

b) = 1. Apply Theorem 3 of [2], our

¢ Let umy M+ V be a resolution of normal two

1 Stein space with p as its only weakly elliptic singvlar

poiot.  Let B be the minimally elliptic cycle on the exceptional

=1 . .
seb A = “{p}. Suppose B is a connected subvariety of A con- a
taining [ul. Then B is the exceptional set for weakly elliptic

if B = suppE, then B is a minimally

f21. Sivece p is a weakly elliptic singularity, so x(ZB) z 0.
, 002 xw(Z)) 5 L. x(ZB} cannot equal to one. Otherwise it
1:imply thet 8 is an excepticnal set of rational gingularity

Thieorem 3 of [2]. Since B EszJ Theorem 1 of [2], says that

—
s
F3
o
‘r...
o
.
[£2]
&

contradiction so x{ZB) = 0 and B is the




exceptional set for a weakly elliptic singularity.

84 Maximzl Ideal Cycle

Let w: M = V be the resolution of norwsl two d

e the mas

space V with p as its only singularity., Let

ideal in vf%. One dmportant question in norwal two dimensi

singularity is the "identification of m .

define the maximal ideal cycle which serves paviially

[

the maximal ideal. : : .

Definition 2.11l: - Let A be the exceptional st in the

tion wi M + V of a Z-dimensional space V with p wnd dits only

are the irrveduoible

singularity. Suppose thaﬁ'{Ai}

1524 5
components of A. Let m be the maximal fdeal im . IF £ g m, 4
-. N i"
‘then the divisor of £, (£) = [£] + D where [£] = ¥ nin and D

- involwve any of Aiﬁ Let Y be the positive

= inf [f]. Then Y is called the
fem

‘oposition 2.172: Use the notation of Dafinition 2,12, The

ximal ideal cycle is a positive cycle s.t. LA

A, < A, Tn particular Y 2 Z. In fact if

1

that fl""fr generate m, then Y = inf

- Easy.
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Proposition 2,13: Wse the notation of Defipition 2.12. Let

¥ be the maximal ideal cycle, then m O < f)(~Y). Moreover, if
mi  is locally principal,i.e. mO = {)(-D) for some positive

divigsor D, then D = Y and n{) = O (=),

el
jax]
o}

Ve

1
;..',
;:
r'i“
’—l-
;:i
™
,._|
.r_--

Let ¢t M' =+ M be a monodial transformation

with center ¢ ¢ M. We associate with the curve C « M,g¢C
" .
he curve C  the proper transform of C in M', If q is a point

of multiplicity n of the curve C, we associate with this curve
% -1 , -
the curve ¢ + n L = M' vhere L = ¢ (q). With the divisor 7 = Zk.Cys

. *®
we assoclate the divisor o (Z) = Ekici + kiniL, where n, is

the multiplicity of the point q on the curve C..

.Lme:\? 15: Let nt M > V be a resolution of normal two

dimensional analytic space with p as its only 51ngu]ar1ty. Let

. T 1(p) =LJA5_be the decomposition of A into irreducible cot-
Yonents. Suppose‘w is a positive cycle on A such that W—Aj =0
. all AjEZ A.  For any positive cycle X on A such that X % W,

S W Also, X% = W® 4if and only if X

! Let ¥ = W + Ln A where D, z 0. Then Xz = W2 + 2 Zni(Ai-W)
n, nj (AifAﬁ)' Now Ai-W'ﬁ 0 by the hypothesis. The last
ression is nonpositive since (AifAj) ig negative definite.

ver, thig expression is zero if and only if n, = 0 for all

e definiteness.
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Lemma 2.16: Let w1t M + V be a normal fwo dimensional

analytic space with p as its only singularity. Let A = ﬂ“l(p) =
L :
U Ay be the decomposition of A into irreducible components.
i
La

[

s

o: M’ > M be a monoidal transformation with point q as center.

w

'~

let D = ﬁml(q) and A} be the proper transform of Ai by o. Then
t

(W'G)Hl(p) =D (4( A%); Suppose X is a positive cycle on A
i=1 o .
such that Age R 20 for al] Ai <. A. Then De¢" (X ) = 0 and

Ay +o™(X) 20 for all 1 < 1

A

[

rreof:  Sidnce A; is linearly equivalent to some divisor not
paseing through g, hence X is also linearly equivalent to some
divisor not passing through.q. It follows that w*(X).D = 0. By

n. 421 of {37] HeAy = U*(}{)-U*(Aj). So 0 Z X<Aj implies that

i

20f(x) 0% Ay = 0% () (A} + mD) = o¥(x)-al. |

. corem 2,17: Let m: M + V be a normal twe dimensional

1(p)

t
L Ai'be the decomposition of A into irreducible compenents.,

analytic space with p as its only singularity. Let A = ¢

¥ be the maximal ideal cycle asscciated to n. Then the
ltiplicity of vf)p 2 ~Y.Y. If mY) is locally principle, then the
FipTdcd b - Y.Y.

iplicity of VE)p Y.Y | |

If mw is locally principal, then n®) = Q}(~Y) by

sition 2.14. 1In this case Theorem 2.7 of [37] says that

is equal to ~Y.Y




In the gsnerai case, let n': M' > M be the monoidal
transformation with center w') . The map ™ is a composition of

tiong o with points as center [see 42, lemma,

monoidal transfo:

— S '
p.5381. TLet Al w (et 1(p) = leg. Then the lemma 2,16
=7

=

says thet AL -w'"(¥) 20 for a1l 1 £ L £85. Let ) be the

structure sheaf on M'. Let ¥' be the maxmimal ideal cycle relative
to wen'.  Then m(Y = ﬂ’(wY'}n But m & < LSJ(—W'*(Y)). S0
YU R YY), Theovem 2.7 of [371 and lewma 2.15 will show that

the multiplicity {V{}p) SRR AR G —[ﬂ'*(Y)}Z. However, for any
. T % 2 2
proper modificaiion v and divisor L, we know that [o®™(L)]” = L%,

) IS
£

So (ﬂ‘*(L)>z = L7, In particular ('ﬁ‘*(Y))2 w3 YZ, Therefore

i~ Y 2

o

-
v

i
=4
b

mueltiplicity

Defini

two dimensional svpace V., Leb w: M -+ V be the resolution of V.

' . 1o s o« ; I -1

Let A :lJAi) 1 54 5% n be the decomposition of A = 1 “(p)

inte irreducible components. Let K be the canonical divisor on

M. We define the negative cycle XK' = Eiji_on A where ki e %,

5, o be 2 cycle such that Aij' = Aj;K for all
<o Ao (K? does not always exdst).
The following Theorem gives a "non-lower" estimate of the

imal ddeal cvele in terws of the cyele K2,
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ideal cycle Y relative to v cenuct be greaster than or equal to
~x?
Proof: By Theorem 3.7, ».603 of [20], we know that Hl(M,f)(K?))=O.

The following cohomology exaci zoguence

Hl(M, GEYY » nh@, ) oo (3, -i‘_}m,%{,)

shows that HY(M, . Y optaLilY, Sinee x(-K?) = - -';;{'(-"K’)"K +

S
(~=K* )+ (~K2 )] %{(WK})"K” R C-RT)Y = 0 by (1.2), hence (1.1)

says that dimHO(M, S dimHl(Mg&) z 2,

4

¥ 2 =% Since 7 ig the

Suppose on the conts

minimal resolution A.-K' 2 O fow all AL, 8D ~E’ z 7 by the

j definition of the fundsment cyole 2. It follows that there
is a natural injective map I {ri, O + 19, &§¢-2)). We

claim thaot this map in zertually 5ufjectiv¢a Given any g ¢ i (M O=2)y,
we know that g is actually & fusction ou V which vanishes at p.

By Proposition 2,13, g e U (M, J{~¥)). l,fevér Y 2 -k’ implies

that HO(M,G}(JY))EE HO(Mgf}(R"}}, So g can also be considered

as an element in HO(Pgiﬁ{Ké))m This proves our clalm. Look

t the following commuwtative disgram with exact rows,

0 B0, g ) > 1 U) > B0, O p0) » i, ™) © 0

0 = HOM, O-2)) » u° (H.v; > 1%, 9.) vog - nt e, O -2)).
£
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Since HO(M,{DZ) Y € by (L.6), so HO(M?E)) -+ HO(M,ﬁjz) is surjective.

We have HO(M, & ,) is isomorphic to 1O, OZ) .

-

) = 1 < dim% @, ©

o mK?}' This leads to a

Q'EQDQ

VHowever, dimHé(M,f)
contradiction,

It vf)p is a Gorenstein ring, i.e. there is some neighbor-
hood Q of p in V and a holomorphic 2~form & on Q-p such that o has

no zeros on Q-p, then K’ exists,

Theorem 2.20: If we assume VC}p is Gorenstelin in Theorem
2,19, theq the same result holds even if 7 is not necessarlly
the minimal resolution. .

Proof: As vé)p is Gorenstein, there exists o ¢ HO(MwA,ﬂ) having
no zZeros near A. Serre duality gives Hl(M,C)) as dual to
HiCM,Q), where 2 is the canonical sheaf, i.e. the sheaf of germs
of holomorphic 2-forms. By Theorem 3.4, p.604 of {20], for

suitable M, which can be chosen to be arbitrarily small neighbor-

hoods of A = W-l(p), Hi(M,Q) may be identified with

1% (-a,5) /8° (M,9)

dimH® (M4-A,2) /HO(M,0) = n > 2.

ere exists Wgaess sl in HO(M-A,Q) such that the lmage of

-s...,mn in HO(M_A,Q)/HO(M,Q) forme a basis. Since w is non—zZero

e
iA

a neighborhood of A, we may assume that wy ﬁ_fiw 23




where fi € Ho(M,f)). Moreover we can assume that fi are wvan-

ishing at p, i.e., fi £ HO(M,mf)). Otherwise we simply replace
<

- <
fi by fi fi(p), 2 iZzn.

Suppose our theorem is false. Then the maximal ideal
cycle Y 2 [w]. Since n) Gé@(wY) by Proposition 2.13, we have

W, ='fim » 2521 %X n all in HO(M,R). This contradicts the fact

that the image of w, Wy ses el forms a basis for

5 (M-A,9) /1% (4,9) .



CHAPTER TII

ELLIPTIC SEQUENCES AND MAXIMALLY EILIPTIC SINGULARITTES

One might classify hypersurface singularities by
h = dimHl(M,f)). If h = 0, then the singularity is rétional [20].
Tf h = 1, then the singularity is minimally elliptic [24]. Let
us consider the condition h = 2. All hypersurface singularities
as well as complete intersection are Gorenstein, so the following
theorem applies.
Theorem 3.1: Let m: M = V bé a resolution of the normal

-

two dimensional Stein space V with p as its only singularity.

it

Suppose v{)p is Gorenstein aﬁd Hl(M,E)) Gz. Then p is a weakly
elliptic singularity.

Proof: iet wml(p) =,A‘=lJAi, 1 £1i2n, be the decomposition of
he exceptional set A into irréducible cémponents and Z e the
fundamental éycle on A. Since Hl(M,f>) is independent of the
cﬁoice of the resolution [20, Lemma 3.1, p.599] and {2,p.124],

7e may assume that T is the minimal good resolution. By (1.6),

0,) = €. So we have the following ezact cohomology sequence;

0 »utar, O¢-2)) » 870,0) » 1G9, + 0.



However, as Hl(M,O) = tﬂz, the first direct image Rlﬁ"* Ov is not
zero by Lemma 3,1 of [20]. This leads to a contradiction. If
Hl(M,OZ) = Cz, then Hl(M, @(-—2)) = 0. As VGP is Gorenstein,
there exists w ¢ Ho(bi-;A,SZ) having no zeros near A, where @ is the
canonical sheaf, i.e. the sheaf of germs of holomorphic 2-forms.
By Theorem 3.4, p.604 of [20], for suitable M, which can be
chosen to be artibrarily small neighborhoods of A = ﬂ_l(p) R
Hi(M,ﬂ) may be identified with HO(M—A,Q) /HO(M,Q) . 8o
dimHo(M-A,ﬂ)/HO(M,{z) = 2 and there exists w' € HO(M*A,Q) surch

that the image of w, w' in HO(M-“A,Q)/HO(M,Q) form a basis. Since

w is non-zero in a neighborhood of A, we may assume that w' = fu
where f ¢ HO(M,B)., Furthermore, replacing £ by £ -~ £(p) if
necessary, we can assume that f ¢ HO(M,mL‘)). Let Wy be the order
of the pole of w on Aj. Consider a cover as in Lemma 3.8 of [24].
On Py
Wy (%4,74)
R A A
W = ———--Wi dxl A dyl
y
1
- : . . . Nm
there Lul(xl,yl) is a holomqrphlc function, ml(xl.,O) X 0. There

is a holomorphic function f(xl) , ¥ = % < R such that
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Lemma 3.8 of [24] c4s[)X]# 0 in Hl(M;§)). Let Z = % z,Ay

' = < 3 <
Let lo f(xl) and,Aoj 0 for2 23 2 t. Then by

q*

121 <n, be the fundamental cycle. If Vi"l Z then A

Zy
may be thought of as also a cocycle in Hl(NCUJ,Qﬂ(nz))O So
chsfA]= 0 in Hl(M’,{ﬁ(~Z)) and necessarily in Hl(M’gﬁ)), Thus

7 -1 > 2. is 1 i i W, < NI -

wl 1=z 24 1s impossible, i.e. 1 = g As m&) < E)( Z)

p-133 of [2], we have w® = fu ¢ HO(M,Q), i.e., w, @' cannot form

a basis for HO(M—A,Q)/HO(M,S})e This is a contradiction. So

the only possible case is Hl(M,QL

;) = €. Hence x(z) = aimH° (M, 9,)

- dimﬂl(M,{)Z) =0, i.e. p is a weakly elliptic singulavity. Q.E.D.
However, that dimﬂl(M,f)) = 3 and VG)P is Gorenstein db

not imply p is a weakly elldiptic singularity.

Example: Let V be the locus in 63 of z7 = x" 4+ vy,

Then the dual weighted graph is

N

Ao

%
o

_ t can be calculated by [23] that diﬂﬁl(Mgé)) = 3,

'Ihggzggmng: Let V be a normal two dimensional Stein space
ith p as its only singularity. Suppose Vﬁ}p is Gorenstein, i.e.
_hére is some neighborhood Q of p in V and a holomorphic 2 form

 n Q-p such that w has no zeros on Q-p. If there exists

_@v

2 n-1 . .
such that w, fo, fTw,...,f “w is a basis for
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Hi(M,Q), then p is a weakly elliptic singular point,
Proof: Replacing f by £ - £(p) if necessary, we may assume that
fer’M,und). By (1.6), HO(M,f)Z) = €, S0 we have the

following exact cohomology sequence.
i a 1 C 1 o
0 > 8 (M, O(-2)) + 1, 0) »u (M, O, + 0.

By Theorem 3.1, we need only consider the case n 2 3, Tt is easy
to gee that dimHl(M,iSZ) > 0., Otherwise, as observed in the proof
of Theorem 3.1, p will be a rational singular point. To prove
that p is a weakly elliptic singular point, it suffices to show
that Hl(M,{ﬁz) = €. Suppose on the contrary that dimHl(M,Q)Z) z 2,
Then dimHl(M,{)(wz)) 2 n-2. Let the notation be as the proof of

Theorem 3.1, We know that there existg Al = A such that on Pl

. (JJ(X,Y) ’
(3.1 e = AL dxl A dyl, w -1 44>0, 0=1isn-l

“iag 4y 1

Y1

(w) = - 2 wiAi and (f) = & ajAy + D = [f] + D. D does not
involve any Ai' There are holomorphic functions gi(xl),
r < x £ R such that

Witia-l wy (x1557)

s =0 71 B ) Tyga, Ay 40
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Wi a1 :
’ = < 4 <
, gi(xl) and_loj 0 for 2 £ 3 £ &, Then by

i

R
Let lol Yy

Lemng 3.8 of {24],C28[11] £ 0 din Hl(M’,{)). In fact,'ikl} forms a
basis for Hl(M,iﬁ) because ‘<Al,f3m> = 0 for 4 # j. Since

dimHl(Mgf}) - dimHl(M,{S(—Z)) = dimHl(M,Q) Y 2 2, there are at

Z
least two_kll,.klz which are not in Hl(M,G)(-Z)). tlence,

w -1 < 2z, and w, - -1 <z

17 12y 1 1~ 1y

Wl Z zl + 4

< 4o
1° i.e., Wl 524 + 124

: F < < e
987 Since iy # i, and 1 = 151, = 1, we may
assune that Wl S Zl
by p.133 of [2]. So [f]l 2 Z, by the definition of fundamental

+ (n—Z)al. But [f]°Ai < 0 for all Aj_gi A

cycle 2. Ton particular zy = al; So, v, S(nwl)al., This contra~
diets (3.1). Q.E.D.

| A_partial converse of Theorem 3.2 will be proved later,
Weakly elliptic singularities can be effectively studied by the

folléwing method of elliptic sequences.

Definition 3.3: Let A be the exceﬁtional set of the minimal

s good resolution i M > V where V is a normal two dimensional Stein
_space with p as its only weakly elliptic singularity. If
:E-Z < 0, we say that the elliptic sequence is {Z} and the length

of elliptic sequence is equal to one. Suppose E<Z = 0. Let Bl

be the maximal connected subvariety of A such that Bl = suppk and

=0 ¥ A

i o Bl' Since A is an exceptional set, Z-Z < 0.
is propetrly contained dn A. Suppose ZB *‘E = 0. Let B2 be
: ‘ 1

he maximal connected subvariety of B, such that B, o |E' and

1 2




