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Abstract of the Dissertation

A Class of Toeplitz Operators on Balls in €

by

Gerard McDonald
Doctor of fhilosophy
in
Mathematics

State University of New York at Stony Brook

1975

We obtain necessary and sufticient conditions for the

Fredhoimness of Toeplitz operators on the unit ball BT in
¢7 with symbols inm the closed subalgebra ¥ of ﬂm(Bgn) gener-—

ated by the bounded holomorphic functions on an and the
conbinuous Tunctions on §2n’ USing a Hblder norm bound on
solutions of the eqguation Sﬁ = i on an due to Kerzman, we
obtain a factorization résult for functions in ¥, We show
that a Toeplitz operator with symbol in ¥ ig Frecholm 1T
and only iT its symbol is bounded away from zero in a
neighborheod of the boundary of Bgn, It the cperator is
Fredholm and n is greater than 1, it has index zero,

We also show that the closed subalgebra generated by
Toeplitz operators with symbols in ¥ module the compacts
is naturally isometrically isomorphic to ¥ modulo the ideal

. , . 2
of functions in C(an) which vanish on the boundary of B n




The maximal 1ldeal spaces of these algebras are shown to be
naturally homeomorphic to the maximal ideal space of the
bounded holomorphic functions on an minus the evaluation

functionals,
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CHAPTER O. INTRODUCTION.

In this thesis we will study a class of Toeplitz operators

on the Hilbert space HE(BZH) of square integrable holomorphic

n

functions on the unit ball B in 7, Specifically we will

¢
subalgebra of Lm(an) generated by c(B*) and Hm(an),>

cenisider Toeplity operators T,, with symbol ¢ in the closed
regpectively the continuous functions on §2n and the hounded
holomorphic functions on an.

Let ¥ be the above closed subalgebra, S(Ha(an)) the

2n) and ¥ the ideal of compact

bounded linear operators on H*(B
operators. We will answer two main questions:

1) If ¢ € ¥ when is T Fredholm?

2) If 3(¥) is the closed subalgebra of £(H2(B2n))

)
with ¥ modulo some ideal?

generated by [T, : © € U}, can 3(¥)/% be identified

For Toeplity operators on the unit circle T questions 1) and
2) have been answered very neatly for the subalgebras C(T)
and B +C(T) of L'(T')., The methods used often involved prop-
erties of holomorphic functions on the disc peculiazr to (or
at least apparently peculiar to) the one variable case,
:Recently complex analysts have been obtaining very delicatle
fbounds, in various norms, for solutions of the equation

. . n
= I on strengly pseudoconvex domains in €. These results

i i =20 i ) e
swer 1) and 2) for C(B? ) and, as we will show in this paper,
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Venugopalkrishna was the first to note the connection
between some of these d-results and Toeplitz operators with
symbols in C(Ezn). In [17] he answered one half of 1) for
functions continuous on the closure of any strongly pseudo-—
convex domain. Coburn ([3]) answered the obher half of 1) and

question 2} for B, His work involves properties of the

an and so the results are not immediately

Bergman kernel for B
extendable‘to arbitrary strongly pseudoccnvex domains. We
will have more to say about this in the conclusion.

The similarity of the answers for C(T) and C(Ezn) led
us to believe that the answers for Hm#C(T) and ¥ would also
be similar to each other and in fact they are.

In Chapter T we will present the relevant lacts concern-
ing Toeplits operators on the circle, in particular those
concerning Toeplitz operators with. symbols in C(¥) and Hm+C(T).
We will also consider the fesults of Venugopalkrishna and
iGoburn/;or“Toeplitz operatofé'with symbolg in C(Ezn).

Chapter IT will contain the necessary facts about forns
Our wain resulit, that if ¢ is ia Y then Tcp ig Fredholm if and
only if @ is bounded away from zero on a neighborhood of the
houndary of the ball, is contained in Chapter IIIL.

Chapters IV and V are more or less corollaries to III.
Wé show that S(M)/H is naturally isgometrically isomorphic to

9 'modulo the ideal of those funcbions in C(ﬁzn) which are

2 : .
on B“ng o statement of the relevant ¢ result and some corollaries.
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identically zero on the boundary. In V we compute the maximal
ideal space of this quotient algebra, and, among other things,
show that it is connected. In Chapter VI we consider matrices
of Toeplitz operators with symbols in . We show that such
operators are Fredholm ;f and 6nly 1f the determinant of
their matrix symbol is bounded away from zero on a neighbor-—
hood of the boundary.
We now establish some notation., As we previously said
Hz(an) is the complex Hilbert space of all square-integrable
holomerphic funétions on the open unit ball an in €%, The
bounded holomorphic functions on an will be written Hm(an)
and the bounded continuous functions on B2n will be written
ﬁ(BZH). The closed subalgebra of Lm(an) generated by HW(BZH}
and C(5°Y) (or equivalently by H (BM) + C(Egn) = {frg ¢+ ¥ € Hm(an),
g € C(Ezn)}) will be denoted by 9, learly ¥ is contained
in B(an), S0 it makes sense o balk about the value of an
element of ¥ at a point in g<n, We will let JO be the ideal
E?n

in E(an) of all continuous Tunctions on which are ident-—

ically zero on the boundary.

The norm we use on @' will be the euclidean norm, L.e.

fOI’ {; = (gl—;opeggrl) 'i_Il @n
cl2 . = 2
[c] _zléil .

terms of this norm, BN {cee™ s [C] <1}, The boundary

B 4111 be writben 9B, On the unit circle in ¢, the




Hardy spaces H? and H are defined

H? = {1 € L2(T) : [*"r(el®)el?%06 = 0, n > 0}
0

and

o

H.

li

{r € LQ(T) : Izﬂf(eie)eined9'= 0, n > 0}.
Alternatively we can write .

R e fr e L7(B?) f. holomorphic on B®},
The collection of bounded linear operators on Hz(an) and
H? will be written respectively £(H2(B2n)) amd £(H?)., The
compact operators on both spaces will be denoted by X.

Elements of the quotient algebra éi(Hz(an))/J'6 will be written

in the Form S+# where S is in $(H2(B2n))} Elements of the

other quotient algebras we consider will be written in the

same manner. All norms on quotient algebras will be quotient

7

o

norms. -




CHAPTER T. KNOWN_RESULTS ON T AND B2D,

In this section we will consider Toéplitz operators on
H2(B*) with symbols in C(B?") and show that such an operator
is Fredholm if and only if its symbol is bounded away from
zero on a neighborhood of the boundary of an. Before doing
this we will briefly consider Toeplitz operators on T.. For
a more detailed discussion see Douglas [5].

Recall that for any © belonging to Lm(T}, the Toeplitz

operator Tcp 1s defined on the Hardy space H? by

T$f = Pof

where P is the orthogonal projection of LR(T) onto the closed

subspace HZ,

Proposition 1.0. The map T : L (%) - £(H?) defined by

(o) = T, \
iz a *-isometric ilnear map. Restricted to Hm, T is multi-
plicative, If ¢ belongs to L?(T) and I to C(T) then
T(@)r(r) -~ “(or) is compact.
Ir S is a closed subalgebra of Lw(T) then one defines
?(S) to be the closed subalgebra of £(H?) generated by the

set {T =« @ € 3}.

Définition 1.1. Let H be a Hilbert space and let T belong

to £(H)., Then T is said to be Fredholm ir T+K is invertible
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]

in &£(H)/¥ where ¥ is the closed ideal of compact operators
on H. Equivalently T is Fredholm if dim ker T and dim ker T¥*
are finite and the range of T is closed. The index of a

Fredholm operator, denoted j{T), is derined
j(T) = dim ker T - dim ker T*,

For certain subalgebras S one can reduce questions of
the Fredholmness of Tm, ¢ belonging to S, to questions about

the behaviour of the function ®., We next consider two guch

subalgebras. ‘

Suppose first that S = C(T). We note that for f and g

in C(T)
T(£)T(g) - T(g)r(r) € ¥,

and hence 3(C(T))/H is a commutative C*-algebra. It can be
shown ([1] and [2]) that 3(C(T)) is *-igometrically isomorphic

to C(T) via the map
T H -3
ff+ .

;Thus in particular the operator Tf ig Fredholim if and only
;if ' is nonzerc on T. Furthermore, one can show that ir Tf
Frecholm the index of Ty is equal to minus the winding
number of the curve traced out by I with respect %o the
origin.

For our second example we consider




H46(T) = {reg : £ € H°, g € o(T)].

It can be shown that HW+G(T) is a closed subalgebra of Lm(T)
(L41). Douglas showed that 3(Hm+C(T))/M is jsometrically

isomorphic to H +G(T) where the map is again

t

S -
Tm% Q.

He also showed that Tcp is Fredhoim“ir and only if ® is invert-—
ible in HW+C(T) it and only 1f the harmonic extension of ® to
the open disc is bounded away from zero on a neighborhood of
the boundary. Furthermore he was able to obtain a Fformula

for the index of a Fredholm operator in terms of its harmonic
extension. The analysis of this example is made more difficulb

o
than the first because H 4+C(T) is not a C*-~algebra.

We now consider Toeplitz operators on HE{BZH). First we

- need a definition.

Definition 1.2. A normed vector space V of functicns on a

set 5 is called a proper functional space if for every s in

5 there is a constant C(s) depending only on s such that
le(s)) = c(s) gl
for all £ in V.

Of course H2(B*Y) is a proper functional space, with

eproducing kernel

: 7, cy-a-1
K(28) = i“l;n (1-F.¢)y™
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where |¢l =1, |a] <1, X = (XpseeyX)) and AeG = K60 oot TG .
For details see [15]. Specifically we have for each ® in

Hz(an) and ¢ in B

(L) = (9,K(,-)),

where the inner product is the usual LP-inner product. Since
Hz(an) is a closed subspace of LQ(BZH) there is an orthogonal
projection of LZ(BZH) onto Hz(an) which we will designate by P.
Tr ¢ in B°Y ig rixed then K(,+) belongs in H?(B™) and so

for © ingiz(an)
(0,K(C,*)) = Pw,K(E, 7)) = Po(E).

o>
Definition 1.3. For @ in L (B°?) the Toeplitz operator T, !

with symbol ¢ 1s defined
' 2 211y :
Tmf = Pof, £ in H2(B“").

For 8 a closed subalgebra of Lw(an), J(s) is the closed
subalgebra of i(HE(an)) generated by {TCP : o € 8},

Ag in the circle case, one can define a map

v LB - S(HE(8™))

£

'T((.[}) = Tq).

'

Proposition 1.4. The map T is a *-linear map. Resbricted

L

T ig multiplicative.
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Proof., The first statement is proved in the same manner as
on the circle ([5; p. 178]) and is trivial. Since the
product of two holomorphic functions is again a holomorphic

function we have for ¢ and § in H (an)

1l

T@1¢i rmng
= Ty, ¥
= Pt
= Qyr

= Tcp&p.f,

and thus the second statement is proved.

The above proof actually shows that for any @ in L (an)

and U din Hw(an)

Toly = Toyo

T$T@ = Tﬁw'
Venugopalkrishna [17] showed that if ® and ¥ are smooth (Cw)_
Tunctions on a strongly pseudoconvex domain £ in ¢™ which are
fconblnuous on {1 then T, T¢ T$¢ is compact. We will define
gtrong peseudoconvexity and show that an ig such a domain in

the next section. The basic idea of his proof is that for
oy
)

(P M, -PM PM ) | 12( )
PMQ(I~P)M¢1H2(9)

3
&
|
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where M¢ and M¢ are the usual multiplication operators on

L2(Q). One then shows that (I~P)M¢|H2(Q) is a compact
operator if ¥ is contipuous on EZn and smooth on the interior.
Thig depends on a result of Kohn on the solution of the
d-Neumann problem. For details see Folland and Kohn [7].

The Tact that ¢ is smooth is used nowhere in this proof.

We will have more to say about the S operator in the next

chapter.

Proposition 1.5. If ® is in L (B“Y) and £ in C(B°") then

2n

are gmooth on B and such that fm converges Lo f in the

sup norm. By the preceeding remarks there exists for each m

a compact operator K .  such that

T

Km =T T, =T - Twa ~ Tor

m m

in norm. Since ¥ is closed the result follows.

The above result is of course true for any strongly
pseundoconvex domain. We have now shown thal T def;ned on
TLW(BEH) has the properties of 7T on Em(T), as giVeﬁ in
Proposition 1.0, except the property of being an isometry.

- We now loock at K(C(ﬁzn)).

—

IQGWEQMELQ. Let B, be the open ball of radius & about

[ ey
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the origin and let ® in L (B*M) be zero on an\Ee. Then Tcp

is compact.,
Proof. Consider the map

R, ¢ H2(BAR) - L2(B70)
defined by

Rr(f‘) = fIg’

where %_ is the characteristic Tunction TFor B,. Using the

ract that sun ()] = CHI‘H2 for f in Hz(an) where C is

Y

B,

I

independent of f, and applying the Argzela-Ascoli theorem, it

easy Lo see that R, is compact {see [9; p. 12] and 73 p. 81]

—

for details). If % vanishes off B, we have

and so Tc

Thus T, = PM E 19 1aCh . M
s Ty PM E, p 1S compact

The next result ds the main result in this section and

ig due to Venugopalkrishna [17] and Coburn {3].

vopogition 1.7. The ideal ¥ is contained in S(C(B*M)). The

. - s EYAIE . . . s o3 o- o o
~algebra a(G(B’“})/H is commitative and is *-isometrically

L . f o RN . .
souorphic to C(38%"). The isometry is the map

@ - TE\S R
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L] N - - L] ._.n
where ¢ 1s any continuous extension of @ to all of B,

We only skebch the proof here which can be found in [3].
Coburn showed that ¥ ig contained in U(C(Ezn)) by showing
that U(C(Ezn)) is irreﬁucible and contains at least one com~
pact operator. From 1.5 it follows that S(G(ﬁzn))/ﬂ is
commutative., He shows that if ® is in G(Ezn) then Ty, is
compact if and only if ®18B2n = 0 and so ¢ = T$ + K is a
well-defined one~one map. The map is clearly a *~homomorphism
and so is an isometry. IFinally the map is ohto since its
range containg the dense set {T¢+H Y€ C(Egn)}. This
completes the proof.

Since H(C(Ezn))/ﬁ is a self-adjoint subalgebra of
S(HR(B"1)) /¥, T,H is invertible in T(C(B*M)) /% if and only
ir it is invertible in S(HQ(BZH))/H. Thus it Follows rrom
Proposition 1.7 that for 9 in C(B*%), T, is Fredholm if and
cnly if wloB is nonzexro. lVenugopalkrishna 171 showed
that ir T, is Fredholm then the index of Ty 15 equal to
minug the winding number of the curve traced out by ®16B2n
with respect to the origin ifun = 1, and is zero if n » 1.

Befcre proceeding to the next section we obtain a

icorollary to Lemma 1.6 which we will need later.

Corollary 1.8. ||IT. + %|| = 1lim sup bop( €)Y ror all o
A - 1> 0l >1—¢

- o ? 0 1>)¢]
l.’l L (B B )o

rogf. Let X, be as in 1.6, Then
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il = T |

s Jlo—x

= )1, g
igTCI1~elw(3)l

Of course if ¢ is in G(ﬁzn), Proposition 1.7 shows that

gl = Lim lo(o)1. !

up
&0 1>f§l>1~£




AN

]

CHAPTER TIT. 3 RESULTS.

We will begin this section with some basic definitions
and then state a result on the 3 operator (2.4) due to Kerzman
[14]. The rest of the section will be devoted to corollaries
to this result. These corollaries will form the basis Tfor
our work in the remaining chapters.

Throughout this paper Zy will denote the i-th coordinate
map on 8%, i.e., tor { = (Cl,...,én) in ¢", Zi(G) = Ci. If a

is a polyindex, o = (Gl,,..,an) where each ¢, is a nonnegative

o o
integer, 2" will denote the function zll v znn. The collec-
tion of all polynomials in Zl""’zn’gl""’gn will be written
P{z,%) where Ej = x;~1ys, x5 and y; the underlying real coor-
dinates. We also write

> > > 3 3 .2
2 o = oo~ o, Pxo = =0 f daOm,
7 . o, oy ' S0g . oy . o,
] ] 73 J j 73

Definition 2.1. A relatively compact open set € in c? is said

to be strongly pseudoconvex (with smooth ¢l boundary) if there

exists an open neighborhood U of 90 and a Ch function

Ao: U~ R such that:
QNU=1{C€U : rMg) <0}

YM¢) & O for € € U where VA =

L is strictly pluri-subharmonic, i.e.

n DR - - n
3 e (€ ” )
if’j:l g%i"g-zj (“’)Miuj = L(C)l}.ll_ , 5 €U, beE T,

where L is a (strictly) positive functiocn on U, .
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This definition can be found in [13]. OF course B g
strongly pseudoconvex. All we have to do is set AME) = |¢Ra
and U = ¢™\{0}. Up until 2.8 the reader can substitute any
stroengly pseudoconvex O For an.

. . 2n .
We now consider very briefly forms on B ., Details can

be found in Gunning and Rossi [9].

Definition 2.2, A smooth (O,p)-form on an is an object of

the form
— e M—I
O = zﬁIdz
o i i

where I = (ilg.,.,ip) and d%Z- = dz “A...Adz P, and where each

[=o] -
P is a C function on B2ﬂ.

211

A smooth (0,0}-form on B is simply a smooth function.

We can define a map 0 from smooth {(0,p)-forms to smooth
(0,p+l)-rforms by

Sy = 3 (30, /27, YdzE A 4zt

As usual 3% = &8 = 0, A smooth (0,p)-form ¢ is called clesed
37 39 = 0. It follows from the Cauchy-Riemann equations in

several variables that the clesed (0,0 )~forms are precisely

. . N 2
the holomorphic functions on B n,

1 .

> midgl,

2n _
B @ = 4

Definition 2.3, A smooth (0,1)-form 9 on

s said to be bounded if |o.ll» < ® for each i.

The following result is due to Kergman [13].
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Propogition 2.L. For every bounded smooth (o,1)-form ¢ on

2 . . . R . =
11 which is cloged there is a continuous function u on an

n

B

which is smooth on B! and satisties du = (.

The solution u can be written in the Form |
elw) = [ o 0(&w)rp(¢)
B2

where the kernel @ can be explicitly determined., For n = 1

the above reduces to
. &
a(w) = i [ L8 4¢ gz,
. I Bg

that is,

V1 dd
Cw) = e

Thus © can be considered a generalization of the Cauchy
kernel to higher dimensions.

One final comment should be made about 2.4. It is well-
known that the equation du = § has a smooth solution on 50
for any closad form O ([9; p. 63]), Tho important thing ahout
2.4 1s that for forms satisfying the added boundedness
;hypothesls a solutlion can be found which is continuous cn
the closure.

Recall that we defined % to be the smallest closed sub-
algebra of L“(an) containing Hm(an) + C(Ezn). Since there

no reason to believe that H (an) + G(§2n) is an algebra,

i

o , @, o STy
ne cannot conclude immediately that H (B?n) + C(B*YY is
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dense in U,

Corollary 2.5. Let B = {op € Cm(an) : ¢ and 3¢ are bounded}.

Then we have

1) B is a subalgebra of L (B<®);
2) B is contained in H (B*%) 4 C(§2H)§
3) clos B = ¥,

[~ sy
Thus in particular H (an) + C(an) is dense in 4,

Proof. Clearly ® is closed under addition and scalar multi-

plication, If 9 and ¥ belong to B then 0¥ also belongs to B

3(w¥) = ¥39 4 3,

Again suppose ® is in B, Since 32 = O we see that 3@

is a closed bounded (0,1)-form. . Therefore, by 2.4 there is

a Tunction u in C(EZH) which is smooth on an, for which

du = 39, This implies that ©-u is holomorphic, and in Fact

. . ®, 2 . -
g-1 is in H (B n) gince ® and u are both bounded. We can

write

o = (p-u) + u,

Finally, we have Hm(an) 4+ ™z,z) € 8, and so

clos[Hw(an) + P(z,z)] < clos &,




18,

so by 2)
clos B = clos[Hm(Bgn) 1+ C(ﬁzn)].

Since clos B is an algebra, we conclude that clog B = ¥,

Definition 2.6. A set U © B®Y is a neighborhood orf A € 3B

2
in B*® if there exists an open set V in ¢™ such that

1) U=Vn an, and

2) M€V,
We will say that a function @ which is continuous on an is
continuously extendable %o B2y {A]l with value ¢ at ) if for
every sequence gk in B<M converging to A, f(ik) converges

to .

Corollary 2,7, Let i € Ban and f be in Hm(an). It f is

. ) 2

bounded away from zero on a neighborhood of A in 3B" then
o, - .

there existsg in i (Bzﬂ) sucn that fg is continuously ex—

tendable to B“" U {2} with value 1 at \.

Proof. BSuppose U is a neighborhood of X in B*™ on which f
1s bounded away from wero. Let ¥ be a smooth Function which
?is identically -1 on a neighborhood of A in €% and such that
supp ¥ N B g contained in U, Then %w is derfined and

= 2
bounded on BV and we have

3(9) = 457,
2n
. By

ey . . . , =20
oposition 2.4 there is a continuous function ¢ on 3

hue 5(%¢)'is a bounded closed (0,1l)-form on B
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such that
S = 3(L

By subtracting @(2) from @ if necessary, we may assume
o(A) = 0. Letb g = ¢ — %¢, Sirnice Og = 0 and since g is the

(&

difference of two bounded functions, we have that g is in

H(B*Y), Finally

fg = £(p - Ly) = fep~1,

and so fg = o+l in a neighborhood of A in an. Since

w{X) = 0 and since [ is bounded, it follows that f@(gk) con-—

verges to 0 for any sequence gk converging to A, B

It is a well-known Fact, due to Sarason [16], that
H+C(T) = clos{¥%, = ¥ € I, n = O}, where v () = 008,
Our next corcllary will show that a result like this is true
Tor ¥ on BT, PFirst we Supﬁose n =1, We have just shown
that

U = clos[Hm(Bg) + P{Z;E)]a

Let # belong to H (B%) and let p be a polynomial in z and z,

- j. - . - *
p o= .2, 4..z7zY, Since zz-l belongs to JO we can write

S | L
p o=z ghily,

of py b belongs to ﬁo, and g is a polynomial in z only. Thus

fp = B(£sg) + hy,
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where

hy = (1-20%™) 1 h.

o

Thus hy is in 30, and we have for n = 1,
4 = clos{rih 1 £ € H (B?), m =0, h €44},

For n 2 2 the above proof falls apart, primarily because
each of the coordinate functions #; has zeros on the boundary.

We can obtain a weaker result which will, however, be suffi-

cient for our purposes.

Corollary 2.8, Let n be greater than 1. DSuppose ¢ in B is
vounded away from zero on a neighborhood of 38", . Then there

te T oin Hm(BQH), g in C(Ezn), and h in £O such that

¢ = fgtn.

] . s n .
Proof. Let B_ be the ball ol radius € about 0 in €7, Since

: n\y . p e £ Tire )
n =1, B? \BE is simply connected for & < 1. Thusg if £ ig

chogen sufTiciently close to 1 so that @ is bounded away

from zero on an\ﬁg, there exigts a smooth function u on

Bgn\ﬁ? guch that ¢ = e, By choosing &' » £ we can consbruct
: _ v . e . 20y =5 .
a smooth runction G on B D agreeing with u on B“\B_,. Let

nd
T s S U o
= @ Since J9 = e”*du, we have

n
au_ == = ocp_

n BEH\EEH su = %§$ and so ou is a bounded (0,1)-form., By

Iy
sl . . i e . i3t
roposition 2.4 there exists a smooth Tunction ¥ in C(B )
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such that U-{ is holemorphic. It may not be the case that

n 3 .
u~-¥ is bounded. However we can write

n n
n —
B o el o wew,

and hence

u-¥ _ 1w
e mquP.

e

n n

Since ¥ is continuous on Ezn we see that Q% is bounded and
) _ e ’
hence eu“11I is in H (B™Y), Let £ = oV ¢’ g =

ew, and h = wwﬁ.
We have

Br-(0-)

S
i

{i

g + h.
since h belongs to ﬁo we are done. B

We point out that 1 and g are both bounded away from

B2n




CHAPTER III. MATN THEOREM.

In this chapter we obtain our main result (Theorem 3.8)

that for @ in ¥, Tcp is Fredholm if and only if ® is bounded

away from zZero on a neighborhood of Ban. As a corollary to

this result we show that the essential spectrum of TQp is
connected. We first obtain some results for Toeplitz opera-

tors with holomorphic symbols.

Proposition 3.1. If ® is in B (B*) then T is invertible

1f and only if ¢ ig bounded away from zero on an, i.e.
rj(Tcp) = clos{o(B)].

Proor. If % 4 clos[®(B™)] then (9-1)"% belongs to H™(5%7)

and so by Proposition 1.k,

)T ()1 = Tlor)(@-n)-1 = Ly

.'11

T T =
(0-2)7F (p-n) (0-n) )

Cn the other hand, if X beloags to ¢(82n) then ©-X hasg a

: . 2r .
zero in B*™, say at §, Since

ran(mek) = {{e-M)F : 1 € HE(BZH)},

t follows that for every g in ran(T$wx), g(C) = 0. Since

: r)i » ) L3
2(B“1) 4a a proper functional space we have

ran(Twml) + Hz(an):




and hence

(%) < o(T,) < clos[a(8°™)].

Since the spectrum is always closed, the result follows. 8

Corollary 3.2. If ¢ belongs to Hm(an) and n = 2, then TCp

is invertible if and only if ® is bounded away from zero on

a neighborhood of apn,

Proof. Suppose ¢ is bounded away from zero on some neighbor-—
hood of BBZH, Then there exists & < 1 such that 0 does not

belong to clos[w(an\EE)]. By Hartog's theorem (see [11:

pp. 20-21]) this implies ¢ is nonzero on all of Bea, &
o e v o8 P | 1 o 00/ 21’1 L) . m S,
_LEI@QL‘EL_;.,L_B. . If o ¢ H and ¥y & I B ) tnen T'\iJJ'CP“T ‘l,:p 13

compact.

o 7
Proor. Since H (Bzﬂ)+C(B2Q) is dense in ¥ and since ¥ is
norm cloged, it suffices to show that TmT(f+g)mT¢(F+g) is

[S+] ’- P
for t in H (B“®) and g in C(an). In this case we

I'IIEIT‘! ml —_ ¥ __.f . |."| | -
St (reg) i (reg) (TyTy F\l!i‘") B (}"\‘JT%‘ Tﬂ.fg)?
d the result follows from Proposition 1.5 and the remark

ter Propogition 1.k. g

I 9 and ¥ are functions in % then T¢T$meT¢

mpact and hence 3(%)/M is abelian.
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Proof. Since ¥ ig contained in U(C(Ezn)) it must be contained
in the larger algebra 3{(¥%), and so J(A)/¥ is a Banach algebra.,

The rest follows from 3.3 and the definition ofr 3(%), 2

We now begin the proof of one half of our main result,

i.e. if @ in ¥ is bounded away from zero on a neighborhood

then Tcp 1s Fredholm. The following elementary lemma

outlines our approach.

Lemma 3.5, Let A be a Banach algebra and let a in A be left
invertible. If {$n} is a sequence of invertible elements in

A converging to a in norm then a is invertible.

Proof. Suppose a is not invertible. The set of all left
invertible elements which are not invertible is open ([5;

p. 35]). Thus the sequence {wn} cannot converge o a. i

‘borhood of 352" then T@+H is left invertible in S(Hz(Bgn))/H.

0of. If % is bounded away Irom zero on a neighborhood of

we can choose an ¢-ball B, about the origin such that
() -~ - -,

ig bounded away from zZero on B“H\BE. By choosing &' = ¢

2n) such that

we: can find a function ¥ in ®(B

Sl

P(B*™NE,,) =

s 1-bYop is in JO and so by Lemma 3.3




It

" b
T \?Cp+

T+¥, =

(T¢+H)(T@+H)

It

Theorem 3.7. Suppose n 2 2, If ¢ in ¥ is bounded away from

zero on a neighborhood of 3! then Tcp is Fredholm with

index 0O,

Proof. By Corollary 2.k there exists a sequence lo ) in 8
such that P converges to ¢ in the sup norm. Passing to a
subsequence if necessary, we may assume that each P is
bounded away from zero on some neighbofhood of aan. There~
fore Corollary 2.8 applies to each Pres and there éxists
functions fj in Hm(an) and g, in C(Ezn), both bounded

away from zero on B2n, and hk in 30 such that Py = fkgk+hk.
Thus for each k, T¢k = TfkTgk+ K
is invertible by Proposition 3.1. The operator

k! for some compact Kk' The
operator Tf
- k

ng is Fredholm with index C by Coburn's result. Thus TC1D
k : k
is Fredholm with index 0. TFrom Lemmas 3.5 and 3.6 we con-

clude TCp is Fredholm. Since the index is norm continuous

([5; p. 1381), we see that Tw has index 0. 2

In the case n = 1 we know that for any ¢ in ¥ there ig

_sequence {9, ] converging to ¢ in norm where
. k

m

e,V
P = Iy”

+hk

- some funcition fk in Hm(Bz) and hk in &O’ I ¢ is bounded

ay from zero on a neighborhood of 9B® we can assume that
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each T) 18 bounded away from zero on a neighborhood of 3B2
(but not necessarily on all of B?®). Thus each Ty has a

finite number of zeros in the disc, say at hl ""’ki y and
k k
we can write

.k pj
_ - k
fk = 8y Jkglk( Z )\Jk) ’

where g, s in H (B?) and is bounded away from zero on B®
Bk

([10; p. 66]). By 3.1 and a remark after 1.7, T. is Fredholm
~k
and has index equal to X Pk Since Tcpk = TfkT_mk+Kk for
z
some compact Kk, it follows that each Tcp is Fredholm with
k

index ¥ Py Again by Lemmas 3.5 and 3.6, T, is Fredholm,
k

P
although of course its index need not be zero.

Theorem 3.8. If @ belongs to ¥ then Tcp is Fredholm ir and

only if ¢ is bounded away from zero on a neighborhood of

2570,

Unlike the "if" part, the "only if" part of this theorem
5 proved the same way for n = 1 as forn » 1. TFirst we
state some immediate corollaries tc 3.8 and then we will
levote the rest of the chapter to the prool of the theorem.
Fecall that for a bounded linear operator T on a
ilbert space H, the essential spectrum of T, written ess o(T),
defined to be the set of all @ in € such that T-A ig nob

edholm. The spectrum of T will be written o(T),
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Corollary 3.9. IF ¢ € ¥ then ess U(T®) is connected.

Proof. Let S = mﬁl clos[$(B2n\B1M¥/m)}. Since ® is con-
tinuous each clos{m(an\Bl_%/m)} is connected and hence S is
connected, being a nested intersection ol compact conneéted
gsets., We will show ess U(T$) =8, If a ¢ ess U(Tm) thenl
-t is bounded away from zero on a neighborhood of 3B“™ and

80 O ¢ S. This last argument is reversible and the result

folldws. B

Corollary 3,10, Ifn = 2 and ¢ € H (B“!) then T, is Fredholm

if and only i T, 1s invertible,
Proof. Combine Gorollary 3.2 and Theorem 3.8.

The following definition can be found in Coburn [3].

21

Definition 3,11. For any sequence {Km} in B™" with

Ay 7 M€ op“™ we associate a sequence {fm} in Hz(an) by

defining
' o ) | ~1/2
. fm(g) - K(km’g)K(lm’hm) /2,

From the definition of K(lm,é) it is clear that {fm} CONVerges
niformly to zero in the complement of any open neighborhood

_ o
. PR ) s n
L A, Of course this implies Iy 7 0 pointwise on 5

:
m3

2. ¥For all m, ir 1., = 1. The sequence {f | contains

enma 3.1 i
e m'e

0 norm convergeni subsequence.
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Proof. The Iirst statement is immedlate because

In

Iz 8 = (£ £y
KO, 2) "HEO, L €), K, 6))

= 1,

if

since K is a reproducing kernel.

Suppose there is a subsequence {fm ! converging in the
k

L?-norm to some g in H2(B"™), Since each I, is a unit
K

vector we must have HgH2 = 1, On the other hand since HB(BZH) |

is a proper functional space we have that I (€) = g{&) for

k
cach ¢ in B, We have already seen that 3 () converges

2n

k
to 0 for every ¢ in B™ and so g = O, This is, of course,

cimpossible, a

Definition 3.13. Let H be a separabhle Hilbert space and

iet T belong to £(H)., We will call « in ¢ a mess elgen-—
value for T if there exists a sequence of unit vectors {hm}
g such that

{hm} has no noxm convergent subsequence;

| 2} 1lim H(Tma)hm” = Q.

 each T the c¢ollection of all such @« will be denoted
ess 0(T).

Actually m~ess 9(T) is precisely the left essential
ectrum of T ([61). We want to emphasize the role of the

~and 80 we will not make this identirication. However,

10 need the following inclusion and will prove it directly.,
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Lemma 3.14, For H and T as in 3.13 we have tr—ess ¢(T) < ess o(T),

Proof. Since H is separable the unit ball in H is weakly
sequentially compact. Let © be in m—ess O(T) and let {hm}_
be a sequence satisfying 1) and 2) of 3.13. Since the unit

ball of H is weakly sequentially compact there exists g in

Hz(an) such that for some subsequence {hm i, h =~ converges
k

to g weakly. Suppose there exists an S in £(H) such that

S(T~e)+K = I for some compact operator K. Since K is compact

Khm -7 Kg in norm. By hypothesis (T—a)hm = 0 in norm and

k k
hence so does S{T-au)h_ ., Thus h - Kg in norm, which is g
My e
contradiction.

Lemma 3.15. If ¢ is in C(Ezn) and (L) = a, where A € Danj

then for any seguence {Xm} in BM

converging to A,
The proof can be found in [3; p. 435]. Since

i (Tcp”“g“)fm

li

(M, -a)r, 112
te-e)r il
oo lor ~e(M)r, 12,

2
12

il

he result follows almost immediately from the continuity of

at A, We now extend this result, not to ¥ but to

= {p € B(B) : § € uj,

Ll
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Lemma 3.16. If ¢ ig in ¥ and ¢ is not bounded away Trom &
2n

on a neighborhood of 9B“" then o € m—ess U(Tcp).

. =2n . . . .
Proof., Since B*" is compact we can find a sequence {lm} in

such that X~ \ for some X € 3BT and m(lm) - a, Let

it

m} be the sequence associated with {Km}. We want to show

l.
K - =, _2n :
First we assume © € H (B*"), Tor w in

H(Tw—a)fm H2 = 0 for some subsequence {fm«
an fixed we have

il

[Tk (s ) 1(E) = (wK(w, « ),K(E,+))
(K(w, *),PK(C,+))
(OB Sy + ), K(w,-))
(o(w)K(C,w))

o(w)K{w, ).

il

Il

il

fl

Xl

he above calculations involve only elementary properties of
the kernel function. It follows then for each m that

T ®(km)fm‘ Merefore we have:

H

Hrg-ads I, = Ny )r oz I,

11

%,CP( )-m)“al ’

iilch goes toe zero.

—— - m E
Next let us assume @ = f4+g where T belongs to H (an) and

slongs to C(E™). Let B = g()) = 1im g(\ ). Thus

f f(Kﬂ) = 0--8 and we have
i

i(Tg-o)rylly = Ire=Camp))e Iy + (T -8)r i,
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The terms on the right hand size go to zero by Lemma 3.15 and
the preceeding part of the proof.

Finally, let ® be an arbitrary function in ¥. Since
Hm(an) 4 C(Ezn) is dense in ¥, we can find a function ¥ of
the form just considered such ﬁhat leo—wl},, < e/L. Since ¥ is
bounded we can assume there exists a Y in € such that
¢(km) - v (passing to a subsequence if necessary). By the

preceeding inequality we have la~Y\ < 3/3. Thus

H(Tm_a)fmnz < HTmfm"wamu2 T Hwam_YmeZ + NYfm—afmnz

A

o=l + 1Ty =v)gll, + 1yl

A

28//3 - H(quu’Y)meQr

and the result follows by the preceeding paragraph. 2

Prool of Theorem 3.8, We have to show that if © in ¥ is not

bounded away from zZero on a neighborhood of 5B then Tcp is

not Fredholm., However, if ¢ is not bounded away from Zero
on some neighborhood then 0 is in ess O(Tﬁ), and since

: *
_T@ = T@’ we are done, a

We point out that we have shown for ¢ in ¥ that
@) = eSS G(Tﬁ)' In particular T  is Fredholm if
nd only if it is right Fredholm.
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CHAPTER TV. THE_ALGEBRA_S(%)/X.

We now consider the-algebra J(U) /¥,  In this section we
show that U(ﬁ)/ﬂ is ispmetrically isomorphic to %/30 and,
using this identification; in the next section we compute

its maximal ideal space. The map

Uy~ w(U) /¥

Pdg 7 Tl

will be our isometry. Most of the present section is devoted

to showing that the norms of m+30 and ’]?qfk}C are egual.

Lemmafg;;, If ¢ € ¥ then Toss O

(Ty) = HTw+HH = %ig 1>%E$>l_€|w(C)l,

Froof. If a € A, an arbitrary Banach algebra, we know that

rg(a) = llall (where r,(a) is the spectral radius). Thus we

T G(T ) = HT +%P < linm u lo( ¢ 1.
&8ss e-() 1>T§?>1_

ouppose kK < lim lo(¢)]. We can tind a sequence ¢
e20 131 T>1—~

converging to a \ € ap<n such that

k< ot )l = ol

passing to a subsequence if necessary we can assume there
sts an @ in € such that m(@m) = &. Thus k = lal, and by

eorem 3.8 o € p U(T

\.:J

$), Since k was arbitrary

lp( gy

llm (T )
: 0 1>T(l>l~ Yess ¢ ’




and the result follows., "

Lemma 4.2. If @ € % then ®+9; is invertible in /Iy if and

only if ® is bounded away Irom zero on a neighborhood of

aan

*

Proof. Suppose ¢ is bounded away from zero on a neighborhood
of BBZH. By Corollary 2.8 and the remarks foillowing Theorem 3,7

we can Tind a sequence of functions {$m} in ﬁ(an) of the form

CPm = fmgm+hm’

where £, is in Hm(an) and is bounded away from zero on an,

8 is in C(Ezn) and is bounded away from zZero on a neighbor-
hood of szn, hm is in JO’ such that P, converges to ¢ in
norm. Thus ®m+JO converges o $+JO in the quotient norm,

Since

qﬁ%§0 = (fm+£0)(gm+JO)

t

it is clear that (@mfﬁo)“l exists in Q/JO. In the proof of
2emma 3.6 we showed thatb Q%JO ig invertible in ﬁ(an)/$O,

oince the inverse operation is continuous we have

(6 435) " = (cm«ﬁo)"’l

. L -1 .. . . .
‘norm. Thus \@+$O) ig in %/JO since Y/3, is a closed
balgebra of @(an)/ﬂo.

On the other hand if ¢ is not bounded away from zZero

any neighborhood of 2B we can rind a sequence {C 1 in
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gen converging to some A on 382 such that m(ﬁm) converges

to zmero. If ¢HJO were invertible in %/ﬁo there would exist
a ¥ in ¥ such that ®¥-1 belongs to $O' This is impossible

since ($¢_l)(§m) converges to 1, B

Notice that the above proof shows ®+3O is invertible

in Q/JO if and only il it is invertible in ﬁ(an)/ﬂo.
Lemma 4.3. ITC ¢ is in ¥ then

el = rgg/&o(®+3o) = %ig 1>TET>1~elm(g)l'

Proof. Since ¥/, is a subalgebra of B(an)/go we have

QI/CQO ) = r{j'ua(an)/ch(cp‘i“Bo).

Because B(an)/£0 is a C*-algebra, the term on the left is
equal to H@+$OH (see [5; p. 92]) and hence the Tirst equality
of the lemma is establighed.

By Lemma 4.2 and the last half of the proof of L.l, we

have

lim  su lo(e)] = ¢ (o+d) .
50 15 O > Tee Lz 0

Ir la% > lim an !w(C)\p then -0 is bounded away from
() 1>]g?>1_e

2n

Zero on a neighborhood of 9B*" and so by the previous result

is not in UM/J (®+$O). This establishes the second
0

ality. B
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Theorem L.Lh. The map M(®+JO) = Tcp-+H is an isometrical

isomorphism From A9, onto U(Q)/H.

Proof. Ir f is in 45 then T; ds compact and so | is wellw

defined and is obviously linear. By Proposition 1.4 U is
multiplicative. Since Hw+&on = HT®+HH, H is an isometrical
isomorphism. The range of p is {Tm+H : ¢ € ¥, By Lomma 3.3
and the definition of 3(¥), this set is dense in 3(3)/M. The

range of an isometry is closed, hence i is onto. &

Sorollary 4.5. d(¥)/% = {T 4 : o € u},

Corollary 4.6, TIf ¢ belongs to % then T(,P~l~7r6 is invertible in

J(U) /¥ if and only irf Ty is Fredholm.

This last corollary could have been proved directly din
the last section, Remember that I{U) /K is not a self-adjoint
~subalgebra or £(H2(82n))/ﬂ. If it were the above result

jould of course be trivial ([5; p. 92]).
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CHAPTER V. THE MAXTMAL IDEAL SPACE OF 3(31[%.

Having identified U(M)/M with ﬁ/ﬁo we will compute the
maximal ideal space ME(M)/M by computing MQ/JO. This is done
in Theorem 5.8. Before doing this we need some basic results

H
way as they are for n = 1, TFor a general reference see

about M w( P Mogt of these results are proved in the same
B

Horiman [10].

Recall Iirst that for a Banach algebra A, its maximal
ideal space Mﬁ is the collection of all multiplicative linear
functionals on A. The topology on MA is the w¥-topology, i.e.
if {ma} Ls a net in M, then my = m in M, if and only if

ma(f) = n(f) for all © in A,

Let P(§2n) denobe the uaniform closure of the (holomorphic)

polynomials on B, Tt is well—known (£9; p. 58]) that

48]

M (~9n) = B in the sense that every multiplicative linsar
P(B~ .
unctional on P(Ezn) is an evaluation at C, denoted ey for

. . =2n . .
some € in B*'., The map ec 7 ¢ is a homeomorphism from

M . onto B,
6}( BA.}.,L)

We can define a map

oM, -
m o mlp(ﬁgn) - g,

C‘a

« p(m) = € where m restricted to P(Egn) is e
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Lemma 5.1, Suppose I is in H (B*M) and that (A) = 0 fop

mmelinBal

» Then there exist Tisseesty in Hw(Bzﬂ) suéh
that

f = (Z]_MKl)fl ‘{"o Ii_!" (ankn)i‘n
where A = (Kl,...,ln).

Proof. Let D be a unit ball containing, but not centered
at, the origin in €%, Using the holomorphic change of wvapi-=
ables ®(C) = L), it suffices to show that if T ¢ Hm(m) and

£(0) = O then there exist fi9+0spf, din 1 (D) such that

:f“ = Zlfl +c - -"!" ann-

Clearly D is strongly pseudocenvex, Let A(D) be Lhe colieeiion
of all functions continuous on D and holomorphic on O and

let Iq be the ideal of all funebions h in A(D) such that

h(0). Kerzman and Nagel have shown ([1h; p. 219}) that For

any strongly pseudoconvex domain {(and so in particylar for

D)} that h in Iy can be written

e

17 eel, are in A(T)., Thus the map T : i O oA(n) - IO

Gkgl"”’gn) =28y heeed B8y

in D and 0 < v <1 detine £,(¢) = 1(V{), Since




D is star shaped with respect to the origin these functions '
are well-defined, and Ty is in IO for each v, By the open
mapping theorem there exists a constant C, independent of Vv,

and f%,...,fﬂ in A(D) such that

ol
£, = 2L et znf%,

and
Il = eyl = ol -

By Vitali's theorem [9; p., 11] we can find a sequence v 1

such that for all i, f% converges Lo some holomorphic function
k .

Ti» uniformly on compact subsets of D, Thus each f; is in

H (D). &ince T, = [ pointwisge on D we have
k .

= Zlfl Fa ot ann’ - ®

The idea of using the'open mapping theorem was suggesited

by Professor Rossi,

Propogsition 5.2. The map p - EZH 1ls a ceontinuous

M o
1 (an)

onto mapping. The map p — is a well-defined map on an a

nd

a homeonorphism onto an open subset of M '
u (an)

Let {ma} te a net in MHm(an)
(£) = m{r) for 1l r in H (B“N) and hence, in particular,

converging to m,; i.e.

or all T in P(Ezn), Therefore p(m,) converges to p(m) in

Fetl A - . o e
-y and we conciude p s continuous.




i

If » is in BV then ey is in M. s and clearly
. A ‘ H (an)
pley) = A, Thus we have

an — p(M =21

o )

Since p is continuous and M on. 8 compact, p(M
H (B!

is compact and hence closed. Thus p is onto.

m(an))

is such that pml(fa) = i.0.
2n

Suppose m in M
2N i (an) - B pin

m|P(B1) = ey, for some A in B If r in H (B*") is zero
at A then by the preceeding lemma m(f) = 0. Thus for any

g in Hm(an)
m{g) ~ g(2) = m(g~g{r))

Thus m is e,, and we see that p! is well-derined on B

Since p is continuous, p_i(an) is an open subset of

_ 2n
M Suppose L, = € in B*,
H ( 21’1 ) a

() for all T in H \an) and o0 eg converges to ey in the

Then £{{ ) converges to

topology of M “ An) nce p (Q ) and p" (€) =
H {8
it follows that p~t is continuous., For more details in the

case n = 1 see [10], =

Using the map p”l we can identify BP0

Set of M . We will eventually show that | g = M
f H (B™) : Mo

or A on 3B we set Fy = pml({l}). Since p is continuous

ch Fy is compact. Furthermore we have

21
o B U
(5%")

9.

with an open sub-

@ \
I (BZH)




as sels, and the F, are disjoint.

The rollowing theorem can be proved in the case n = 1

by using inner functions ([10; p. 162]).

21’1)
?

Proposition 5.3. Let T be a funcbion in H (B let X be on

and @ be in €. There exists an m in FK such that
m(I) = o il and only if there exists a sequence {Kk} in B

converging to A such that f(kk) converges to o,
Proof. Suppose M = M and £(A) - a. Let
J= e €1 (87 1 o(x) ~ 0},
Clearly J is a proper ideal of Hm(an) and so is contained

in some maximal ideal JO' Let m be the clement in M 2n)
H (B

1 .
having kernel dgs  If A = (2,0, then

f""‘c" E J,

Zi""}\-le Jj. i:l,...,n. |

Since m(zi) = At

>

, m is in Fy and m(f) = o, This argument
can be found in [10].
suppose now that theres ig no sequence Kk - & such that

e/ 7 % It is clearly sufficient to prove the propogi-

[_
o
i
-
<
H
@
H

0. Thus f 1ls bounded away from zero cn a neigh-

an

orhood of A in B™ ., By Coroilary 2.7 there exists g in
: ) |
) . e " ; Len |
) such that fg is continuously extendable to B™™ U {A}
fz{x) = 1: Before compleling the proof we need a lemna.




Zl—l .

Lemma 5.4. Let @ be in H (B™) and ) be on 3B%, There
exlsbs o complex nmunber 8 such that m(ep) = 8 for all m in Fy
if and only iF ® is continuously extendable to BoR U fn}

with (1) = B,

One half of this lemma follows from what has already
been proved in 5.3, So suppose © is continuously extendable
to BM U [N} with o()) = B, and again we can assume B = O,

- . . . . e
Let h{¢) = ;(l+x~%). This function is continuous on B*"

2

and has its maximum 1 at . Since P is continuous and

zero at A we have
(l~hk)w -0, as k - @,

L] de . . .‘3"'21’1 v N
in the sup norm, Because h is in P(B*") we have For each

'

in Fk

m((l“hk)@) = O,

for all k and so w(®) = 0. Again see [10; p. 161].
Returning to 5.3, we see that m{Tg) = 1 For all m in

o ;
v+ Since g is in H (8°™) we have n(fg) = m(mlg) and so

The following corollary is trivial bul we single 1t

Ut because it ls the key to identifying My and M W( ?n)'
_ H {(B”

. »mf y e 2...’.
roliary 5.5, For f in H-\an) and ) on 5B we have

sup  |m(r)| = aup lf(u)!,
mEFK el
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where U ig any neighborhood of * in B,

Lemma 5.6, If m belonging to M is in F, for some X
- \

o (an)

on 0B”", then m can be extended to a multiplicative linear

functional on ¥,

Proot., Let b = {l wBEB : B a polyindex, k ranges over
Plsk ",

positive integers, @B € H (an)}. W is obviously an algebra

and is dense in ¥ by the Stone-Welerstrass theorem. Define

m on W by

n -
m{ §) = m( IB?SKCPBX )

where
-
Y = Wa B
15%5k P

Since the representation of ¥ in the above Torm is nob
- . . n * -
necessarily unique, we must show that m is well-defined.

To do this it clearly suffices to show that ®BEB

2
2n . lBlﬁk
identically zero on B™ implies m(ZwBTB): 0.
But in general by the continuity of the 7% at % and the
boundedness of the Pgy given & > 0 we can find a neigh~

_borhood U oF A in an such that
sup lZ@BXBl < € +  sup lZwBﬁﬁi.
U [y

Since ZwBTB € Hm(BZH) we have

(05T = [z 20,0




L3,
Thus @ is well-defined., Since m is obviously linear and
multiplicative, this last inequality also says that m is

bounded on W, Hence m can be extended to be a multiplica~

tive linear functional on clog W = U, 1

The roilowing lemma will be used to show that any m in

My, is completely determined by its behaviour on Hm(an).

Lemma 5.7. TLet m belong to My. Then m(Ei) = Erzij For

i —_ l,ac-,n-

Proof, If x; and y; are respectively the real and imaginary

parts of the coordinate function zi,'we'have

m(zi) - m(xi) - im(yi),mt ‘2.“;)- = nl(Xij-}«:bn(Yi).

A1l we need show now is that m(xi) and m(yi) are real. We
know that the spectrum of x, as an element of C(B*) is
[0,1] and that its spectrum as an element of ﬁ(an) is [0,1]
as well. Thus Oﬂ(xi) = [0,1] and similarly Um(yi) = [0,1].

Since ¥ is a commutabtive Banach algebra the range of the

Gelfand transform of any element is. equal to the spectrum
of that element ({5; p. 45]), so both m{x,) and m(yi) are

n [0,1] and hence real. &

roposition 5.8. My is naturally homeomorphic to M

(B°1)

0T, Define the map m = My = M

00F o by
i) (an)

n{m) = mle(BZH).




This map is of course well-define and continuous. Since the

spaces involved are compact Hausdorff spaces, to show M is

a homeomorphism all we need show is that it is one-one and

onto.,

Ir € is in an then ¢y evaluation at ¢, is an elemen®

of My, and of course n(e,) = &, and so

n(My) > B,

Now if m belongs to M
n 4 (an)
A on OB™" and hence by 5.6 m is in the range of 1 and so 1

\pen then m is in F, for some
A

ig onto.
To show m is one~to-one let us suppose mysM, are in
T : Pl R Ry
My, and J(ml) - ﬂ(mz), i.e,, mllH-(Bgn) = mzlﬂ (B*™), By
the previous lemma ml(Ei) = mz(Ei), Thus by the Stone-

Weierstrass theorem mllc(ﬁzn)_z'mzlc(ﬁzn), and hence

[}

- o 9
Using the map n 1 we can identify an and M _, o \B*" 2{
By i
as digjoint subsets of My and of course

\,2n . o 20

Mr,ii-"iM B UB “

0B

I m belongs to ﬂ"l(M w( 2n)) then m]Hm(an) is in Fy for
H (B

some A on Ban, and so by 5.7, mlc(ﬁzn) = ey, LIf m belongs
to ﬂml(an) then ml|H (an) = e, .for some ¢ in B® and hence

lU(ﬂBd?n) = eg.




Theorem 5.9. The maximal ideal space My ,9 is naturally j
O B N

homeomorphic to M on \B*1,
H (B<™)
. ‘ 2n
Proof. Define the map ¥ : M \B“" = Myn, by

w(m) (£4+94) = m(r),

for £ in %. From the preceeding remark we see that

M \B2n = {m € My @ u{p) = 0 for all © in ¢
1 (an)

ol
That 4 is a homeomorphism now follows from a standard result
on the maximal ideal space of qudtient algebras [8; p. 131, A
. . 2n
Thus we have identified M and M \B“*, One
() H(B7)

2n
(AL
can see lmmediately that if m is in M \B®, and @1 is

H,(BZH)

the element in MJ(M)/M with whiph it ig ddentified then

(Tyt) = m(p),

for ¥ in Hm(an), and

) = r(),

Tor T in C(Ein) and m in F,, i

Propogition 5.10. The maximal ideal space Mg(a)/¥ ig
connected. e

B, it

Proof, Due to the fact that Mg(al/% = MHm(an)




fact 1s well~known for n = 1 (see [10]), and the proof 5f

suffices to show that the latter space is connected.

the general result is exactly the same. We only outline £h

proof. Since p(M o
U (an)
a standard argument ([10; p. 188]) reduces the proof to

\an) = 3B and aB*" is connectedi

showing that each F, is connected.

[=-]
Recall that for f in H (an), the Gelfand transform of

A, . .
f, denoted [, is the continuous function on M

H (B

/\ -]
by £(m) = m(f). Denote by ﬁk the algebra obtained by

defined

. A @ '
restricting each [ to Fy+. Thus ﬁh is a subalgebra of C(Fk),
. : ® A o
Since Fy is a peak set for £ - [T 216 d (B9} (use the
function h defined in Lemma 5.4), we lknow that ﬁ; is a function

algebra (see Gamelin [8; p. 57] ror details), and hence

IS

Since Fy, is a maximal ideal space, I, will be connected if
7 T
w
ﬁk contalns no non-trivial idempotents, by Shilov's theorem
1 (“\ T ﬁw » - - . .
[8: p, 88]). That , conbains no ldempotents follows from

: A . \ @ .
Lemma 5.k, for if g were an idempotent in ﬁk we woilld have

of 4 in B™. BSince g is continuous it must be identically
2n

the other on some neighborhood of » in B and so,

_gain by 5.4, § = 0 or g =1, w




CHAPTER VI,  THE MATRIX CASE.

In this chapter we congider the Fredholmness of matriéeb

of Toeplitz operators with symbols in ¥, We write
HE(B™) = = @ HR(B™), L2(B°") = » @ L3(p™Y),
k k

Thus Hﬁ(an) is a closed subspace of the Hilbert space Lﬁ(an). | %
Let Mk be the collection of kxk matrices (mij) where each
@ij is in ¥, This collection is a Banach algebra and can be
ldentified with 9 @ Mk’ where Mk is the collection of kX
matrices with complek entries. Ir Pk denotes the orthogonal
projection from Lﬁ(BzH) onbo HE(BZH) then we can define the

Toeplitz operator T, on Hﬁ(an) by

©

Tq}f = Pk(mf)

for ¢ = (mij) in ¥ . Obviously T  can be written as the kxk

P

matrix operator (T, )

Let ¥ denote the ideal of compact operators in S(Hﬁ(an)).

The elements of ¥ are precisely those operator matrices of

3 ig a compact operator on H%(B

hus the Tollowing lemma follows immediately from Lemma 3.3.

the Tform (Kij) where each K 2n).

e v s

emma 6.1, If ¢ and ¥ are in U, then Tply~Tyy 18 compact.

roposition 6.2, 1T ©® belongs to ﬁk then Tcp is IFredholm if |

nd only if det ® is bounded away from zero on a neighborhood

ﬁaan,



Proof. Since det ®(8) = det(wij(g)): we see that Qet o) igﬂ
an element of ¥, For the remainder of this proof we will |
write d for det o,

Suppose d is bounded away from zero on a neighborhood

of 3B, Then by Lemma 4.2 there exists a g in ¥ such that

gd = 1 on 3B~1, By Cramer's rule we know that if A belongs
to Mk then there exists a B in MP whose entries are poly-—

nomials in the entries of A and such that
AB = BA = detA-I,

where I is the identity matrix. Thus we can find a ¥ in %k

such that
Y = Yp = d-I,

We write gV = (g-T)Y = (gwij). By Lemma 6,] we have

Taloy = Top(gp)tE

for some compact K, and hence

) ! r i
0T,y ‘

ince ngw} is a compact operator on Hg(an) by Proposition 1.7

U follows that T(md*I)"I 1s a compact operaltor on Hﬁ(BQn) and
]

(T O (T, 1H) = Tk,




Similarly

(Tgw-i'}ﬂl) (TCP+M) = I+}6'.’

and S0 T dis Fredholm.

® .
On the other hand let us suppose d is not bounded away

from zero on a neighborhood of BBZH. Let ¥ = v*, the adjoint

of ®. Thus det ¥ is not bounded away from zero on a neighbor-

hood of Ban, and if | = (wij) then Wij € % for each i and j.

We can find a sequence {Xm} in an such that km converges to

N and such that det ¢(lm) = 0. :

some A on the boundary of B
By passing to a subsequence ir necessary we can agsgume that

there are a5 5 in € such that 2

Vo AN ) 7 oa. .

1jY m ij?

for all i,j. Let a = (ai.). Since det is continuous we have

det a = 0, Therefore there is a nonzero vector (Cj,.a.,Ck) |

in ¢¥ such that a(Cl,..,,Ck) = 0, and so for each m

a(glfm?‘“”g’kfm) = O

where {fm} is as defined in 3.11. Thus we have

%lr:[aqf( C\lfn}-g #2023 C;kfm) |1 = Ikrw“a)(glfmg L) Ckfm)”
k V|
uZp (T ‘g‘mmalu) CuTh

o
*

2 (T, -a
WEL M Tk

J
)

pafm !




- alp.)fm

=3 |¢

l
wo . ’

(T "‘aku)fm

Vi

where the norms are all the norm on Hﬁ(an). It follows now

from the proof of 3.16 that HT¢(lem""’gkfm)” converges to

zero, Since

n(glfms""ackfm)“ = 1(gl’°“’ck)l’

{(remember f, is a unit vector in Hz(an)), we see that 0 is

in n—ess O(T¢)' Therefore since TW = (Tw)*, it follows that

m ig

Ly 32 not Fredholm, £
We have not been able to find any method for compubing
the index of Tm if it is Fredholm, Veﬁugopalkrishna [17]

has obtained an index result for ® in C(§2n) @ Mk where k = n,

Ir TCp is Fredhoim in this case then wiéan determines an

element of the homotopy group ﬁzn"l(GL(k,G)), Since k 2z n,

ﬁanl(GL(k7c)) is isomorphic to Z by the Bott periodicity

theorem? and Venugqpalkrishné ghows that the index of TCp is

the integer given by the Bott isomorphism (see also [7: p. 81]).
In this case we conjecture that for © in ﬂk with T,

p
Fredholm and ¢ bounded away from zero on BZH\BE, then




Thus ¢, is conbtinuous on B and nonzero on the boundarYTaB

and so TCp 1s Fredholm with an index which can be computed
€ :
Further results on the index of Toepllt operators witﬁ_

continuous matrix-valued symbols can be found in [12].




CHAPTER VII. CONCLUSION.

We would like to make a few general remarks before

ending this paper. The algebra ¥ can of course be defined

L%

on any strongly pseudoconvex domain D. Can our resulbs be
extended to the arbitrary case? For any strongly pseudo-

convex domain D it is true that

1) Ty = Ty @ €L (B, v e,
and

2) g € I 2 Tcp compact.

Thus it ¥ is bounded away from zero on a neighborhood of 2D

then T, is lelt Fredholm for ¥ in ¥. IT ¢+JO were invertible

¥
in %/JO, then of course T¢ would be Fredholm. So we now want
to know whether ¥ bounded away from zero on a neighborhood
of the boundary of a strongly pseudoconvex domain implies
$+JO is iﬁvertible in M/JO{ Il all the results in Chapter V
were correct for the domain the answer would be yes. Our
proof of 5.1 depended on an being star-shaped with resgpect
to any of its points. But wé really only use this result

to ghow that fibers in My over B2n are trivial. Since these
Tibers are eliminated in MQ/JO, it doesn®t make much differ—
ence whether they were trivial or not from the point of view
of MQ/JO‘ We have used several other facts in V which might

not be true for arbitrary D but will be true for domains with

‘additiond convexity requirements, for example, polynomial




convexity

little requir

to domains m e the ball. For instance, pqu_

of the.feSﬁlts
domaing oughl t
the convex.ty reqL

Now stpOS@_MQi
neighborhbéd 

'liké“the index question, appears

Predholm? This question,

much more diffiéﬁlb;ﬁhanﬂﬁhé’breceeding one and has not been .

angwered fully evenffor 6 belonglng to c{D). Our method of

solving it on the ban depends on the explicit determination

21’1)

of the Bergman kernel zor HZ(B As more 1ls learned about

these kernels we should be able to tell whether our methods

can be generalized here as well.
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