Problem 1

Let $X=\{a, b, c, d\}$. Determine which of the lists of subsets of X given in Figure 1 is a topology. Justify your answer. In each case, we assume that the list contains the empty set.

Figure 1: Which are topologies?

Problem 2

Problem 28 of Section 1.1 of the textbook.

Problem 3

Let $X=[0,1]$. Find an equivalence relation on X such that X / \sim is the letter Y.

In problems 4 to 7 an equivalence relation R on a set X is given. Convince yourself that each relation is indeed an equivalence relation (you are not required to write down a proof). Describe the open sets of X / \sim and, if possible draw X / \sim.

Problem 4

$X=[0,1]$ and the relation R contains all pairs of the form $\left(x, x^{\prime}\right)$, such that either

1. $x=x^{\prime}$.
2. $\left\{x, x^{\prime}\right\} \subset\{0,1 / 2,1\}$.

Problem 5

$X=\left\{(x, y) / x^{2}+y^{2} \leq 1\right\}$ (the closed unit ball). A map f goes from X to the interval $[0,1]$ is defined by $f(x, y)=x^{2}+y^{2}$. The map f defines an equivalence relation R on X, in the following way. A pair $(x, y) \in X \times X$ is in the relation R if $f(x)=f(y)$.

Problem 6

X / \sim where $X=[0,1] \times[0,1]$ (a unit square) and the equivalence relation R contains all pairs of points $\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)$ such that one of the following holds

1. $x=x^{\prime}$ and $y=y^{\prime}$,
2. $\left(\left(0, y^{2}\right),(1, y)\right)$,
3. $\left((1, y),\left(0, y^{2}\right)\right)$.

Problem 7

$X=\left\{(x, y) / x^{2}+y^{2} \leq 1\right\}$ (the closed unit ball) and the equivalence relation R contains all pairs of points $\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)$ such that one of the following holds

1. $x=x^{\prime}$ and $y=y^{\prime}$
2. $x^{2}+y^{2}=x^{\prime 2}+y^{\prime 2}=1$
