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0. Introduction

0.1. Mirror symmetry predictions for a quintic threefold. Gromov-Witten
invariants of a smooth projective variety X are certain counts of curves in X. In
many cases, these invariants are known or conjectured to possess rather amazing
structure which is often completely unexpected from the classical point of view. For
example, a generating function for the genus 0 GW-invariants solves a third-oder
PDE in two variables. In the case of the complex projective space Pn, the resulting
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692 ALEKSEY ZINGER

PDE condition on the generating function is equivalent to a recursion for counts of
rational curves in Pn and solves the classical problem of enumeration of such curves
in Pn; see [RT, Section 10] and [KoM, Section 5].

The above-mentioned PDE property1 is just one type of structure of GW-
invariants motivated by their relation to string theory. The mirror symmetry
principle of string theory predicts yet another type of structure whenever X is
a Calabi-Yau threefold. It relates GW-invariants of X to an integral on the mod-
uli space of Kahler structures of the “mirror” of X. In the case X is a quintic
threefold (degree 5 hypersurface in P4), this integral was computed in [CaDGP],
leading to stunning predictions concerning the Gromov-Witten theory of X. These
predictions have been only partially verified.

For each pair of non-negative integers (g, d), let Ng,d denote the genus g degree d
GW-invariant of a quintic threefold X5; see equation (0.8) below. For q =0, 1, . . .,
we define a degree q polynomial Iq(t) in t with coefficients in the power series in et

by

(0.1)
∞∑

q=0

Iq(t)wq ≡ ewt
∞∑

d=0

edt

∏r=5d
r=1 (5w+r)∏r=d

r=1((w+r)5−w5)
.

For example,

(0.2) I0(t) = 1 +
∞∑

d=1

edt (5d)!
(d!)5

, I1(t) = tI0(t) +
∞∑

d=1

edt

(
(5d)!
(d!)5

5d∑
r=d+1

5
r

)
.

Let

(0.3) Jq(t) = Iq(t)
/
I0(t) ∀ q = 1, 2, . . . , T = J1(t).

The mirror symmetry prediction of [CaDGP] for the genus 0 GW-invariants of X5

can be stated as

(0.4)
5
6
T 3 +

∞∑
d=1

N0,de
dT =

5
2
(
J1(t)J2(t) − J3(t)

)
;

see Appendix B for a comparison of statements of mirror symmetry. A prediction
for the genus 1 GW-invariants of X5 was made in [BCOV], building up on [CaDGP].
Both of these predictions date back to the early days of the Gromov-Witten theory.
More recently, predictions for higher-genus GW-invariants of X5 have been made;
the approach of [HKlQ] generates mirror formulas for GW-invariants of X5 up to
genus 51.

While the ODE condition on GW-invariants mentioned above is proved directly,
the mathematical approach to the mirror principle has been to compute the relevant
GW-invariants in each specific case. However, this is rarely a simple task. The
prediction for genus 0 invariants was confirmed mathematically in the mid-1990s.
The prediction for genus 1 invariants is verified in this paper.

Theorem 1. If N1,d denotes the degree d genus 1 Gromov-Witten invariant of a
quintic threefold,

(0.5) 2
∞∑

d=1

N1,dedT =
25
6

(
J1(t) − t

)
+ ln

(
I0(t)−62/3

(
1−55et

)−1/6
J ′

1(t)
−1

)
.

1It is equivalent to the associativity of the multiplication in quantum cohomology.
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THE REDUCED GENUS 1 GW-INVARIANTS 693

This theorem is deduced from Theorem 2 in Subsection 0.3. An outline of this
paper is contained in the next subsection.

0.2. Computing GW-invariants of hypersurfaces. One approach to comput-
ing GW-invariants of a projective hypersurface (and more generally, of a complete
intersection) is to relate them to GW-invariants of the ambient projective space as
follows. Whenever g, d, and k are non-negative integers and X is a smooth subva-
riety of Pn, denote by Mg,k(X, d) the moduli space of stable degree d maps into X
from genus g curves with k marked points; see [MirSym, Chapter 24]. Let U be the
universal curve over Mg,k(Pn, d), with structure map π and evaluation map ev:

U

π

��

ev �� Pn

Mg,k(Pn, d).

In other words, the fiber of π over [C, f ] ∈ Mg,k(Pn, d), where C is a nodal curve
with k marked points and f : C−→Pn is a stable morphism, is C/Aut(C, f), while

ev
(
[C, f ; z]

)
= f(z) if z∈C.

A smooth degree a hypersurface X in Pn is determined by a section s of OPn(a)
which is transverse to the zero set:

X = s−1(0) for some s ∈ H0
(
Pn;OPn(a)

)
.2

The section s induces a section s̃ of the sheaf π∗ev∗OPn(a)−→Mg,k(Pn, d) by

s̃
(
[C, f ]

)
= [s ◦ f ].

It is immediate that

(0.6) Mg,k(X, d) ≡
{
[C, f ]∈Mg,k(Pn, d) : f(C)⊂X

}
= s̃−1(0).

On the other hand, GW-invariants of X are defined by integration against the vir-
tual fundamental class (VFC) of Mg,k(X, d) constructed in [BeFa], [FuO], and [LiT]:

(0.7) GWX
g,k(d; η) =

〈
η,

[
Mg,k(X, d)

]vir〉 ∀ η∈H∗(
Mg,k(X, d); Q

)
.

If X is a quintic threefold (or is another Calabi-Yau threefold), then the cycle
[Mg,0(X, d)]vir is zero-dimensional and its degree is denoted by Ng,d:

(0.8) Ng,d = GWX
g,0(d; 1) ≡

〈
1,

[
Mg,0(X, d)

]vir〉
.

In light of Poincare Duality, equations (0.6) and (0.7) suggest that GWX
g,k(d; η)

should be expressible as an integral against [Mg,k(Pn, d)]vir via some sort of euler
class of the sheaf π∗ev∗OPn(a), whenever η comes from Mg,k(Pn, d). As can be
easily seen from the definition of VFC, this is indeed the case if g=0:

(0.9) GWX
0,k(d; η) =

〈
η · e

(
π∗ev∗OPn(a)

)
,
[
M0,k(Pn, d)

]〉
for all η ∈ H∗(M0,k(Pn, d); Q). The moduli space M0,k(Pn, d) is a smooth stack
(orbifold), and

π∗ev∗OPn(a) −→ M0,k(Pn, d)

2In other words, s is a holomorphic section of γ∗⊗a
n , where γn −→Pn is the tautological line

bundle.
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694 ALEKSEY ZINGER

is a locally free sheaf (vector bundle). Thus, the right-hand side of (0.9) can be
computed via the classical localization theorem of [ABo], though the complexity
of this computation increases rapidly with the degree d. Nevertheless, it has been
completed in full generality in a number of different of ways, verifying the genus 0
mirror symmetry prediction (0.4). At the end of this subsection we briefly recall
Givental’s approach [Gi] to dealing with this complexity and describe its interplay
with our approach in genus 1; other proofs of (0.4) can be found in [Ber], [Ga], [Le],
and [LLY].

The most algebraically natural generalization of (0.9) to positive genera fails. In
the genus 1 case, by [LiZ, Theorem 1.1], the most topologically natural analogue
of (0.9) does hold for the reduced GW-invariants GW0;X

1,k defined in [Z1]:

(0.10) GW0;X
1,k (d; η) =

〈
η · e

(
π∗ev∗OPn(a)

)
,
[
M

0

1,k(Pn, d)
]〉

for all η ∈ H∗(M1,k(Pn, d); Q), where M
0

1,k(Pn, d) is the main component of
M1,k(Pn, d), i.e. the closure of the locus in M1,k(Pn, d) consisting of maps from
smooth domains. While M

0

1,k(Pn, d) is not a smooth stack, it is an equi-dimensional
orbi-variety and has a well-defined fundamental class. While the sheaf

π∗ev∗OPn(a) −→ M
0

1,k(Pn, d)

is not locally free, it is shown in [Z2] that its euler class is well defined. If

(0.11) V1

��

p∗ �� π∗ev∗OPn(a)

��
M̃0

1,k(Pn, d)
p �� M

0

1,k(Pn, d)

is a desingularization of M
0

1,k(Pn, d) and π∗ev∗OPn(a) (i.e. M̃0
1,k(Pn, d) is smooth,

p is a birational morphism, and V1 is locally free), then

(0.12)
〈
η · e

(
π∗ev∗OPn(a)

)
,
[
M

0

1,k(Pn, d)
]〉

=
〈
π∗η · e(V1),

[
M̃

0
1,k(Pn, d)

]〉
for all η ∈ H∗(M

0

1,k(Pn, d); Q). A natural desingularization (0.11) that inherits
every torus action from Pn is constructed in [VaZ]. Thus, the classical localization
theorem of [ABo] can be used to compute the right-hand side of (0.10) via (0.12).
On the other hand, by [Z1, Section 3], the reduced genus 1 GW-invariant differs
from the standard one by a combination of genus 0 GW-invariants. In particular,
if X is a quintic threefold, then by [Z1, Theorem 1.1]

(0.13) N1,d ≡ GWX
1,0(d; 1) = N0

1,d +
1
12

N0,d,

where N0
1,d is the reduced genus 1 degree d invariant GW0;X

1,0 (d; 1) of X.
In this paper we compute the numbers GW0;X

1,0 (d; 1) for a smooth degree n hy-
persurface X in Pn−1, with n ≥ 3. By (0.10), (0.12), and the divisor relation
(see [MirSym, Section 26.3]),

(0.14) d GW0;X
1,0 (d; 1) =

〈
e(V1) ev∗

1H,
[
M̃

0
1,1(P

n−1, d)
]〉

,

where H∈H2(Pn−1) is the hyperplane class and

V1 −→ M̃
0
1,1(P

n−1, d)
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THE REDUCED GENUS 1 GW-INVARIANTS 695

is the desingularization of the sheaf

π∗ev∗OPn−1(n) −→ M
0

1,1(P
n−1, d)

constructed in [VaZ]. Analogously to [Gi], we package all reduced genus 1 GW-
invariants (0.14) of a degree n hypersurface Xn in Pn−1 into a generating function F ;
this is a power series with coefficients in the equivariant cohomology of Pn−1. In [Gi],
an analogous power series provides a convenient way to describe a degree-recursive
feature of the genus 0 GW-invariants of Xn. The resulting recursion, [MirSym,
Lemma 30.1.1], has a “mystery correction term”, which is intrinsically determined
by the recursion and another property of the genus 0 generating function called
polynomiality (see [MirSym, Section 30.2]). By applying the Atiyah-Bott localiza-
tion theorem, we relate F to the genus 0 generating functions (1.22)-(1.24). In
the process, we encounter seemingly unwieldy terms which turn out to be simi-
lar to the expressions encoded by the genus 0 “correction term” cleverly avoided
in [Gi]; the latter are all of the form (2.3). While none of these expressions by
itself determines any of our unwieldy terms, the entire series of expressions insures
that the relevant genus 0 generating function has the remarkably rigid structure of
Definition 2.1, which in turn determines all of our unwieldy terms via (2.4). This
leads to Propositions 1.1 and 1.2, which describe the contributions to F from the
two different types of fixed loci in terms of known integrals on M0,2(Pn−1, d). In
Section 3, we use Lemma 3.3 to extract the non-equivariant part of the expressions
in Propositions 1.1 and 1.2, obtaining Theorem 3 on page 721. Theorem 2 in the
next subsection follows immediately from Theorem 3 and (1.15).

The approach of this paper to summing over all possible fixed loci involves break-
ing the graph into trees at a special node. As such trees contribute to certain
genus 0 integrals, the desired sum is expressible in terms of these integrals. The
same approach directly carries over to computing reduced genus 1 GW-invariants
of any complete intersection and should be applicable to localization computations
in higher genus.3 In the latter case, there will be more “special” nodes, but their
number will be bounded above by the genus. Once the graphs are broken at the
special nodes, there will be a number of distinguished trees and an arbitrary num-
ber of “generic” trees. The number of the former will again be bounded by the
genus. On the other hand, it should be possible to sum over all possibilities for the
latter, using the regularity property of the relevant genus 0 integral described in
Subsection 2.2.

0.3. Mirror symmetry formulas for projective CY-hypersurfaces. In this
subsection we formulate a generalization of Theorem 1 to projective Calabi-Yau
hypersurfaces of arbitrary dimensions; see Theorem 2 below. We then take a closer
look at its low-dimensional cases, comparing some of them with known results and
others with the mirror symmetry predictions of [BCOV] and [KlPa].

3This is not to say that higher-genus GW-invariants of projective hypersurfaces are now easily
computable. It is far from clear at this point which integrals should be localized in higher genus.
No higher-genus analogue of (0.10) has been proved yet, though a conjectural version is stated in
[LiZ, Subsection 1.1]. Even with such a higher-genus hyperplane property, one would still need
to either figure out how to apply the localization theorem in a singular setting or construct a
desingularization of the main component of Mg,k(Pn, d).
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696 ALEKSEY ZINGER

Let n be a positive integer. For each q=0, 1, . . ., define I0,q(t) by

(0.15)
∞∑

q=0

I0,q(t)wq ≡ ewt
∞∑

d=0

edt

∏r=nd
r=1 (nw+r)∏r=d

r=1((w+r)n−wn)
≡ R(w, t).

Each I0,q(t) is a degree q polynomial in t with coefficients that are power series
in et; see (0.2) for explicit formulas for I0≡I0,0 and I1≡I0,1 in the n=5 case. For
p, q∈Z+ with q≥p, let

(0.16) Ip,q(t) =
d

dt

(
Ip−1,q(t)

Ip−1,p−1(t)

)
.

By the first statement of Proposition 3.1 below, each of the “diagonal” terms Ip,p(t)
is a power series in et with constant term 1, whenever it is defined. Thus, the
division in (0.16) is well-defined for all p. Let

(0.17) T =
I0,1(t)
I0,0(t)

.

By (i) of Proposition 3.1, the map t−→T is a change of variables; it will be called
the mirror map.

Let R̄(w, t) = R(w, t)/I0,0(t). Then, e−wtR̄(w, t) is a power series with et-
constant term 1 and

Dp
w ln R̄(w, t) ≡ 1

p!

{
d

dw

}p(
ln

(
e−wtR̄(w, t)

))∣∣∣∣
w=0

∈ Q[[et]]

for all p≥2.

Theorem 2. For each n ∈ Z+, the reduced genus 1 degree d Gromov-Witten in-
variants of a degree n hypersurface X in Pn−1 are given by

∞∑
d=1

edT GW0;X
1,0 (d; 1)

=
(

(n−2)(n+1)
48

+
1 − (1−n)n

24n2

)
(T−t) +

n2−1 + (1−n)n

24n
ln I0,0(t)

−
{

n−1
48 ln

(
1−nnet

)
+

∑(n−3)/2
p=0

(n−1−2p)2

8 ln Ip,p(t), if 2 � |n;
n−4
48 ln

(
1−nnet

)
+

∑(n−4)/2
p=0

(n−2p)(n−2−2p)
8 ln Ip,p(t), if 2|n;

+
n

24

n−2∑
p=2

(
Dn−2−p

w

(1+w)n

(1+nw)

)(
Dp

w ln R̄(w, t)
)
,

where t and T are related by the mirror map (0.17).

If n=1, both sides of the formula in Theorem 2 vanish. If n=2, X is a pair of
points in P1. In this case, the right-hand side of the formula in Theorem 2 vanishes
by (3.5). This is exactly as one would expect, since there are no positive-degree
maps from a curve to a point.

If n = 3, X is a plane cubic, i.e. a 2-torus embedded as a degree 3 curve in P2.
Thus, its degree d GW-invariant is zero unless d is divisible by 3. Furthermore, its
genus 1 degree 3r GW-invariant is the number of r-fold (unramified) covers of a
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THE REDUCED GENUS 1 GW-INVARIANTS 697

torus by a torus divided by r, the order of the automorphism group of each such
cover. Since the number σr of such covers is given by (B.12), it follows that

(0.18)
∞∑

d=1

edT GWX
1,0(d; 1) = −

∞∑
d=1

ln
(
1−e3dT

)
.

On the other hand, Theorem 2 gives

(0.19)
∞∑

d=1

edT GW0;X
1,0 (d; 1) =

1
8
(T−t) − 1

24
ln

(
1−27et) − 1

2
ln I0(t),

where I0(t) and T are given by

I0(t) = 1 +
∞∑

d=1

edt (3d)!
(d!)3

, T = t +
1

I0(t)

∞∑
d=1

edt

(
(3d)!
(d!)3

3d∑
r=d+1

3
r

)
.

Since the standard and reduced (genus 1) invariants of a (complex) curve are the
same if no descendant classes are involved,

(0.20)
1
8
(T−t) − 1

24
ln

(
1−27et) − 1

2
ln I0(t) = −

∞∑
d=1

ln
(
1−e3dT

)
by (0.18) and (0.19). We do not see a direct proof of (0.20) at this point.

If n=4, X is a quartic surface in P3, i.e. a K3. All its GW-invariants are known
to be zero. With n = 4, we find that the two coefficients of (T −t) in Theorem 2
add up to zero; the same is the case for the two coefficients of ln I0,0(t). Thus,
the sum of the terms on the first two lines of the right-hand side in the formula of
Theorem 2 is zero. The remaining term is

4
24

· 1
2!

{
d

dw

}2(
ln

∞∑
q=0

Jq(t)wq

)∣∣∣∣
w=0

=
1
6

(
J2(t) −

1
2
J1(t)2

)
.

Here J1(t) and J2(t) are the n=4 analogues of the functions in Subsection 0.1:
∞∑

q=0

Iq(t)wq ≡ ewt
∞∑

d=0

edt

∏r=4d
r=1 (4w+r)∏r=d

r=1((w+r)4−w4)
, Jq(t) = Iq(t)

/
I0(t).

We note that(
J2(t) −

1
2
J1(t)2

)′
= J ′

1(t)
(

J ′
2(t)

J ′
1(t)

− J1(t)
)

;(
J ′

2(t)
J ′

1(t)
− J1(t)

)′
=

(
J ′

2(t)
J ′

1(t)

)′
− J ′

1(t) ≡ I2,2(t) − I1,1(t) = 0.

(0.21)

The last equality above holds by the (n, p)=(4, 1) case of (3.6). Since J2(t)− 1
2J1(t)2

is a power series in et with no et-constant term, (0.21) implies that it is zero as
expected.4

The n=5 case of Theorem 2 implies Theorem 1. In this case, the power series
I0,0(t) and I1,1(t) in et in the statement of Theorem 2 are I0(t) and J ′

1(t) in the
notation of Subsection 0.1. Thus, the sum of the terms on the first two lines of the
right-hand side in the formula of Theorem 2 is precisely the right-hand side of (0.5)

4For a surface X, the standard and reduced (genus 1) GW-invariants are the same if no
descendant classes are involved.
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698 ALEKSEY ZINGER

divided by 2. The remaining term in Theorem 2 is a sum of two terms, one of which
(the one corresponding to p=2) is easily seen to be zero. The other term is

5
24

· 1
3!

·
{

d

dw

}3(
ln

∞∑
q=0

Jq(t)wq

)∣∣∣∣
w=0

=
5
24

(
J3(t) − J1(t)J2(t) +

1
3
J1(t)3

)
= − 1

12

∞∑
d=1

N0,dedT ,

(0.22)

with J1(t), J2(t), and J3(t) as in Subsection 0.1. The last equality in (0.22) is
immediate from (0.4). Theorem 1 thus follows from Theorem 3 and (0.13).

If n=6, X is a sextic fourfold in P5. Theorem 2 in this case gives
∞∑

d=1

edT GW0;X
1,0 (d; 1) = −35

2
(
T−t

)
+

423
4

ln I0(t) − ln J ′
1(t) −

1
24

ln(1−66et)

+
6
24

· 15 · 1
2!

{
d

dw

}2(
ln

∞∑
q=0

Jq(t)wq

)∣∣∣∣
w=0

+
6
24

· 1
4!

{
d

dw

}4(
ln

∞∑
q=0

Jq(t)wq

)∣∣∣∣
w=0

.

The last two terms above arise from the last term in the formula of Theorem 2. In
the n=3, 4, 5 cases, the latter is

GW0;X
1,k (d; 1) − GWX

1,k(d; 1).

We show in [Z5] that this is the case for all n. For n = 6, Theorem 2 would then
give

∞∑
d=1

edT GWX
1,0(d; 1) = −35

2
(
T−t

)
+

423
4

ln I0(t) − ln J ′
1(t) −

1
24

ln(1−66et),

confirming the mirror symmetry prediction of [KlPa, Section 6.1].5

1. Equivariant cohomology and stable maps

1.1. Definitions and notation. This subsection reviews the notion of equivariant
cohomology and sets up related notation that will be used throughout the rest of
the paper. For the most part, our notation agrees with [MirSym, Chapters 29,30];
the main difference is that we work with Pn−1 instead of Pn.

We denote by T the n-torus (C∗)n (or (S1)n). It acts freely on ET=(C∞)n−0
(or (S∞)n): (

eiθ1 , . . . , eiθn
)
· (z1, . . . , zn) =

(
eiθ1z1, . . . , e

iθnzn

)
.

Thus, the classifying space for T and its group cohomology are given by

BT ≡ ET/T = (P∞)n and H∗
T
≡ H∗(BT; Q) = Q[α1, . . . , αn],

where αi =π∗
i c1(γ∗) if

πi : (P∞)n −→ P∞ and γ −→ P∞

5The variable t in [KlPa, (46)] is not the same as the variable t in this paper; see Appendix B.
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are the projection onto the i-th component and the tautological line bundle, re-
spectively. Denote by H∗

T
the field of fractions of H∗

T
:

H∗
T

= Qα ≡ Q(α1, . . . , αn).

A representation ρ of T, i.e. a linear action of T on Ck, induces a vector bundle
over BT:

Vρ ≡ ET ×T Ck.

If ρ is one-dimensional, we will call

c1(V ∗
ρ ) = −c1(Vρ) ∈ H∗

T
⊂ H∗

T

the weight of ρ. For example, αi is the weight of representation

(1.1) πi : T −→ C∗,
(
eiθ1 , . . . , eiθn

)
· z = eiθiz.

More generally, if a representation ρ of T on Ck splits into one-dimensional repre-
sentations with weights β1, . . . , βk, we will call β1, . . . , βk the weights of ρ. In such
a case,

(1.2) e(V ∗
ρ ) = β1 · . . . · βk.

We will call the representation ρ of T on Cn with weights α1, . . . , αn the standard
representation of T.

If T acts on a topological space M , let

H∗
T
(M) ≡ H∗(BM ; Q), where BM = ET×TM,

denote the corresponding equivariant cohomology of M . The projection map BM −→
BT induces an action of H∗

T
on H∗

T
(M). Let

H∗
T
(M) = H∗

T
(M) ⊗H∗

T
H∗

T
.

If the T-action on M lifts to an action on a (complex) vector bundle V −→M , then

BV ≡ ET×TV

is a vector bundle over BM . Let

e(V ) ≡ e(BV ) ∈ H∗
T
(M) ⊂ H∗

T
(M)

denote the equivariant euler class of V .
Throughout the paper we work with the standard action of T on Pn−1, i.e. the

action induced by the standard action ρ of T on Cn:(
eiθ1 , . . . , eiθn

)
· [z1, . . . , zn] =

[
eiθ1z1, . . . , e

iθnzn

]
.

Since BPn−1 = PVρ,

H∗
T
(Pn−1) ≡ H∗(PVρ; Q

)
= Q[x, α1, . . . , αn]

/(
xn+c1(Vρ)xn−1+. . .+cn(Vρ)

)
,

where x=c1(γ̃∗) and γ̃−→PVρ is the tautological line bundle. Since

c(Vρ) = (1 − α1) . . . (1 − αn),

it follows that
H∗

T
(Pn−1) = Q[x, α1, . . . , αn]

/
(x−α1) . . . (x−αn),

H∗
T
(Pn−1) = Qα[x]

/
(x−α1) . . . (x−αn).

(1.3)

The standard action of T on Pn−1 has n fixed points:

P1 = [1, 0, . . . , 0], P2 = [0, 1, 0, . . . , 0], . . . Pn = [0, . . . , 0, 1].
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For each i=1, 2, . . . , n, let

(1.4) φi =
∏
k �=i

(x−αk) ∈ H∗
T
(Pn−1).

By equation (1.10) below, φi is the equivariant Poincare dual of Pi. We also note
that γ̃|BPi

=Vπi
, where πi is as in (1.1). Thus, the restriction map on the equivariant

cohomology induced by the inclusion Pi−→Pn−1 is given by

H∗
T
(Pn−1) = Q[x, α1, . . . , αn]

/ k=n∏
k=1

(x−αk) −→ H∗
T
(Pi) = Q[α1, . . . , αn],

x −→ αi.

(1.5)

By (1.5),

(1.6) η = 0 ∈ H∗
T
(Pn−1) ⇐⇒ η|Pi

= 0 ∈ H∗
T

∀ i = 1, 2, . . . , n.

The tautological line bundle γn−1−→Pn−1 is a subbundle of Pn−1×Cn preserved
by the diagonal action of T. Thus, the action of T on Pn−1 naturally lifts to an
action on γn−1 and

(1.7) e
(
γ∗

n−1

)∣∣
Pi

= αi ∀ i = 1, 2, . . . , n.

The T-action on Pn−1 also has a natural lift to the vector bundle TPn−1−→Pn−1

so that there is a short exact sequence

0 −→ γ∗
n−1 ⊗ γn−1 −→ γ∗

n−1 ⊗
(
Pn−1×Cn

)
−→ TPn−1 −→ 0

of T-equivariant vector bundles on Pn−1. By (1.2), (1.7), and (1.4),

(1.8) e
(
TPn−1

)∣∣
Pi

=
∏
k �=i

(αi−αk) = φi|Pi
∀ i = 1, 2, . . . , n.

If T acts smoothly on a smooth compact oriented manifold M , there is a well-
defined integration-along-the-fiber homomorphism∫

M

: H∗
T
(M) −→ H∗

T

for the fiber bundle BM −→BT. The classical localization theorem of [ABo] relates
it to integration along the fixed locus of the T-action. The latter is a union of smooth
compact orientable manifolds F ; T acts on the normal bundle NF of each F . Once
an orientation of F is chosen, there is a well-defined integration-along-the-fiber
homomorphism ∫

F

: H∗
T
(F ) −→ H∗

T
.

The localization theorem states that

(1.9)
∫

M

η =
∑
F

∫
F

η|F
e(NF )

∈ H∗
T

∀ η ∈ H∗
T
(M),

where the sum is taken over all components F of the fixed locus of T. Part of the
statement of (1.9) is that e(NF ) is invertible in H∗

T
(F ). In the case of the standard

action of T on Pn−1, (1.9) implies that

(1.10) η|Pi
=

∫
Pn−1

ηφi ∈ H∗
T

∀ η∈H∗
T
(Pn−1), i = 1, 2, . . . , n;

see also (1.8).
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Finally, if f : M −→M ′ is a T-equivariant map between two compact oriented
manifolds, there is a well-defined pushforward homomorphism

f∗ : H∗
T
(M) −→ H∗

T
(M ′).

It is characterized by the property that

(1.11)
∫

M ′
(f∗η) η′ =

∫
M

η (f∗η′) ∀ η∈H∗
T
(M), η′∈H∗

T
(M ′).

The homomorphism
∫

M
of the previous paragraph corresponds to M ′ being a point.

It is immediate from (1.11) that

(1.12) f∗
(
η (f∗η′)

)
= (f∗η) η′ ∀ η∈H∗

T
(M), η′∈H∗

T
(M ′).

1.2. Setup for localization computation on M̃0
1,1(P

n−1, d). The standard T-
action on Pn−1 (as well as any other action) induces T-actions on moduli spaces of
stable maps Mg,k(Pn−1, d) by composition on the right,

h · [C, f ] = [C, h ◦ f ] ∀ h ∈ T, [C, f ] ∈ Mg,k(Pn−1, d),

and lifts to an action on M̃0
1,k(Pn−1, d). All the evaluation maps,

evi : Mg,k(Pn−1, d), M̃0
1,k(Pn−1, d) −→ Pn−1, [C, y1, . . . , yk, f ] −→ f(yi),

where i = 1, 2, . . . , k, are T-equivariant. These actions lift naturally to the universal
tangent line bundles

L1, . . . , Lk −→ Mg,k(Pn−1, d);

see [MirSym, Section 25.2]. Let

ψi ≡ c1(L∗
i ) ∈ H∗

T

(
Mg,k(Pn−1, d)

)
denote the equivariant ψ-class.

Via the natural lift of the T-action to γn−1−→Pn−1 described in Subsection 1.1,
the T-actions on Mg,k(Pn−1, d) and M̃0

1,k(Pn−1, d) lift to T-actions on the sheafs
π∗ev∗OPn−1(a) and on the vector bundle

V1 −→ M̃
0
1,1(P

n−1, d)

introduced in Subsection 0.2. We denote by

V0 −→ M0,k(Pn−1, d)

the vector bundle of the locally free sheaf π∗ev∗OPn−1(n) over M0,k(Pn−1, d). Let

L = γ∗⊗n
n−1 −→ Pn−1

be the vector bundle corresponding to the locally free sheaf OPn−1(n)−→Pn−1. For
g=0, 1, the equivariant bundle map

ẽv1 : Vg −→ ev∗
1L, [C, y1, . . . , yk, f, ξ] −→

[
ξ(y1)

]
,

is surjective. Thus,

V ′
0 ≡ ker ẽv1 −→ M0,k(Pn−1, d) and V ′

1 ≡ ker ẽv1 −→ M̃
0
1,1(P

n−1, d)
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are equivariant vector bundles.6 Furthermore,

(1.13) e(Vg) = e
(
ev∗

1L
)
e(V ′

g) = n ev∗1(x) e(V ′
g),

where x∈H2
T
(Pn−1) is the equivariant hyperplane class as in Subsection 1.1.

We denote by α the tuple (α1, . . . , αn). With ev1,d denoting the evaluation map
on M̃0

1,1(Pn−1, d), let

F(α, x, u) =
∞∑

d=1

ud(ev1,d∗e(V1)
)
∈

(
Hn−2

T
(Pn−1)

)
[[u]].

By (1.3),

(1.14) F(α, x, u) = F0(u)xn−2 + F1(α, u)xn−3 + . . . + Fn−2(α, u)x0,

for some power series F0(u) in u and degree p homogeneous α-polynomials

Fp(α, u) ∈ Q[[u]]
[
α1, . . . , αn

]
.

These polynomials must be symmetric in α1, . . . , αn. Note that by (0.14) and
(1.12),

(1.15)
d

dT

∞∑
d=1

edT GW0;X
1,0 (d; 1) = F0(eT ).

Thus, our aim is to determine the power series F0(u) in u defined by (1.14).
By (1.5), (1.10), and (1.11),

F(α, αi, u) = F(α, x, u)
∣∣
Pi

=
∞∑

d=1

ud

∫
Pn−1

(
ev1,d∗e(V1)

)
φi

=
∞∑

d=1

ud

∫
M̃0

1,1(P
n−1,d)

e(V1)ev∗
1φi

(1.16)

for each i=1, 2, . . . , n. By (1.6), the power series F0(u) is completely determined
by

F(α, α1, u), . . . ,F(α, αn, u) ∈ Qα[[u]],
where Qα is the ring Q(α1, . . . , αn) of rational fractions in α1, . . . , αn. We will
apply the localization formula (1.9) to the last expression in (1.16). In order to
do so, we need to describe the fixed loci of the T-action on M̃0

1,1(P
n−1, d) and for

each fixed locus F the corresponding triple (F, e(V1)ev∗
1φi|F ,NF ) or another triple

(F ′, η,N ′) such that ∫
F ′

η

e(N ′)
=

∫
F

e(V1)ev∗
1φi|F

e(NF )
.

In one case in Subsection 1.4, choosing such a replacement turns out to be advan-
tageous.

An element [C, f ] of M1,1(Pn−1, d) is the equivalence class of a nodal genus 1
curve C with one marked point and a stable degree d map f : C −→ Pn−1. We
denote by

M
eff
1,1(P

n−1, d) ⊂ M
0

1,1(P
n−1, d)

6In [MirSym, Chapters 29,30], the analogues of V0 and V′
0 over M0,2(Pn, d) are denoted by

E0,d and E′
0,d, respectively. However, E′

0,d is the kernel of the evaluation map at the second

marked point.
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the open subset of M1,1(Pn−1, d) consisting of the stable maps [C, f ] that are not
constant on the principal, genus 1 component CP of C.7 By definition, Meff

1,1(P
n−1, d)

is dense in M
0

1,1(P
n−1, d). Let

∂M
0

1,1(P
n−1, d) = M

0

1,1(P
n−1, d) − M

eff
1,1(P

n−1, d).

The desingularization M̃0
1,1(Pn−1, d) of M

0

1,1(Pn−1, d) is obtained by blowing up

along subvarieties contained in ∂M
0

1,1(Pn−1, d); see [VaZ, Subsection 1.2]. Thus,

M
eff
1,1(P

n−1, d) ⊂ M̃
0
1,1(P

n−1, d)

is a dense open subset. Let

∂M̃
0
1,1(P

n−1, d) = M̃
0
1,1(P

n−1, d) − M
eff
1,1(P

n−1, d).

Since each of the fixed loci of the T-action on M
0

1,1(Pn−1, d) is contained either

in Meff
1,1(Pn−1, d) or in ∂M

0

1,1(Pn−1, d), each of the fixed loci of the T-action on
M̃0

1,1(P
n−1, d) is contained in Meff

1,1(P
n−1, d) or in ∂M̃0

1,1(P
n−1, d). Furthermore,

the fixed loci contained in Meff
1,1(Pn−1, d) and the corresponding triples (F, η,NF )

as in (1.9) are the same for the T-actions on M
0

1,1(Pn−1, d) and M̃0
1,1(Pn−1, d).

These loci and their total contribution to (1.16) are described in Subsection 1.3.
The fixed loci contained in ∂M̃0

1,1(Pn−1, d) and their total contribution to (1.16)
are described in Subsection 1.4 based on [VaZ, Subsection 1.4].8

Many expressions throughout the paper involve residues of rational functions in
a complex variable �. If f =f(�) is a rational function in � and �0∈S2, we denote
by R�=�0f(�) the residue of f(�)d� at �=�0:

R�=�0f(�) =
1

2πi

∮
f(�)d�,

where the integral is taken over a positively oriented loop around �=�0 containing
no other singular points of f . With this definition,

R�=∞f(�) = −Rw=0

{
w−2f(w−1)

}
.

If f involves variables other than �, R�=�0f(�) will be a function of such variables.
If f is a power series in u with coefficients that are rational functions in � and
possibly other variables, denote by R�=�0f(�) the power series in u obtained by
replacing each of the coefficients by its residue at �=�0. If �1, . . . , �k is a collection
of points in S2, let

R�=�1,...,�k
f(�) =

i=k∑
i=1

R�=�i
f.

Finally, we will denote by Z̄+ the set of non-negative integers and by [n], whenever
n∈ Z̄+, the set of positive integers not exceeding n:

Z̄+ ≡
{
0, 1, 2, . . .

}
, [n] =

{
1, 2, . . . , n

}
.

7The connected curve C is nodal and has arithmetic genus 1. Thus, either one of the components
of C is a smooth torus or C contains a circle of one or more spheres (each irreducible component
is a P1 with exactly two nodes). In the first case, CP is the smooth torus; in the second, CP is the
circle of spheres.

8We will not describe M̃0
1,1(P

n−1, d) in this paper, as this is not necessary.
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Figure 1. A decorated graph of type A3 and a decorated graph
of type Ã32

1.3. Contributions from fixed loci, I. As described in detail in [MirSym, Sec-
tion 27.3], the fixed loci of the T-action on Mg,k(Pn−1, d) are indexed by decorated
graphs. A graph consists of a set Ver of vertices and a collection Edg of edges, i.e. of
two-element subsets of Ver.9 In Figure 1, the vertices are represented by dots, while
each edge {v1, v2} is shown as the line segment between v1 and v2. For the purposes
of describing the fixed loci of M0,k(Pn−1, d) and Meff

1,k(Pn−1, d), it is sufficient to
define a decorated graph as a tuple

(1.17) Γ =
(
Ver, Edg; µ, d, η

)
,

where (Ver, Edg) is a graph and

µ : Ver −→ [n], d : Edg −→ Z+, and η : [k] −→ Ver

are maps such that

(1.18) µ(v1) �= µ(v2) if {v1, v2} ∈ Edg.

In Figure 1, the value of the map µ on each vertex is indicated by the number next
to the vertex. Similarly, the value of the map d on each edge is indicated by the
number next to the edge. The only element of the set [k]=[1] is shown in boldface.
It is linked by a line segment to its image under η. By (1.18), no two consecutive
vertex labels are the same.

A graph (Ver, Edg) is a tree if it contains no loops, i.e. the set Edg contains no
subset of the form{

{v1, v2}, {v2, v3}, . . . , {vN , v1}
}
, v1, . . . , vN ∈Ver, N ≥1.

For example, the graphs in Figure 2 are trees, while those in Figure 1 contain one
loop each. Via the construction of the next paragraph, decorated trees describe the
fixed loci of M0,k(Pn−1, d), while decorated graphs with exactly one loop describe
the fixed loci of Meff

1,k(Pn−1, d).
The fixed locus ZΓ of Mg,k(Pn−1, d) corresponding to a decorated graph Γ con-

sists of the stable maps f from a genus g nodal curve Cf with k marked points
into Pn−1 that satisfy the following conditions. The components of Cf on which the
map f is not constant are rational and correspond to the edges of Γ. Furthermore,

9If g=0, Edg can be taken to be a subset of the set Sym2(Ver) of two-element subsets of Ver.
For g≥1, Edg should be viewed as a map from a finite set Dom(Edg) to Sym2(Ver); this map may
not be injective (i.e. there can be multiple edges connecting a pair of vertices). In the latter case,
e∈Edg will mean that e is an element of Dom(Edg); if v∈Ver and e∈Edg, v∈e will mean that v
is an element of the image of e in Sym2(Ver); a map from Edg will mean a map from Dom(Edg).
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if e={v1, v2} is an edge, the restriction of f to the component Cf,e corresponding
to e is a degree d(e) cover of the line

P1
µ(v1),µ(v2) ⊂ Pn−1

passing through the fixed points Pµ(v1) and Pµ(v2). The map f |Cf,e
is ramified only

over Pµ(v1) and Pµ(v2). In particular, f |Cf,e
is unique up to isomorphism. The

remaining, contracted components of Cf are rational and indexed by the vertices
v∈Ver such that

val(v) ≡
∣∣{e∈Edg: v∈e}

∣∣ +
∣∣{i∈ [k] : η(i)=v}

∣∣ ≥ 3.

The map f takes such a component Cf,v to the fixed point Pµ(v). Thus,

ZΓ ≈ MΓ≡
∏

v∈Ver

M0,val(v),

where Mg′,l denotes the moduli space of stable genus g′ curves with l marked
points. For the purposes of this definition, M0,1 and M0,2 are one-point spaces.
For example, in the case of the first diagram in Figure 1,

ZΓ ≈ MΓ≡ M0,5×M2

0,3×M5

0,2×M4

0,1 ≈ M0,5

is a fixed locus10 in Meff
1,1(P

n−1, 19), with n ≥ 4. Since n is fixed throughout the
main computation in the paper, each graph Γ completely determines the ambient
moduli space containing the fixed locus ZΓ; it will be denoted by MΓ.

Suppose Γ is a decorated graph as in (1.17) and has exactly one loop. By (1.4)
and (1.5),

ev∗
1φi

∣∣
ZΓ

=
∏
k �=i

(
αµ(η(1)) − αk

)
= δi,µ(η(1))

∏
k �=i

(αi − αk),

where δi,µ(η(1)) is the Kronecker delta function. Thus, by (1.9), Γ does not con-
tribute to (1.16) unless µ(η(1)) = i, i.e. the marked point of the map is taken to
the point Pi ∈ Pn−1. There are two types of graphs that do (or may) contribute
to (1.16); they will be called Ai- and Ãij-types. In a graph of the Ai-type, the
marked point 1 is attached to some vertex v0∈Ver that lies inside of the loop and
is labeled i. In a graph of the Ãij-type, the marked point 1 is attached to a vertex
that lies outside of the loop and is still labeled i, while the vertex v0 of the loop
which is the closest to the marked point is labeled by some j ∈ [n]. This vertex is
thus mapped to the point Pj ∈ Pn−1. Examples of graphs of the two types, with
i=3 and j=2, are depicted in Figure 1.

Whether a graph Γ is of type Ai or Ãij , it contains a distinguished vertex v0;
it is indicated with a thick dot in Figure 1. If we break Γ at v0, keeping a copy
of v0 on each of the edges of Γ containing v0, and cap off each of the “loose” ends
with a marked point attached to v0, we obtain several decorated trees, which will
be called the strands of Γ. If e−, e+∈Edg are the two edges in the loop in Γ joined
at v0, the strands are naturally indexed by the set

Edg(v0) ≡
{
e∈Edg: v0∈e

}/
e−∼e+

of edges leaving v0, with e− and e+ identified.11 The distinguished strand Γe± with
two marked points arising from the loop of Γ will be denoted by Γ±. There are also

10After dividing by the appropriate automorphism group; see [MirSym, Section 27.3].
11By (1.18), e− �=e+, i.e. there is no edge from a vertex to itself.
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Figure 2. The strands of the second graph in Figure 1

m≥0 strands, Γ1, . . . , Γm, each of which has exactly one marked point. Finally, if
Γ is of type Ãij , there is also a second distinguished strand with two marked points
that contains the marked point 1 of Γ. This strand will be denoted by Γ0. The
strands of the second graph in Figure 1 are shown in Figure 2.

The strands of a one-loop decorated graph Γ correspond to fixed loci of the
T-action on M0,k(Pn−1, d), with k=1, 2 and d∈Z+. Furthermore,

(1.19) ZΓ ≈ M0,val(v0) ×ZΓ;B ≡ M0,val(v0) ×
∏

e∈Edg(v0)

ZΓe
,

up to a quotient by a finite group, where B stands for the bubble components. If

πP , πB : ZΓ −→ M0,val(v0),ZΓ;B and πe : ZΓ;B −→ ZΓe

are the projection maps, then

(1.20) V1|ZΓ ≈ π∗
B

( ⊕
e∈Edg(v0)

π∗
eV ′

0

)
=⇒ e(V1)

∣∣
ZΓ

= π∗
B

( ∏
e∈Edg(v0)

π∗
ee(V ′

0)
)

.

“Most” of the normal bundle of ZΓ in M̃0
1,1(P

n−1, d) and M1,1(Pn−1, d), as de-
scribed in [MirSym, Section 27.4], also comes from the components of ZΓ in the
following sense. The marked points on M0,val(v0) are naturally indexed by the set

Edg(v0) ≡
{
e∈Edg: v0∈e

}
of the edges leaving v0, along with 1 if Γ is of type Ai. For each e∈Edg(v0), let

L′
e −→ M1,|val(v0)| and �e ≡ c1(L′

e) ∈ H2
(
M1,|val(v0)|)

be the universal tangent line bundle at the marked point corresponding to e and
its first chern class, respectively. Analogously, let

Le− , Le+ −→ ZΓ± and Le −→ ZΓe
, e ∈ Edg(v0)−{e−, e+},

be the restrictions to ZΓ± and ZΓe
of the universal tangent line bundles on MΓ±

and MΓv
at the marked points corresponding to the edges leaving v0. Let

ψe = c1(L∗
e)

be the corresponding ψ-classes. The normal bundle of Z̃Γ in M̃0
1,k(Pn−1, d) is then

given by

NZΓ

Tµ(v0)P
n−1

= π∗
B

( ⊕
e∈Edg(v0)

π∗
eNZΓe

)
⊕

⊕
e∈Edg(v0)

π∗
P L′

e⊗π∗
Bπ∗

eLe

π∗
Bπ∗

eTµ(v0)P
n−1

,
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where NZΓe
−→ZΓe

is the normal bundle of ZΓe
in MΓe

. Thus,

(1.21)
e(Tµ(v0)P

n−1)
e(NZΓ)

=
∏

e∈Edg(v0)

1
e(NZΓe

)

∏
e∈Edg(v0)

e(Tµ(v0)P
n−1)

�e−ψe
,

where we omit the pullback maps π∗
P , π∗

B, and π∗
e .

By (1.20) and (1.21),
e(V1)ev∗

1φi|ZΓ

e(NZΓ)
∈ H∗

T
(ZΓ)

splits into factors coming from the strands of Γ after integrating over the first factor
in (1.19). These factors are the contributions of ZΓe

to integrals over MΓe
involving

e(V0) and ψe. We will next describe the total contribution of all graphs of types
Ai and Ãij to (1.16) in terms of such integrals.

For all i, j=1, 2, . . ., let

Z∗
i (�, u) ≡

∞∑
d=1

∫
M0,2(Pn−1,d)

e(V ′
0)

�−ψ1
ev∗

1φi,(1.22)

Z∗
ij(�, u) ≡ �−1

∞∑
d=1

∫
M0,2(Pn−1,d)

e(V ′
0)

�−ψ1
ev∗

1φiev∗
2φj ,(1.23)

Z̃∗
ij(�1, �2, u) ≡ 1

2�1�2

∞∑
d=1

∫
M0,2(Pn−1,d)

e(V ′
0)

(�1−ψ1)(�2−ψ2)
ev∗

1φiev∗
2φj .(1.24)

These generating functions have been explicitly computed; see Subsection 3.2. For
the moment, we simply note that

Z∗
i ,Z∗

ij ∈ Qα(�)[[u]] and Z̃∗
ij ∈ Qα(�1, �2)[[u]].

Thus, the �-residues of these power series are well-defined. So is

(1.25) ηi(u) = R�=0

{
ln

(
1+Z∗

i (�, u)
)}

∈ Qα[[u]],

since the degree-zero term of the power series Z∗
i (�, u) is 0. Let

(1.26) Φ0(αi, u) = R�=0

{
�−1e−ηi(u)/�

(
1+Z∗

i (�, u)
)}

∈ Qα[[u]].

By Lemma 2.3, e−ηi(u)/�
(
1+Z∗

i (�, u)
)

is in fact holomorphic at � = 0 and thus
Φ0(αi, u) is simply the value of this power series at �=0. Note that the degree-zero
term of Φ0(αi, u) is 1.

Remark. The star in Z∗
i , Z∗

ij , and Z̃∗
ij indicates that these power series are obtained

by removing the u-constant term from certain natural power series Zi, Zij , and Z̃ij ;
see [MirSym, Chapter 29] and [Z4, Section 1.1].

Proposition 1.1. (i) The total contribution Ai(u) to (1.16) from all graphs of type
Ai is given by

(1.27) Ai(u) =
1

Φ0(αi, u)
R�1=0

{
R�2=0

{
e−ηi(u)/�1e−ηi(u)/�2Z̃∗

ii(�1, �2, u)
}}

.

(ii) The total contribution Ãij(u) to (1.16) from all graphs of type Ãij is

(1.28) Ãij(u) =
Aj(u)∏

k �=j(αj−αk)
R�=0

{
e−ηj(u)/�Z∗

ji(�, u)
}
.
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It is fairly straightforward to express Ai(u) and Ãij(u) in terms of sums of prod-
ucts of the residues of Z∗

i , Z∗
ij , and Z̃∗

ij at every possible �∈C∗. A straightforward
application of the Residue Theorem on S2 then reduces the resulting expressions
to sums of products of the residues of Z∗

i , Z∗
ij , and Z̃∗

ij at � = 0. However, the
products will have either m+2 or m+3 factors, where m is the number of strands
of Γ with one marked point, and must be summed over all possible m. We are able
to sum over m because e−ηi(u)/�

(
1+Z∗

i (�, u)
)

turns out to be holomorphic at �=0;
see Lemmas 2.2 and 2.3. Proposition 1.1 is proved in Subsection 2.3.

1.4. Contributions from fixed loci, II. In this subsection we describe the con-
tribution to (1.16) from the fixed loci of the T-action on M̃0

1,1(Pn−1, d) that are
contained in ∂M̃0

1,1(Pn−1, d). We begin by reviewing the description of such loci
and their normal bundles given in [VaZ, Subsection 1.4].

A rooted tree is a tree (i.e. a graph with no loops) with a distinguished vertex.
A tuple

(Ver, Edg, v0; Ver+, Ver0)
is a refined rooted tree if (Ver, Edg, v0) is a rooted tree, i.e. v0 is the distinguished
vertex of the tree (Ver, Edg) and Ver+, Ver0 ⊂ Ver−{v0} are such that

Ver+ �= ∅, Ver+∩Ver0 = ∅, {v0, v}∈Edg ∀ v∈Ver+∪Ver0.

Given such a refined rooted tree, we put

Edg+ =
{
{v0, v} : v∈Ver+

}
and Edg0 =

{
{v0, v} : v∈Ver0

}
.

In the first diagram of Figure 3, the distinguished vertex v0 is indicated by the
thick dot. The elements of Edg+ and Edg0 are shown as the thick solid lines and
the thin dashed lines, respectively.

A refined decorated rooted tree is a tuple

(1.29) Γ =
(
Ver, Edg, v0; Ver+, Ver0; µ, d, η

)
,

where (Ver, Edg; v0; Ver+, Ver0) is a refined rooted tree and

µ : Ver−Ver0 −→ [n], d : Edg−Edg0 −→ Z+, and η : [k] −→ Ver

are maps such that
(i) µ(v1)=µ(v2) and d({v0, v1})=d({v0, v2}) for all v1, v2∈Ver+;
(ii) if v1∈Ver+, v2∈Ver−Ver0−Ver+, and {v0, v2}∈Edg, then

(1.30) µ(v1) �= µ(v2) or d({v0, v1}) �=d({v0, v2});
(iii) if {v1, v2}∈Edg and v2 �∈Ver0∪{v0}, then

µ(v2) �=µ(v1) if v1 �∈Ver0 and µ(v2) �=µ(v0) if v1∈Ver0;

(iv) if v1∈Ver0, then {v1, v2}∈Edg for some v2∈Ver−{v0} and val(v1)≥3.
In Figure 3, the value of the map µ on each vertex, not in Ver0, is indicated by
the number next to the vertex. Similarly, the value of the map d on each edge,
not in Edg0, is indicated by the number next to the edge. The elements of the set
[k] = [1] are shown in boldface. Each of them is linked by a line segment to its
image under η. The first condition above implies that all of the thick edges have
the same labels, and so do their vertices, other than the root v0. By the second
condition, the set of thick edges is a maximal set of edges leaving v0 which satisfies
the first condition. By the third condition, no two consecutive vertex labels are the
same. The final condition implies that there are at least two solid lines, at least
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Figure 3. A refined decorated rooted tree and some of its strands

one of which is an edge, leaving from every vertex which is connected to the root
by a dashed line.

Remark. In [VaZ, Subsection 1.4], refined decorated rooted trees are required to sat-
isfy a fifth condition,

∑
e∈Edg+

d(e) ≥ 2. If this condition is not satisfied (i.e. d(e)=1

for the unique element e∈Edg+), the locus Z̃Γ corresponding to Γ via the construc-
tion below will not contribute to (1.16); see also the next remark.

Let Γ be a refined decorated rooted tree as in (1.29). Breaking Γ at v0, we split
Γ into pieces Γ′

e indexed by the set

Edg(v0) ≡
{
e∈Edg: v0∈e

}
of the edges in Γ leaving v0. If e �∈Edg0, we will keep the vertex v0 and the edge e
and cap Γ′

e off with a new marked point attached to v0, just as in Subsection 1.3.
If e = {v0, v} with v ∈ Ver0, we remove v0 and e from Γ′

e, cap it off with a new
marked point attached to v, and assign the µ-value of v0 to v. In either case, we
denote the resulting decorated tree by Γe and call it a strand of Γ; see Figure 3 for
two examples. If v∈Ver+, let

µ(Γ) = µ(v) and d(Γ) = d
(
{v0, v}

)
.

By the requirement (i) on Γ, µ(Γ) and d(Γ) do not depend on the choice of v∈Ver+.
Via the construction of Subsection 1.3, each strand Γe of Γ determines a T-fixed

locus ZΓe
in a moduli space MΓe

of genus 0 stable maps. Let

ZΓ;B =
∏

e∈Edg(v0)

ZΓe
,

where B stands for the “bubble” components. Denote by

πe : ZΓ;B −→ZΓe
and Le −→ ZΓe

the natural projection map and the restriction to ZΓe
of the universal tangent line

bundle on MΓe
for the marked point corresponding to the attachment at v0. Let

LΓ = π∗
eLe −→ ZΓ;B if e∈Edg+, ψΓ = c1

(
L∗

Γ

)
∈ H2(ZΓ;B),

FΓ;B =
⊕

e∈Edg+

π∗
eLe, F c

Γ;B =
⊕

e∈Edg(v0)−Edg+

π∗
eLe, Z̃Γ;B = PFΓ;B.

By the requirement (i) on Γ, LΓ is well defined as a T-equivariant line bundle and

Z̃Γ;B ≈ ZΓ;B × P|Edg+|−1.
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710 ALEKSEY ZINGER

Let
π1, π2 : Z̃Γ;B −→ ZΓ;B, P|Edg+|−1

be the two projection maps. Up to a quotient by a finite group, the fixed locus of
the T-action on M̃0

1,k(Pn, d) corresponding to Γ (or its equivalent for our purposes;
see the next remark) is

(1.31) Z̃Γ ≡ M̃1,|val(v0)|× Z̃Γ;B ≈ M̃1,|val(v0)|×ZΓ;B × P|Ver+|−1,

where M̃1,|val(v0)| is a certain blowup of the moduli space of genus 1 curves with
|val(v0)| marked points constructed in [VaZ, Subsection 2.3].12 The only property
of M̃1,|val(v0)| relevant for the purposes of this paper is (14) below. Denote by

πP , πB : Z̃Γ −→ M̃1,|val(v0)|, Z̃Γ;B

the projection maps.
The normal bundle of Z̃Γ in M

0

1,k(Pn−1, d) (or its equivalent) is given by

(1.32) NZ̃Γ = π∗
B

(
π∗

1NZΓ;B ⊕ π∗
1(L∗

Γ⊗F c
Γ;B)⊗π∗

2γ∗

π∗
1(L∗

Γ⊗Tµ(v0)P
n−1)⊗π∗

2γ∗

)
⊕ π∗

P L⊗π∗
B

(
π∗

1LΓ⊗π∗
2γ

)
,

where γ−→P|Ver+|−1 is the tautological line bundle,

(1.33)
e
(
NZΓ;B

)
e(Tµ(v0)P

n−1)
=

∏
e∈Edg(v0)

π∗
e

(
e
(
NZΓe

)
e(Tµ(v0)P

n−1)

)
∈ H∗

T

(
ZΓ;B

)
, 13

and L −→ M̃1,|val(v0)| is the universal tangent line bundle constructed in [VaZ,
Subsection 2.3]. The only property of this line bundle relevant for our purposes is

(1.34)
∫
M̃1,|val(v0)|

ψ̃ |val(v0)| =
(|val(v0)|−1)!

24
if k=1, 14

where ψ̃=c1(L∗) is the universal ψ-class; see [Z3, Corollary 1.2].
The final piece of localization data we need to recall from [VaZ] is that

(1.35) e(V ′
1)

∣∣
Z̃Γ

= π∗
B

( V ′
Γ;B

π∗
1(L∗

Γ⊗Lµ(v0))⊗π∗
2γ∗

)
,

where

(1.36) V ′
Γ;B =

∏
e∈Edg(v0)

π∗
ee(V ′

0).15

12 The blowups M̃1,(I,J) of M1,N constructed in [VaZ] are indexed by ordered partitions

(I, J) of [N ]. The only cases encountered as components of the fixed loci of M̃0
1,1(P

n−1, d) are

|J |=0, 1. In these two cases, the blowups are the same, as are the universal tangent line bundles L

appearing in the following paragraph.
13The vector bundle NZΓ;B −→ZΓ;B is the normal bundle of ZΓ;B in the moduli space MΓ;B

of |Edg(v0)| tuples of genus-0 stable maps that agree at a distinguished marked point of each
element of the tuple.

14This assumption on k implies that |J |=0, 1; see footnote 12.
15The vector bundle V′

Γ;B is the analogue of the vector bundle V′
0 for the moduli space MΓ;B ;

see footnote 13. It is obtained by pulling L back to the universal curve, then pushing down, and
then taking the kernel of a natural evaluation map.

Licensed to Institute for Advanced Study. Prepared on Fri Mar  1 11:08:15 EST 2013 for download from IP 192.16.204.216.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



THE REDUCED GENUS 1 GW-INVARIANTS 711

2
2

3

23
3

2

1
1

23
2

1

3
3

2
1

3
3 1

1

1

3

1

2
2

3

23
3

2

1
1

23
2

1

3
3

2
1

3
3 1

11
3

1

Figure 4. Refined decorated rooted trees of types B2 and B̃22

Remark. If d(Γ)≥2, the pair (Z̃Γ,NZ̃Γ) described above is precisely the fixed locus
corresponding to Γ and its normal bundle as described in [VaZ, Subsection 1.4]. If
d(Γ)=1, the actual fixed locus corresponding to Γ has P|Ver+|−2 instead of P|Ver+|−1

as the last factor in (1.31) and F c
Γ;B has an extra component of LΓ. Thus, by (1.32),

the expression ∫
Z̃Γ

(e(V1)ev∗
1φi)|ZΓ

e(NZ̃Γ)

as described above agrees with the correct one, as the extra dimension in the last
factor in (1.31) is canceled by the extra factor of c1(γ∗) in the integrand.16

We now consider the refined decorated rooted trees Γ as in (1.29) that contribute
to (1.16). As in Subsection 1.3, Γ does not contribute to (1.16) unless µ(η(1))= i,
i.e. the marked point is mapped to Pi ∈ Pn−1. Similarly to Subsection 1.3, we
group all graphs that contribute to (1.16) into two types: Bi and B̃ij . In the
graphs of type Bi, η(1)=v0, i.e. the marked point 1 lies on the principal contracted
component of the domain of the maps (and is mapped to Pi). In the graphs of
type Bij , η(1) �= v0, i.e. the marked point 1 lies on one of the strands of Γ, while
µ(v0) = j; see Figure 4 for examples. A graph of type Bi has m≥ 1 strands with
one marked point. On the other hand, a graph of type B̃ij has a distinguished
strand with two marked points and m≥0 strands with one marked point. In either
case, the first factor in (1.31) is M̃1,m+1.

By (1.35), (15), and (1.13),

(1.37) e(V1)|Z̃Γ
= nαµ(v0)

∏
e∈Edg(v0)

π∗
ee(V ′

0)
/(

nαµ(v0)+ψΓ+λ
)
,

where λ=c1(γ∗) and we omit the pullback maps π∗
P and π∗

B. By (1.32) and (13),

e(Tµ(v0)P
n−1)

e
(
NZ̃Γ

) = −
e(γ∗⊗L∗

Γ⊗Tµ(v0)P
n−1)

ψΓ+ψ̃+ λ

∏
e∈Edg(v0)

e(Tµ(v0)P
n−1)

e
(
NZΓe

)
×

∏
e∈Edg(v0)−Edg+

1
ψΓ−ψe+λ

.

(1.38)

16If d(Γ) = 1, LΓ is a direct summand in Tµ(v0)P
n−1. The extra factor of c1(γ∗) in the

integrand comes from the direct summand γ∗ of the bundle π∗
1(L∗

Γ⊗Tµ(v0)P
n−1)⊗π∗

2γ∗ in (1.32).

This summand is canceled by the extra summand of LΓ in F c
Γ;B in [VaZ].
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Thus,
e(V1)ev∗

1φi|Z̃Γ

e(NZ̃Γ)
∈ H∗

T
(Z̃Γ)

splits into factors coming from the strands of Γ after integrating over the first
and last factors in (1.31). These factors are the contributions of ZΓe

to integrals
over MΓe

involving e(V0) and ψe.

Proposition 1.2. (i) The total contribution Bi(u) to (1.16) from all graphs of type
Bi is

(1.39) Bi(u) =
nαi

24
R�=0,∞,−nαi

{∏k=n
k=1 (αi−αk+�)
(nαi+�)�3

Z∗
i (�, u)

1+Z∗
i (z, u)

}
.

(ii) The total contribution B̃ij(u) to (1.16) from all graphs of type B̃ij is

(1.40) B̃ij(u) = −nαj

24

R�=0,∞,−nαj

{∏k=n
k=1 (αj−αk+�)

(nαj+�)�2
Z∗

ji(�,u)

1+Z∗
j (z,u)

}
∏

k �=j(αj−αk)
.

The proof of this proposition turns out to be quite a bit simpler than that of
Proposition 1.1. At an early stage in the computation, Lemma 2.4 reduces a sum
of m products of residues to the residue of a product. The resulting products
sum over m to the functions of � appearing in the statement of Proposition 1.2.
The residues of these functions on S2−{0,∞,−nαj} are summed, using the Residue
Theorem on S2, to get Bi(u) and Bij(u). Proposition 1.2 is proved in Subsection 2.3.

2. Localization computations

In Subsection 2.1 we give two equivalent characterizations of a property of power
series in rational functions that reduces infinite summations involving certain prod-
ucts of residues of such power series to simple expressions. In Subsection 2.2, we dig
deeper into Givental’s proof of (0.4) to show that a certain generating function for
genus 0 GW-invariants satisfies this property. We use these observations to prove
Proposition 1.1 in Subsection 2.3, along with Proposition 1.2.

2.1. Regularizable power series in rational functions.

Definition 2.1. A power series Z∗ =Z∗(�, u)∈Qα(�)[[u]] is regularizable at � =0
if there exist power series

η=η(u) ∈ Qα[[u]] and Z̄∗=Z̄∗(�, u) ∈ Qα(�)[[u]]

with no degree-zero term such that Z̄∗ is regular at �=0 and

(2.1) 1 + Z∗(�, u) = eη(u)/�
(
1 + Z̄∗(�, u)

)
.

If Z∗ is regularizable at � = 0, Z∗ has no degree-zero term and the regularizing
pair (η, Z̄∗) is unique. It is determined by

(2.2) η(u) = R�=0

{
ln

(
1+Z∗(�, u)

)}
.

The logarithm above is a well-defined power series in u, since Z∗(�, u) has no
degree-zero term.
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Lemma 2.2. Suppose Z∗=Z∗(�, u)∈Qα(�)[[u]] has no degree-zero term.
(i) The power series Z∗ is regularizable at �=0 if and only if for every a≥0

∞∑
m=2

1
m(m−1)

∑
l=m∑
l=1

al=m−2−a

al≥0

(
l=m∏
l=1

(−1)al

al!
R�=0

{
�−alZ∗(�, u)

})

= a! R�=0

{
�a+1Z∗(�, u)

}
.

(2.3)

(ii) If (η, Z̄∗) is the regularizing pair for Z∗ at �=0, then for every a≥0

(2.4)
∞∑

m=0

∑
l=m∑
l=1

al=m−a

al≥0

(
l=m∏
l=1

(−1)al

al!
R�=0

{
�−alZ∗(�, u)

})
=

η(u)a

1 + Z̄∗(0, u)
.

Note that the sums on the left-hand sides of (2.3) and (2.4) are finite in each
u-degree, since Z∗ has no degree-zero term.

Suppose (η, Z̄∗) is the regularizing pair for Z∗ at �=0. Let

(2.5) Z̄∗(�, u) =
∞∑

q=0

Cq(u)�q

be the Taylor series expansion for Z̄∗(�, u) at �=0. If a∈Z, then

(2.6) R�=0

{
�aZ∗(�, u)

}
=

∑
p−q=1+a

p,q≥0

η(u)p

p!
Cq(u) +

{
η(u)a+1

(a+1)! , if a≥0;

0, otherwise.

The identities (2.3) and (2.4) follow from (2.6) by a fairly direct computation; see
Appendix A.

It remains to show that if Z∗ satisfies (2.3) for all a ≥ 0, then Z∗ admits a
regularization. Since Z∗∈Qα(�)[[u]], we can expand Z∗ at �=0 as

Z∗(�, u) =
∞∑

d=1

∞∑
q=−Nd

C̃q;d�qud ≡
∑
q∈Z

C̃q(u)�q,

where
C̃q(u) = R�=0

{
�−q−1Z∗(�, u)

}
.

Claim. There exists η∈Qα[[u]] such that

R�=0Z̄∗(�, u) = 0, where 1 + Z∗(�, u) = eη(u)/�
(
1 + Z̄∗(�, u)

)
.

Since Z̄∗∈Qα(�)[[u]], we can expand Z̄∗ at �=0 as

Z̄∗(�, u) =
∞∑

d=1

∞∑
q=−N̄d

Cq;d�qud ≡
∑
q∈Z

Cq(u)�q,

where
Cq(u) = R�=0

{
�−q−1Z̄∗(�, u)

}
.
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714 ALEKSEY ZINGER

By assumption on η, C−1(u)=0. Let

Ȳ∗(�, u) =
∞∑

q=0

Cq(u)�q ∈ Qα(�)[[u]], 1 + Y∗(�, u) = eη(u)/�
(
1 + Ȳ∗(�, u)

)
.

Since C−1(u)=0,

(2.7) R�=0

{
�−aY∗(�, u)

}
= R�=0

{
�−aZ∗(�, u)

}
∀ a≥0.

Since Ȳ∗ is holomorphic at �=0, Y∗ satisfies (2.3), with Z∗ replaced by Y∗. Thus,
for all a≥0

a! R�=0

{
�a+1Y∗(�, u)

}
=

∞∑
m=2

1
m(m−1)

∑
l=m∑
l=1

al=m−2−a

al≥0

(
l=m∏
l=1

(−1)al

al!
R�=0

{
�−alY∗(�, u)

})

=
∞∑

m=2

1
m(m−1)

∑
l=m∑
l=1

al=m−2−a

al≥0

(
l=m∏
l=1

(−1)al

al!
R�=0

{
�−alZ∗(�, u)

})

= a! R�=0

{
�a+1Z∗(�, u)

}
= a!C̃−a−2.

Along with (2.7), this implies that Z∗=Y∗. Thus, Z̄∗= Ȳ∗ is holomorphic at �=0.

Proof of the Claim. The required property of η is equivalent to

η =
∞∑

q=0

(−η)q

q!
C̃q−1.

Since C̃q∈Qα[[u]] has no degree-zero term, this equation has a unique power-series
solution η∈Qα[[u]] with no degree-zero term.17 �

Remark. The identity (2.4) is valid as long as the residue of Z̄∗ at � vanishes,
but Z̄∗ is not necessarily holomorphic at � = 0. In such a case, Z̄∗(0, u) must be
replaced by R�=0

{
�−1Z̄∗(�, u)

}
on the right-hand side of (2.4). By the proof of

the claim, this residue is completely determined by Z∗. The assumption that Z∗

is regularizable at �=0 allows us to compute the sum in (2.4) explicitly.

2.2. Regularizability of GW generating functions.

Lemma 2.3. The power series Z∗
i = Z∗

i (�, u) ∈ Qα(�)[[u]] defined in (1.22) is
regularizable at �=0.

Proof. We will verify that Z∗≡ Z∗
i satisfies (2.3) for all a≥0. By the string relation

(see [MirSym, Section 26.3]),

(2.8) Z ′∗
i (�, u) ≡

∫
M0,1(Pn−1,d)

e(V ′
0)

�−ψ1
ev∗

1φi = �Z∗
i (�, u).

17Take η0 = C̃−1, ηp =
∑p

q=0
(−ηp−1)q

q!
C̃q−1 for p ≥ 1. The sequence η0, η1, . . . ∈ Qα[[u]]

converges, since it is constant in degree d after the d-th term.
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Figure 5. A decorated tree contributing to Qi(�, u), with i = 2,
and its strands

By the same argument as in the proof of [MirSym, Lemma 30.11],

Z ′∗
i (�, u) = Qi(�, u) +

∞∑
d=1

∑
j �=i

1
� − αj−αi

d

R
�=

αj−αi
d

{
Z ′∗

i (�, u)
}

(2.9)

for some Qi ∈ Qα[�, �−1]
[[

u
]]

.18

The middle term in (2.9) is the sum of contributions to Z ′∗
i (�, u) from the graphs

Γ with one marked point such that the marked point is attached to a vertex v0 of
valence at least 3. Similarly to Subsections 1.3 and 1.4, the vertex v0 of Γ must
then be labeled i. An example of such a graph is shown in Figure 5. �

Let Γ be a decorated tree with one marked point as in (1.17) that contributes to
Qi(�, u), i.e.

k = 1, µ(v0) = i, val(v0) ≥ 3, where v0 = η(1).

As in Subsections 1.3 and 1.4, we break Γ into strands Γv indexed by the set

Edg(v0) =
{
e∈Edg: v0∈e

}
of the edges leaving from v0. In this case, there are

m ≡
∣∣Edg(v0)

∣∣ ≥ 2

strands, each with exactly one marked point.
The fixed locus ZΓ corresponding to Γ, the restriction of e(V ′

0) to ZΓ, and the
euler class of the normal bundle of ZΓ are given by

ZΓ = M0,|val(v0)| ×
∏

e∈Edg(v0)

ZΓe
, e(V ′

0) =
∏

e∈Edg(v0)

π∗
ee(V ′

0),

e(Tµ(v0)P
n−1)

e(NZΓ)
=

∏
e∈Edg(v0)

(
e(Tµ(v0)P

n−1)
e(NZΓe

) (�e−π∗
eψ1)

)
,

(2.10)

where �e ≡ c1(L′
e) ∈ H∗(M0,|val(v0)|) is the first chern class of the universal tan-

gent line bundle for the marked point corresponding to the edge e. By [MirSym,
Section 27.2], if e={v0, ve}, then

(2.11) ψ1|ZΓe
=

αµ(ve)−αµ(v0)

d(e)
=

αµ(ve)−αi

d(e)
.

18The statement of [MirSym, Lemma 30.11] is made for a renormalized version of the power
series Z∗

i (�, u) and is in fact sharper.
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716 ALEKSEY ZINGER

Thus, by (2.10) and (1.8),∫
ZΓ

e(V ′
0)ev

∗
1φi

(�−ψ1)e(NZΓ)
=

∞∑
a=0

�−(a+1)(−1)m
∑
ae≥0

e∈Edg(v0)

{∫
M0,|val(v0)|

ψa
1

∏
e∈Edg(v0)

�ae
e

×
∏

e∈Edg(v0)

((
αµ(ve)−αi

d(e)

)−(ae+1)∫
ZΓe

e(V ′
0)ev

∗
1φi

e(NZΓe
)

)}

=
∑

a+
∑

e∈Edg(v0)
ae=m−2

ae≥0

(
m−2

a, (ae)e∈Edg(v0)

)
(−1)a�−(a+1)

×
∏

e∈Edg(v0)

((
αµ(ve)−αi

d(e)

)−(ae+1)∫
ZΓe

e(V ′
0)ev

∗
1φi

e(NZΓe
)

)
.

(2.12)

The first equality holds after dividing the expressions on the right-hand side by the
order of the appropriate groups of symmetries; see [MirSym, Section 27.3]. This
group is taken into account in the next paragraph.

We now sum up (2.12) over all possibilities for Γ. By (2.9) and its proof, for
every j∈ [n]−i and d∈Z+,

∑
Γe

µ(ve)=j,d(e)=d

(
αj−αi

d

)−(ae+1)∫
ZΓe

e(V ′
0)ev∗

1φi

e(NZΓe
)

= R
�=

αj−αi
d

{
�−(ae+1)Z ′∗

i (�, u)
}

= R
�=

αj−αi
d

{
�−aeZ∗

i (�, u)
}
.19

(2.13)

Since �−aeZ∗
i (�, u) has no residue at �=∞ by Lemma 3.4,

∑
Γe

(
αj−αi

d

)−(ae+1)∫
ZΓe

e(V ′
0)ev

∗
1φi

e(NZΓe
)

=
∞∑

d=1

∑
j �=i

R
�=

αj−αi
d

{
�−aeZ∗

i (�, u)
}

= −R�=0

{
�−aeZ∗

i (�, u)
}(2.14)

by (2.13), the Residue Theorem on S2, and Lemma 3.4. By (2.12) and (2.14),

∑
Γ

|Edg(v0)|=m

∫
ZΓ

e(V ′
0)ev∗

1φi

e(NZΓ)
=

∞∑
a=0

{
�−(a+1)(−1)m−a

∑
∑

e∈Edg(v0)
ae=m−2−a

ae≥0

{
(2.15)

(
m−2

a, (ae)e∈Edg(v0)

) ∏
e∈Edg(v0)

R�=0

{
�−aeZ∗

i (�, u)
}}}

.

19The proof is the same as the proof of (3.21) in [MirSym, Chapter 30]. If a graph Γ contributes

a factor of �−(αj−αi)/d to the denominator of Z′∗
i (or of �−(ae+1)Z′∗

i ), then the marked point 1
is attached to a vertex of Γ of valence 2. Furthermore, if e is the unique element of Edg(v0), then
µ(ve)= j and d(e)=d; see [MirSym, Section 30.1] for more details. The second equality in (2.13)
is immediate from (2.8).
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THE REDUCED GENUS 1 GW-INVARIANTS 717

Taking into account the group of symmetries, i.e. Sm in the case of (2.15), and
summing up over all possible values of |Edg(v0)|, i.e. m≥2, we obtain

Qi(�, u) =
∞∑

a=0

�−(a+1)

a!

∞∑
m=2

{
1

m(m−1)

∑
l=m∑
l=1

al=m−2−a

al≥0

{

l=m∏
l=1

(−1)al

al!
R�=0

{
�−alZ∗

i (�, u)
}}}

.

(2.16)

On the other hand, by the Residue Theorem on S2, Lemma 3.4, and (2.8),

∞∑
d=1

∑
j �=i

1
� − αj−αi

d

R
�=

αj−αi
d

{
Z ′∗

i (�, u)
}

=
∞∑

d=1

∑
j �=i

R
z=

αj−αi
d

{ 1
�−z

Z ′∗
i (z, u)

}
= −Rz=�,0

{ 1
�−z

Z ′∗
i (z, u)

}
= Z ′∗

i (�, u) −
∞∑

a=0

�−(a+1)
Rz=0

{
zaZ ′∗

i (z, u)
}

= Z ′∗
i (�, u) −

∞∑
a=0

�−(a+1)
R�=0

{
�a+1Z∗

i (�, u)
}
.

Comparing with (2.9), we conclude that

(2.17) Qi(�, u) =
∞∑

a=0

�−(a+1)
R�=0

{
�a+1Z∗

i (�, u)
}
.

By (2.16) and (2.17), Z∗
i satisfies (2.3) for all a≥0.

2.3. Proofs of Propositions 1.1 and 1.2. In this subsection we prove Proposi-
tions 1.1 and 1.2. An argument nearly identical to part of the proof of Lemma 2.2
leads to a long expression like (2.12). In the proof of the first proposition, the
Residue Theorem on S2 reduces it to the form (2.15). We then use the second
statement of Lemma 2.2 to deal with the infinite summation. The situation in
Proposition 1.2 is a bit different, as the possible strands Γe of Γ are not mutually
independent due to the requirements (i) and (ii) on Γ in Subsection 1.4. In this
case, we will use Lemma 2.4 to reduce a product of residues to the residue of a prod-
uct; the resulting products are readily summable. The Residue Theorem on S2 is
used at the last step. As the proof of Lemma 2.4 is completely straightforward, we
relegate it to Appendix A.

If f =f(λ) is holomorphic at λ=0 and m≥0, let

Dm
λ f =

1
m!

dm

dλm
f(λ)

∣∣∣
λ=0

.
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718 ALEKSEY ZINGER

Lemma 2.4. If (fe = fe(λ))e∈E is a finite collection of functions with at most a
simple pole at λ=0, then

Rλ=0

{ ∏
e∈E

fe(λ)
}

=
∑

E+⊂E

{ ∏
e∈E+

Rλ=0

{
fe(λ)

}
· D|E+|−1

λ

( ∏
e�∈E+

(
fe(λ)−λ−1

Rλ=0

{
fe(λ)

}))}
.

In the case of (i) of Proposition 1.1, equations (1.20) and (1.21) describe the
splitting of the integrand corresponding to each fixed locus ZΓ in the sense of (1.9)
between the strands of Γ. Summing over all possible strands as in Subsection 2.2,
we find that Ai(u) is given by

∞∑
m=0

∑
a−+a++

l=m∑
l=1

al=m

a±,al≥0

{
(−1)a−+a+

a−!a+!
R�1=0R�2=0

{
�
−a−
1 �

−a+
2 Z̃∗

ii(�1, �2, u)
}

×
l=m∏
l=1

(−1)al

al!
R�=0

{
�−alZ∗

i (�, u)
}}

.

(2.18)

This is the analogue of (2.16). In this case, we use Lemma 3.6, in addition to
Lemma 3.4 and the Residue Theorem on S2, to obtain (2.18) from the analogue
of (2.12) for Ai(u). The sum is taken over every possible number m of strands
with one marked point. The ends of the distinguished strand Γ± are ordered,
accounting for the factor of 1/2 in (1.24). By Lemma 2.3, Z∗

i is regularizable at
� = 0. Therefore, (ii) of Lemma 2.2 reduces the right-hand side of (2.18) to the
right-hand side of (1.27).

In the case of (ii) of Proposition 1.1, the analogue of (2.18) is easily seen to be

Ãij(u) =
1∏

k �=j

(αj−αk)

×
∞∑

m=0

∑
a−+a++a0+

l=m∑
l=1

al=m

a0,a±,al≥0

{
(−1)a−+a+

a−!a+!
R�1=0R�2=0

{
�
−a−
1 �

−a+
2 Z̃∗

jj(�1, �2, u)
}

× (−1)a0

a0!
R�=0

{
�−a0Z∗

ji(�, u)
}
·

l=m∏
l=1

(−1)al

al!
R�=0

{
�−alZ∗

j (�, u)
}}

.

In this case, Lemma 3.5 is used in addition to Lemmas 3.4 and 3.6 and the Residue
Theorem on S2. Lemmas 2.2 and 2.3 reduce the right-hand side of the above
expression to the right-hand side of (1.28).

In the case of (i) of Proposition 1.2, (1.37) and (1.38) describe the splitting of
the integrand for the fixed locus Z̃Γ between the strands of Γ. Let

Edg− = Edg(v0) − Edg+, m+ =
∣∣Edg+|, Ψ(�, ψ̃) = −

∏
k �=i(αi−αk+�)

(nαi+�)(�+ψ̃)
.
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The analogue of (2.12) is then

∫
Z̃Γ

e(V ′
1)ev∗

1φi

e(NZ̃Γ)
=

∫
M̃1,|val(v0)|×P

m+−1

{
Ψ(�, ψ̃)

∏
e∈Edg+

( ∫
ZΓe

e(V ′
0)ev∗

1φi

e
(
NZΓe

) )

×
∏

e∈Edg−

( ∫
ZΓe

e(V ′
0)ev∗

1φi

(�−ψe)e
(
NZΓe

))}
�=ψΓ+λ

.

(2.19)

We now sum (2.19) over all possibilities for Γe with e∈Edg−. In contrast to the
three cases encountered above, Γe can be any graph with one marked point such
that µ(1)= i, as long as the edge leaving the vertex µ(1) is not labeled d(Γ) or its
other end is not labeled µ(Γ). This restriction is due to (1.30). By (1.9) applied to
the function Z ′∗

i (�, u) defined in (2.8), the sum over such graphs Γe is

∑
Γe

(µ(ve),d(e))�=(µ(Γ),d(Γ))

∫
ZΓe

e(V ′
0)ev

∗
1φi

(�−ψe)e
(
NZΓe

)
= Z ′∗

i (�, u) −
∑
Γe

(µ(ve),d(e))=(µ(Γ),d(Γ))

∫
ZΓe

e(V ′
0)ev∗

1φi

(�−ψe)e
(
NZΓe

)
= Z ′∗

i (�, u) − 1
�−ψΓ

Rz=ψΓ

{
Z ′∗

i (z, u)
}
,

(2.20)

since ψΓ = (αµ(Γ)−αi)/d(Γ). The last equality uses (3.21) and (2.8). On the
other hand, summing over all possibilities for Γe with e∈Edg+, without changing
(µ(Γ), d(Γ)), we obtain

∑
Γe

(µ(ve),d(e))=(µ(Γ),d(Γ))

∫
ZΓe

e(V ′
0)ev

∗
1φi

e
(
NZΓe

) = Rz=ψΓ

{
Z ′∗

i (z, u)
}
,(2.21)

also by (3.21) and (2.8).
By (2.20) and (2.21), the sum of the terms in (2.19) with Edg(v0), Edg+, and

(µ(Γ), d(Γ)) fixed is

∫
M̃1,|val(v0)|×P

m+−1

{ ∏
e∈Edg+

(
Rz=ψΓ

{
Z ′∗

i (z, u)
})

Ψ(�, ψ̃)

×
∏

e∈Edg−

(
Z ′∗

i (�, u) − 1
�−ψΓ

Rz=ψΓ

{
Z ′∗

i (z, u)
})}

�=ψΓ+λ

=
∫
M̃1,|val(v0)|

{ ∏
e∈Edg+

(
Rz=ψΓ

{
Z ′∗

i (z, u)
})

×Dm+−1
λ

(
Ψ(ψΓ+λ, ψ̃)

∏
e∈Edg−

(
Z ′∗

i (ψΓ+λ, u) − λ−1
Rz=ψΓ

{
Z ′∗

i (z, u)
}))}

.

(2.22)
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By the last expression in (2.22) and Lemmas 2.4 and 3.4, the sum of the terms
in (2.19) with only m≡|Edg(v0)| and (µ(Γ), d(Γ)) fixed is∫

M̃1,|val(v0)|

Rz=ψΓ

(
Ψ(z, ψ̃)

∏
e∈Edg(v0)

Z ′∗
i (z, u)

)

=
(−1)mm!

24
R

z=
αµ(Γ)−αi

d(Γ)

{
z−(m+2)

∏
k �=i(αi−αk+z)

(nαi+z)
Z ′∗

i (z, u)m

}
=

(−1)mm!
24

R
z=

αµ(Γ)−αi
d(Γ)

{∏
k �=i(αi−αk+z)
(nαi+z)z2

Z∗
i (z, u)m

}
.

(2.23)

The first equality above follows from (14), while the second one follows from (2.8).
Finally, taking into account (1.13) and the group of symmetries, i.e. Sm, and

summing (2.23) over all possible numbers of one-pointed strands, i.e. m≥1, and all
possible values of (µ(Γ), d(Γ)), we obtain

Bi(u) =
nαi

24

∑
j �=i

∞∑
d=1

∞∑
m=1

(−1)m
R

�=
αj−αi

d

{∏
k �=i(αi−αk+�)
(nαi+�)�2

Z∗
i (�, u)m

}

= −nαi

24

∑
j �=i

∞∑
d=1

R
�=

αj−αi
d

{∏k=n
k=1 (αi−αk+�)
(nαi+�)�3

Z∗
i (�, u)

1+Z∗
i (�, u)

}
.

(2.24)

The first claim of Proposition 1.2 now follows from the Residue Theorem on S2 and
Lemma 3.4.

The proof of (ii) of Proposition 1.2 is nearly identical. In the starting equa-
tion (2.19), i is replaced by j and the entire expression is divided by

∏
k �=j(αj−αk).

One of the strands now has two marked points, and there are m≥0 other strands.
The two-pointed strand can appear as an element of Edg+ as well as of Edg− and
contributes to Z∗

ji(�, u) instead of Z∗
j (�, u). The number |val(v0)| is still m+1.

Therefore, (2.24) becomes

B̃ij(u) =
1∏

k �=j

(αj−αk)
nαj

24

×
∑
l �=j

∞∑
d=1

∞∑
m=0

{
(−1)m

R
�=

αl−αj
d

{∏
k �=j(αj−αk+�)

(nαj+�)�
Z∗

j (�, u)mZ∗
ji(�, u)

}}

=
1∏

k �=j

(αj−αk)
nαj

24

∑
l �=j

∞∑
d=1

R
�=

αl−αj
d

{∏k=n
k=1 (αj−αk+�)
(nαj +�)�2

Z∗
ji(�, u)

1+Z∗
j (�, u)

}
.

The second claim of Proposition 1.2 now follows from the Residue Theorem, along
with Lemmas 3.4 and 3.5.

Remark. In (i) and (ii) of Proposition 1.1, |val(v0)|=m+3, where m is the number of
one-pointed strands. Of the extra 3, 2 comes from the distinguished strand Γ±. The
remaining 1 comes from the marked point 1 that lies on the contracted component
Cf,v0 corresponding to the vertex v0 in (i) and from the second distinguished strand
Γ0 in (ii). In (i) and (ii) of Proposition 1.2, |val(v0)|=m+1, where m is again the
number of one-pointed strands. The extra 1 comes from the marked point 1 that
lies on Cf,v0 in (i) and from the two-pointed strand in (ii).
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THE REDUCED GENUS 1 GW-INVARIANTS 721

3. Algebraic computations

In this section we use Lemmas 3.3-3.6 to deduce the main theorem of this paper,
Theorem 3 below, from Propositions 1.1, 1.2, 3.1, and 3.2. Theorem 3 expresses
the contribution from each of the two types of T-fixed loci in M̃0

1,1(Pn−1, d) to the
generating function F0(u) for the reduced genus 1 GW-invariants of a degree n
hypersurface in Pn−1 in terms of hypergeometric series. Along with (1.15), it im-
mediately implies Theorem 2. Propositions 3.1 and 3.2 describe the structure of
the function R = R(w, t) defined in (2.6) at w = 0 and w = ∞, respectively; they
are proved in [ZaZ]. Lemma 3.3 serves as a tool for extracting the non-equivariant
part of an equivariant cohomology class, while Lemmas 3.4-3.6 recall the relevant
information about genus 0 generating functions. With R as in (0.15), let

(3.1) µ(et) ≡ R�=0

{
ln R(�−1, t)

}
− t.

Theorem 3. The generating function F0(u) defined in (1.14) is given by

F0(eT ) =
d

dT

(
Ã(et) + B̃(et)

)
,

where T and t are related by the mirror map (0.17), and

Ã(et) =
1
2

(
(n−2)(n+1)

24
µ(et) − (n−2)(3n−5)

24
ln

(
1−nnet

)
−

n−3∑
p=0

(
n−1−p

2

)
ln Ip,p(t)

)

=
(n−2)(n+1)

48
µ(et)

−
{

n+1
48 ln

(
1−nnet

)
+

∑(n−3)/2
p=0

(n−1−2p)2

8 ln Ip,p(t), if 2 � |n,
n−2
48 ln

(
1−nnet

)
+

∑(n−4)/2
p=0

(n−2p)(n−2−2p)
8 ln Ip,p(t), if 2|n,

(3.2)

and

B̃(et) =
(

(n−2)(n+1)
48

+
1 − (1−n)n

24n2

)
(T−t) − (n−2)(n+1)

48
µ(et)

+
1
24

ln
(
1 − nnet

)
+

n2−1 + (1−n)n

24n
ln I0,0(t)

+
n

24

n−2∑
p=2

(
Dn−2−p

w

(1+w)n

(1+nw)

)(
Dp

w ln R̄(w, t)
)(3.3)

are T -integrals of the contributions of the effective fixed loci of Subsection 1.3 and
of the boundary fixed loci of Subsection 1.4, respectively.

The next two propositions, which are proved in [ZaZ], are used in the proof of
Theorem 3 in Subsection 3.3.

Proposition 3.1. (i) There exist Ĩp,r ∈Q[[et]] for p, r ∈ Z̄+ with r≥p such that

Ip,q(t) =
r=q∑
r=p

tq−r

(q−r)!
Ĩp,r(t) ∀ p, q∈ Z̄+ with q≥p

and the constant term of Ĩp,r is 1 for r=p and is 0 for r>p.
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722 ALEKSEY ZINGER

(ii) The power series Ip,p in et with p=0, 1, . . . , n−1 satisfy

I0,0(t)I1,1(t) . . . In−1,n−1(t)
(
1−nnet

)
= 1,(3.4)

I0,0(t)n−1I1,1(t)n−2 . . . In−1,n−1(t)0
(
1−nnet

)(n−1)/2 = 1,(3.5)

Ip,p(t) = In−1−p,n−1−p(t) ∀ p=0, 1, . . . , n−1.(3.6)

Proposition 3.2. For all n∈Z+,

(3.7) µ(et) =
∫ et

0

(1−nnu)−1/n − 1
u

du ∈ et · Q[[et]].

The coefficients of the power series

(3.8) Q(�, et) ≡ e−(t+µ(et))/�R(�−1, t) ∈ Q(�)[[et]]

are holomorphic at �=0. Furthermore,

Φ0(et) ≡ Q(0, et) =
(
1−nnet

)−1/n;(3.9)

Φ1(et) ≡ d

d�
Q(�, et)

∣∣∣
�=0

=
(n−2)(n+1)

24n

((
1−nnet

)−1/n −
(
1−nnet

)−1
)
.(3.10)

Any one of the identities in (3.4)-(3.6) is implied by the others. We state them all
for convenience. A simple algorithm for determining all coefficients of the expansion
of Q at �=0 is provided by [ZaZ, Theorem 1.5]; these may be needed for computing
higher-genus GW-invariants of projective CY-hypersurfaces.

3.1. Linear independence in symmetric rational functions. In this subsec-
tion we prove a lemma showing that most terms appearing in our computation of
F(α, x, u) can be ignored if our only aim is to determine F0(u).

For each p∈ [n], let σp be the p-th elementary symmetric polynomial in α1, . . . , αn.
Denote by

Q[α]Sn ≡ Q[α1, . . . , αn]Sn ⊂ Q[α1, . . . , αn]

the subspace of symmetric polynomials, by

I ⊂ Q[α]Sn

the ideal generated by σ1, . . . , σn−1, and by

Q̃[α]Sn ≡ Q[α1, . . . , αn]Sn

〈αj ,(αj−αk)|j �=k〉 ⊂ Qα

the subalgebra of symmetric rational functions in α1, . . . , αn whose denominators
are products of αj and (αj−αk) with j �=k. For each i=1, . . . , n, let

Q̃i[α]Sn−1 ≡ Q[α1, . . . , αn]Sn−1

〈αi,(αi−αk)|k �=i〉 ⊂ Qα

be the subalgebra consisting of rational functions symmetric in {αk : k �= i} and
with denominators that are products of αi and (αi−αk) with k �= i. Let

(3.11) Ki ≡ Span
{
I · Q̃i[α]Sn−1 , {1, αi, . . . , α

n−3
i , αn−1

i } · Q̃[α]Sn
}

be the linear span (over Q) of I·Q̃i[α]Sn−1 and αp
i ·Q̃[α]Sn with p=0, 1, . . . , n−3, n−1.

If f, g∈Qα, we will write

(3.12) f ∼=i g if f − g ∈ Ki.
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THE REDUCED GENUS 1 GW-INVARIANTS 723

Lemma 3.3. (i) The ideal I does not contain the product of any powers of σn and

D ≡
∏
j �=k

(αj−αk).

(ii) If n≥2, the linear span of αn−2
i is disjoint from Ki:

Span
{
αn−2

i

}
∩ Ki = {0} ⊂ Qα.

Proof. (i) Suppose m∈ Z̄+. If α1, . . . , αn are the n distinct roots of the polynomial
xn−1, then

σ1(α1, . . . , αn), . . . , σn−1(α1, . . . , αn) = 0, σn(α1, . . . , αn)mD(α1, . . . , αn)m �= 0.

Thus, σm
n Dm �∈I.

(ii) Every polynomial in α1, . . . , αn which is symmetric in {αk : k �= i} can be
written as a polynomial in αi with coefficients in Q[α]Sn . Thus, suppose

αn−1
i =

∑r=N
r=0 αr

i fr

αm
i

∏
k �=i(αi−αk)m

+

∑n−2
p=0 αp

i gp + αn
i gn

σm
n

∏
j �=k(αj−αk)m

,(3.13)

where m∈ Z̄+, N = n(m+1)−2, fr ∈ I, gp∈Q[α]Sn .

Multiplying out the denominators, we obtain

αn−1
i σm

n Dm =
r=Ñ∑
r=0

αr
i Fr +

n−2∑
p=0

αp
i gp + αn

i gn, where Ñ = n(mn+1)−2, Fr ∈ I.

It follows that
i=n∑
i=1

Rx=αi

{
xn−1∏k=n

k=1 (x−αk)
σm

n Dm

}

=
i=n∑
i=1

Rx=αi

{
1∏k=n

k=1 (x−αk)

( r=Ñ∑
r=0

xpFr +
n−2∑
p=0

xpgp + xngn

)}
.

(3.14)

By the Residue Theorem on S2, both sides of (3.14) are equal to the negative of
the residues of the corresponding one-forms at x=∞. Thus,

(3.15) 1 · σm
n Dm =

r=Ñ∑
r=n−1

F̃r + σ1gn, where F̃r ∈ I.

Note that F̃r∈I because Fr∈I. Thus, (3.15) contradicts the first statement of the
lemma, and (3.13) cannot hold. �

Remark. The proof of (ii) of Lemma 3.3 shows that its statement remains valid if
n−2 is replaced by any p=0, 1, . . . , n−1, in the definition of Ki and in the statement
of (ii).

3.2. The genus 0 generating functions. By Subsections 1.2-1.4, the generating
function F(α, αi, u) for the reduced genus 1 GW-invariants of a degree n hypersur-
face in Pn−1 is given by

(3.16) F(α, αi, u) = Ai(u) +
j=n∑
j=1

Ãij(u) + Bi(u) +
j=n∑
j=1

B̃ij(u);
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724 ALEKSEY ZINGER

see (1.16) for the definition of F(α, αi, u). Propositions 1.1 and 1.2 express the
four terms on the right-hand side of (3.16) in terms of the generating functions
for genus 0 GW-invariants defined in (1.22)-(1.24). These functions have been
previously computed in terms of hypergeometric series. We describe them in this
subsection. For the rest of Section 3, we assume that n≥2.

Let

(3.17) Y(�, x, et) =
1

I0,0(t)

∞∑
d=0

edt

∏r=nd
r=1 (nx+r�)∏r=d

r=1

( ∏k=n
k=1 (x−αk+r�) −

∏k=n
k=1 (x−αk)

) .

If p∈ Z̄+, let

(3.18) Yp(�, x, et) = e−xt/�

{
�

Ip,p(t)
d

dt

}
. . .

{
�

I1,1(t)
d

dt

}(
ext/�Y(�, x, et)

)
.

In particular,

(3.19) Y0(�, x, et) = Y(�, x, et), Y1(�, x, et) =
{

x
dt

dT
+ �

d

dT

}
Y(�, x, et),

if T and t are related by the mirror transformation (0.17). Let

Ỹ(�1, �2, x, et) = x
∑

p+q=n−2
p,q≥0

Yp(�1, x, et)Yq(�2, x, et)

+ x−(n−1)Yn−1(�1, x, et)Yn−1(�2, x, et).

(3.20)

Lemma 3.4. The power series Z∗
i (�, u) is rational in �∈S2 and vanishes to second

order at � =∞. It has simple poles at � = (αj−αi)/d, with j �= i and d∈Z+, and
another pole at �=0. Furthermore,

(3.21) R�=(αj−αi)/d

{
Z∗

i (�, u)
}

=
∑
Γ

∫
ZΓ

e(V ′
0)ev

∗
1φi

e
(
NZΓ

) ,

where the sum is taken over the two-pointed trees Γ as in (1.17) such that the marked
point 1 is attached to a vertex v0 = η(1) of valence 2, µ(v0) = i, µ(v) = j for the
unique vertex v adjacent to v0, and d({v0, v}) = d. Finally, for all z = 0,∞,−nαi

and a∈Z,

R�=z

{ �a

nαi+�

(
1+Z∗

i (�, eT ) − e(t−T )αi/�Y(�, αi, e
t)

)}
∈

(
I · Q̃i[α]Sn−1

)[[
et

]]
.

(3.22)

Lemma 3.5. The power series �Z∗
ji(�, u) is rational in � ∈ S2 and vanishes at

� =∞. It has simple poles at � = (αl−αj)/d, with l �= j and d∈Z+, and another
pole at �=0. Furthermore,

(3.23) R�=(αl−αj)/d

{
�Z∗

jl(�, u)
}

=
∑
Γ

∫
ZΓ

e(V ′
0)ev

∗
1φjev∗

2φi

e
(
NZΓ

) ,

where the sum is taken over the two-pointed trees Γ as in (1.17) such that the marked
point 1 is attached to a vertex v0 = η(1) of valence 2, µ(v0) = j, µ(v) = l for the
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THE REDUCED GENUS 1 GW-INVARIANTS 725

unique vertex v adjacent to v0, and d({v0, v}) = d. Finally, for all z = 0,∞,−nαj

and a∈Z,

R�=z

{ �a

nαj +�

(
αn−2

i αj +�Z∗
ji(�, eT ) − αn−2

i e(t−T )αj/�Y1(�, αj , e
t)

)}
∈

({
1, αi, . . . , α

n−3
i , αn−1

i } · Q̃j [α]Sn−1 ⊕ αn−2
i I · Q̃j [α]Sn−1

)[[
et

]]
.

(3.24)

Lemma 3.6. The power series �1�2Z̃∗
ii(�1, �2, u) is rational in �1∈S2 and vanishes

at �1 =∞. It has simple poles at �1 =(αj−αi)/d, with j �= i and d∈Z+, and another
pole at �1 =0. Furthermore,

(3.25) R�1=(αj−αi)/d

{
2�1�2Z̃∗

ii(�1, �2, u)
}

=
∑
Γ

∫
ZΓ

e(V ′
0)ev

∗
1φiev∗

2φi

(�2−ψ2)e
(
NZΓ

) ,

where the sum is taken over the two-pointed trees Γ as in (1.17) such that the
marked point 1 is attached to a vertex v0 =η(1) of valence 2, µ(v0)= i, µ(v)=j for
the unique vertex v adjacent to v0, and d({v0, v}) = d. The analogous statements
hold for �2. Finally, for all a1, a2∈Z−,

R�1=0R�2=0

{
�

a1
1 �

a2
2

(
2�1�2Z̃∗

ii(�, eT )

− e(t−T )αi(h
−1
1 +�

−1
2 )

�1+�2
Ỹ(�1, �2, αi, e

t)
)}

∈
(
I · Q̃i[α]Sn−1

)[[
et

]]
.

(3.26)

All statements concerning rationality of Z∗
i , Z∗

ji, and Z∗
ii in these three lemmas

refer to rationality of the coefficients of the powers of et. Lemma 3.4 is proved in
[MirSym, Chapter 30]; Lemmas 3.5 and 3.6 are proved in [Z4].20 For example, the
conclusion of [MirSym, Section 30.4] is that

1+Z∗
i (�, eT ) = eC(et)σ1/�e(t−T )αi/�Y(�, αi, e

t),

where

C(u) = −
∞∑

d=1

ud

(
(nd)!
(d!)n

r=d∑
r=1

1
r

)
.

This statement clearly implies (3.22), provided n≥2 so that σ1∈I.
The differences in (3.22), (3.24), and (3.26) are of course symmetric in the α’s

in every appropriate sense. For example, any of the differences in (3.22) is the
evaluation at x=αi of a power series in et with coefficients in the rational functions
in x, σ1, . . . , σn−1. This is immediate from the explicit formulas for Z∗

i , Z∗
ji, and Z̃ij

in [MirSym, Chapter 30] and in [Z4]. This symmetry is used in the next subsection
in the computation of the contributions of Ãij and B̃ij .

3.3. Proof of Theorem 3. We will use Lemma 3.3, along with Lemmas 3.4-3.6,
to extract the coefficients of αn−2

i from the expressions of Propositions 1.1 and 1.2
modulo Ki[[u]]. In the notation of Theorem 3, the two coefficients are d

dT Ã(et) and
d

dT B̃(et). Let ∼=i be as in (3.12), with its meaning extended to power series in et in
the natural way.

20In fact, Lemma 3.4 is essentially the main result of [MirSym, Chapter 30], while Lemmas 3.5
and 3.6 are essentially the main results of [Z4].
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We begin by defining the analogues of the power series Y(�, x, u) and Yp(�, x, u)
without the α’s. Let

(3.27) Y (�, x, et) =
1

I0,0(t)

∞∑
d=0

edt

∏r=nd
r=1 (nx+r�)∏r=d

r=1

(
(x+r�)n − xn

) .

If p∈ Z̄+, let

(3.28) Yp(�, x, et) = e−xt/�

{
�

Ip,p(t)
d

dt

}
. . .

{
�

I1,1(t)
d

dt

}(
ext/�Y (�, x, et)

)
.

Similarly to (3.19),

(3.29) Y0(�, x, et) = Y (�, x, et), Y1(�, x, et) =
{

x
dt

dT
+ �

d

dT

}
Y (�, x, et),

if T and t are related by the mirror transformation (0.17). Let

Ỹ (�1, �2, x, et) = x
∑

p+q=n−2
p,q≥0

Yp(�1, x, et)Yq(�2, x, et)

+ x−(n−1)Yn−1(�1, x, et)Yn−1(�2, x, et).

(3.30)

We note that

(3.31)
( k=n∏

k=1

(x−αk+r�) −
k=n∏
k=1

(x−αk)
)
−

(
(x+r�)n − xn

)
∈ I[�, x].

It follows that

R�=z

{
�a

nαi+�
Y(�, αi, u)

}
−

(
R�=z′

{
�a

nx+�
Y (�, x, u)

})∣∣∣∣
x=αi

= R�=z

{
�a

nαi+�
Y(�, αi, u)

}
− R�=z

{
�a

nαi+�
Y (�, αi, u)

}
∈

(
I · Q̃i[α]Sn−1

)[[
u
]]

(3.32)

for all a ∈ Z, z = 0,∞,−nαi and the corresponding z′ = 0,∞,−nx. The equality
in (3.32) holds because the evaluation at x=αi of the residue of �aY (�, x, u)/(nx+�)
at � = z′ is defined; i.e. the evaluation of Y (�, x, u) at x = αi does not change the
order of the pole of (the coefficient of each ud in) Y (�, x, u). This is the reason we
modify the denominators of [MirSym, Chapter 30] and of [Z4] by subtracting off∏k=n

k=1(x−αk). This modification has no effect on the evaluation maps x−→αi.
We now use Lemmas 3.4-3.6 and (3.32) to extract the “relevant” part from the

expressions of Proposition 1.1 and 1.2. If ηi(u) and µ(u) are as in (1.25) and (3.1),
respectively, then

(3.33) ηi(eT ) −
(
t − T + µ(et)

)
αi ∈

(
I · Q̃i[α]Sn−1

)[[
et

]]
by (3.22) and (3.32). Similarly, if Φ0(αi, u) and Φ0(u) are as in (1.26) and (3.9),
respectively, then

(3.34) Φ0(αi, e
T ) − Φ0(et)

I0,0(et)
∈

(
I · Q̃i[α]Sn−1

)[[
et

]]
by (3.22), (3.32), and (3.33). By (1.27), (3.26), (3.33), and (3.34),

(3.35) Ai(eT ) − A(et)αn−2
i ∈

(
I · Q̃i[α]Sn−1

)[[
et

]]
,
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where

A(et) =
I0,0(et)
2Φ0(et)

Rh1=0Rh2=0

{
�−1

1 �−1
2

e−µ(et)(�−1
1 +�

−1
2 )

�1+�2
Ỹ (�1, �2, 1, et)

}
.(3.36)

On the other hand, by (3.24), (3.32), and (3.33),

(3.37) R�=0

{
e−ηj(e

T )/�Z∗
ji(�, eT )

} ∼=i

(
− 1 + ∆(et)

)
αn−2

i αj ,

where

∆(et) ≡ R�=0

{
�−1e−µ(et)/�Y1(�, 1, et)

}

= R�=0

{
�−1

{d(t+µ(et))
dT

+ �
d

dT

}(
e−µ(et)/�Y (�, 1, et)

)}

=
d(t+µ(t))

dT
R�=0

{
�−1e−µ(et)/�Y (�, 1, et)

}
=

d(t+µ(et))
dT

Φ0(et)
I0,0(t)

.

(3.38)

The first equality in (3.38) follows from (3.29), the second from the holomorphicity
statement of Proposition 3.2, and the last from (3.27) and (3.9). By (1.28), (3.35),
and (3.37),

j=n∑
j=1

Ãij(eT ) ∼=i αn−2
i

(
− 1 + ∆(et)

) j=n∑
j=1

αjAj(eT )∏
k �=j(αj−αk)

∼=i αn−2
i

(
− 1 + ∆(et)

)
A(et)

j=n∑
j=1

Rz=αj

{
zn−1∏k=n

k=1 (z−αk)

}

= −αn−2
i

(
− 1 + ∆(et)

)
A(et)Rz=∞

{
zn−1∏k=n

k=1 (z−αk)

}
= αn−2

i

(
− 1 + ∆(et)

)
A(et).

(3.39)

The first equality above follows from the Residue Theorem on S2. Thus, by (3.35)
and (3.38),

(3.40) Ai(eT ) +
j=n∑
j=1

Ãij(eT ) ∼=i αn−2
i

d(t+µ(t))
dT

Φ0(et)
I0,0(t)

A(et),

with A(et) defined by (3.36).
We next reduce the right-hand side of (3.36) to the explicit form of Theorem 3.

Let

(3.41) L(et) =
(
1 − nnet

)1/n
, fp(et) =

1
L(et)Ip,p(t)

∀ p=0, 1, . . . .

By (3.8), (3.28), and (3.7),

e−µ(et)/�Yp(�, 1, et)

=
1

Ip,p(t)

{
d(t+µ(t))

dt
+ �

d

dt

}
. . .

1
I1,1(t)

{
d(t+µ(t))

dt
+ �

d

dt

}(
Q(�, et)
I0,0(t)

)
= fp(et)

{
1 + �L(et)

d

dt

}
. . . f1(et)

{
1 + �L(et)

d

dt

}(
Q(�, et)
I0,0(t)

)
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for all p≥0. Thus, by (3.9), (3.10), and the regularity statement of Proposition 3.2,

Θ(0)
p (et) ≡ Rh=0

{
�−1e−µ(et)/�Yp(�, 1, et)

}
=

r=p∏
r=0

fr(et),(3.42)

Θ(1)
p (et) ≡ Rh=0

{
�−2e−µ(et)/�Yp(�, 1, et)

}
= L(et)

( r=p∏
r=0

fr(et)
)(

Φ1(et) +
p−1∑
r=0

(p−r)
f ′

r(e
t)

fr(et)

)
,

(3.43)

where ′ denotes the derivative with respect to t. Note that by (3.4) and (3.5),

Θ(0)
n−1(e

t) = 1 and Θ(1)
n−1(e

t) = L(et)Φ1(et).

Thus, by (3.30), (3.42), and (3.43),

Rh1=0Rh2=0

{
e−µ(et)(�−1

1 +�
−1
2 )

�1�2(�1+�2)
Ỹ (�1, �2, 1, et)

}
=

∑
p+q=n−2

p,q≥0

Θ(1)
p (et)Θ(0)

q (et) + Θ(1)
n−1(e

t)Θ(0)
n−1(e

t)

= L(et)
(

nΦ1(et) +
n−2∑
p=0

p−1∑
r=0

(p−r)
f ′

r(et)
fr(et)

)
.

(3.44)

The last equality uses (3.6), followed by (3.4).
By (3.40), (3.36), (3.44), (0.17), (3.7), and (3.10), the contribution of the fixed

loci of Proposition 1.1 is

1
2I1,1(t)

(
(n−2)(n+1)

24

(
L(et)−1 − L(et)−n

)
+

n−2∑
p=0

(
n−1−p

2

)
f ′

p(et)
fp(et)

)

=
1

2I1,1(t)
d

dt

(
(n−2)(n+1)

24

((
t+µ(et)

)
−

(
t − n lnL(et)

))
+

n−3∑
p=0

(
n−1−p

2

)
ln fp(et)

)

=
1
2

d

dT

(
(n−2)(n+1)

24
µ(et) − (n−2)(3n−5)

24
ln

(
1−nnet

)
−

n−3∑
p=0

(
n−1−p

2

)
ln Ip,p(t)

)
.

The first equality above uses (3.41) and (3.7); the second one also uses (0.16)
and (0.17). We have now proved the first statement of Theorem 3; the second form
of the expression in (3.2) is easily obtainable from the first using (3.4)-(3.6).

We compute the contributions of the terms Bi(u) and B̃ij(u) of Proposition 1.2
to F0(u) similarly. However, before proceeding, we observe that the α-free analogue
of the term

∏k=n
k=1 (αi−αk+�) in the numerators in (1.39) and (1.40) is (x+�)n−xn.

The reason is the r=1 case of (3.31) and the fact that subtracting off
∏k=n

k=1 (x−αk)
from the numerators has no effect on the evaluation maps x−→αi.
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By (1.39), (3.22), and (3.32),

Bi(eT ) ∼=i αn−2
i B(et), where

B(et) =
n

24
R�=0,∞,−n

{
(1+�)n − 1
(n+�)�3

e(t−T )/�Y (�, 1, et) − 1
e(t−T )/�Y (�, 1, et)

}
.

On the other hand, by (1.40), (3.22), (3.24), (3.32), and (3.29),

B̃ij(eT ) ∼=i −
nαjα

n−2
i

24
∏

k �=j(αj−αk)

× R�=0,∞,−nαj

{
(αj +�)n−αn

j

(nαj +�)�3

e(t−T )αj/�Y1(�, αj , e
t) − αj

e(t−T )αj/�Y (�, αj , et)

}
= −

nαn−2
i αn−1

j

24
∏

k �=j(αj−αk)

× R�=0,∞,−n

{
(1 +�)n−1
(n+�)�3

{
1 + � d

dT

}(
e(t−T )/�Y (�, 1, et)

)
− 1

e(t−T )/�Y (�, 1, et)

}
=

αn−2
i αn−1

j∏
k �=j(αj−αk)

(
− B(et) +

d

dT
B̃(et)

)
,

where

B̃(et) ≡ B̃0(et) + B̃∞(et) + B̃−n(et),

B̃z(et) = − n

24
R�=z

{
(1 +�)n−1
(n+�)�2

ln
(
e(t−T )/�Y (�, 1, et)

)}
.

(3.45)

Thus, applying the Residue Theorem on S2 as in (3.39), we obtain

(3.46) Bi(eT ) +
j=n∑
j=1

B̃ij(eT ) ∼=i αn−2
i

d

dT
B̃(et).

It remains to compute the three residues B̃z(et). For z=−n, the pole is simple.
Since

et/hY (�, 1, et) = R̄(�−1, t) and R̄(−n−1, t) = e−t/n
/
I0,0(t)

with R̄ as in Subsection 0.3, we obtain

(3.47) B̃−n(et) = − n

24
· (1−n)n − 1

n2

(
t−T

−n
− ln I0,0(t)

)
.

The residue at z=0 is computed using Proposition 3.2:

(3.48) B̃0(et) = − n

24

(
(n−2)(n+1)

2n

(
t−T +µ(et)

)
+ ln Φ0(et) − ln I0,0(et)

)
.

Finally, note that

ewtY (w, 1, et) = R̄(w, t) = 1 + Tw +
∞∑

q=2

I0,q(t)
I0,0(t)

wq.
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Thus,

B̃∞(et) =
n

24
Rw=0

{
(1+w)n

(1+nw)wn−1

(
− Tw + ln R̄(w, t)

)}
=

n

24

{
− T Dn−3

w

(
(1+w)n

(1+nw)

)
+ Dn−2

w

(
(1+w)n

(1+nw)
ln R̄(w, t)

)}

=
n

24

n−2∑
p=2

(
Dn−2−p

w

(1+w)n

(1+nw)

)(
Dp

w ln R̄(w, t)
)
.

(3.49)

The remaining statement of Theorem 3 is obtained by adding (3.47)-(3.49).

Appendix A. Some combinatorics

This appendix contains the computational steps omitted in the proof of Lemma
2.2, as well as the proof of Lemma 2.4.

Lemma A.1. For all b≥0, N ≥0, and q1, . . . , qN ≥0,

(A.1)
∑

∑l=N
l=1 βl=b

βl≥0

l=N∏
l=1

(
ql

βl

)
=

(
q1+. . .+ qN

b

)
.

For all q≥0 and a≥1,

(A.2)
∞∑

b=0

(−1)b

(
q

b

)
1

a+b
=

(a−1)!q!
(a+q)!

.

For all q≥0 and a, s≥0,

(A.3)
∞∑

b=0

(−1)b

(
q

b

) r=a∏
r=a−s+1

(r+b) = (−1)qs!
(

a

s−q

)
.

Proof. (1) Each summand on the left side of (A.1) is the total number of ways to
choose βl elements from a ql-element set for l=1, . . . , N . Thus, the number on the
left side of (A.1) is the number of ways to choose b=

∑l=N
l=1 βl elements from a set

with
∑l=N

l=1 ql elements.
(2) The identity (A.2) is satisfied for q=0. Suppose (A.2) holds for all a≥1 and

some q≥0. Then,

∞∑
b=0

(−1)b

a+b

(
q+1

b

)
=

∞∑
b=0

(−1)b

a+b

((
q

b

)
+

(
q

b−1

))

=
∞∑

b=0

(−1)b

a+b

(
q

b

)
−

∞∑
b=0

(−1)b

a+1+b

(
q

b

)
=

(a−1)! q!
(a+q)!

− a! q!
(a+1+q)!

=
(a−1)! (q+1)!

(a+q+1)!
,

as needed.
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(3) With q, a, and s as in (A.3),
∞∑

b=0

(−1)b

(
q

b

) r=a∏
r=a−s+1

(r+b)

=
{

d

dx

}s( ∞∑
b=0

(−1)b

(
q

b

)
xa+b

)∣∣∣∣
x=1

=
{

d

dx

}s(
(1−x)qxa

)∣∣∣
x=1

=
(

s

q

)
(−1)qq! · a!

(a−s+q)!
,

as claimed. �

For each k∈Z, let
[k] =

{
l∈Z+ : 1≤ l≤k

}
as before. If α=(α1, . . . , αk) is a tuple of non-negative integers, define

|α| =
i=k∑
i=1

αi, α! =
i=k∏
i=1

αi! , S(α) =
{
(i, j) : j =1, . . . , αi; i=1, . . . , k

}
.

If b is an integer, possibly negative, let(
|α|+b

α, b

)
=

(
|α| + b

α1, . . . , αk, b

)
.

Denote by (Z̄+)∅ the 0-dimensional lattice.

Proof of (2.3). Suppose k ∈ Z̄+, α ∈ (Z+)k, and q ∈ (Z̄+)k is a tuple of distinct
non-negative integers. With Cq as in (2.5), we will compare the coefficients of

Cα
q ≡

i=k∏
i=1

Cαi
qi

on the two sides of (2.3). By (2.6), for each β ∈ (Z̄+)S(α) and every choice of k
distinguished disjoint subsets of [a+2+|β|] of cardinalities α1, . . . , αk, the term Cα

q

appears in the m=a+2+|β| summand on the left side of (2.3) with the coefficient

ηm−|α|
∏

(i,j)∈S(α)

(
(−1)βi,j

βi,j !
· ηqi+1−βi,j

(qi+1−βi,j)!

)

=
ηa+2+α·q

(q+1)!α
∏

(i,j)∈S(α)

(−1)βi,j

(
qi+1
βi,j

)
, 21

(A.4)

where

α · q =
i=k∑
i=1

αiqi and (q+1)!α =
i=k∏
i=1

(
(qi+1)!

)αi .

Since the number of above choices is(
a+2+|β|

α, a+2+|β|−|α|

)
,

21In the first product, the (i, j)-factor is defined to be zero if βi,j >(qi+1).
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it follows that the coefficient of Cα
q on the left-hand side of (2.3) is

ηa+2+α·q

(q+1)!α
∑

β∈(Z̄+)S(α)

{
1

(a+2+|β|)(a+1+|β|)

(
a+2+|β|

α, a+2+|β|−|α|

)

×
∏

(i,j)∈S(α)

(−1)βi,j

(
qi+1
βi,j

)}
.

(A.5)

If k=0 and thus (Z̄+)S(α) ={0}, this expression reduces to a!ηa+2/(a+2)!. By (2.6),
this is the term on the right-hand side of (2.3) that does not involve any Cq. If
k≥1, (A.5) becomes

ηa+2+α·q

(q+1)!αα!

∞∑
b=0

(−1)b

(
α · q + |α|

b

)
1

(a+2+b)(a+1+b)
(a+2+b)!

(a+2+b−|α|)!

= a!
ηa+2+|q|

(a+|q|+2)!
×

{
1, if |α|=1,

0, if |α|≥2,

by Lemma A.1. By (2.6), this is also the coefficient of Cα
q on right-hand side

of (2.3). �

Proof of (2.4). The coefficient of Cα
q in the m = a+|β| summand on the left side

of (2.4) is again given by the first expression in (A.4). Thus, the coefficient of Cα
q

on the left-hand side of (2.4) is

(A.6)
ηa+α·q

(q+1)!α
∑

β∈(Z̄+)S(α)

(
a+|β|

α, a+|β|−|α|

) ∏
(i,j)∈S(α)

(−1)βi,j

(
qi+1
βi,j

)
.

If k=0, this expression reduces to ηa. If k≥1, (A.6) becomes

ηa+α·q

(q+1)!αα!

∞∑
b=0

(−1)b

(
α · q + |α|

b

)
(a+b)!

(a+b−|α|)! = (−1)|α|ηa ×
{

1, if |q|=0,

0, if |q|≥1,

by Lemma A.1, as required. �

Proof of Lemma 2.4. For each e∈E, let

re = Rλ=0

{
fe(λ)}, ge(λ) = fe(λ) − reλ

−1, he(λ) = λfe(λ) = re + λge(λ).

Since fe has at most a simple pole at λ=0, ge and he are holomorphic at λ=0 and

Dje+1
λ he = Dje

λ ge ∀ je≥0.
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Since
∏

e∈Efe(λ) has a pole of order at most |E| at λ=0,

Rλ=0

{ ∏
e∈E

fe(λ)
}

= D|E|−1
λ

{
λ|E|

∏
e∈E

fe

}
= D|E|−1

λ

{ ∏
e∈E

he

}
=

∑
∑

e∈E

je=|E|−1

∏
e∈E

Dje

λ he

=
∑

E+⊂E

{( ∏
e∈E+

re

) ∑
∑

e�∈E+

je=|E+|−1

( ∏
e�∈E+

Dje+1
λ he

)}

=
∑

E+⊂E

{( ∏
e∈E+

re

) ∑
∑

e�∈E+

je=|E+|−1

( ∏
e�∈E+

Dje

λ ge

)}

=
∑

E+⊂E

{( ∏
e∈E+

re

)
D|E+|−1

λ

( ∏
e�∈E+

ge

)}
,

as claimed. �

Appendix B. Comparison of mirror symmetry formulations

In this appendix we compare a number of mirror symmetry formulations for
genus 0 and genus 1 curves in a quintic threefold. In all cases, the predictions are
of the form

F top
g (T ) = Fg(t),

where g=0, 1, F top
g (T ) is a generating function for the genus g GW-invariants of a

quintic threefold (related to an A-model correlation function), Fg(t) is an explicit
function of t (related to a B-model correlation function), and T = J (t) for some
function J (called a mirror transformation).

In [CaDGP], the variables on the B-side and A-side are ψ and t, respectively.
Let

�0(ψ) = 1 +
∞∑

d=1

(5d)!
(d!)5

(5ψ)−5d;

this is equation (3.8) in [CaDGP] with n replaced by d. The mirror transformation
is defined by equation (5.9):

t = J (ψ) ≡ − 5
2πi

{
ln(5ψ) − 1

�0(ψ)

∞∑
d=1

(5d)!
(d!)5

(5ψ)−5d
( 5d∑

r=d+1

1
r

)}
.

The mirror symmetry prediction for genus 0 curves is given in [CaDGP] in equa-
tion (5.13):

(B.1) 5 +
∞∑

d=1

n0,dd
3 e2πidt

1−e2πidt
=

5ψ2

(1−ψ5)�2
0(ψ)

(
5

2πi

(dψ

dt

))3

,

where n0,d is the genus 0 degree d instanton number of a quintic. These numbers
are related to the genus 0 GW-invariants by the formula

(B.2) N0,d =
∑

d1d2=d

n0,d1

d3
2

⇐⇒
∞∑

d=1

N0,dd3qd =
∞∑

d=1

n0,dd
3 qd

1−qd
.
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The right-hand side of (B.1) replaces the function κttt appearing in [CaDGP,
(5.13)], using [CaDGP, (5.11)] and the following two lines.

In [CoKa, Chapter 2], the B-side variable is x and the variables on A-side are s
and q=es. Let

y0(x) = 1 +
∞∑

d=1

(5d)!
(d!)5

(−x)d,

y1(x) = y0(x) ln(−x) + 5
∞∑

d=1

(5d)!
(d!)5

(−x)d
( 5d∑

r=d+1

1
r

)
.

These equations are (2.23) and (2.24) in [CoKa]. The mirror transformation is
given by

(B.3) s = J (x) ≡ y1(x)
/
y0(x), q = es = ey1(x)/y0(x).

The mirror symmetry prediction for genus 0 curves is given in [CoKa] in equa-
tion (2.26):

(B.4) 5 +
∞∑

d=1

n0,dd
3 qd

1−qd
=

5
(1+55x)y2

0(x)

(
q

x

dx

dq

)3

.

The relation with variables in [CaDGP] is

(B.5) x = −(5ψ)−5, s = 2πit, q = e2πit.

With these identifications, y0(x) = �0(ψ), J (x) of [CoKa] is J (ψ) of [CaDGP]
times 2πi, and the right-hand sides of (B.1) and (B.4) are the same.

In [MirSym, Chapters 29,30], the variables on the B and A sides are t and T .
The mirror transformation is given by

T = J (t) ≡ J1(t) = I1(t)
/
I0(t),

where Iq and Jq are as in (0.1) and (0.3). The mirror symmetry prediction for
genus 0 curves is formulated in [MirSym, (29.2)] as

(B.6) eHT +
H2

5

∞∑
d=1

n0,dd
3

∞∑
k=1

e(H+kd)T

(H+kd)2
=

i=3∑
i=0

Ji(t)Hi mod H4.

Using (B.2), (B.6) can be re-written as

(B.7)
i=3∑
i=0

HiT i

i!
+

H2

5

∞∑
d=1

N0,d(d−2H)e(H+d)T =
i=3∑
i=0

Ji(t)Hi mod H4.

The relation (0.4) is obtained by extracting the H2 and H3-terms from (B.7); it
is the statement of [MirSym, Exercise 29.2.2], minus a typo. The relation with
variables in [CoKa] is

(B.8) x = −et, s = T, and q = eT .

With these identifications, Ii(t) = yi(x) and J (t) of [MirSym] is precisely J (x) of
[CoKa]. It is shown at the very end of [CoKa, Chapter 2] that the third derivative
of the right-hand side of (0.4) with respect to s=T is the right-hand side of (B.4).
We note that throughout Section 2.6 of [CoKa] (in contrast to Section 2.4),

Y (q) =
5

(1+55x)y2
0(x)

(
q

x

(dx

dq

))3

.
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The relation between x and q is described in the previous paragraph. In Section 2.5,
this function Y is called the normalized Yukawa coupling regarded as a function of q.

As in [CaDGP], the B-side and A-side variables in [BCOV] are ψ and t. However,
they are now related by the mirror transformation

t = J (ψ) ≡ 5
{

ln(5ψ) − 1
�0(ψ)

∞∑
d=1

(5d)!
(d!)5

(5ψ)−5d
( 5d∑

r=d+1

1
r

)}
= −T,

with T as in [MirSym, Chapters 29,30]. This is contrary to the suggestion in the
paper that ψ and t are related in the same way as in [CaDGP]. Let

(B.9) F1(ψ) = ln
(( ψ

�0(ψ)

)62/3

(1−ψ5)−1/6
(dψ

dt

))
;

see equation (23) in [BCOV]. The mirror symmetry prediction for genus 1 curves
is given in [BCOV] in equation (24):

(B.10)
25
6

− 2
∞∑

d1,d2=1

n1,d1d1d2
qd1d2

1−qd1d2
− 1

6

∞∑
d=1

n0,dd
qd

1−qd
= ∂tF1(ψ),

where q = e−t and n1,d is the genus 1 degree d instanton number of the quintic.
These numbers are related to the genus 1 GW-invariants by the formula

N1,d =
∑

d1d2=d

n1,d1

σd2

d2
+

1
12

∑
d1d2=d

n0,d1

1
d2

⇐⇒
∞∑

d=1

N1,ddqd =
∞∑

d1,d2=1

n1,d1d1d2
qd1d2

1−qd1d2
+

1
12

∞∑
d=1

n0,dd
qd

1−qd
,

(B.11)

where σr is the number of degree r unramified connected covers of a smooth genus 1
surface or equivalently of subgroups of Z2 of index r. Since this number is the same
as the sum of positive integer divisors of r,

(B.12)
∞∑

r=1

σrq
r =

∞∑
r=1

r
qr

1−qr
.

This identity implies equivalence of the two equalities in (B.11).
Integrating both sides of (B.10) with respect to t and using (B.11), we find

that (B.10) is equivalent to

(B.13) C +
25
6

t + 2
∞∑

d=1

N1,dq
d = ln

(( ψ

�0(ψ)

)62/3

(1−ψ5)−1/6
(dψ

dt

))
for some constant C. This equality should be interpreted by moving 25t/6 to the
right-hand side and expanding as a power series in q at q=0. The relation between
the variables in [BCOV] and [CoKa] is

x = −(5ψ)−5, s = −t, and q = q.

Thus, (B.13) is equivalent to

(B.14) C ′ − 25
6

s + 2
∞∑

d=1

N1,dq
d = ln

(
x−25/6y0(x)−62/3

(
1+55x

)−1/6
( q

x

dx

dq

))
,
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with q=es and s and x related by the mirror transformation (B.3). In the notation
of [MirSym], i.e. with identifications (B.8), (B.14) becomes

(B.15) C ′′ − 25
6

T + 2
∞∑

d=1

N1,de
dT = −25

6
t + ln

(
I0(t)−62/3

(
1−55et

)−1/6
J ′

1(t)
−1

)
.

It is straightforward to see that C ′′ = 0. Thus, (B.10) and (B.15) are equivalent
to (0.5).

Remark. The conventions used in [KlPa] to formulate a mirror symmetry prediction
for the genus 1 GW-invariants of a sextic fourfold are the same as in [BCOV], except
5 above is replaced by 6.
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