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0. INTRODUCTION

0.1. Mirror symmetry predictions for a quintic threefold. Gromov-Witten
invariants of a smooth projective variety X are certain counts of curves in X. In
many cases, these invariants are known or conjectured to possess rather amazing
structure which is often completely unexpected from the classical point of view. For
example, a generating function for the genus 0 GW-invariants solves a third-oder
PDE in two variables. In the case of the complex projective space P", the resulting
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692 ALEKSEY ZINGER

PDE condition on the generating function is equivalent to a recursion for counts of
rational curves in P™ and solves the classical problem of enumeration of such curves
in P"; see [RT) Section 10] and [KoM, Section 5].

The above-mentioned PDE propert is just one type of structure of GW-
invariants motivated by their relation to string theory. The mirror symmetry
principle of string theory predicts yet another type of structure whenever X is
a Calabi-Yau threefold. It relates GW-invariants of X to an integral on the mod-
uli space of Kahler structures of the “mirror” of X. In the case X is a quintic
threefold (degree 5 hypersurface in P*4), this integral was computed in [CaDGP],
leading to stunning predictions concerning the Gromov-Witten theory of X. These
predictions have been only partially verified.

For each pair of non-negative integers (g, d), let Ny 4 denote the genus g degree d
GW-invariant of a quintic threefold X5; see equation (A8 below. For ¢=0,1,...,
we define a degree ¢ polynomial I,(¢) in ¢ with coefficients in the power series in e
by

(0.1) ifq(t)wq _ ot i it 1= 5w-+r) |

=0 = =l (w+r)s—wd)
For example,
o] oo 5d
(0.2) I(t) =1+ ; et E%); . L) =th(t) + ;edtqzi); _Z:Mi)
Let
(0.3) Jo@t) =1,(t)/Io(t) Vg=1,2,..., T = Ji(t).

The mirror symmetry prediction of [CaDGP] for the genus 0 GW-invariants of X3
can be stated as

N | Ot

o0
(04) gTS + Z NovdedT = (Jl (t)JQ(t) - Jg(t));

d=1
see Appendix [B] for a comparison of statements of mirror symmetry. A prediction
for the genus 1 GW-invariants of X5 was made in [BCOV], building up on [CaDGP).
Both of these predictions date back to the early days of the Gromov-Witten theory.
More recently, predictions for higher-genus GW-invariants of X5 have been made;
the approach of [HKIQ] generates mirror formulas for GW-invariants of X5 up to
genus H1.

While the ODE condition on GW-invariants mentioned above is proved directly,
the mathematical approach to the mirror principle has been to compute the relevant
GWe-invariants in each specific case. However, this is rarely a simple task. The
prediction for genus 0 invariants was confirmed mathematically in the mid-1990s.
The prediction for genus 1 invariants is verified in this paper.

Theorem 1. If N; 4 denotes the degree d genus 1 Gromov- Witten invariant of a
quintic threefold,

(0.5) 2;%@6“ = %(J1 (t) —t) +1In (Io(t)_62/3(1—55et)_1/6J{(t)_1).

It is equivalent to the associativity of the multiplication in quantum cohomology.
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THE REDUCED GENUS 1 GW-INVARIANTS 693

This theorem is deduced from Theorem 2] in Subsection An outline of this
paper is contained in the next subsection.

0.2. Computing GW-invariants of hypersurfaces. One approach to comput-
ing GW-invariants of a projective hypersurface (and more generally, of a complete
intersection) is to relate them to GW-invariants of the ambient projective space as
follows. Whenever g, d, and k are non-negative integers and X is a smooth subva-
riety of P", denote by 9, (X, d) the moduli space of stable degree d maps into X
from genus g curves with k& marked points; see [MirSym|, Chapter 24]. Let  be the
universal curve over ﬁ%k(P”, d), with structure map 7 and evaluation map ev:

ﬂL}P’"

M, (P, d).
In other words, the fiber of 7 over [C, f] € M, (P, d), where C is a nodal curve
with k& marked points and f: C —P" is a stable morphism, is C/Aut(C, f), while
ev([C, f;2]) = f(2) it zeC.

A smooth degree a hypersurface X in P" is determined by a section s of Opn (a)
which is transverse to the zero set:

X =s5"40) for some s € H° (P"; Opn (a))E
The section s induces a section § of the sheaf m.ev*Opn (a) — M, 1 (P", d) by

(e f1) = [so fl.

It is immediate that

(0.6) Myu(X,d) ={[C, f]€M, 1 (P",d): f(C)CX} =35"(0).

On the other hand, GW-invariants of X are defined by integration against the vir-
tual fundamental class (VFC) of M, (X, d) constructed in [BeFal, [FuO], and [LiT):

(0.7) GW X (din) = (n, My (X, d)]"")  VneH* (Myi(X,d);Q).

If X is a quintic threefold (or is another Calabi-Yau threefold), then the cycle
[M,.0(X, d)]""" is zero-dimensional and its degree is denoted by N, 4:

(0.8) Ny =GWXo(d;1) = (1, [y 0(X,d)]"").

In light of Poincare Duality, equations (0.6) and (0.7) suggest that GWik(d; n)
should be expressible as an integral against [, ;(P",d)]""" via some sort of euler

class of the sheaf m.ev*Opn(a), whenever 7 comes from M, ,(P",d). As can be
easily seen from the definition of VFC, this is indeed the case if g=0:

(0.9) GWik(din) = (- e(mev* Opa(a)), [Mox (P, d)] )
for all n € H*(Mo x(P",d); Q). The moduli space My x(P",d) is a smooth stack

(orbifold), and
meev Opn(a) — Mo 1 (P", d)

2In other words, s is a holomorphic section of v:®%, where vy, — P™ is the tautological line
bundle.
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694 ALEKSEY ZINGER

is a locally free sheaf (vector bundle). Thus, the right-hand side of (09) can be
computed via the classical localization theorem of [ABo], though the complexity
of this computation increases rapidly with the degree d. Nevertheless, it has been
completed in full generality in a number of different of ways, verifying the genus 0
mirror symmetry prediction (04). At the end of this subsection we briefly recall
Givental’s approach [Gi] to dealing with this complexity and describe its interplay
with our approach in genus 1; other proofs of (I.4]) can be found in [Bex], [Gal, [Le],
and [LLY].

The most algebraically natural generalization of ((L9]) to positive genera fails. In
the genus 1 case, by [LiZl Theorem 1.1], the most topologically natural analogue
of (@A) does hold for the reduced GW-invariants GW?? defined in [Z1]:

(0.10) CWIX (di ) = (- e(muev™ Opn(a)), [y 1 (B", d)])

for all n € H*(9 x(P",d);Q), where ﬁik(]P’", d) is the main component of

My x(P",d), i.e. the closure of the locus in 9% ;(P",d) consisting of maps from

smooth domains. While ﬁi (P, d) is not a smooth stack, it is an equi-dimensional

orbi-variety and has a well-defined fundamental class. While the sheaf
mev*Opn(a) — ﬁg,k(P", d)

is not locally free, it is shown in [Z2] that its euler class is well defined. If

(0.11) V) — > m.ev*Opn (a)

| l

m n p BT n

gﬁ(lJ,k(P ,d) _>5m1,k(]P) ,d)
is a desingularization of ﬁ?)k(ﬁ’m, d) and m,ev*Opn(a) (i.e. SA.T/I?’k(IP’", d) is smooth,
p is a birational morphism, and V; is locally free), then

012) (1 e(mev* Opn (@), [T )]) = (wn- (V). [, (", )

for all n € H *(ﬁg,k(]?”,d);@). A natural desingularization (O.IT]) that inherits
every torus action from P™ is constructed in [VaZ]. Thus, the classical localization
theorem of [ABo| can be used to compute the right-hand side of (0I0) via (0I2).
On the other hand, by [Z1, Section 3|, the reduced genus 1 GW-invariant differs
from the standard one by a combination of genus 0 GW-invariants. In particular,
if X is a quintic threefold, then by [Z1l, Theorem 1.1]

1
(0.13) Nig=GWrio(d;1) = Ny, + 5 Mo
where NR 4 is the reduced genus 1 degree d invariant GW?? (d;1) of X.

In this paper we compute the numbers GW(l)jé( (d; 1) for a smooth degree n hy-
persurface X in P*"~1, with n > 3. By (@I0), ([@I2), and the divisor relation
(see [MirSym| Section 26.3]),

(0.14) dGWY (d; 1) = (e(Vy) eviH, [ (B" 1, d)]),
where H € H?(P"~!) is the hyperplane class and
Vi — I, (P d)
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THE REDUCED GENUS 1 GW-INVARIANTS 695

is the desingularization of the sheaf
7eev* Opnor (n) — Dy, (P, d)

constructed in [VaZ]. Analogously to [Gi], we package all reduced genus 1 GW-
invariants (0.14)) of a degree n hypersurface X,, in P"~! into a generating function F;
this is a power series with coefficients in the equivariant cohomology of P*~!. In [Gi],
an analogous power series provides a convenient way to describe a degree-recursive
feature of the genus 0 GW-invariants of X,,. The resulting recursion, [MirSyml
Lemma 30.1.1], has a “mystery correction term”, which is intrinsically determined
by the recursion and another property of the genus 0 generating function called
polynomiality (see [MirSym| Section 30.2]). By applying the Atiyah-Bott localiza-
tion theorem, we relate F to the genus 0 generating functions ([22))-(T24). In
the process, we encounter seemingly unwieldy terms which turn out to be simi-
lar to the expressions encoded by the genus 0 “correction term” cleverly avoided
in [Gi]; the latter are all of the form (233)). While none of these expressions by
itself determines any of our unwieldy terms, the entire series of expressions insures
that the relevant genus 0 generating function has the remarkably rigid structure of
Definition 1] which in turn determines all of our unwieldy terms via (24). This
leads to Propositions [[.1] and [[.2] which describe the contributions to F from the
two different types of fixed loci in terms of known integrals on 90 2(P"~ !, d). In
Section Bl we use Lemma [3.3] to extract the non-equivariant part of the expressions
in Propositions [Tl and [[.2] obtaining Theorem [3] on page 721. Theorem [2 in the
next subsection follows immediately from Theorem Bl and (LI).

The approach of this paper to summing over all possible fixed loci involves break-
ing the graph into trees at a special node. As such trees contribute to certain
genus 0 integrals, the desired sum is expressible in terms of these integrals. The
same approach directly carries over to computing reduced genus 1 GW-invariants
of any complete intersection and should be applicable to localization computations
in higher genuSE In the latter case, there will be more “special” nodes, but their
number will be bounded above by the genus. Once the graphs are broken at the
special nodes, there will be a number of distinguished trees and an arbitrary num-
ber of “generic” trees. The number of the former will again be bounded by the
genus. On the other hand, it should be possible to sum over all possibilities for the
latter, using the regularity property of the relevant genus 0 integral described in
Subsection

0.3. Mirror symmetry formulas for projective CY-hypersurfaces. In this
subsection we formulate a generalization of Theorem [ to projective Calabi-Yau
hypersurfaces of arbitrary dimensions; see Theorem [2] below. We then take a closer
look at its low-dimensional cases, comparing some of them with known results and
others with the mirror symmetry predictions of [BCOV] and [KIPa).

3This is not to say that higher-genus GW-invariants of projective hypersurfaces are now easily
computable. It is far from clear at this point which integrals should be localized in higher genus.
No higher-genus analogue of (0.I0) has been proved yet, though a conjectural version is stated in
|[LiZl Subsection 1.1]. Even with such a higher-genus hyperplane property, one would still need
to either figure out how to apply the localization theorem in a singular setting or construct a
desingularization of the main component of ﬁgyk(ﬁ’m, d).
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696 ALEKSEY ZINGER

Let n be a positive integer. For each ¢=0, 1, ..., define Iy 4(t) by

rnd

s (nw+r)
0.15 Ip (Hw? = ! a1, = R(w,t).
(0.15) q; 0,q(t)w? Z T = (w47 —am) (w, t)

Each Iy 4(t) is a degree g polynomial in ¢ with coefficients that are power series
in e’; see ([0.2) for explicit formulas for Iy=1Iyo and I; =1y ; in the n=5 case. For
p,qEZJr with ¢>p, let

0.16) ) = (220

Ipfl,pfl(t)

By the first statement of Proposition Bl below, each of the “diagonal” terms I, ,(t)
is a power series in e! with constant term 1, whenever it is defined. Thus, the
division in (0.I6) is well-defined for all p. Let

_ Inq(1)
Ioo(t)

By (i) of Proposition B, the map t— T is a change of variables; it will be called
the mirror map.

Let R(w,t) = R(w,t)/Ioo(t). Then, e “'R(w,t) is a power series with e’-
constant term 1 and

DP In R(w, t) = l{%}p(ln (e_WtR(w,t)))

p:

(0.17)

€ Q[[e']]

w=0

for all p>2.

Theorem 2. For cach n € Z%, the reduced genus 1 degree d Gromov-Witten in-
variants of a degree n hypersurface X in P"~1 are given by

Z edTGW?j()f (d; 1)

d=1

((n—2)(n+1) 1o (1—n)”>(Tt) el el L) LA

48 24n? 24n,

%I (1 n”et)JrZ(n 3”%1 nl,,(t), if 2 fn;
24 In (1-n"e) + (n4/2wlnl p(t), if 2|n;

S (o ()™
+ﬂ <Dw 2= (1+nw)>(lenR(w,t)),

where t and T are related by the mirror map (Q17).

If n=1, both sides of the formula in Theorem 2] vanish. If n=2, X is a pair of
points in P'. In this case, the right-hand side of the formula in Theorem [ vanishes
by ([B3H). This is exactly as one would expect, since there are no positive-degree
maps from a curve to a point.

If n=3, X is a plane cubic, i.e. a 2-torus embedded as a degree 3 curve in P2
Thus, its degree d GW-invariant is zero unless d is divisible by 3. Furthermore, its
genus 1 degree 3r GW-invariant is the number of r-fold (unramified) covers of a
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THE REDUCED GENUS 1 GW-INVARIANTS 697

torus by a torus divided by 7, the order of the automorphism group of each such
cover. Since the number o, of such covers is given by (BI2), it follows that

(0.18) Z eTGWT, Z In (1—e3T)
On the other hand, Theorem gives

. 1 1 1
dT 0;X (3.
(0.19) dg 1 e GWi'g (d;1) = 3 (T—t) 5 In (1 27et) 9 In Iy (1),

where Iy(t) and T are given by

=, (3d)! 1 &, (Bd) & 3
t):1+;ed Ed!)?” T=t+m;ed <(d!)3 > ;).

r=d+1

Since the standard and reduced (genus 1) invariants of a (complex) curve are the
same if no descendant classes are involved,

1 1
~(T—t) — = In (1-27¢") — —1n10 Zln 34T

(0.20) 3 5

by ([@I8) and (@I9). We do not see a direct proof of (IIDIII) at this point.

If n=4, X is a quartic surface in P3, i.e. a K3. All its GW-invariants are known
to be zero. With n =4, we find that the two coefficients of (T'—t) in Theorem
add up to zero; the same is the case for the two coefficients of In Iy (t). Thus,
the sum of the terms on the first two lines of the right-hand side in the formula of
Theorem [2] is zero. The remaining term is

1 1,
76 (Jz(t) 2J1(t) )

i a{a} (m o)

Here Ji(t) and Jo(t) are the n=4 analogues of the functions in Subsection [0.1}
7 4d

S I, wq:ewtz dt T L (otr) To(t) = 1,(t) /To(t)
q=0

I (w4 ) —w)

(120) - 302) =50 (29— o)

(ﬁg - Jl(t)>l - (ﬂg)l — J1(t) = Iap(t) = I 1 () = 0.

The last equality above holds by the (n, p)=(4,1) case of (B6). Since Jo(t)—1J;(t)*
is a power series in e’ with no ef-constant term, (0.2I) implies that it is zero as
expectedH

The n =5 case of Theorem [2] implies Theorem [l In this case, the power series
Ino(t) and I; 1 (t) in €' in the statement of Theorem [2 are Iy(¢) and Ji(t) in the
notation of Subsection Thus, the sum of the terms on the first two lines of the
right-hand side in the formula of Theorem [2is precisely the right-hand side of (0.5)

‘We note that

(0.21)

4For a surface X, the standard and reduced (genus 1) GW-invariants are the same if no
descendant classes are involved.
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698 ALEKSEY ZINGER

divided by 2. The remaining term in Theorem [2]is a sum of two terms, one of which
(the one corresponding to p=2) is easily seen to be zero. The other term is

5 1 d? >
- .. N q
24 3l {dw} (lanq(t)w>
q=0
_5
24

w=0

(0.22) N
1 3 1 ar
_ - _ N
<J3(t) Ji(t)J2(t) + 3J1(t) ) B dz:; 0,de"",
with Ji(t), Jo(t), and J3(t) as in Subsection [0l The last equality in (0.22) is

immediate from (4. Theorem [ thus follows from Theorem Bl and (0.13]).
If n=6, X is a sextic fourfold in P°. Theorem B in this case gives

> e TGWIT (di1) = —32—5(T—t) + % InIo(t) — InJj (t) — i In(1—6%€?)
d=1
6 1(d)), &
—.15. = = 1 q
+ 9 5 2!{dw} <DZJq(t)w> .
q=0 w
6 1(d\'/. &
- . q
* o 4!{dw} (lnz‘]‘f(t)w ) o

q=0

The last two terms above arise from the last term in the formula of Theorem 2l In
the n=3,4,5 cases, the latter is

GWT (d; 1) — GWT . (d; 1).
We show in [Z5] that this is the case for all n. For n =6, Theorem [2] would then
give

> 42 1
> e TGW(d;1) = —32—5(T—t) + T?’ In Io(t) — In Jj (t) — 21 In(1—-6%"),
d=1

confirming the mirror symmetry prediction of [KIPal, Section 6.1}@

1. EQUIVARIANT COHOMOLOGY AND STABLE MAPS

1.1. Definitions and notation. This subsection reviews the notion of equivariant
cohomology and sets up related notation that will be used throughout the rest of
the paper. For the most part, our notation agrees with [MirSym|, Chapters 29,30];
the main difference is that we work with P*~! instead of P".

We denote by T the n-torus (C*)™ (or (S1)™). It acts freely on ET = (C*>)"—0
(or (5%9)"):

(eiel,. .. ,ew”) (215 y2n) = (eielzl, cee eie"zn).
Thus, the classifying space for T and its group cohomology are given by
BT = ET/T = (P>)" and Hr = H*(BT;Q) = Qlaa, . .., ay),

where o =7} (v*) if

i (P)" — P*° and v — P

5The variable ¢ in [KIPal, (46)] is not the same as the variable ¢ in this paper; see Appendix [B}
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THE REDUCED GENUS 1 GW-INVARIANTS 699

are the projection onto the i-th component and the tautological line bundle, re-
spectively. Denote by H7 the field of fractions of Hy:

H%‘ = @oz = Q(ala .. 'aan)-

A representation p of T, i.e. a linear action of T on C*, induces a vector bundle

over BT:
V, = ET x1 C*.
If p is one-dimensional, we will call
ci(Vy) = —ca(V,) € Hr C Hp

the weight of p. For example, «; is the weight of representation
(1.1) mi: T — C*, (ewl,...mw") cz = ez
More generally, if a representation p of T on CF splits into one-dimensional repre-
sentations with weights 31, ..., Bk, we will call 8y, ..., Ok the weights of p. In such

a case,
(1.2) e(Vy) =01+ B
We will call the representation p of T on C™ with weights aq, ..., a, the standard

representation of T.
If T acts on a topological space M, let

Hi(M)= H*(BM;Q),  where  BM = ETxpM,

denote the corresponding equivariant cohomology of M. The projection map BM —
BT induces an action of Hy on Hy(M). Let

Hyp(M) = Hp(M) @z Hr.
If the T-action on M lifts to an action on a (complex) vector bundle V'.— M, then
BV = ETxyV
is a vector bundle over BM. Let
e(V)=e(BV) e H(M) C H3(M)

denote the equivariant euler class of V.
Throughout the paper we work with the standard action of T on P!, i.e. the
action induced by the standard action p of T on C™:

(ewl, e ,ei‘g“) ety 2] = [eiglzl, e ,ei‘g“zn}.
Since BP"~! =PV,
Hi(P" 1) = H* (IP’V,,; Q) = Qlz, ay,. .. ,an]/(x"Jrcl(Vp)x"*lJr. . .+cn(Vp)),
where x=c¢1(¥*) and ¥— PV, is the tautological line bundle. Since
c(Vo)=1—a1)...(1 —an),
it follows that
Hy(P" ") =Qlz, a1, ..., ) /(z—a) ... (z—a),
Hi(P ) = Qulz]/(x—an) ... (z—an).
The standard action of T on P*~! has n fixed points:
P =[1,0,...,0l, P,=1[0,1,0,...,0, ... P,=][0,...,0,1].

(1.3)
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700 ALEKSEY ZINGER

For each i1=1,2,...,n, let
(1.4) ¢i = [[(z—on) € HF (P" ).
ki
By equation (ILI0)) below, ¢; is the equivariant Poincare dual of P;. We also note

that 4| gp, = Vi, where m; is as in ([LT)). Thus, the restriction map on the equivariant
cohomology induced by the inclusion P; — P"~! is given by

k=n
(1 5) H%(Pn_l) = Q[xaah AR ,O[n]/ H(x_ak) I H’I?(Pl) = Q[ah .- .,Oén]7
’ k=1
r — Q4.
By (L.3),
(1.6) n=0¢c Hi;(P" 1) — np,=0€Hy Vi=12,...,n.

The tautological line bundle 7,,_; — P"~! is a subbundle of P"~!xC" preserved
by the diagonal action of T. Thus, the action of T on P*~! naturally lifts to an
action on 7,_1 and

(1.7) e(%";fl)‘ﬂ = a4 Vi=1,2,...,n.
The T-action on P*~! also has a natural lift to the vector bundle TP?~! — Pn~!
so that there is a short exact sequence
00— Ym 1 ®@Yn1 — Yoy @ (PP 'xC") — TP 1 — 0
of T-equivariant vector bundles on P"~1. By (L2)), (L1), and (L4),
(1.8) e(TIP’"*l)|Pi :H(ai—ak) = ¢ilp, Vi=1,2,...,n.
ki

If T acts smoothly on a smooth compact oriented manifold M, there is a well-
defined integration-along-the-fiber homomorphism

/ : Hy (M) — Hyp
M

for the fiber bundle BM — BT. The classical localization theorem of [AB0] relates
it to integration along the fixed locus of the T-action. The latter is a union of smooth
compact orientable manifolds F'; T acts on the normal bundle N'F of each F'. Once
an orientation of F' is chosen, there is a well-defined integration-along-the-fiber
homomorphism

/ : Hy(F) — Hy.
F
The localization theorem states that

_ nlr . .
(1.9) /Mn - sz/F S €M Ve Hi(),

where the sum is taken over all components F' of the fixed locus of T. Part of the
statement of (L9 is that e(NF) is invertible in H4(F). In the case of the standard
action of T on P"~!, (LJ) implies that

(1.10) n

see also (L8).

= [ neen VgeHp P, i= 1,2 m
]Pn—l
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THE REDUCED GENUS 1 GW-INVARIANTS 701
Finally, if f: M — M’ is a T-equivariant map between two compact oriented
manifolds, there is a well-defined pushforward homomorphism
fu: Hp (M) — Hp(M').

It is characterized by the property that
aw) [ = [ a) Y ae 0N, o B0,

The homomorphism | 1 Of the previous paragraph corresponds to M’ being a point.
It is immediate from (LII]) that

(1.12) Fe(n(f*n)) = (fim)n'  VneHi(M),n e Hp(M').

1.2. Setup for localization computation on ﬁ%l(P”*l,d). The standard T-
action on P"~! (as well as any other action) induces T-actions on moduli spaces of
stable maps M, 1 (P" !, d) by composition on the right,

h-[C. fl=[C.hof]  VheT, [C f] €M ("', d),
and lifts to an action on 5?(1)7k(IP’"_1, d). All the evaluation maps,

evy: Mg (P, d), M L (B d) — P [Coys- eyl — F(00)s

wherei =1,2,...,k, are T-equivariant. These actions lift naturally to the universal
tangent line bundles

Ly, ..., Ly — My (P, d);
see [MirSym)| Section 25.2]. Let
i = e1(L}) € Hi (Mg 1 (P, d))

denote the equivariant i-class.
Via the natural lift of the T-action to v,,_; — P! described in Subsection [T}

the T-actions on M, ,(P" !, d) and 5??7k(IP"_1,d) lift to T-actions on the sheafs
m+ev*Opn-1(a) and on the vector bundle

V) — ﬁ?;(ﬂwﬂa d)
introduced in Subsection We denote by
Vo — Mo (P, d)
the vector bundle of the locally free sheaf m,ev*Opn-1(n) over Mo (P~ 1, d). Let
L=y — P!

be the vector bundle corresponding to the locally free sheaf Opn—1(n) —P"~1. For
g=0,1, the equivariant bundle map

e’;71:Vg"evslﬁﬁa [C;yl,“-aykvaf]‘) [g(yl)],

is surjective. Thus,

Vi =kerévy — Mo (P 1d)  and V] =kerév; — MY (P d)
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702 ALEKSEY ZINGER

are equivariant vector bundlesf Furthermore,
(1.13) e(Vy) = e(eviL) e(V;) = nevi(x)e(V)),

g

where z € H3(P"~!) is the equivariant hyperplane class as in Subsection [T}
We denote by « the tuple (o, ..., ap). With evy 4 denoting the evaluation map

on ﬁ?ﬁl(P”“, d), let
Floyz,u) = ul(eviae(V1)) € (HE2(P"))[[u]].
d=1

By @.3),

(1.14) Floyz,u) = Foluw)x™ 2 + Fila,u)x™ > + ...+ Fn_o(a,u)2’,

for some power series Fo(u) in u and degree p homogeneous a-polynomials
Fpla,u) € Qllu]][ar, ..., o).

These polynomials must be symmetric in «aj,...,a,. Note that by (@I4) and

(C12),
d ,
(1.15) yiE > e TGWY Y (ds 1) = Fo(e™).
d=1

Thus, our aim is to determine the power series Fo(u) in w defined by (LI4).

By ([L.5), [LI0), and (LI,
Fla, gy u) = f(a,x,u)|Pi = Zud/ (evi,ae(V1)) i
=1 P!

=> u /M e(V1)evio;
d=1

me ,(Pr=1,d)

(1.16)

for each i=1,2,...,n. By ([6), the power series Fy(u) is completely determined
by

Fla,aq,u),. .., Fla,an,u) € Qqf[ul],
where Q, is the ring Q(a1,...,a,) of rational fractions in a1,...,a,. We will
apply the localization formula ([9) to the last expression in (CI6). In order to
do so, we need to describe the fixed loci of the T-action on ﬁ? 1 (Pt d) and for
each fixed locus F the corresponding triple (F, e(Vl)evf¢i|F,]\/’F7') or another triple

(F',n, N") such that
/ U :/ e(V1)evidilr
reN)  Jrp  eNF)

In one case in Subsection [[4] choosing such a replacement turns out to be advan-
tageous.

An element [C, f] of 9 1(P""1,d) is the equivalence class of a nodal genus 1
curve C with one marked point and a stable degree d map f: C — P"~ 1. We
denote by

st (B, d) < 9y 4 (P, d)

6In [MirSym} Chapters 29,30], the analogues of Vo and V) over Mg 2(P", d) are denoted by
Eq,q and E6 4> respectively. However, E(’J 4 is the kernel of the evaluation map at the second

marked point.
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THE REDUCED GENUS 1 GW-INVARIANTS 703

the open subset of My 1(P"~1,d) consisting of the stable maps [C, f] that are not
constant on the principal, genus 1 component Cp of c By definition, Em‘fﬁl (Pn=1.d)

is dense in ﬁ?l(ﬁ’m’l, d). Let
70 n— a0 m— e n—
89)2171(1[]’ 17 d) = 9311,1(}? 17d) - mlffl(P lvd)-

The desingularization 9/.?1?71@"_1,07) of ﬁg’l(P”_l,d) is obtained by blowing up
along subvarieties contained in 8@2’1@?’”*1, d); see [VaZl, Subsection 1.2]. Thus,
Mt (B d) Y, (P d)
is a dense open subset. Let
oMy (P d) = My (P, d) — MG, (", d).

Since each of the fixed loci of the T-action on ﬁil(]P’"*l, d) is contained either
in M (P, d) or in 8%‘1)’1(1[""_1@), each of the fixed loci of the T-action on
MY | (P!, d) is contained in M (P!, d) or in &MY | (P"*,d). Furthermore,
the fixed loci contained in M (P"~1, d) and the corresponding triples (F,n,N'F)
as in ([9) are the same for the T-actions on ﬁ?)l(ﬁ’m_l,d) and E/)JVT?)l(P"_l,d).
These loci and their total contribution to (II6) are described in Subsection
The fixed loci contained in 9N ;(P"~!, d) and their total contribution to (LIG)
are described in Subsection [ based on [VaZ, Subsection 1.4]§

Many expressions throughout the paper involve residues of rational functions in

a complex variable h. If f= f(h) is a rational function in A and Ay € S, we denote
by Ri—r, (k) the residue of f(h)dh at h="hy:

Baono f(1) = 5 § F(R)an

where the integral is taken over a positively oriented loop around i=hg containing
no other singular points of f. With this definition,

Rieoo f(h) = =Ry {w? flw™)}.

If f involves variables other than A, Ry—p, f (%) will be a function of such variables.
If f is a power series in u with coefficients that are rational functions in A and
possibly other variables, denote by PRp—p, f (%) the power series in u obtained by
replacing each of the coefficients by its residue at Ai=Hhq. If iy, ..., iy is a collection
of points in S2, let

i=k
Rnehr i f(R) = > R, f-
i=1

Finally, we will denote by 77 the set of non-negative integers and by [n], whenever
n€Zm, the set of positive integers not exceeding n:

zt={0,1,2,...}, [n] ={1,2,...,n}.

"The connected curve C is nodal and has arithmetic genus 1. Thus, either one of the components
of C is a smooth torus or C contains a circle of one or more spheres (each irreducible component
is a P! with exactly two nodes). In the first case, Cp is the smooth torus; in the second, Cp is the
circle of spheres.

8We will not describe ﬁ(l)l (P"—1 d) in this paper, as this is not necessary.
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704 ALEKSEY ZINGER

FIGURE 1. A decorated graph of type A3 and a decorated graph
of type Aso

1.3. Contributions from fixed loci, I. As described in detail in [MirSym) Sec-
tion 27.3], the fixed loci of the T-action on M, ,(P"~!,d) are indexed by decorated
graphs. A graph consists of a set Ver of vertices and a collection Edg of edges, i.e. of
two-element subsets of Ver[ In Figure[I] the vertices are represented by dots, while
each edge {v1, v} is shown as the line segment between v and ve. For the purposes
of describing the fixed loci of Mo x(P"~*,d) and M (P*~1,d), it is sufficient to
define a decorated graph as a tuple

(1.17) I' = (Ver, Edg; p, 0, 7),
where (Ver, Edg) is a graph and

w: Ver — [n], :Edg — ZT, and n:[k] — Ver
are maps such that

(1.18) w(vy) # p(va) if {v1,v2} € Edg.

In Figure[I] the value of the map p on each vertex is indicated by the number next
to the vertex. Similarly, the value of the map 0 on each edge is indicated by the
number next to the edge. The only element of the set [k]=[1] is shown in boldface.
It is linked by a line segment to its image under n. By (I8, no two consecutive
vertex labels are the same.

A graph (Ver, Edg) is a tree if it contains no loops, i.e. the set Edg contains no
subset of the form

{{Ul,vg},{vg,vg},...,{vN,vl}}, v1,...,0N € Ver, N>1.

For example, the graphs in Figure [2] are trees, while those in Figure [Il contain one
loop each. Via the construction of the next paragraph, decorated trees describe the
fixed loci of ﬁo’k(P”_l, d), while decorated graphs with exactly one loop describe
the fixed loci of Dﬁﬁc(?’"’l, d).

The fixed locus Zr of ﬁ%k(ﬂ"”_l, d) corresponding to a decorated graph I" con-
sists of the stable maps f from a genus g nodal curve C; with k marked points
into P"~! that satisfy the following conditions. The components of C + on which the
map f is not constant are rational and correspond to the edges of I'. Furthermore,

91f g=0, Edg can be taken to be a subset of the set Sym?(Ver) of two-element subsets of Ver.
For g >1, Edg should be viewed as a map from a finite set Dom(Edg) to Sym?(Ver); this map may
not be injective (i.e. there can be multiple edges connecting a pair of vertices). In the latter case,
e€ Edg will mean that e is an element of Dom(Edg); if v € Ver and e € Edg, v €e will mean that v
is an element of the image of e in Sym?(Ver); a map from Edg will mean a map from Dom(Edg).
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THE REDUCED GENUS 1 GW-INVARIANTS 705

if e={v1,v2} is an edge, the restriction of f to the component Cy . corresponding
to e is a degree d(e) cover of the line
Pl

wonto) C P

passing through the fixed points P,,(,,) and P,(,,). The map f|c,  is ramified only
over P,y and P,(,,). In particular, flc,  is unique up to isomorphism. The
remaining, contracted components of C; are rational and indexed by the vertices

v € Ver such that
val(v) = [{ecEdg: vEe}’ + ’{ze[k] n(i):v}‘ > 3.
The map f takes such a component Cy , to the fixed point P,,). Thus,

Zp~ Mp= H Mo val(v)

vEVer

where Mg/,l denotes the moduli space of stable genus ¢’ curves with [ marked
points. For the purposes of this definition, My ; and My are one-point spaces.
For example, in the case of the first diagram in Figure [I

—_— —_— -2 =5 4 _—
Z]" ~ M]“ = M0’5 XMO,S X MO,Q X MO,] ~ MO’S

is a fixed locud in zmgffl (P"=119), with n > 4. Since n is fixed throughout the
main computation in the paper, each graph I' completely determines the ambient
moduli space containing the fixed locus Zr; it will be denoted by M.

Suppose I is a decorated graph as in (ILI7) and has exactly one loop. By (4]

and (L3,

vidi 5, = [T (@uwa) = en) = Sy [ (ei — an),
k#i k#i

where ; ,(n(1)) is the Kronecker delta function. Thus, by (L3), I" does not con-
tribute to (LI6) unless p(n(1)) =14, i.e. the marked point of the map is taken to
the point P; € P"~!. There are two types of graphs that do (or may) contribute
to (LI6)); they will be called A;- and flij—types. In a graph of the A;-type, the
marked point 1 is attached to some vertex vy € Ver that lies inside of the loop and
is labeled ¢. In a graph of the /L-j—type, the marked point 1 is attached to a vertex
that lies outside of the loop and is still labeled ¢, while the vertex vg of the loop
which is the closest to the marked point is labeled by some j € [n]. This vertex is
thus mapped to the point P; € P"—1. Examples of graphs of the two types, with
1=3 and j=2, are depicted in Figure [I

Whether a graph I' is of type A; or /L-j, it contains a distinguished vertex vg;
it is indicated with a thick dot in Figure [l If we break I' at vy, keeping a copy
of vy on each of the edges of I' containing vy, and cap off each of the “loose” ends
with a marked point attached to vy, we obtain several decorated trees, which will
be called the strands of I'. If e_, e, € Edg are the two edges in the loop in I' joined
at vg, the strands are naturally indexed by the set

Edg(vo) = {e€Edg: vo€e} /e ~e,
of edges leaving vy, with e_ and e identified [ The distinguished strand I'c, with

two marked points arising from the loop of I' will be denoted by I' ... There are also

10After dividing by the appropriate automorphism group; see [MirSym) Section 27.3].
By [IF), e— #e4, i.e. there is no edge from a vertex to itself.
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3
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FIGURE 2. The strands of the second graph in Figure [l

m>0 strands, I'y,...,[,,, each of which has exactly one marked point. Finally, if
I is of type /L-j, there is also a second distinguished strand with two marked points
that contains the marked point 1 of I'. This strand will be denoted by I'y. The
strands of the second graph in Figure [I] are shown in Figure 2l

The strands of a one-loop decorated graph I' correspond to fixed loci of the
T-action on Mg x(P"~ 1, d), with k=1,2 and d€Z*. Furthermore,

(1.19) Zr & Mo val(ve) X 2158 = Mo val(vg) % H Zr,,
ecEdg(vo)
up to a quotient by a finite group, where B stands for the bubble components. If
TP, T 20 — Mo val(v)> 2158 and Te: 21,3 — 2T,
are the projection maps, then
(1.20)  Vilz, ~ w,*3< b w:v()) = e(V)|,. = ﬁg< 11 WZe(V(’))).
ecEdg(vo) ecEdg(vo)

“Most” of the normal bundle of Zr in ﬁ%l(P”*l, d) and 9, 1 (P, d), as de-
scribed in [MirSyml Section 27.4], also comes from the components of Zr in the
following sense. The marked points on ﬂo)val(vo) are naturally indexed by the set

Edg(v) = {e€Edg: vo€e}
of the edges leaving vy, along with 1 if I is of type A;. For each e€ Edg(vy), let
L/e — Ml7\val(vg)| and he =1 (L/e) € H? (M1,|Val(v0)|)

be the universal tangent line bundle at the marked point corresponding to e and
its first chern class, respectively. Analogously, let

L. ,L., — Zr, and L. — Zr,, e € Edg(vg)—{e_,e+},

be the restrictions to Zr, and Zr_ of the universal tangent line bundles on Mmr N
and Mr, at the marked points corresponding to the edges leaving vg. Let

Ve = c1(Lg)
be the corresponding v-classes. The normal bundle of Zrin ﬁ? +(P"71 d) is then
given by

NZ [ @ntmtLe
=i @mve)o @ TRLCTERL

n—1 * ok n—1"
TH(UD)P Bem(vo) EGEdg(vo)ﬂ-B’n—eTH(’UO)P
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THE REDUCED GENUS 1 GW-INVARIANTS 707

where N Zr, — Zp_ is the normal bundle of Zr, in M, . Thus,

e(Tu(vo)Pnil) - 1 e(TM(UO)Pnil)
eNzr) 11 e(N2Zr,) 11 he—the

ecEdg(vo) e€Edg(vo)

(1.21)

where we omit the pullback maps 75, 75, and 7.

By (I20) and (LZI),

e(Vl)evT(MZF
e(NZF)

splits into factors coming from the strands of I' after integrating over the first factor
in (CT9). These factors are the contributions of Zr, to integrals over 9Mr, involving
e(Vy) and .. We will next describe the total contribution of all graphs of types
A; and flij to (LI6) in terms of such integrals.

For all 4,5=1,2,..., let

€ Hy(2r)

o0

e(Vo)
1.22 Zr(hyu) = / evio;,
(1.22) (h.u) ; I T
e(Vo)

(1.23) Z5(hou) =07ty / evidievid;,

=@t ia) P

5 1 e(Vp)
1.24 ZX(hy, ho,u) = ——— evig;evyd;.
( ) 2]( 1,702 ) 2h1h2 ;/ﬁ)ﬁo,z(P"—l,d) (hl_wl)(hz_wz) 1(725 2(725]

These generating functions have been explicitly computed; see Subsection For
the moment, we simply note that
27,25 € Qa[[u]]  and 25 € Qqlhy, ho)[u]]-

Thus, the A-residues of these power series are well-defined. So is

(1.25) mi(u) = Rnzo{ In (1427 (h,w)) } € Qallu]]
since the degree-zero term of the power series Z(k, u) is 0. Let
(1.26) (I)()(Oéi,’u,) = %hzo{h_le_""(“)/h(l—l-zf(h, U))} € Qa[[uH

By Lemma [2.3] e*’“(“)/ﬁ(lJrZi*(h, u)) is in fact holomorphic at # =0 and thus
Do (v, u) is simply the value of this power series at i=0. Note that the degree-zero
term of ®¢(av;,u) is 1.
Remark. The star in Z7, Z%,
by removing the u-constant term from certain natural power series Z;, Z;;, and Zvij;
see [MirSym|, Chapter 29] and [Z4] Section 1.1].

and Z~:‘] indicates that these power series are obtained

Proposition 1.1. (i) The total contribution A;(u) to (LIG) from all graphs of type
A; is given by

1 ~
) — B _ —ni(uw)/h1 ,—ni(uw)/h2 Z*
(127)  Aw) = - (aivu)mhl_o{mm_o{e e Z;i(, ey} ).
(i) The total contribution A;;(u) to (LIB) from all graphs of type Ai; is
~ A(u) . h
(1.28 Aij(u) = =—— Ry e WP zx (Bu) ¢
) ) = oy 0! Jilhu) |
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It is fairly straightforward to express A;(u) and A;;(u) in terms of sums of prod-
ucts of the residues of Z7, Z};, and Z~:‘] at every possible h€ C*. A straightforward
application of the Residue Theorem on S? then reduces the resulting expressions
to sums of products of the residues of Z7, Z7;, and ZNZ‘] at h =0. However, the
products will have either m+2 or m+3 factors, where m is the number of strands
of I' with one marked point, and must be summed over all possible m. We are able
to sum over m because e~ (/" (1427 (h,u)) turns out to be holomorphic at A=0;

see Lemmas and 2.3} Proposition [Tl is proved in Subsection 23l

1.4. Contributions from fixed loci, II. In this Subsectiquwe describe the con-
tribution to (ILI6) from the fixed loci of the T-action on MY | (P"~!,d) that are

contained in 8%?71(?’"*1, d). We begin by reviewing the description of such loci
and their normal bundles given in [VaZl, Subsection 1.4].
A rooted tree is a tree (i.e. a graph with no loops) with a distinguished vertex.
A tuple
(Ver, Edg, vo; Ver, Verg)
is a refined rooted tree if (Ver, Edg,vg) is a rooted tree, i.e. vy is the distinguished
vertex of the tree (Ver, Edg) and Ver,, Verg C Ver—{vg} are such that

Very #0, VerynVerg =10, {uvg,v}€Edg YveVeryUVer.
Given such a refined rooted tree, we put
Edg, = {{vo,v}: vE€Very } and Edgy = {{vo,v}: v€ Very}.

In the first diagram of Figure B the distinguished vertex vg is indicated by the
thick dot. The elements of Edg, and Edg, are shown as the thick solid lines and
the thin dashed lines, respectively.

A refined decorated rooted tree is a tuple

(1.29) = (Ver, Edg, vo; Very, Verg; i, 0, 77),
where (Ver, Edg; vg; Ver,, Verg) is a refined rooted tree and
w: Ver—Verg — [n], ?: Edg—Edg, — Z*, and 7:[k] — Ver

are maps such that
(i) p(vy)=p(vz) and 9({vg,v1})=0({vo, v2}) for all vy, vy € Very;
(ii) if vy € Very, vy € Ver—Verg—Ver,, and {vg, v2} € Edg, then

(1.30) p(or) # p(vz)  or d({vo, v1}) #0({vo, v2});
(iii) if {v1,v2} € Edg and vy & VergU{uvg}, then

w(v) £ p(vy) if vy & Verg and w(ve) #u(vg)  if vy € Very;

(iv) if v; € Verg, then {v1, v2} € Edg for some ve € Ver—{vp} and val(vy) > 3.
In Figure 3], the value of the map p on each vertex, not in Verg, is indicated by
the number next to the vertex. Similarly, the value of the map ? on each edge,
not in Edgy, is indicated by the number next to the edge. The elements of the set
[k] = [1] are shown in boldface. Each of them is linked by a line segment to its
image under 7. The first condition above implies that all of the thick edges have
the same labels, and so do their vertices, other than the root vy. By the second
condition, the set of thick edges is a maximal set of edges leaving vy which satisfies
the first condition. By the third condition, no two consecutive vertex labels are the
same. The final condition implies that there are at least two solid lines, at least
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FIGURE 3. A refined decorated rooted tree and some of its strands

one of which is an edge, leaving from every vertex which is connected to the root
by a dashed line.

Remark. In [VaZl, Subsection 1.4], refined decorated rooted trees are required to sat-
isfy a fifth condition, ZeeEdg+D(e) > 2. If this condition is not satisfied (i.e. 9(e)=1
for the unique element e € Edg_ ), the locus Zr corresponding to I' via the construc-

tion below will not contribute to (LI6); see also the next remark.

Let T be a refined decorated rooted tree as in (L29). Breaking I" at vy, we split
I into pieces I'), indexed by the set
Edg(v) = {e€Edg: vo€e}

of the edges in I' leaving vy. If e¢ Edg,, we will keep the vertex vg and the edge e
and cap I, off with a new marked point attached to vg, just as in Subsection

If e = {wg,v} with v € Verg, we remove vy and e from I',, cap it off with a new

marked point attached to v, and assign the p-value of vg to v. In either case, we
denote the resulting decorated tree by I', and call it a strand of I'; see Figure 3] for
two examples. If ve Very, let

pC) = () and (D) = 0({uo.v}).

By the requirement (i) on I", 4(T") and ?(I") do not depend on the choice of v € Very.
Via the construction of Subsection [[3] each strand I', of I determines a T-fixed
locus Zr, in a moduli space Mr, of genus 0 stable maps. Let

zZre= ] 2r..
e€Edg(vo)
where B stands for the “bubble” components. Denote by
Te: Zr,B — 21, and L — Zr,

the natural projection map and the restriction to Zr, of the universal tangent line
bundle on My, for the marked point corresponding to the attachment at vo. Let

Ly =nL. — Zp,p if ecEdg,, Yr = c1(Lf) € H*(Zr;p),

* * =~
Frp = @ TelLe, Frp= @ meLe, Zr,p=PFrp.
ecEdg e€Edg(vo)—Edg,

By the requirement (i) on I', L is well defined as a T-equivariant line bundle and

Zr.p ~ Zr,B X plEdes -1
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710 ALEKSEY ZINGER

Let
.= Edg, |-1
T, 72 Zr.p — Zp,p, PP+

be the two projection maps. Up to a quotient by a finite group, the fixed locus of
the T-action on SDI% (P, d) corresponding to I' (or its equivalent for our purposes;
see the next remark) is

(1.31) Zr = Ml,lval(vo)\ x Zr,p ~ -//\/lvl,|val('uo)\ X Zp.p x PIVer+I=1,

where /K/lv17|val(vo)‘ is a certain blowup of the moduli space of genus 1 curves with
|val(vg)| marked points constructed in [VaZl, Subsection 2.3] The only property

of My |vai(vy)| Televant for the purposes of this paper is (I4) below. Denote by
TP, TB: éf I Ml,\val(vo)h Z~F;B
the projection maps.
The normal bundle of Zr in ﬁ?k(ﬂm_l, d) (or its equivalent) is given by
TN Zrip @ 7] (LT @ FF 5) @757"
T L@ T vy PP @5y

(1.32) NZp = ﬁ;( ) & meLeny (rf Lr@ry),

where v —PIVer+1=1 js the tautological line bundle,

e(NZr.5) < e(Nzr,) ) A
1.33 77— : Vv eTe) EH* Z. 7
( ) e(TN(uO)]Pm_l) eeEld_g‘[(vo)ﬂ— e(TN(vo)Pn_l) T( F’B)

and L. — ./T/IJLMI(UO)‘ is the universal tangent line bundle constructed in [VaZ,
Subsection 2.3]. The only property of this line bundle relevant for our purposes is

~ —1)!
(134) / wlval(ﬂg)l — (‘Val(’l}o” 1) 1fk7:1,
M 24

1,|val(vg)|

where ¢ =¢; (IL*) is the universal 1/-class; see [Z3, Corollary 1.2).
The final piece of localization data we need to recall from [VaZ] is that

(135 P e
r THLE® L u(wy)) @Y
where
(1.36) Vieg= [ me(vHd
e€Edg(vo)

12 The blowups ./(/lvl,(IJ) of My n constructed in [VaZ] are indexed by ordered partitions

(I,J) of [N]. The only cases encountered as components of the fixed loci of 971(1)71(IP"_1, d) are
|J|=0, 1. In these two cases, the blowups are the same, as are the universal tangent line bundles L
appearing in the following paragraph.

13The vector bundle N Zp,p — Zp,p is the normal bundle of Zp,p in the moduli space ﬁF;B
of |Edg(vo)| tuples of genus-0 stable maps that agree at a distinguished marked point of each
element of the tuple.

14 This assumption on k implies that |J| =0, 1; see footnote [[2

15The vector bundle Vll“;B is the analogue of the vector bundle V{ for the moduli space ﬁp;B;
see footnote [[3] It is obtained by pulling £ back to the universal curve, then pushing down, and
then taking the kernel of a natural evaluation map.
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THE REDUCED GENUS 1 GW-INVARIANTS 711

FIGURE 4. Refined decorated rooted trees of types By and Bas

Remark. 1 (') >2, the pair (Zp, N'Zp) described above is precisely the fixed locus
corresponding to I' and its normal bundle as described in [VaZl Subsection 1.4]. If
0(I") =1, the actual fixed locus corresponding to I' has PIVer+1-2 ingtead of PIVer+I-1
as the last factor in (L31]) and Ff 5 has an extra component of L. Thus, by (L.32),
the expression

/ (e(V1)evidi)|z,
Z e(NZF)

as described above agrees with the correct one, as the extra dimension in the last
factor in (L3T)) is canceled by the extra factor of ¢1(7*) in the integrand 19

We now consider the refined decorated rooted trees I' as in (L29) that contribute
to (LIG). As in Subsection [[3] I does not contribute to (II6) unless u(n(1)) =71,
i.e. the marked point is mapped to P; € P*»~!. Similarly to Subsection 3 we
group all graphs that contribute to (I6]) into two types: B; and Bij. In the
graphs of type B;, n(1)=wyp, i.e. the marked point 1 lies on the principal contracted
component of the domain of the maps (and is mapped to P;). In the graphs of
type Bij, n(l) # vo, i.e. the marked point 1 lies on one of the strands of I', while
w(vg) = j; see Figure [ for examples. A graph of type B; has m > 1 strands with
one marked point. On the other hand, a graph of type Bl-j has a distinguished
strand with two marked points and m >0 strands with one marked point. In either
case, the first factor in (3] is M1 my1-

By (L.35), [I5), and [L.I3),
(1.37) e(V1)|z, = nay () H W:e(Vé)/(naH(vo)anrJr)\),
e€Edg(vo)
where A=¢1(v*) and we omit the pullback maps 7} and 3. By ([32) and ([I3),

(TP ™) e(y" ®LF®@T, ()P ") I (L) P" )

e(NZr) Yr+ A e(NZr,)

ecEdg(vo)
(1.38) ) m .
'(/}F _we +)\ .

e€Edg(vo)—Edg

161f 9(T) = 1, Lr is a direct summand in Ty(ve)P" 1. The extra factor of c1(y*) in the
integrand comes from the direct summand v* of the bundle 7} (LE®T, (y)P" ™ 1)@m5~* in (L32).
This summand is canceled by the extra summand of Ly in Ff. 5 in [VaZl.
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712 ALEKSEY ZINGER

Thus,
e(Vi)evigi|z,
e(NZr)
splits into factors coming from the strands of I' after integrating over the first

and last factors in (L31)). These factors are the contributions of Zr_ to integrals
over Myp, involving e(Vy) and 1.

€ Hi(2r)

Proposition 1.2. (i) The total contribution B;(u) to [ILIG) from all graphs of type
Bi 18

nao;

24

"M ai—ag+h)  ZF(hu) }

(1.39) Bi(u) = (nas+h)E 14+27(z,u)

ER)‘1_0,00,710@{

(ii) The total contribution B;j(u) to (LI6) from all graphs of type Bij is

R 1527 (e —art+h) 25 (hw)
naog h=0,00,—na; (naj+h)h? 1+275(z,u)

24 [ 15z (0 — o)

The proof of this proposition turns out to be quite a bit simpler than that of
Proposition [[LT] At an early stage in the computation, Lemma [2.4] reduces a sum
of m products of residues to the residue of a product. The resulting products
sum over m to the functions of & appearing in the statement of Proposition
The residues of these functions on S$?—{0, oo, —na; } are summed, using the Residue
Theorem on S2, to get B;(u) and B;;(u). Proposition[[2is proved in Subsection 23l

(140)  Biy(u) =

2. LOCALIZATION COMPUTATIONS

In Subsection 2] we give two equivalent characterizations of a property of power
series in rational functions that reduces infinite summations involving certain prod-
ucts of residues of such power series to simple expressions. In Subsection 22 we dig
deeper into Givental’s proof of (0] to show that a certain generating function for
genus 0 GW-invariants satisfies this property. We use these observations to prove
Proposition [T in Subsection 23] along with Proposition

2.1. Regularizable power series in rational functions.

Definition 2.1. A power series Z* = Z*(h, u) € Q,(h)[[u]] is regularizable at i=0
if there exist power series

n=n(u) € Qu[[u]] and  Z"=2"(h,u) € Qa(h)[[u]]
with no degree-zero term such that Z* is regular at A=0 and
(2.1) 1+ 27 () = e/ (14 27 (h, ).

If Z* is regularizable at =0, Z* has no degree-zero term and the regularizing
pair (n, Z*) is unique. It is determined by

(2.2) n(u) = mhzo{ In (142 (h, u))}.

The logarithm above is a well-defined power series in u, since Z*(h,u) has no
degree-zero term.
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THE REDUCED GENUS 1 GW-INVARIANTS 713

Lemma 2.2. Suppose Z*=Z*(h,u) €Qq(h)[[u]] has no degree-zero term.
(i) The power series Z* is reqularizable at h=0 if and only if for every a>0

l=m (_]_)U«l
al!

mﬁzo{h*mz*(h, u)}>

= al o {1 2" () |

(ii) If (n, Z*) is the regularizing pair for Z* at h=0, then for every a>0

l=m (_

ey % ( all? Rnmo {1 2" (1, w}) =T oD +7]2’(7u)(0 i

=1

aj=m—a

a;>0

Note that the sums on the left-hand sides of (Z3]) and (2) are finite in each
u-degree, since Z* has no degree-zero term.
Suppose (1, Z*) is the regularizing pair for Z* at h=0. Let

(2.5) Z*(hyu) =Y Cy(u)h?

q=0
be the Taylor series expansion for Z*(h,u) at h=0. If a €Z, then

2 N e >0

(26) mﬁzo{haz*(h, U)} _ Z 77(““') Cq(u) +{ (a+1)! I a =~ Uj

p: 0 otherwise.

p—q=1l+a ’
p,920

The identities (2.3) and 24]) follow from (2.6]) by a fairly direct computation; see

Appendix [Al
It remains to show that if Z* satisfies (Z3)) for all @ > 0, then Z* admits a
regularization. Since Z* € Q,(%)[[u]], we can expand Z* at =0 as

Z*(h,u) = Z Z Cpahiud = Zéq(u)hq,
d=1g=—Ny4 q€z
where
C'q(u) = mh:(){h_q_lz*(h, u)}
Claim. There exists n€ Qq[[u]] such that
Rp—0Z2*(h,u) =0, where 1+ Z%(h,u) = e"(")/h(l + Z*(h, u))
Since Z* €Qq (h)[[u]], we can expand Z* at h=0 as
Z*(hyu) = Z Z Cypahtu® = Z Cy(u)h,
d=1g¢=—N, q€L

where

Cy(u) = mﬁzo{h—q—lz*(h, u)}.
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714 ALEKSEY ZINGER
By assumption on 7, C_;(u)=0. Let
V*(h,u) = i Co(w)h? € Qu(M)[[u]], 1+ Y*(hu) = "™/ (1 4+ Y* (B, u)).
q=0
Since C_1(u)=0,

(2.7) mhzo{hﬂy*(h, u)} - mhzo{h*az*(ﬁ, u)} Ya>0.

Since Y* is holomorphic at h=0, Y* satisfies ([2.3]), with Z* replaced by Y*. Thus,
for all a>0

al %ﬁzo{h““y*(h, u)}

|
hE
=
S|
=
=
s| L
==
ot
i
=
>t
4
S
El
&
——
N——

_ a!iﬁh:o{h‘”lz*(h, u)} = alC_ys.
Along with (2.7)), this implies that Z* =Y*. Thus, Z* =)* is holomorphic at 2=0.

Proof of the Claim. The required property of 7 is equivalent to

oo

n= Z (*U)qcnq_l'

q=0

Since C,, € Qu[[u]] has no degree-zero term, this equation has a unique power-series
solution 7€ Q,[[u]] with no degree-zero term[17 O

Remark. The identity (4] is valid as long as the residue of Z* at A vanishes,
but Z* is not necessarily holomorphic at 7=0. In such a case, Z*(0,u) must be
replaced by Rp—o{h~'Z*(h,u)} on the right-hand side of ([24). By the proof of
the claim, this residue is completely determined by Z*. The assumption that Z*
is regularizable at =0 allows us to compute the sum in (2] explicitly.

2.2. Regularizability of GW generating functions.

Lemma 2.3. The power series Z} = ZF(h,u) € Qq(h)[[u]] defined in ([L22) is
regularizable at h=0.

Proof. We will verify that Z* = Z satisfies (2.3)) for all  >0. By the string relation
(see [MirSym| Section 26.3]),

V!
(2.8) Z!*(hyu) = / c0h) evig; = h ZF (h,u).
ﬁoyl(ﬂpnfl,d) h—QZ)l
"Take no = C_1, np = 5:0 (_771;7!_1)416'(1_1 for p > 1. The sequence 79,1, .. € Qql[u]]

converges, since it is constant in degree d after the d-th term.
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THE REDUCED GENUS 1 GW-INVARIANTS 715

FIGURE 5. A decorated tree contributing to Q;(%,u), with i =2,
and its strands

By the same argument as in the proof of [MirSym|, Lemma 30.11],

(2.9) Z*(h,u) = Qs(h,u) + ZZ — ﬂ%hzﬂ{z'*(h u)}

d=1 j#i
for some  Q; € Qulh, A [[u]]

The middle term in ([29) is the sum of contributions to Z/*(%, u) from the graphs
I" with one marked point such that the marked point is attached to a vertex vy of
valence at least 3. Similarly to Subsections [[L3] and [[4], the vertex vy of I" must
then be labeled 7. An example of such a graph is shown in Figure [B O

Let T be a decorated tree with one marked point as in (LI7) that contributes to
Qi(h,u), i.e
k=1, wu(vg) =14, wval(vg) >3, where vy = n(1).
As in Subsections and [[.4, we break I' into strands I',, indexed by the set
Edg(vo) {eEEdg ’U()Ee}
of the edges leaving from vy. In this case, there are
m = |BEdg(vo)| > 2

strands, each with exactly one marked point.
The fixed locus Zr corresponding to I', the restriction of e(V)) to Zr, and the
euler class of the normal bundle of Z1 are given by

Zr = Mojwawo ¥ [] 2r.,  e(Vg)= ] me(Vy),

510 e€Edg(vo) ecEdg(vo)
(2.10) e(Tu(vo)Pnil) _ H < e(Tu(vo)Pnil) >
e(NZ[‘) c€Bdg(vo) e(/\/'Zpe) (he—ﬂ';f’gbl)

where h, = ¢ (L)) € H *(MO,\val(voﬂ) is the first chern class of the universal tan-
gent line bundle for the marked point corresponding to the edge e. By [MirSym)|
Section 27.2], if e={vg, v}, then

01 —Q o —«
2.11 — w(ve) #(vo) _ n(ve) i
( ) 1/11|zpe o) D(e)

18The statement of [MirSym| Lemma 30.11] is made for a renormalized version of the power
series Z(h,u) and is in fact sharper.
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716 ALEKSEY ZINGER

Thus, by (ZI0) and (L8],
e(Vy)evigi ( +1) /
)% h(@ G N S
/Zr( h—11)e(NZr) ag > Mo, jvai(vg)| o

ae>0 ecEdg(vo)
ecBdg(vg)
X H <(O‘u 0‘2>(ae+1)/ (Vo)eV1¢z>}
e€Edg(vo) (6) ZFe (NZF)
(2.12) o e
- Z a, (ae) (=1)%h
at+ Y av=m—2 s \Ue)ecEdg(vo)
ecEdg(vg)
ae>0
y H ((aﬂ(vﬁ)—ai>_(ae+l)/ (Vo)evlgm)
e€Edg(vo) 0(6) ZFe (NZF)

The first equality holds after dividing the expressions on the right-hand side by the
order of the appropriate groups of symmetries; see [MirSym| Section 27.3]. This
group is taken into account in the next paragraph.

We now sum up (2I2)) over all possibilities for I'. By (29) and its proof, for
every j€[n]—i and d€Z™,

—(ac+1) N
Z o~ e(V})evio; D) o
g — s N = o e Z!

< d ) /Zre e(NZr,) iRh=%{h i (hﬂb)}

n(ve)= Jb(e) d
=%, oy {h ac Z* (I, u)}

Since A~ Z(h,u) has no residue at h=00 by Lemma [3.4]

a;—ay —(ae+1) e(V))ev's; o
JT) /z eJ(\)/ZF1 sz ﬁ{h Zi(h,u)}

d=1 j#i
= o {2 (hu) |

(2.13)

(2.14) r. (

by (I3), the Residue Theorem on S?, and Lemma 3.4l By @2I2) and ZI4),

oo

(215) Z V.(/)\/‘ezvrl‘d)l _ Z {h_(a+1)(—1)m_a Z {

Zr

By |=m a=0 EEEg(Z;):mfzfa
ae>0
—2
( ) ) [T Bnof{n 2w} ¢ o
a, (ae)eeEdg(vo) ccEdg(vo)

19The proof is the same as the proof of (B21)) in [MirSym}, Chapter 30]. If a graph T' contributes
a factor of fi—(a;—a;)/d to the denominator of Z/* (or of i~ (¢e+1) Z/*) then the marked point 1
is attached to a vertex of I" of valence 2. Furthermore, if e is the unique element of Edg(vo), then
w(ve) =7 and d(e) =d; see [MirSym) Section 30.1] for more details. The second equality in (ZI3)
is immediate from (23).
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THE REDUCED GENUS 1 GW-INVARIANTS 717

Taking into account the group of symmetries, i.e. S, in the case of (ZI5)), and
summing up over all possible values of |[Edg(vp)]|, i.e. m>2, we obtain

N =Y
QZ( ,U) - ;} al mZZ m(TH71) o Z
- - S ai=m—2—a
(2.16) =,

_ {h—alz;(h, u)}}}.

On the other hand, by the Residue Theorem on S%, Lemma B.4] and (Z.8),

B R IR By B N e )
d=1j#i 7 d=1 j#i
—zm:h,o{héz’*(z w)}
= ZZ{*(h, u) — i h—(a+1)mZ:0{ZaZZ(*(Z’ u)}

a=0

= 2/ (h,u) Zh (a+D)gg, {haﬂzg*(h, u)}.
Comparing with (Z3)), we conclude that
(2.17) Qi(h,u) = i h’(““)%ﬁzo{h“*lzj(h, u)}.
a=0
By (216l and (ZTI7), Z; satisfies (Z3)) for all a>0.

2.3. Proofs of Propositions [[.1] and In this subsection we prove Proposi-
tions [l and An argument nearly identical to part of the proof of Lemma
leads to a long expression like (2I2). In the proof of the first proposition, the
Residue Theorem on S? reduces it to the form ([ZI5). We then use the second
statement of Lemma to deal with the infinite summation. The situation in
Proposition is a bit different, as the possible strands I', of I" are not mutually
independent due to the requirements (i) and (ii) on I' in Subsection [[4l In this
case, we will use Lemma[2.4] to reduce a product of residues to the residue of a prod-
uct; the resulting products are readily summable. The Residue Theorem on S? is
used at the last step. As the proof of Lemma 24 is completely straightforward, we
relegate it to Appendix [Al
If f=f(\) is holomorphic at A=0 and m >0, let

1 dam

Dt = e TN
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718 ALEKSEY ZINGER

Lemma 2.4. If (fo= fe(N))eck is a finite collection of functions with at most a
simple pole at A=0, then

mx—o{ er()\)}

- Z{ H%,\_O{fe(A)}-DLE+1< H(fe(k)—k1%_o{fe(k)})>}-
E.cE\ ecEy e@Ey

In the case of (i) of Proposition [Tl equations (L20) and (LZI]) describe the
splitting of the integrand corresponding to each fixed locus Zr in the sense of (L9)
between the strands of I'. Summing over all possible strands as in Subsection [2.2]
we find that A;(u) is given by

0 _1\a—+a B
X_:O 3 {%%hl=o%h2=o{hfa‘h;”Z;(hl, ha,u) }

a_+ay—+ i aj=m
(2.18) ot 30

l=m

<1

=1

(;13@ mhzo{h*alz;(h, u)}}

This is the analogue of (ZI6). In this case, we use Lemma B8 in addition to
Lemma [3.4] and the Residue Theorem on S?, to obtain (ZIR) from the analogue
of (2Z12) for A;(u). The sum is taken over every possible number m of strands
with one marked point. The ends of the distinguished strand I' are ordered,
accounting for the factor of 1/2 in (L24). By Lemma 23] Z; is regularizable at
h=0. Therefore, (ii) of Lemma reduces the right-hand side of (ZI8)) to the
right-hand side of (L2T).

In the case of (ii) of Proposition [[LT] the analogue of (2.I]) is easily seen to be

i 1
A(w) = ——
i(u) I (a; —an)
k]
3 G S
LR { S TR { A 2 (e}
m=0 I=m

a_+4ay+ao+ Y aj=m
=1

ag,at,a;>0

ap!
0 e}

D mhzo{h*aoz;i(h, u)} T (_all!)al mh:o{h*“lzj‘(h, U)}}-

In this case, Lemma is used in addition to Lemmas B.4] and and the Residue
Theorem on S?. Lemmas and 2.3 reduce the right-hand side of the above
expression to the right-hand side of (I28).

In the case of (i) of Proposition [[2 (I37) and ([38)) describe the splitting of
the integrand for the fixed locus Zr between the strands of T'. Let

~ H Z(az_ak+h)
Edg_ = Edg(v) —Edg,,  my=|Edg,|, ¥(h¢)=— (22,4_71)(714-@ '
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THE REDUCED GENUS 1 GW-INVARIANTS 719
The analogue of ([Z12]) is then

e(Vi)evidi _ ; ( e(Vé)eV’{@)
— U(h
/éf e(N2r) /ﬂl»vauvmxpm“l { o 11 \/ZFG e(NVZr,)

e€Edg

< 11 (/zpe( ¢i§)?f/\1/¢;Fe)>}h—wr+A.

ecEdg_

(2.19)

We now sum ([219) over all possibilities for I, with e Edg_. In contrast to the
three cases encountered above, I'. can be any graph with one marked point such
that p(1) =1, as long as the edge leaving the vertex p(1) is not labeled d2(T") or its
other end is not labeled p(T'). This restriction is due to (L30). By (I9) applied to
the function Z/*(h, u) defined in (2.8)), the sum over such graphs I, is

VO evl(bz
Z /zF —e)e(N2Zr,)

(n(ve), D(F))¢(H(F) ()

220 Sz - Y [ G

Te
(1(ve),2(e))=(u(T),2(I))

= Zz/*(h’ u) mz:wr{zz{*(z’u)}v

B M,F

since Yr = (o) —;)/0(I'). The last equality uses (B.2I) and (Z8). On the
other hand, summing over all possibilities for I with e € Edg,, without changing
(w(T),0(T")), we obtain

e(Vy)evio; e
(2.21) > /ZF X/ZFI =Ry {27 (2, 0) },

(1(ve)s0 ()= (1(I),0(I))

also by B21) and (Z8)).
By 220) and (Z2I)), the sum of the terms in [2.I9) with Edg(vy), Edg, , and
(u(T),o(I)) fixed is

‘/ﬂl,val(vo)XPm%——l{ H (mz:zpp{zz(*(z,u)})\:[/(hﬂz))

e€Edg

1
< T (20t = = R {20 (2} }M B

ecEdg_

- //\711,|va1(v0)| { H (%Z:wF{Zf*(z,u)})

e€Edg,

(2.22)

R () ) (AN R SN AT }

ecEdg_
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720 ALEKSEY ZINGER

By the last expression in (Z22) and Lemmas 2] and B4, the sum of the terms
in (Z19) with only m=|Edg(vp)| and (u(T),2(T)) fixed is

(e [T 2eo)
/Ml,vauvo) v ’ H ot

e€Bdg(vo)
(2.23) _E)mml z—<m+2>Hk#i(o‘ﬁaﬁz)z!*(z u)™
24 a= e (na;+2) ’
~(=1)™m! {Hk;ﬁi(ai_ak"‘z)

r g
24 s (na;+2)22

2 (2, u)m}.

The first equality above follows from (I4]), while the second one follows from (2.8]).

Finally, taking into account (ILI3) and the group of symmetries, i.e. S,,, and
summing (2:23)) over all possible numbers of one-pointed strands, i.e. m>1, and all
possible values of (u(T"),2(T")), we obtain

noy; oo o0 . H i(OLifOé +h) N m
U) - 24 ZZ Z(_l) 2)C{Fi=ﬁ'd;°”"{ kzénai+h)22 Zi (hvu) }

j#i d=1m=1
(2.24) k_n( ) (h.)
N pe1 (O — Qg+ Z¥(h,u

- gZ%ﬁ #{ (noi thiB 112 (hu) |

The first claim of Proposition now follows from the Residue Theorem on S? and
Lemma 34

The proof of (ii) of Proposition is nearly identical. In the starting equa-
tion (2.19), i is replaced by j and the entire expression is divided by [[,_;(aj—ax).
One of the strands now has two marked points, and there are m >0 other strands.
The two-pointed strand can appear as an element of Edg, as well as of Edg_ and
contributes to Z7;(h,u) instead of Z7(h,u). The number |val(vg)| is still m+1.
Therefore, (Z24]) becomes

5 1 nao;
Bij(u) = Hi(aj_ak)ﬂ
k#j
0o oo Cm Hk#j(ajfakﬁLh) . L)z "
—7n0‘1 Hk 1(aj—ap+h) Zji(hu)
- ,};[ aj —a) ;; "= —L{ (noy+h)h? 1+Z;(h,u)}'

The second claim of Proposition now follows from the Residue Theorem, along
with Lemmas B4 and

Remark. In (i) and (ii) of Proposition [Tl |val(vg)|=m+3, where m is the number of
one-pointed strands. Of the extra 3, 2 comes from the distinguished strand I' .. The
remaining 1 comes from the marked point 1 that lies on the contracted component
Cf.u, corresponding to the vertex vy in (i) and from the second distinguished strand
Ty in (ii). In (i) and (ii) of Proposition [[2} |val(vg)|=m+1, where m is again the
number of one-pointed strands. The extra 1 comes from the marked point 1 that
lies on Cy 4, in (i) and from the two-pointed strand in (ii).
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3. ALGEBRAIC COMPUTATIONS

In this section we use Lemmas B.313.6] to deduce the main theorem of this paper,
Theorem Bl below, from Propositions [T, .2 B3] and Theorem [J] expresses
the contribution from each of the two types of T-fixed loci in im(l)’l(P”*l, d) to the
generating function Fp(u) for the reduced genus 1 GW-invariants of a degree n
hypersurface in P*~! in terms of hypergeometric series. Along with (LI5), it im-
mediately implies Theorem Propositions [B.1] and describe the structure of
the function R = R(w,t) defined in (20 at w =0 and w = oo, respectively; they
are proved in [ZaZ]. Lemma [B3] serves as a tool for extracting the non-equivariant
part of an equivariant cohomology class, while Lemmas recall the relevant
information about genus 0 generating functions. With R as in (@.13), let

(3.1) p(e') = Rp—o{ M R(A™", )} —¢.
Theorem 3. The generating function Fo(u) defined in (LI4) is given by
d - 5
T - A t B t
Fole™) = - (A(e!) + B(e").
where T and t are related by the mirror map (@I7), and

(e = %<<n—2><n+1>u(et> _ =68

21 21 ¢
n—3
- o In Iy, ( ))
- (")
_ (n_Qién+1)ﬂ(€t)
[ () $ SR O 0,2
482111( ”t)+z(n4/2wlnl »(t), if 2|n,
and
B(et) _ ((n—Zién—l—l) n 1 —Q(in;n)") (T—t) B (n—Qién—l—l)u(et)
(3.3) + ﬁ In (1 —n"e') + %S_”)n In Ioo(t)
n = n—2—p (1+w)n D D
+ 22 <Dw (17@0)) (D In R(w,t))

are T-integrals of the contributions of the effective fixed loci of Subsection [L3] and
of the boundary fixed loci of Subsection [L4l, respectively.

The next two propositions, which are proved in [ZaZ], are used in the proof of
Theorem [ in Subsection 3.3

Proposition 3.1. (i) There exist I, . €Q[[et]] for p,r €ZT with r>p such that

T L
I,4(t) = Z ( !Ipvr(t) Y p,q€Zt with ¢>p

and the constant term of fp,r is 1 for r=p and is 0 for r>p.
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722 ALEKSEY ZINGER

ii) The power series I, , in et with p=0,1,...,n—1 satisfy
p:p

(34) IO,O(t)ILl(t) N Inflfnfl(t) (1—n"et) = 1,
(3.5) Too(®)" Ly ()2 Ty g (80 (1—nmet) "2 =1,
(3.6) I y(t) =In_1—pn_1-p(t) v p=0,1,...,n—1.
Proposition 3.2. For allneZt,

e’ 1—n™ —1/n _ 1
(3.7 ety = [T = e e gl

0
The coefficients of the power series
(3.8) Q(h, ") = e~ THrEN/R R 1) € Q(R)[[']]
are holomorphic at h=0. Furthermore,
(3.9) ®g(e') = Q(0,€") = (1—n"et)71/n;

d (n—2)(n+1) ~1/n -1
By = t VAN Y _ont (1 _nt

(3.10) ®4(e") = th(h,e )‘h:O 24n ((1 n"e') (1—n"e") )

Any one of the identities in ([B.4])-(B.6) is implied by the others. We state them all
for convenience. A simple algorithm for determining all coefficients of the expansion
of @ at h=0 is provided by [ZaZl, Theorem 1.5]; these may be needed for computing
higher-genus GW-invariants of projective CY-hypersurfaces.

3.1. Linear independence in symmetric rational functions. In this subsec-
tion we prove a lemma showing that most terms appearing in our computation of
F (o, z,u) can be ignored if our only aim is to determine Fo(u).

For each pe[n], let o, be the p-th elementary symmetric polynomial in oy, . . ., @,
Denote by
Q[a]® = Qla, ..., a,]°" C Qlau,. .., ay]
the subspace of symmetric polynomials, by
T C Qo]

the ideal generated by o1,...,0,—_1, and by

@[O&]Sn = Q[Ozl, ey a”]?£37(ajfak)\j¢k> C Qa

the subalgebra of symmetric rational functions in aq, ..., a, whose denominators
are products of «; and (oj —ay) with j#k. For each i=1,...,n, let

A Sn-1 — Sn—

Qi)™ = Qlon, - ] (- ap)ksy © Qa

be the subalgebra consisting of rational functions symmetric in {ay : k # i} and
with denominators that are products of «; and (o; —ay) with k#4. Let

(3.11) K; = Span{Z - Q;[a]*"*, {1,0,...,a7 73 al "} - Q[a]®" }

be the linear span (over Q) of Z-Q;[a]%"~* and o -Q[a]" with p=0,1,...,n-3,n—1.
If f,9€Q,, we will write

(3.12) ~ g if  f-geKk.
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THE REDUCED GENUS 1 GW-INVARIANTS 723

Lemma 3.3. (i) The ideal T does not contain the product of any powers of oy, and
D= H(ozj—ak.).
itk
(ii) If n>2, the linear span of a2 is disjoint from K;:
Span{a ?} N K; = {0} C Q..

Proof. (i) Suppose me€ Z*. If ay, ..., a, are the n distinct roots of the polynomial
x"—1, then
o1(a1y ... ), . on—1(ar, ... an) =0, op(ar,...,a,)"D(ag,...,an)™ #0.
Thus, o' D™ ¢1.

(ii) Every polynomial in ayq,...,«, which is symmetric in {ay : k # 4} can be
written as a polynomial in a; with coefficients in Q[a]%". Thus, suppose

= -2
n—1 Z::é\] O‘zrfr ZZ:O O‘fgp + a?gn
(3.13) = — — —~ —,
o [T pi(i—aw)™ = o T (0 —a)

where meZT, N =n(m+1)-2, f. €Z, g,€Q[a]"".

Multiplying out the denominators, we obtain

K2

r=N n—2
alempm = Z a; F + Z a’g, +atg,, where N =n(mn+1)—2, F,cT.
r=0 p=0

It follows that

=n n—1
I
i=1 Hk:l (z—au)
(3.14) ] _
i=n 1 r=N n—2
— mm_ai{T(Zprr'Fprgp‘f‘x"Lgn)}.
i=1 1 (@—o) \ 15 p=0

By the Residue Theorem on S?, both sides of (3.I4) are equal to the negative of
the residues of the corresponding one-forms at z=o00. Thus,

r=N
(3.15) 1-0'D™ = Z F.+ 019n, where F.eT.
r=n—1
Note that £, €Z because F,€Z. Thus, BI5) contradicts the first statement of the
lemma, and (3I3)) cannot hold. O

Remark. The proof of (ii) of Lemma B.3] shows that its statement remains valid if
n—2 is replaced by any p=0, 1,...,n—1, in the definition of K; and in the statement
of (ii).

3.2. The genus 0 generating functions. By Subsections [L2HT 4], the generating
function F(a, a;, u) for the reduced genus 1 GW-invariants of a degree n hypersur-
face in P"~! is given by

(3.16) Flo, o, u) = Ag(u) + 3 Aij(u) + Bi(u) + i By (u);
Jj=1 j=1
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724 ALEKSEY ZINGER

see ([LIG) for the definition of F(«, oy, u). Propositions [T and express the
four terms on the right-hand side of (3.I6) in terms of the generating functions
for genus 0 GW-invariants defined in (L22)-(L24). These functions have been
previously computed in terms of hypergeometric series. We describe them in this
subsection. For the rest of Section Bl we assume that n>2.

Let

© r=nd
(3.17)  Y(h,xz,e€") Zedt [ =21 (nz+rh)

fo o) = T (T2 (e —an+rh) — Ty (2 —a))
If peZt, let
(3.18) Vyo(hyz,e') = e‘xt/h{ ij(t) %} e {Ilf(t %}(em/hy(h, z,e")).
In particular,
(319)  Volha,e) = V(b et),  Wi(h o, et) = { 5; + hi}y(h,x,et),

if T and ¢t are related by the mirror transformation (0.I7). Let

y(hla h27 xZ, et) =T Z yp(hlv xZ, et)yq(h27 xZ, et)
(3.:20) i
YY1 (7€) Vo (B, ).
Lemma 3.4. The power series Z} (h,u) is rational in h€ S* and vanishes to second

order at h=o00. It has simple poles at h=(a;—c;)/d, with j#i and d€Z", and
another pole at h=0. Furthermore,

e(Vy)evio;
(3.21) h=(ay—a)/a{ 25 (hyu) } = Z/ 3\/ezvrl¢ ’

where the sum is taken over the two-pointed trees T' as in (LIT) such that the marked
point 1 is attached to a vertex vo =n(1) of valence 2, u(vy) =1, u(v) =4 for the
unique vertex v adjacent to vy, and 0({vg,v})=d. Finally, for all z=0, 00, —na;
and a €7,

a

(1+Z;(h, el) — e(t*T)ai/hy(h, o, et))}
€ (Z-Qila)™)[[e"]].

Lemma 3.5. The power series hZ};(h,u) is rational in h € S? and vanishes at
h=o0. It has simple poles at h=(cqy—ay)/d, with 1#j and d€Z*, and another
pole at h=0. Furthermore,

(3.23) (a2 (B} = Z/ %ﬁ?’”ﬂ

R
(3.22) "= {nai+h

where the sum is taken over the two-pointed trees T as in (LIT) such that the marked
point 1 is attached to a vertex vo =n(1) of valence 2, u(vg) = j, p(v) =1 for the
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THE REDUCED GENUS 1 GW-INVARIANTS 725

unique vertex v adjacent to vy, and d({vo,v})=d. Finally, for all z=0, 00, —na,
and a€Z,

he # o
(0000 HZ5 0T o T, 1 )

€ ({Law..,af % af 1 - Q[a]* 1 © ) 72T - Qylal 1) [[€']].
Lemma 3.6. The power series hy hz 2 (ha, iz, u) is rational in hiy € S? and vanishes

at hy =o00. It has simple poles at hy = (aJ —a;)/d, with j#i and d€Z™, and another
pole at hl =0. Furthermore,

V evyQievyQ;
(3.25) iRhl_ a],al)/d{thhg h17h2, } Z/ h Ow 1¢N;¢)
2 2 T

(3.24)

where the sum is taken over the two-pointed trees T as in (LIT) such that the
marked point 1 is attached to a vertex vo=n(1) of valence 2, u(vy)=1, u(v)=j for
the unique vertex v adjacent to vy, and 9({vg,v})=d. The analogous statements
hold for ho. Finally, for all ai1,a0€Z™,

i)%hl_oi)%hz_o{h‘fl ha? <2h1h2§;(h, eT)

3.26
(3.26) e(t=T)ai(hi ' +hy ") _

hy+ha y(ﬁl,hm@i,et))} € (T - Qife]®)[[e"]]-

All statements concerning rationality of ZF, Z%,, and Z; in these three lemmas

) jZ’
refer to rationality of the coefficients of the powers of et. Lemma [3.4]is proved in

[MirSym|, Chapter 30]; Lemmas and are proved in [Z4J For example, the
conclusion of [MirSyml|, Section 30.4] is that

14 25 (h, eT) = eCVo1/nt=T)ai/hy(f . ot

where

>0 ((nd)! 21
o == 3! (G X7 )
d=1 r=1
This statement clearly implies ([3.:22]), provided n>2 so that o1 €Z.

The differences in B22), (824)), and [B20]) are of course symmetric in the a’s
in every appropriate sense. For example, any of the differences in ([B:22]) is the
evaluation at x =cq; of a power series in e’ with coefficients in the rational functions
inz,o1,...,0,—1. Thisis immediate from the explicit formulas for Z7, Z%;, and Zw
in [MirSym| Chapter 30] and in [Z4]. This symmetry is used in the next subsection
in the computation of the contributions of A” and B”

3.3. Proof of Theorem [Bl We will use Lemma 3.3 along with Lemmas [3.4/3.6]
to extract the coefficients of a?fz from the expressions of Propositions [[.T] and
modulo /;[[u]]. In the notation of Theorem [ the two coefficients are %A(et) and
diTB(et). Let 22 be as in ([B.12), with its meaning extended to power series in e’ in
the natural way.

201n fact, Lemma [B4is essentially the main result of [MirSym) Chapter 30], while Lemmas B3]
and are essentially the main results of [Z4].
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726 ALEKSEY ZINGER

We begin by defining the analogues of the power series Y(h, z, u) and Y, (k, z, u)
without the o’s. Let

A H:z”d(nx—i—rh)
(321) YO0 o) 25 T (e — )

It peZ®, let
h d h d

9 Y. ty —xt/h - L - xt/ﬁY t )
I R vy A B vy (RS
Similarly to (319)),

dt d
ty _ t ty _ - - t

(3.29)  Yo(h,z,e") =Y (h,z,e"), Yi(h,z,e") = {de + th}Y(h,x,e ),

if T and ¢ are related by the mirror transformation (LI7). Let
17(711, ho,z,e') =z Z Y, (hi, €)Y, (he,,€")
(3:30) et
+ x_("_l)Yn,l(hl,m, €Y, _1(ha, z,€").
We note that

k=n k=n
(3.31) ( H (x—ag+rh) — H (x—ozk)> — ((z+rh)™ —2") € Z|h, 2.
k=1

k=1
It follows that

he he
%ﬁ_z{ nai+hy(h’ Q;, u)} — <£Rh_z/ { na:—l—hy(h’ z,u) })

(3.32) i e
= h—z{nai+hy(hv aivu)} _mh—z{ﬁy(}% aivu)}

€ (- Qifa]* ) [[v]]

for all a € Z, 2 =0, 00, —na; and the corresponding 2z’ =0, 0o, —nz. The equality
in (3:32) holds because the evaluation at x = «; of the residue of h*Y (h, z,u)/(na+h)
at h=2' is defined; i.e. the evaluation of Y (%, z,u) at x =«; does not change the
order of the pole of (the coefficient of each u in) Y (A, x,u). This is the reason we
modify the denominators of Chapter 30] and of [Z4] by subtracting off

ﬁz?(x—ak). This modification has no effect on the evaluation maps r — a;.

We now use Lemmas and [B32) to extract the “relevant” part from the
expressions of Proposition [T and [[2l If 7;(u) and p(u) are as in (IL25) and (B3.1]),
respectively, then

(3.33) ni(e") = (t =T+ p(e")) ey € (T - Qi[a]s"*l) [[e']]
by B22) and (332). Similarly, if ®o(a;, u) and Pg(u) are as in (L20) and B9),

respectively, then

T=0;

(3.34) %mmﬁﬁﬁ%€@©mW1Mﬂ]
by (m7 m7 and (13:33]) By (m)v mv (m)7 and (m)7
(3.35) Ai(eT) — A(ehal % € (T - Qi[a]*) [[e]],
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THE REDUCED GENUS 1 GW-INVARIANTS 727

where
I (et I Col R P I
(B30) A(e) = e P woPaco{ i T 1)
On the other hand, by 324), (8:32)), and B33)),
(3.37) Ricofe DMz (heT)} 2 (= 1+ Aleh))al 2ay,
where

A(et) = mhzo{h—le—#@‘)/hn(h, 1, et)}

dT
A i) < D

The first equality in (338) follows from ([B:29), the second from the holomorphicity
statement of Proposition B.2] and the last from 27 and 33). By (L28), 335),

(3.38) _ mh_o{h—l{w N h%} (e Y (h, 1, et))}

and (M)7
= . ) j=n
;Aw( = 1+ A(e g Hk# oz] Oék)
~ a2 — et el S z=ay; 7/‘—1
(3.39) ol (=1 AL );m, { it (2— Otk)}

= a2 =1+ A(e"))A(e R, L
1214 A A {HZ;?(Z%)}

= a?72( -1+ A(et))A(et).
The first equality above follows from the Residue Theorem on S2. Thus, by ([3.35)
and (3.33),

T SR (oT) e, g2 A A(0) Boe)
(340) Ai( )+;AU( )*z i dT IO,O(t) A( )7

with A(e!) defined by (3.386]).
We next reduce the right-hand side of (830 to the explicit form of Theorem 3
Let

(3.41) L(e') = (1—nmet)/",
By B.8), B.28), and 3.7),
e_“(et)/ﬁYp(h, 1,e")

() 2} )

_ fp(et){l + hL(et)%} . fl(et){l + hL(et)%}( Io,0(t)

| B
fp(e)—mVp—O,l,....
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728 ALEKSEY ZINGER

for all p>0. Thus, by (39), (BI0), and the regularity statement of Proposition [3.2]

(3.42) @;0>(et);mh_o{h “mE/hy (B, 1, et } Hfr ),
ol (e") = mhzo{h%“(“)/ "y, (h 1, et>}

)<]i[f()>< +pr f)

where ’ denotes the derivative with respect to t. Note that by (84) and (B3,
o (=1 and O (") = L(e")®:(e").
Thus, by 3.30), B.42), and [B.43),

(3.43)

- R {6 p(e* )(Fﬁ +ﬁ2 ) - (h 1 )}
= 2= T £ /£ £ N\ 9 ’ 76
h1=0~Yhy=0 hlhg(h1+h2) 1 2
= OO (") + O (O (¢)
(344) p+q >no 2
n—2p—1 t)
L ( S )

p=0 r=0

The last equality uses ([3.6]), followed by ([B.4).
By (340), 339), 344), (@17, @), and BI0), the contribution of the fixed

loci of Proposition [[1] is

1 (n—2)(n+1) -1 _ —~ (n=1-p\ f(¢")
211 1(t) ( 24 (L(e ) ) Z < 2 )fp( ))
1 d <(n—2)(n+1)

2011(¢) dt 24 ((Hu(et)) —(t- nlnL(ef)))

5> (" " )m fp(et))

p=0

1d{(n-2)(n+1)  , (n—2)(3n—>5) "t
- 5%(T”(e)_Tln(l_” )
n—3
_ n—1—p N
Z( , ) Ip,pos)).

The first equality above uses (B41) and (B7); the second one also uses (0.18)
and (@I7). We have now proved the first statement of Theorem [ the second form
of the expression in ([B2)) is easily obtainable from the first using (B4)-(35).

We compute the contributions of the terms B;(u) and By;(u) of Proposition
to Fo(u) similarly. However, before proceeding, we observe that the a-free analogue
of the term sz?(ai—ak—l—h) in the numerators in (IL39) and (L40) is (x+h)"—z™.
The reason is the r=1 case of [B31]) and the fact that subtracting off sz?(m—ak)
from the numerators has no effect on the evaluation maps =z — «;.
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THE REDUCED GENUS 1 GW-INVARIANTS 729

By ([L.39), 3.22), and B.32),
Bi(e") =, a7 2B(e"), where

(1+h)" =1 D/PY (B 1,et) — 1
(n+h)h3  et=T)/hY (h,1,et)

On the other hand, by (L40), B22), 324), (332), and (3.29),

n
B(et) = ﬂmﬁ_(),oo,n{

5 najal 2
Bij(e") = o1 Hk;ﬁjj(aj o)
X Rpi=0,00,—na; { (aj +h)n—04? e(t_T)aj/th (h, @5 et) % }
O (nag+-h)R3 et=T)ai/hY (B, aj, €t)
B na?_%z?_l
Y Hk;éj( —a)
th_own{(uh —1 {145} (DY (b, 1,€)) —1}
T (n+h)h3 et=T)/hYy (h,1,et)

n—2 _n—1
«, O[j

oy (Bl &) + T B(e")),

where

B(e") = Bo(e") + Boc(€') + B-u(e"),

(3.45) Bu(eh) — ;L%_Z{(l(ﬁi});; In (e(th)/hy(h, 1, et)) }

Thus, applying the Residue Theorem on S? as in ([B3.39), we obtain
(3.46) Bi(eT) +Y " Bij(eh) = a2 = B(e).
j=1

It remains to compute the three residues B, (e'). For z=—n, the pole is simple.
Since

e/"y (h,1,et) = R(h ™1, 1) and R(—n"1t) = eft/”/l()’o(t)

with R as in Subsection [0.3] we obtain

(3.47) Bl = (1*7;); —1 <t_: —In IO,O(t)>.

The residue at z=0 is computed using Proposition

(3.48) By(et) = —% (%(t—]ﬂ—i—u(et» +1In ®g(e) — lnIO)o(et)).

Finally, note that

'Y (w,1,e') = R(w,t) =1+ Tw +Z Ioogwq.
=2

Licensed to Institute for Advanced Study. Prepared on Fri Mar 1 11:08:15 EST 2013 for download from IP 192.16.204.216.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



730 ALEKSEY ZINGER

Thus,
Bo(e!) = ;_4%20{%( ~ Tw 4+ n R(w, t))}
n 14w _ 14+w)™ _
o R ()

(1+
n—2
=2 > LEO N (1 R
24Z< (1+nw) (D% In B(w,1)).
p=2
The remaining statement of Theorem [B]is obtained by adding (3.47)- (3.:49)).

APPENDIX A. SOME COMBINATORICS

This appendix contains the computational steps omitted in the proof of Lemma
22] as well as the proof of Lemma 2.4

Lemma A.1. For allb>0, N>0, and ¢1,...,qn >0,

" =T () ()

5 —p =1
[il>0

For all ¢>0 and a>1,

> ~ (a—1)l¢!
(4.2 Z ( )a—i—b (a+q)!

b=0

For all ¢>0 and a,s>0,

(A.3) i(l)b(g) o= s 7 ).

b=0 r=a—s+1

Proof. (1) Each summand on the left side of (A)) is the total number of ways to
choose [; elements from a g;-element set for [=1,..., N. Thus, the number on the
left side of (A) is the number of ways to choose b=3"1=V § elements from a set

with zgjvqg elements.
(2) The identity (A2 is satisfied for ¢=0. Suppose (A:2) holds for all a>1 and
some ¢ >0. Then,

() -2w () ()
e -2 ()

(a—1)!¢q! alg (a—1)!(g+1)!
(a+q)!  (a+1+¢q)!  (atg+1)!

9

as needed.
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THE REDUCED GENUS 1 GW-INVARIANTS 731

(3) With ¢, a, and s as in (A3),

bfé < ) ﬁ(r+b)

r=a—s+1

z=1
d\’® S al
N S ey - 1)1

{2 (o) = () et =

as claimed. O
For each k€Z, let

k| ={lez*:1<I<k}

as before. If a=(ayq,...,ax) is a tuple of non-negative integers, define

i=k i=k
o] => o, =]Jeu!,  S@)={(i,4): j=1,..., 055 i=1,...,k}.
i=1 i=1
If b is an integer, possibly negative, let
la|+bY la] +b
ab ) \aq,...,op,b)°
Denote by (ZT)? the 0-dimensional lattice.

Proof of [23). Suppose k € Z*, a € (Z*)k, and q € (Z*)* is a tuple of distinct
non-negative integers. With C; as in ([2.0]), we will compare the coefficients of

i=k
cp=]Icw
i=1
on the two sides of [@3). By (Z), for each 3 € (Z+)%(®) and every choice of k

distinguished disjoint subsets of [a+2+|f]] of cardinalities a, ..., ax, the term C¢
appears in the m=a+2+|3| summand on the left side of (Z3]) with the coefficient

m—lol (*1)@’7‘. n‘thlfﬁiJ )
' Il <5ixj! (¢i+1-0:;)!

(4,5)€S(e)
_ 77a+2+o¢-q H (_1)/%,;' (qi—i—l) ,

e
(g+D  Hes)

(A4)

where
a-QZZaiqi and (g+1)1* H (gi+1)!)

Since the number of above choices is
a+2+10| >
a,a+2+[B|—|al )’

21n the first product, the (i, j)-factor is defined to be zero if Bi,j > (qi+1).
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732 ALEKSEY ZINGER

it follows that the coefficient of C¢' on the left-hand side of (23] is

U > 1 ( a+2+|8] )
(g+D)te (a+2+[8)(a+1+8]) \o, a+2+|8]—|a]

Be(Z+)S(«
i+1
X | | (—1)51',3' <q + )}

(i,5)€5() “J

(A.5)

If k=0 and thus (Z1)%(®) ={0}, this expression reduces to a!n®*?/(a+2)!. By (Z0),
this is the term on the right-hand side of (23] that does not involve any C,. If
k>1, (A5 becomes

(g+1)!al = b (a+2+b)(a+1+d) (a+2+b—|al)!
| pot2tlal 1, if|al=1,
=al—
(a+]q|+2)! 0, if |a|>2,

by Lemma [AJl By (28), this is also the coefficient of C on right-hand side
of 23). O

Proof of ([2.4). The coefficient of C in the m = a+|3| summand on the left side
of (Z.4) is again given by the first expression in (A4)). Thus, the coefficient of C
on the left-hand side of (2.4)) is

(A.6) % 3 <a,ai+¢|f|ﬁ|a|> (Z_JH (—1)@,]'(‘11'%41).

Be(z+)S(@) )es(a) I

If k=0, this expression reduces to 7. If k>1, (A6) becomes

—_

ato-q e . | : _
n e q+|a> (a+b)! lad.a , if [q|=0,
A NT( L X
(g+1)1ea! ;::0( ) < b (a+b—|al)! (=1 0, if|g|>1,
by Lemma [A ] as required. O

Proof of Lemma 2.4l For each ec E, let

Te = 9({)\=O{fe()‘)}v ge()‘) = fe()‘) - 7‘6>\717 he(/\) = )‘fe(/\) =Te+ /\ge(/\)'
Since f, has at most a simple pole at A=0, g, and h, are holomorphic at A=0 and

DI he = Dirge Y je>0.
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THE REDUCED GENUS 1 GW-INVARIANTS 733

Since [[.cpfe(N) has a pole of order at most |E| at A=0,

(I} ot o 1)t (11

eckE ecE ecE

- Y IIme

Y je=|E|-1 e€E

ecE
- {(11) (1Iee))
E,CE eckEy > Je=|Eq|—1 “eZEy
e€E+

> {(I+) 2 (o))

E,CFE ecb je=|E4+|—1 “e€EL
egE
Eq|-1
-y {( Hre)pg+ (ng)},
E.CE eCcEy e@Ey
as claimed. 0

APPENDIX B. COMPARISON OF MIRROR SYMMETRY FORMULATIONS

In this appendix we compare a number of mirror symmetry formulations for
genus 0 and genus 1 curves in a quintic threefold. In all cases, the predictions are
of the form

F;OP(T) = Fg(t)7
where ¢=0,1, F ;01’ (T') is a generating function for the genus ¢ GW-invariants of a
quintic threefold (related to an A-model correlation function), F,(¢) is an explicit
function of ¢ (related to a B-model correlation function), and T'= J(t) for some
function J (called a mirror transformation).

In [CaDGP], the variables on the B-side and A-side are ¢ and t, respectively.
Let

mo(¥) =1+, E%)S! (54)~°%

this is equation (3.8) in [CaDGP] with n replaced by d. The mirror transformation
is defined by equation (5.9):

5 1 X (A, od
=W E_Tm{1“<5¢)_wo<¢>zid!>)5 ORI ;)}

d=1 r=d+1

The mirror symmetry prediction for genus 0 curves is given in [CaDGP| in equa-
tion (5.13):
2midt

> 3 € o 5¢2 0 dd} ;
(B.1) 5+;n0,dd 1—e2midt — (1—4)%)w2(¢) (2_71'1(%)> '

where ng 4 is the genus 0 degree d instanton number of a quintic. These numbers
are related to the genus 0 GW-invariants by the formula

o0 o0

n ,d

(B.2) Noa= Y % = > Noad*q? =" ngad®
dide=d 2 d=1 d=1

¢
1—qd°
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734 ALEKSEY ZINGER

The right-hand side of (B.) replaces the function k4 appearing in [CaDGP
(5.13)], using [CaDGP, (5.11)] and the following two lines.
In [CoKal Chapter 2], the B-side variable is x and the variables on A-side are s

and g=e®. Let
(oo}
i (
0o 5d
5d)! 1
y1(x) = yo(z) In(—x) + 52 Ed'))5 (— )d( Z ;)
d=1 """ r=d+1
These equations are (2.23) and (2.24) in [CoKa]. The mirror transformation is
given by
(B.3) s = = y1(2) /yo(x) q=e* = e (@)/v(x)
The mirror symmetry predlctlon for genus 0 curves is given in [CoKa] in equa-
tion (2.26):
oo d
q 5 q dx
B.4 5 a* = :
. + 2 ol = >(x dq>
The relation with variables in [CaDGP] is
(B.5) r=—(5¢)"°, s = 2mit, q= et

With these identifications, yo(z) = wo(v), J(x) of [CoKa] is J(¢) of
times 2mi, and the right-hand sides of (E]) and (B4) are the same.

In Chapters 29,30], the variables on the B and A sides are ¢ and T
The mirror transformation is given by

where I, and J, are as in (0.I]) and (EEﬂ) The mirror symmetry prediction for
genus 0 curves is formulated in (29.2)] as

< (H+kd)T =3

B. e+ — d H*.
(B.6) + ZnOd Z (AT kd)? ZJ mo
Using (B2), (B.6) can be re-written as

< HT L
(B.7) Z ZNM d—2H)eH+IT = ZJ mod H*.

= -

The relation (0.4]) is obtained by extracting the H? and H3-terms from (B.J); it
is the statement of [MirSym| Exercise 29.2.2], minus a typo. The relation with
variables in [CoKal is
(B.8) r=—é, s=T, and q=¢’.

With these identifications, I;(t) =y;(x) and J(t) of [MirSym)] is precisely J(z) of
[CoKal. It is shown at the very end of [CoKal, Chapter 2] that the third derivative
of the right-hand side of (@4 with respect to s=T is the right-hand side of (B4).
We note that throughout Section 2.6 of [CoKa] (in contrast to Section 2.4),

3
Y(q) = (1+55i)yg($> (i ((cilq)> '
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THE REDUCED GENUS 1 GW-INVARIANTS 735

The relation between = and ¢ is described in the previous paragraph. In Section 2.5,
this function Y is called the normalized Yukawa coupling regarded as a function of q.

As in [CaDGP], the B-side and A-side variables in [BCOV] are ¢ and ¢. However,
they are now related by the mirror transformation

t= () = {m(sw Z 5d ( f: i)}:—T,

d:l r=d+1

with T as in [MirSym|, Chapters 29,30]. This is contrary to the suggestion in the
paper that ¢ and ¢ are related in the same way as in [CaDGP]. Let

P \62/3 sy—1/6 (Y
see equation (23) in [BCOV]. The mirror symmetry prediction for genus 1 curves

is given in [BCOV] in equation (24):

25 qhdz
(B.lO) 6 -2 Z n1,d, d1d2 1— qdld2 Z o, dd = 8tFl (¢)
dqi,da=1

where ¢ = e~ and n; 4 is the genus 1 degree d instanton number of the quintic.
These numbers are related to the genus 1 GW-invariants by the formula

(Td2
Nld = E n1 d1 g n() dld

d1d2 1d2
(B.11) i
< ZNl ddq = Z ni d1d1d2 d1d2 12 ZTLQ dd
d=1 di,d2=1

where o, is the number of degree r unramified connected covers of a smooth genus 1
surface or equivalently of subgroups of Z? of index r. Since this number is the same
as the sum of positive integer divisors of r,

(B.12) Zarq = Z

r=1

r

1— q"'

This identity implies equivalence of the two equalities in (B.ITJ).
Integrating both sides of (BI0) with respect to ¢ and using (BII)), we find
that (BI0Q) is equivalent to

ma e gt (o) (@)

for some constant C. This equality should be interpreted by moving 25t/6 to the
right-hand side and expanding as a power series in ¢ at ¢=0. The relation between
the variables in [BCOV] and [CoKa] is

—(51)7°, s=—t, and ¢=gq.
Thus, (BI3) is equivalent to

25 _ _ -1/6 (q dx
’ d _ 25/6 62/3 5 q
(B.14) C 5° + ZdE_INqu In (x Yo() (145°z) (x—dq) ,
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736 ALEKSEY ZINGER

with ¢g=e* and s and z related by the mirror transformation (B.3). In the notation
of [MirSym], i.e. with identifications (B.8)), (B:14) becomes

25 = 25 -
(B.15) C" = LT + 23" Ny g™ = ~Ft+hn (Io(t)62/3(1—556t) S g (t)l).
d=1

It is straightforward to see that C” =0. Thus, (BI0) and (BIH) are equivalent
to ([@3).

Remark. The conventions used in [KIPa] to formulate a mirror symmetry prediction
for the genus 1 GW-invariants of a sextic fourfold are the same as in [BCOV], except
5 above is replaced by 6.
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